SlideShare a Scribd company logo
1 of 41
Special Techniques for Calculating Potential
3.1 Laplace’s Equation
3.2 The Method of Images
3.3 Separation of Variables
3.4 Multipole Expansion
3.1 Laplace’s Equation
3.1.1 Introduction
3.1.2 Laplace’s Equation in One Dimension
3.1.3 Laplace’s Equation in Two Dimensions
3.1.4 Laplace’s Equation in Three Dimensions
3.1.5 Boundary Conditions and Uniqueness
Theorems
3.1.6 Conducts and the Second Uniqueness
Theorem
3.1.1 Introduction
The primary task of electrostatics is to study the interaction
(force) of a given stationary charges.
since
this integrals can be difficult (unless there is symmetry)
we usually calculate
This integral is often too tough to handle analytically.
2
0
ˆ1 ( )
4
F q Etest
RE d
R
ρ τ
πε
=
= ∫
v v
v
ˆˆ ˆx y zE E x E y E z= + + +×××
v
0
1 1( )
4
V d
R
E V
ρ τ
πε
= ∫
= −∇
v
∴
Q
In differential form
Eq.(2.21): Poisson’s eq.
Laplace’s eq
or
The solutions of Laplace’s eq are called harmonic function.
3.1.1
2
0
V
ρ
ε
∇ = −
2
0V∇ =
2
2 2 2
2 2 2
1 10 ( )
0
i
k i i i
k
TV A
h q h q
V V V
x y z
∂ ∂= ∇ =
∂ ∂∏
∂ ∂ ∂
+ + =
∂ ∂ ∂
 to solve a differential eq. we need boundary conditions.
 In case of ρ = 0, Poisson’s eq. reduces to
3.1.2 Laplace’s Equation in One Dimension
2
2
0
d V
V mx b
dx
= ⇒ = +
m, b are to be determined by B.C.s
e.q.,
1. V(x) is the average of V(x + R) and V(x - R), for any R:
2. Laplace’s equation tolerates no local maxima or minima.
( 1) 4 1
5
( 5) 0 5
V x m
V x
V x b
= = = − 
⇒ ⇒ = − + 
= = = 
V=4 V=0
1 5 x
[ ]1
2
( ) ( ) ( )V x V x R V x R= + + −
Method of relaxation:
3.1.2 (2)
 A numerical method to solve Laplace equation.
 Starting V at the boundary and guess V on a grid of interior points.
Reassign each point with the average of its nearest neighbors.
Repeat this process till they converge.
3.1.2 (3)
The example of relaxation
n V(x=0)V(x=1)V(x=2)V(x=3)V(x=4)
0 4 0 0 0 0
1 4 2 0 0 0
2 4 2 1 0 0
3 4 1 0
4 4 0
5 4 0
6 4 0
7 4 0
8 4 0
9 4 0
10 4 0
4 3 2 1 0
3.1.3 Laplace’s Equation in Two Dimensions
A partial differential eq. :
There is no general solution. The solution will be given in 3.3.
We discuss certain general properties for now.
1. The value of V at a point (x, y) is the average of those around
the point.
2. V has no local maxima or minima; all
extreme occur at the boundaries.
3. The method of relaxation can be applied.
2 2
2 2
0
V V
x y
∂ ∂
+ =
∂ ∂
1( , )
2 circle
V x y Vdl
Rπ
= ∫Ñ
3.1.4 Laplace’s Equation in Three Dimensions
1. The value of V at point P is the average value of V
over a spherical surface of radius R centered at P:
The same for a collection of q by the superposition principle.
2. As a consequence, V can have no local maxima or minima;
the extreme values of V must occur at the boundaries.
3. The method of relaxation can be applied.
2
1( )
4 sphere
V p Vda
Rπ
= ∫Ñ
2 2 2
0
1 , 2 cos
4
q
V r R rR θ
πε
= = + −
r r
1
2 2 22
2
0
1 [ 2 cos ] sin
44
ave
q
V r R rR R d d
R
θ θ θ ϕ
πεπ
−
= + −∫
2 2
0
1 2 cos 04 2
q
r R rR
rR
πθ
πε
= + −
( ) ( ) at the center of the sphere
0 0
1 1
4 2 4
q q
r R r R V
rR rπε πε
 = + − − = = 
3.1.5 Boundary Conditions and Uniqueness Theorems
in 1D,
•
one end
Va
•
the other end
Vb
V is uniquely determined by its value at the boundary.
First uniqueness theorem :
the solution to Laplace’s equation in some region is uniquely
determined, if the value of V is specified on all their surfaces;
the outer boundary could be at infinity, where V is ordinarily taken
to be zero.
V mx b= +
3.1.5
Proof: Suppose V1 , V2 are solutions
at boundary at boundary.
V3 = 0 everywhere
hence V1 = V2 everywhere
2
1 0V∇ = 2
2 0V∇ = 1 2 ?V V=
3 1 2V V V= −
2 2 2
3 1 2 0V V V∇ = ∇ −∇ =
1 2 3 0V V V= ⇒ =
∴
Proof.
at boundary.
Corollary : The potential in some region is uniquely determined if
(a) the charge density throughout the region, and
(b) the value of V on all boundaries, are specified.
3.1.5
The first uniqueness theorem applies to regions with charge.
2
1
0
V
ρ
ε
∇ = − 2
2
0
V
ρ
ε
∇ = −
3 1 2V V V= −
2 2 2
3 1 2
0 0
0V V V
ρ ρ
ε ε
∇ = ∇ −∇ = − + =
3 1 2
3
0
0, . ., 1 2
V V V
V i e V V
= − =
∴ = =
3.1.6 Conductors and the Second Uniqueness Theorem
 Second uniqueness
theorem:
Proof:
Suppose both and are satisfied.
and
0
1
1E ε
ρ∇× =
v
0
1
2E ε
ρ∇× =
v
In a region containing conductors and filled
with a specified charge density ρ,
the electric field is uniquely determined if the
total charge on each conductor is given.
(The region as a whole can be bounded by
another conductor, or else unbounded.)
2E
v
1E
v
0 0
1 1
1 1 2 2,
ith conducting ith conducting
surface surface
i iE da Q E da Qε ε
× = × =∫ ∫
v vv v
Ñ Ñ
0 0
1 1
1 2,
outer bourndary outer bourndary
tot totE da Q E da Qε ε
× = × =∫ ∫
v vv v
Ñ Ñ
for V3 is a constant over each conducting surface
define
3.1.6
3 1 2E E E= −
v v v
0 0
3 1 2 1 2( ) 0E E E E E
ρ ρ
ε ε
∇× = ∇× − = ∇× −∇× = − =
rv v v v
3 1 2 0E da E da E da× = × − × =∫ ∫ ∫
v v vv v v
Ñ Ñ Ñ
2
3 3 3 3 3 3 3( ) ( ) ( )V E V E E V E∇× = ∇× + ∇ = −
v v v
2
3 3 3 3 3( )
volume surface
E d V E d V E daτ τ= − ∇× = − ×∫ ∫ ∫
v v v
Ñ
3 3 0
surface
V E da= − × =∫
v v
Ñ
3 1 20E E E∴ = =
v v v
i.e.,
3.2 The Method of Images
3.2.1 The Classical Image Problem
3.2.2 The Induced Surface Charge
3.2.3 Force and Energy
3.2.4 Other Image Problems
3.2.1 The Classical Image Problem
What is V (z>0) ?
( )
2 2 2 2
1. 0 0
2. 0
V z
V for x y z d
= =
→ + + >>
B.C.
The first uniqueness theorem guarantees that
there is only one solution.
If we can get one any means, that is the only answer.
Trick :
Only care
z > 0
z < 0
is not of
concern
3.2.1
in original
problem
for
V(z=0) = const = 0
( )0 0E z < =
v
0z ≥
( ) ( )2 22 2 2 20
1
( , , )
4
q q
V x y z
x y z d x y z dπε
 
