SlideShare a Scribd company logo
1 of 28
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 1
PENDAHULUAN
A. LATAR BELAKANG
Dalam makalah ini akan dibahas macam-macam peubah acak, distribusi peluang
danfungsi densitas, dan fungsi distribusi. Seperti yang kita ketahui bahwa materi
ini merupakan pengantar untuk kita dapat memahami materi selanjutnya
mengenai fungsi peluang untuk peubah acak diskrit dan fungsi densitas untuk
peubah acak kontinu dimana perananya sangat banyak yakni penghitungan
beberapa macam ekspetasi matematis, pembahasan beberapa distribusi khusus
yang dikenal, dan penentuan distribusi dari fungsi peubah acak. Sehingga dalam
hal ini fungsi peluang maupun fungsi densitas mempunyai bentuk yang berbeda-
beda.
B. RUMUSAN MASALAH
1. Apa yang dimaksud dengan peubah acak ?
2. Apa saja macam-macam peubah acak ?
3. Apa yang dimaksud dengan distribusi peluang?
4. Apa yang dimaksud dengan Fungsi distribusi ?
C. TUJUAN PENULISAN
1. Mampu membedakan peubah acak diskrit dan peubah acak kontinu.
2. Mampu Menentukan distribusi peluang dari sebuah peubah acak diskrit dan
modifikasinya.
3. Mampu menghitung peluang dari sebuah peubah acak diskrit yang berharga
tertentu.
4. Mampu menentukan konstanta dari fungsi densitas untuk peubah acak
kontinu berdasarkan sifatnya.
5. Mampu menghitung peluang dari peubah acak kontinu berharga tertentu.
6. Mampu menggambar grafik berdasarkan fungsi peluang dan densitas.
7. Mampu menentukan fungsi distribusi dari sebuah peubah acak, baik diskrit
maupun kontinu.
8. Mampu Menggambar grafik dari fungsi distribusi untuk satu peubah acak.
9. Mampu menghitung peluang serta menentukan distribusi peluang dari sebuah
peubah acak yang berharga tertentu berdasarkan fungsi distribusinya.
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 2
PEMBAHASAN
A. PEUBAH ACAK
Berikut ini akan dijelaskan definisi secara umum dari peubah acak (random
variable).
Berdasarkan definisi diatas, ada dua buah himpunan yang melibatkan peubah
acak, yaitu ruang sampel S yang berisi anggotanya (titik sampel) s dan Rx berupa
nilai-nilai yang mungkin dari X yang berkaitan dengan anggota S-nya.
Pendefinisian peubah acak bisa dijelaskan dalam gambar berikut.
Teladan 1:
Misalnya sandy melakukan pelemparan dua buah mata uang logam Rp.100 yang
seimbang secara sekaligus. Jika X menunjukkan banyak huruf “BANK
INDONESIA” yang terjadi, maka apakah X merupakan peubah acak ?
Penyelesaian:
Ruang sampelnya S = {HH,HG,GH,GG}
Dengan G = Gambar “KARAPAN SAPI” dan H = Huruf “BANK INDONESIA”
Untuk s1 = HH, maka X(s1) = X(HH) = 2
Untuk s2 = HG, maka X(s2) = X(HG) = 1
Untuk s3 = GH, maka X(s3) = X(GH) = 1
Untuk s4 = GG, maka X(s4) = X(GG) = 0
Sehingga, nilai-nilai yang mungkin dari X, Rx = 0,1 atau 2.
Definisi A.1 : PEUBAH ACAK
Misalnya E adalah sebuah eksperimen dengan ruang sampelnya S.
Sebuah fungsi X yang menetapkan setiap anggota s ∈ S dengan sebuah bilangan
real X(s) dinamakan peubah acak.
 s
 X(s)
X