− = +
 
+ + − + + +  
ˆ
0
0
0
z
x y
E E z
E E
at z
or E
= −
= = 
 ÷
= 
=P
v
3.2.2 The Induced Surface Charge
Eq.(2.49)
0
ˆˆ
V
E z V z
z
σ
ε
∂
= = −∇ = −
∂
v
0
0z
V
z
σ ε
=
∂
= −
∂
0 0
z z
A
E A E
σ σ
ε ε
×
− = = −
0
0
Q
E da at z
ε
× = ≅∫
v v
QÑ
( ) ( )2 22 2 2 2
0
1
4
z
q q
z x y z d x y z d
σ
π
=
 
− ∂  
= − 
∂  + + − + + + 
total induced surface charge
3.2.2
Q=-q
3 3
2 2 2 2 2 22 2
0
1 1
2( ) 2( )
2 2
4
( ) ( )
z
z d z dq
x y z d x y z d
π
=
 
− × − − × + −  
= − 
    + + − + + +     
3/2 3/22 2 2 2 2
2 2
qd qd
x y d r d
σ
π π
− −
= =
   + + +
   
01/22 2
1
qd q
r d
∞−
= − = −
 +
 
2
3/20 0 2 2
2
qd
Q da rdrd
r d
π
σ θ
π
∞ −
= =
 +
 
∫ ∫ ∫
3.2.3 Force and Energy
The charge q is attracted toward the plane.
The force of attraction is
With 2 point charges and no conducting plane, the energy is
Eq.(2.36)
( )
( ) ( )
2
2 2
0 0
1 1
ˆˆ
4 4 2
q q q
F z z
dd dπε πε
−
= = −
 − − 
v
( )
( ) ( )
( )
( )
2
1
20 0
2
0
1
2
1 1 1
2 4 4
1
4 2
i i i
i
W q V p
q q
q q
d d d d
q
d
πε πε
πε
=
=
  
    = × − + − ×    +  − −   
= −
∑
3.2.3 (2)
or
For point charge q and the conducting plane at z = 0 the energy
is half of the energy given at above, because the field exist
only at z ≥ 0 ,and is zero at z < 0 ; that is
( )
2
0
1
4 4
q
W
dπε
= −
( )
( )
2
2
0
2 2
0 0
1
4 2
1 1
4 4 4 4
d d
d
q
W F dl dz
z
q q
z d
πε
πε πε
∞ ∞
∞
= × =
 
= − = − ÷ ÷
 
∫ ∫
vv
ˆ( )dl dlz= −
v
Q
3.2.4 Other Image Problems
Stationary distribution of charge
1
q
2
q
3
q
1
q−
2
q−
3
q−
3.2.4 (2)
Conducting sphere of radius R
Image charge
at
R
q q
a
′ = −
2
R
b
a
=
( )
0
0
0
1
,
4
1
ˆˆˆˆ4
1
4 ˆˆˆˆ
q q
V r
q q
rr as rr bs
q q
a r
r r s b r s
r b
θ
πε
πε
πε
′ 
= + ÷
 
 ′
= + ÷
− − 
 
 ÷′
= + ÷
 ÷− − ÷
 
′r r
1
2 2 22 cosr a ra θ = + −
 
r
1
2 2 22 cosr b rb θ = + −
 ′r
Force
[Note : how about conducting circular cylinder?]
3.2.4 (3)
( )
0
1
, 0
4
ˆˆˆˆ
q q
V R
a R
R r s b r s
R b
θ
πε
 
 ÷′
= + = ÷
 ÷− − ÷
 
q q
R b
′
= −
b R
q q q
R a
′ = − = −
a R
R b
=
2
R
b
a
=
( ) ( )
2
2 22 20 0
1 1
4 4
qq q Ra
F
a b a R
πε πε
′
= = −
− −
3.3 Separation of Variables
3.3.0 Fourier series and Fourier transform
3.3.1 Cartesian Coordinate
3.3.2 Spherical Coordinate
ˆˆ ˆ, ,x y zare unique because
3.3.0 Fourier series and Fourier transform
Basic set of unit vectors in a certain coordinate can express
any vector uniquely in the space represented by the coordinate.e.g.
Completeness: a set of function ( )xfn
( ) ( )xfCxf n
n
n∑
∞
=
=
1
( )xf
is complete.
if for any function
Orthogonal: a set of functions is orthogonal
if ( ) ( ) 0=∫ dxxfxf m
b
a
n
mn ≠
=const
for
for mn =
in 3D. Cartesian Coordinate.zVyVxViVV zyx
N
i
i ˆˆˆˆ
1
++== ∑=

zyx VVV ,, are orthogonal.
ji ˆˆ ⋅ = i j=
i j≠0
1
3.3.0 (2)
A complete and orthogonal set of functions forms
a basic set of functions.
e.g.
Nnk ∈,
( ) ( )sin sinkx kx− = −
( ) ( )cos coskx kx− =
odd
{ nkif
nkifdxnxkx ≠
=
−∫ = 0
coscos π
π
π
0cossin∫−
=
π
π
dxnxkx
{ nkif
nkifdxnxkx ≠
=
−∫ = 0
sinsin π
π
π
even
sin(nx) is a basic set of functions for any odd function.
cos(nx) is a basic set of functions for any even function.
sin(nx) and cos(nx) are a basic set of functions for any functions.





for any ( )xf ( ) ( ) ( )
2
xfxf
xg
−−
= ( ) ( ) ( )
2
xfxf
xh
−+
=odd
( ) ( ) ( )xhxgxf +=
even
3.3.0 (3)
,
↑
odd
↑
even
[sinkx] [coskx]
Fourier transform and Fourier series
( ) ( )
0
(*) sin cosn n
n
f x A nx B nx
∞
=
= +∑
( ) ( )
1
sinnA f x nx dx
π
ππ −
= ∫
( ) ( )
1
cosnB f x nx dx
π
ππ −
= ∫
( ) 0
2
1
00 == ∫−
AdxxfB
π
ππ
} ∞⋅⋅⋅⋅= ,2,1n
;
3.3.0 (4)
Proof
( ) ( )
( )
* sin
sin
kx dx
f x kxdx
π
π
π
π
−
−
×
⇒ ×
∫
∫
( ) ( )
0
sin cos sinn n
n
A nx B nx kx dx
π
π
∞
−
=
= +∑ ∫
( ) ( )
0
sin sinn
n
A nx kx dx
π
π
∞
−
=
= ∑ ∫
( ) ( )0
1
sinkA f x kx dx
π
π
∴ = ∫
if 0kA kπ= ≠
0
cos cosn
n
B nx kx dx
π
π
∞
−
=
= ∑ ∫
( ) ( )
( ) ( )
* cos
cos
kx dx
f x kx dx
π
π
π
π
−
−
×
⇒
∫
∫
( ) ( )
0
sin cos cosn n
n
A nx B nx kx dx
π
π
∞
−
=
= +∑ ∫
( )0
1
2
B f x dx
π
ππ −
= ∫
{=
( ) ( )
1
cosnB f x nx dx
π
ππ −
∴ = ∫
3.3.0 (5)
B0 2π for k = 0
Bk π for k = 1, 2, …
3.3.1 Cartesian Coordinate
Use the method of separation of variables to solve the Laplace’s eq.
Example 3
0)(
)()0(
0)(
0)0(
0
→∞→
==
==
==
xV
yVxV
yV
yV
π
Find the potential inside this “slot”?
Laplace’s eq.
2 2
2 2
0
V V
x y
∂ ∂
+ =
∂ ∂
set )()(),( yYxXyxV =
2 2
2 2
0
X Y
Y X
x y
∂ ∂
+ =
∂ ∂
0
11
)(
2
2
)(
2
2
=
∂
∂
+
∂
∂

onlyydepedentygonlyxdepedentxf
y
Y
Yx
X
X
f and g are constant
1 2 0C C+ =
12
2
1
)( C
dx
Xd
X
xf ==
2
22
1
( )
d Y
g y C
Y dy
= =
2
21 kCC =−=set
so Xk
dx
Xd 2
2
2
=
2
2
2
d Y
k Y
dy
= −
kyDkyCyYBeAexX kxkx
cossin)(,)( +=+= −
=),( yxV )( kxkx
BeAe −
+ )cossin( kyDkyC +
3.3.1 (2)
1 2, are constant
( ) ( ) 0
C C
f x g y+ =
3.3.1 (3)
B.C. (iv) ( ) 0 0, 0V x A k→ ∞ → ⇒ = >
B.C. (i) ( 0) 0 0V y D= = ⇒ =
=),( yxV kx
e−
)cossin( kyDkyC +
( , ) sinkx
V x y Ce ky−
=
B.C. (ii) ( ) 0 sin 0 1,2,3V y k kπ π= = ⇒ = = L
B.C. (iii) )()0( 0 yVxV ==
=)(0 yV
1
sinkx
k
k
C e ky
∞
−
=
∑ A fourier series for odd function
00
2
( )sinkC V y ky dyπ
π
= ∫
The principle of superposition =),( yxV
1
sinkx
k
Ce ky
∞
−
=
∑
3.3.1 (4)
For antconstVyV == 00 )(
0
0
0
4 0
2
sin
0
2
(1 cos )
k
V
k
V
C ky dy
if k even
V
k
k if k odd
π
π
π
π
π
=
=

= − = 
=
∫
sin10 0
sinh
1,3,5,
4 21
( , ) sin tan ( )
yk
x
k
V V
V x y e ky
kπ π
− −
=
= =∑
L
3.4 Multipole Expansion
3.4.1 Approximate Potentials at Large distances
3.4.2 The Monopole and Dipole Terms
3.4.3 Origin of Coordinates
in Multipole Expansions
3.4.4 The Electric Field of a Dipole
1 1
2
1 cos
24 0
( ) cos
( )
d
r
qd
r
V p
θ
πε
θ− ≅
≅
r r+ -
3.4.1 Approximate Potentials at Large distances
Example 3.10 A dipole (Fig 3.27). Find the approximate potential
at points far from the dipole.
⇒
1
4 0
( ) ( )
q q
V p
πε + −
= −
r r
2 2 2
2
( ) cos
d
r rd θ± = + mr
2
2
24
(1 cos )
d d
r r
r θ= ± +
2
(1 cos )
r d
d
r
r θ
>>
≅ m
1
1 1 12
2
(1 cos ) (1 cos )
d d
r r r r
θ θ
−
±
≅ ≅ ±m
r
3.4.1
Example 3.10 For an arbitrary localized charge distribution.
Find a systematic expansion of the potential?
0
1 1
( )
4
V p dρ τ
πε
= ∫ r
2 2 2
2 2
2 cos
[1 ( ) 2( )cos ]
r r
r r
r r rr
r
θ
θ
′ ′
′ ′= + −
= + −
r
1 ( )( 2cos )
r r
r r
r θ
′ ′
= +∈ ∈= −r
3.4.1(2)
1 1 3 52 2 3 3
2 8 16
[1 ( )( 2cos ) ( ) ( 2cos ) ( ) ( 2cos ) ]
r r r r r r
r r r r r r r
θ θ θ
′ ′ ′ ′ ′ ′
= − − + − − − +L
1 3 1 5 32 2 3 3
2 2 2 2
[1 ( )cos ( ) ( cos ) ( ) ( cos cos ) ]
r r r
r r r r
θ θ θ θ
′ ′ ′
= + + − + − +L
1
0
( ) (cos )
r n
nr r
n
P dθ ρ τ
∞
′
=
′= ∑
Monopole term Dipole term Quadrupole term
Multipole expansion
1
1 1 1 1 3 52 32
2 8 16
(1 ) (1 )
r r
−
∈ ∈ ∈= +∈ = − + − +L
r
1
( 1)4 0 0
1 1 1 1 3 12
2 34 2 20
1
( ) ( ) (cos )
[ cos ( ) ( cos ) ]
n
nn
n
r r r
V r r P d
r
d r d r d
πε
πε
θ ρ τ
ρ τ θ ρ τ θ ρ τ
∞
+
=
′=
′ ′= + + − +
∑ ∫
∫ ∫ ∫ L
3.4.2 The Monopole and Dipole Terms
monopole
dipole
dominates if r >> 1
dipole moment (vector)
A physical dipole is consist of a pair of equal and
opposite charge,
1
4 0
( )
Q
mon r
V p
πε
=
1 1
24 0
1 1
24 0
( ) cos
ˆ
dip
r
r
P
V p r d
r r d
πε
πε
θ ρ τ
ρ τ
′=
′= ×
∫
∫
v
v
14243
ˆcosr r rθ′ ′= ×
v
ˆ1
24 0
1
( )
p r
dip
r
n
i i
i
V p
p r d q r
πε
ρ τ
×
=
=
′ ′= = ∑∫
v
v v v
q±
( )p qr qr q r r qd+ − + −′ ′ ′ ′= − = − =
vv v v v v
3.4.3 Origin of Coordinates in Multipole Expansions
if
( )
p r d
r d d
r d d d
p dQ
ρ τ
ρ τ
ρ τ ρ τ
′=
′= −
′= −
= −
∫
∫
∫ ∫
vv
vv
vv
0Q p p= =
v
3.4.4 The Electric Field of a Dipole
A pure dipole
ˆ cos
2 24 40 0
2 cos
34 0
1 sin
34 0
1
sin
34 0
( , )
0
ˆˆ( , ) (2cos sin )
P r P
dip
r r
V P
r r r
V P
r r
V
r
P
dip
r
V r
E
E
E
E r r
θ
πε πε
θ
πε
θ
θ θ πε
ϕ θ ϕ
πε
θ
θ θ θ θ
×
∂
−
∂
∂
−
∂
∂
−
∂
= =
= =
= =
= =
= +
v
v

More Related Content

What's hot

Laplace transform
Laplace  transform   Laplace  transform
Laplace transform 001Abhishek1
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationRawat DA Greatt
 
Fermi dirac distribution
Fermi dirac distributionFermi dirac distribution
Fermi dirac distributionAHSAN HALIMI
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transformsHimel Himo
 
Chap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsChap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsUmesh Kumar
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics Kumar
 
Simpson's rule of integration
Simpson's rule of integrationSimpson's rule of integration
Simpson's rule of integrationVARUN KUMAR
 
SPECTRA OF ALKLI ELEMENT, SPIN ORBIT INTERACTION & FINE STRUCTER OF ALKLI SP...
SPECTRA OF ALKLI ELEMENT, SPIN  ORBIT INTERACTION & FINE STRUCTER OF ALKLI SP...SPECTRA OF ALKLI ELEMENT, SPIN  ORBIT INTERACTION & FINE STRUCTER OF ALKLI SP...
SPECTRA OF ALKLI ELEMENT, SPIN ORBIT INTERACTION & FINE STRUCTER OF ALKLI SP...AnitaMalviya
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rulehitarth shah
 
Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laserLahiru Da Silva
 

What's hot (20)

Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
 
Fermi dirac distribution
Fermi dirac distributionFermi dirac distribution
Fermi dirac distribution
 
Quantum
QuantumQuantum
Quantum
 
Gradient of scalar field.pptx
Gradient of scalar field.pptxGradient of scalar field.pptx
Gradient of scalar field.pptx
 
Poisson's equation 2nd 4
Poisson's equation 2nd 4Poisson's equation 2nd 4
Poisson's equation 2nd 4
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transforms
 
SEMICONDUCTOR PHYSICS
SEMICONDUCTOR PHYSICSSEMICONDUCTOR PHYSICS
SEMICONDUCTOR PHYSICS
 
Fourier series
Fourier seriesFourier series
Fourier series
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Zeeman and Stark Effect
Zeeman and Stark EffectZeeman and Stark Effect
Zeeman and Stark Effect
 
Fourier series
Fourier series Fourier series
Fourier series
 
Chap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsChap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equations
 
Quantum mechanics I
Quantum mechanics IQuantum mechanics I
Quantum mechanics I
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics
 
Simpson's rule of integration
Simpson's rule of integrationSimpson's rule of integration
Simpson's rule of integration
 
SPECTRA OF ALKLI ELEMENT, SPIN ORBIT INTERACTION & FINE STRUCTER OF ALKLI SP...
SPECTRA OF ALKLI ELEMENT, SPIN  ORBIT INTERACTION & FINE STRUCTER OF ALKLI SP...SPECTRA OF ALKLI ELEMENT, SPIN  ORBIT INTERACTION & FINE STRUCTER OF ALKLI SP...
SPECTRA OF ALKLI ELEMENT, SPIN ORBIT INTERACTION & FINE STRUCTER OF ALKLI SP...
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
 
Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laser
 

Similar to Laplace equation

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - NotesDr. Nirav Vyas
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Asad Bukhari
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Nur Kamila
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential goodgenntmbr
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma ediciónSohar Carr
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manualnmahi96
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.pptMohammedAhmed66819
 
Circular and gavitational force
Circular and gavitational forceCircular and gavitational force
Circular and gavitational forceeshwar360
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential slides
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesMaxim Eingorn
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model jiang-min zhang
 

Similar to Laplace equation (20)

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Partial diferential good
Partial diferential goodPartial diferential good
Partial diferential good
 
A05330107
A05330107A05330107
A05330107
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
 
Circular and gavitational force
Circular and gavitational forceCircular and gavitational force
Circular and gavitational force
 
Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential Solution to schrodinger equation with dirac comb potential
Solution to schrodinger equation with dirac comb potential
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 

Recently uploaded (20)

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 

Laplace equation

  • 1. Special Techniques for Calculating Potential 3.1 Laplace’s Equation 3.2 The Method of Images 3.3 Separation of Variables 3.4 Multipole Expansion
  • 2. 3.1 Laplace’s Equation 3.1.1 Introduction 3.1.2 Laplace’s Equation in One Dimension 3.1.3 Laplace’s Equation in Two Dimensions 3.1.4 Laplace’s Equation in Three Dimensions 3.1.5 Boundary Conditions and Uniqueness Theorems 3.1.6 Conducts and the Second Uniqueness Theorem
  • 3. 3.1.1 Introduction The primary task of electrostatics is to study the interaction (force) of a given stationary charges. since this integrals can be difficult (unless there is symmetry) we usually calculate This integral is often too tough to handle analytically. 2 0 ˆ1 ( ) 4 F q Etest RE d R ρ τ πε = = ∫ v v v ˆˆ ˆx y zE E x E y E z= + + +××× v 0 1 1( ) 4 V d R E V ρ τ πε = ∫ = −∇ v ∴ Q
  • 4. In differential form Eq.(2.21): Poisson’s eq. Laplace’s eq or The solutions of Laplace’s eq are called harmonic function. 3.1.1 2 0 V ρ ε ∇ = − 2 0V∇ = 2 2 2 2 2 2 2 1 10 ( ) 0 i k i i i k TV A h q h q V V V x y z ∂ ∂= ∇ = ∂ ∂∏ ∂ ∂ ∂ + + = ∂ ∂ ∂  to solve a differential eq. we need boundary conditions.  In case of ρ = 0, Poisson’s eq. reduces to
  • 5. 3.1.2 Laplace’s Equation in One Dimension 2 2 0 d V V mx b dx = ⇒ = + m, b are to be determined by B.C.s e.q., 1. V(x) is the average of V(x + R) and V(x - R), for any R: 2. Laplace’s equation tolerates no local maxima or minima. ( 1) 4 1 5 ( 5) 0 5 V x m V x V x b = = = −  ⇒ ⇒ = − +  = = =  V=4 V=0 1 5 x [ ]1 2 ( ) ( ) ( )V x V x R V x R= + + −
  • 6. Method of relaxation: 3.1.2 (2)  A numerical method to solve Laplace equation.  Starting V at the boundary and guess V on a grid of interior points. Reassign each point with the average of its nearest neighbors. Repeat this process till they converge.
  • 7. 3.1.2 (3) The example of relaxation n V(x=0)V(x=1)V(x=2)V(x=3)V(x=4) 0 4 0 0 0 0 1 4 2 0 0 0 2 4 2 1 0 0 3 4 1 0 4 4 0 5 4 0 6 4 0 7 4 0 8 4 0 9 4 0 10 4 0 4 3 2 1 0
  • 8. 3.1.3 Laplace’s Equation in Two Dimensions A partial differential eq. : There is no general solution. The solution will be given in 3.3. We discuss certain general properties for now. 1. The value of V at a point (x, y) is the average of those around the point. 2. V has no local maxima or minima; all extreme occur at the boundaries. 3. The method of relaxation can be applied. 2 2 2 2 0 V V x y ∂ ∂ + = ∂ ∂ 1( , ) 2 circle V x y Vdl Rπ = ∫Ñ
  • 9. 3.1.4 Laplace’s Equation in Three Dimensions 1. The value of V at point P is the average value of V over a spherical surface of radius R centered at P: The same for a collection of q by the superposition principle. 2. As a consequence, V can have no local maxima or minima; the extreme values of V must occur at the boundaries. 3. The method of relaxation can be applied. 2 1( ) 4 sphere V p Vda Rπ = ∫Ñ 2 2 2 0 1 , 2 cos 4 q V r R rR θ πε = = + − r r 1 2 2 22 2 0 1 [ 2 cos ] sin 44 ave q V r R rR R d d R θ θ θ ϕ πεπ − = + −∫ 2 2 0 1 2 cos 04 2 q r R rR rR πθ πε = + − ( ) ( ) at the center of the sphere 0 0 1 1 4 2 4 q q r R r R V rR rπε πε  = + − − = = 
  • 10. 3.1.5 Boundary Conditions and Uniqueness Theorems in 1D, • one end Va • the other end Vb V is uniquely determined by its value at the boundary. First uniqueness theorem : the solution to Laplace’s equation in some region is uniquely determined, if the value of V is specified on all their surfaces; the outer boundary could be at infinity, where V is ordinarily taken to be zero. V mx b= +
  • 11. 3.1.5 Proof: Suppose V1 , V2 are solutions at boundary at boundary. V3 = 0 everywhere hence V1 = V2 everywhere 2 1 0V∇ = 2 2 0V∇ = 1 2 ?V V= 3 1 2V V V= − 2 2 2 3 1 2 0V V V∇ = ∇ −∇ = 1 2 3 0V V V= ⇒ = ∴
  • 12. Proof. at boundary. Corollary : The potential in some region is uniquely determined if (a) the charge density throughout the region, and (b) the value of V on all boundaries, are specified. 3.1.5 The first uniqueness theorem applies to regions with charge. 2 1 0 V ρ ε ∇ = − 2 2 0 V ρ ε ∇ = − 3 1 2V V V= − 2 2 2 3 1 2 0 0 0V V V ρ ρ ε ε ∇ = ∇ −∇ = − + = 3 1 2 3 0 0, . ., 1 2 V V V V i e V V = − = ∴ = =
  • 13. 3.1.6 Conductors and the Second Uniqueness Theorem  Second uniqueness theorem: Proof: Suppose both and are satisfied. and 0 1 1E ε ρ∇× = v 0 1 2E ε ρ∇× = v In a region containing conductors and filled with a specified charge density ρ, the electric field is uniquely determined if the total charge on each conductor is given. (The region as a whole can be bounded by another conductor, or else unbounded.) 2E v 1E v 0 0 1 1 1 1 2 2, ith conducting ith conducting surface surface i iE da Q E da Qε ε × = × =∫ ∫ v vv v Ñ Ñ 0 0 1 1 1 2, outer bourndary outer bourndary tot totE da Q E da Qε ε × = × =∫ ∫ v vv v Ñ Ñ
  • 14. for V3 is a constant over each conducting surface define 3.1.6 3 1 2E E E= − v v v 0 0 3 1 2 1 2( ) 0E E E E E ρ ρ ε ε ∇× = ∇× − = ∇× −∇× = − = rv v v v 3 1 2 0E da E da E da× = × − × =∫ ∫ ∫ v v vv v v Ñ Ñ Ñ 2 3 3 3 3 3 3 3( ) ( ) ( )V E V E E V E∇× = ∇× + ∇ = − v v v 2 3 3 3 3 3( ) volume surface E d V E d V E daτ τ= − ∇× = − ×∫ ∫ ∫ v v v Ñ 3 3 0 surface V E da= − × =∫ v v Ñ 3 1 20E E E∴ = = v v v i.e.,
  • 15. 3.2 The Method of Images 3.2.1 The Classical Image Problem 3.2.2 The Induced Surface Charge 3.2.3 Force and Energy 3.2.4 Other Image Problems
  • 16. 3.2.1 The Classical Image Problem What is V (z>0) ? ( ) 2 2 2 2 1. 0 0 2. 0 V z V for x y z d = = → + + >> B.C. The first uniqueness theorem guarantees that there is only one solution. If we can get one any means, that is the only answer.
  • 17. Trick : Only care z > 0 z < 0 is not of concern 3.2.1 in original problem for V(z=0) = const = 0 ( )0 0E z < = v 0z ≥ ( ) ( )2 22 2 2 20 1 ( , , ) 4 q q V x y z x y z d x y z dπε   − = +   + + − + + +   ˆ 0 0 0 z x y E E z E E at z or E = − = =   ÷ =  =P v
  • 18. 3.2.2 The Induced Surface Charge Eq.(2.49) 0 ˆˆ V E z V z z σ ε ∂ = = −∇ = − ∂ v 0 0z V z σ ε = ∂ = − ∂ 0 0 z z A E A E σ σ ε ε × − = = − 0 0 Q E da at z ε × = ≅∫ v v QÑ ( ) ( )2 22 2 2 2 0 1 4 z q q z x y z d x y z d σ π =   − ∂   = −  ∂  + + − + + + 
  • 19. total induced surface charge 3.2.2 Q=-q 3 3 2 2 2 2 2 22 2 0 1 1 2( ) 2( ) 2 2 4 ( ) ( ) z z d z dq x y z d x y z d π =   − × − − × + −   = −      + + − + + +      3/2 3/22 2 2 2 2 2 2 qd qd x y d r d σ π π − − = =    + + +     01/22 2 1 qd q r d ∞− = − = −  +   2 3/20 0 2 2 2 qd Q da rdrd r d π σ θ π ∞ − = =  +   ∫ ∫ ∫
  • 20. 3.2.3 Force and Energy The charge q is attracted toward the plane. The force of attraction is With 2 point charges and no conducting plane, the energy is Eq.(2.36) ( ) ( ) ( ) 2 2 2 0 0 1 1 ˆˆ 4 4 2 q q q F z z dd dπε πε − = = −  − −  v ( ) ( ) ( ) ( ) ( ) 2 1 20 0 2 0 1 2 1 1 1 2 4 4 1 4 2 i i i i W q V p q q q q d d d d q d πε πε πε = =        = × − + − ×    +  − −    = − ∑
  • 21. 3.2.3 (2) or For point charge q and the conducting plane at z = 0 the energy is half of the energy given at above, because the field exist only at z ≥ 0 ,and is zero at z < 0 ; that is ( ) 2 0 1 4 4 q W dπε = − ( ) ( ) 2 2 0 2 2 0 0 1 4 2 1 1 4 4 4 4 d d d q W F dl dz z q q z d πε πε πε ∞ ∞ ∞ = × =   = − = − ÷ ÷   ∫ ∫ vv ˆ( )dl dlz= − v Q
  • 22. 3.2.4 Other Image Problems Stationary distribution of charge 1 q 2 q 3 q 1 q− 2 q− 3 q−
  • 23. 3.2.4 (2) Conducting sphere of radius R Image charge at R q q a ′ = − 2 R b a = ( ) 0 0 0 1 , 4 1 ˆˆˆˆ4 1 4 ˆˆˆˆ q q V r q q rr as rr bs q q a r r r s b r s r b θ πε πε πε ′  = + ÷    ′ = + ÷ − −     ÷′ = + ÷  ÷− − ÷   ′r r 1 2 2 22 cosr a ra θ = + −   r 1 2 2 22 cosr b rb θ = + −  ′r
  • 24. Force [Note : how about conducting circular cylinder?] 3.2.4 (3) ( ) 0 1 , 0 4 ˆˆˆˆ q q V R a R R r s b r s R b θ πε    ÷′ = + = ÷  ÷− − ÷   q q R b ′ = − b R q q q R a ′ = − = − a R R b = 2 R b a = ( ) ( ) 2 2 22 20 0 1 1 4 4 qq q Ra F a b a R πε πε ′ = = − − −
  • 25. 3.3 Separation of Variables 3.3.0 Fourier series and Fourier transform 3.3.1 Cartesian Coordinate 3.3.2 Spherical Coordinate
  • 26. ˆˆ ˆ, ,x y zare unique because 3.3.0 Fourier series and Fourier transform Basic set of unit vectors in a certain coordinate can express any vector uniquely in the space represented by the coordinate.e.g. Completeness: a set of function ( )xfn ( ) ( )xfCxf n n n∑ ∞ = = 1 ( )xf is complete. if for any function Orthogonal: a set of functions is orthogonal if ( ) ( ) 0=∫ dxxfxf m b a n mn ≠ =const for for mn = in 3D. Cartesian Coordinate.zVyVxViVV zyx N i i ˆˆˆˆ 1 ++== ∑=  zyx VVV ,, are orthogonal. ji ˆˆ ⋅ = i j= i j≠0 1
  • 27. 3.3.0 (2) A complete and orthogonal set of functions forms a basic set of functions. e.g. Nnk ∈, ( ) ( )sin sinkx kx− = − ( ) ( )cos coskx kx− = odd { nkif nkifdxnxkx ≠ = −∫ = 0 coscos π π π 0cossin∫− = π π dxnxkx { nkif nkifdxnxkx ≠ = −∫ = 0 sinsin π π π even sin(nx) is a basic set of functions for any odd function. cos(nx) is a basic set of functions for any even function. sin(nx) and cos(nx) are a basic set of functions for any functions.
  • 28.      for any ( )xf ( ) ( ) ( ) 2 xfxf xg −− = ( ) ( ) ( ) 2 xfxf xh −+ =odd ( ) ( ) ( )xhxgxf += even 3.3.0 (3) , ↑ odd ↑ even [sinkx] [coskx] Fourier transform and Fourier series ( ) ( ) 0 (*) sin cosn n n f x A nx B nx ∞ = = +∑ ( ) ( ) 1 sinnA f x nx dx π ππ − = ∫ ( ) ( ) 1 cosnB f x nx dx π ππ − = ∫ ( ) 0 2 1 00 == ∫− AdxxfB π ππ } ∞⋅⋅⋅⋅= ,2,1n ;
  • 29. 3.3.0 (4) Proof ( ) ( ) ( ) * sin sin kx dx f x kxdx π π π π − − × ⇒ × ∫ ∫ ( ) ( ) 0 sin cos sinn n n A nx B nx kx dx π π ∞ − = = +∑ ∫ ( ) ( ) 0 sin sinn n A nx kx dx π π ∞ − = = ∑ ∫ ( ) ( )0 1 sinkA f x kx dx π π ∴ = ∫ if 0kA kπ= ≠
  • 30. 0 cos cosn n B nx kx dx π π ∞ − = = ∑ ∫ ( ) ( ) ( ) ( ) * cos cos kx dx f x kx dx π π π π − − × ⇒ ∫ ∫ ( ) ( ) 0 sin cos cosn n n A nx B nx kx dx π π ∞ − = = +∑ ∫ ( )0 1 2 B f x dx π ππ − = ∫ {= ( ) ( ) 1 cosnB f x nx dx π ππ − ∴ = ∫ 3.3.0 (5) B0 2π for k = 0 Bk π for k = 1, 2, …
  • 31. 3.3.1 Cartesian Coordinate Use the method of separation of variables to solve the Laplace’s eq. Example 3 0)( )()0( 0)( 0)0( 0 →∞→ == == == xV yVxV yV yV π Find the potential inside this “slot”? Laplace’s eq. 2 2 2 2 0 V V x y ∂ ∂ + = ∂ ∂ set )()(),( yYxXyxV = 2 2 2 2 0 X Y Y X x y ∂ ∂ + = ∂ ∂
  • 32. 0 11 )( 2 2 )( 2 2 = ∂ ∂ + ∂ ∂  onlyydepedentygonlyxdepedentxf y Y Yx X X f and g are constant 1 2 0C C+ = 12 2 1 )( C dx Xd X xf == 2 22 1 ( ) d Y g y C Y dy = = 2 21 kCC =−=set so Xk dx Xd 2 2 2 = 2 2 2 d Y k Y dy = − kyDkyCyYBeAexX kxkx cossin)(,)( +=+= − =),( yxV )( kxkx BeAe − + )cossin( kyDkyC + 3.3.1 (2) 1 2, are constant ( ) ( ) 0 C C f x g y+ =
  • 33. 3.3.1 (3) B.C. (iv) ( ) 0 0, 0V x A k→ ∞ → ⇒ = > B.C. (i) ( 0) 0 0V y D= = ⇒ = =),( yxV kx e− )cossin( kyDkyC + ( , ) sinkx V x y Ce ky− = B.C. (ii) ( ) 0 sin 0 1,2,3V y k kπ π= = ⇒ = = L B.C. (iii) )()0( 0 yVxV == =)(0 yV 1 sinkx k k C e ky ∞ − = ∑ A fourier series for odd function 00 2 ( )sinkC V y ky dyπ π = ∫ The principle of superposition =),( yxV 1 sinkx k Ce ky ∞ − = ∑
  • 34. 3.3.1 (4) For antconstVyV == 00 )( 0 0 0 4 0 2 sin 0 2 (1 cos ) k V k V C ky dy if k even V k k if k odd π π π π π = =  = − =  = ∫ sin10 0 sinh 1,3,5, 4 21 ( , ) sin tan ( ) yk x k V V V x y e ky kπ π − − = = =∑ L
  • 35. 3.4 Multipole Expansion 3.4.1 Approximate Potentials at Large distances 3.4.2 The Monopole and Dipole Terms 3.4.3 Origin of Coordinates in Multipole Expansions 3.4.4 The Electric Field of a Dipole
  • 36. 1 1 2 1 cos 24 0 ( ) cos ( ) d r qd r V p θ πε θ− ≅ ≅ r r+ - 3.4.1 Approximate Potentials at Large distances Example 3.10 A dipole (Fig 3.27). Find the approximate potential at points far from the dipole. ⇒ 1 4 0 ( ) ( ) q q V p πε + − = − r r 2 2 2 2 ( ) cos d r rd θ± = + mr 2 2 24 (1 cos ) d d r r r θ= ± + 2 (1 cos ) r d d r r θ >> ≅ m 1 1 1 12 2 (1 cos ) (1 cos ) d d r r r r θ θ − ± ≅ ≅ ±m r
  • 37. 3.4.1 Example 3.10 For an arbitrary localized charge distribution. Find a systematic expansion of the potential? 0 1 1 ( ) 4 V p dρ τ πε = ∫ r 2 2 2 2 2 2 cos [1 ( ) 2( )cos ] r r r r r r rr r θ θ ′ ′ ′ ′= + − = + − r 1 ( )( 2cos ) r r r r r θ ′ ′ = +∈ ∈= −r
  • 38. 3.4.1(2) 1 1 3 52 2 3 3 2 8 16 [1 ( )( 2cos ) ( ) ( 2cos ) ( ) ( 2cos ) ] r r r r r r r r r r r r r θ θ θ ′ ′ ′ ′ ′ ′ = − − + − − − +L 1 3 1 5 32 2 3 3 2 2 2 2 [1 ( )cos ( ) ( cos ) ( ) ( cos cos ) ] r r r r r r r θ θ θ θ ′ ′ ′ = + + − + − +L 1 0 ( ) (cos ) r n nr r n P dθ ρ τ ∞ ′ = ′= ∑ Monopole term Dipole term Quadrupole term Multipole expansion 1 1 1 1 1 3 52 32 2 8 16 (1 ) (1 ) r r − ∈ ∈ ∈= +∈ = − + − +L r 1 ( 1)4 0 0 1 1 1 1 3 12 2 34 2 20 1 ( ) ( ) (cos ) [ cos ( ) ( cos ) ] n nn n r r r V r r P d r d r d r d πε πε θ ρ τ ρ τ θ ρ τ θ ρ τ ∞ + = ′= ′ ′= + + − + ∑ ∫ ∫ ∫ ∫ L
  • 39. 3.4.2 The Monopole and Dipole Terms monopole dipole dominates if r >> 1 dipole moment (vector) A physical dipole is consist of a pair of equal and opposite charge, 1 4 0 ( ) Q mon r V p πε = 1 1 24 0 1 1 24 0 ( ) cos ˆ dip r r P V p r d r r d πε πε θ ρ τ ρ τ ′= ′= × ∫ ∫ v v 14243 ˆcosr r rθ′ ′= × v ˆ1 24 0 1 ( ) p r dip r n i i i V p p r d q r πε ρ τ × = = ′ ′= = ∑∫ v v v v q± ( )p qr qr q r r qd+ − + −′ ′ ′ ′= − = − = vv v v v v
  • 40. 3.4.3 Origin of Coordinates in Multipole Expansions if ( ) p r d r d d r d d d p dQ ρ τ ρ τ ρ τ ρ τ ′= ′= − ′= − = − ∫ ∫ ∫ ∫ vv vv vv 0Q p p= = v
  • 41. 3.4.4 The Electric Field of a Dipole A pure dipole ˆ cos 2 24 40 0 2 cos 34 0 1 sin 34 0 1 sin 34 0 ( , ) 0 ˆˆ( , ) (2cos sin ) P r P dip r r V P r r r V P r r V r P dip r V r E E E E r r θ πε πε θ πε θ θ θ πε ϕ θ ϕ πε θ θ θ θ θ × ∂ − ∂ ∂ − ∂ ∂ − ∂ = = = = = = = = = + v v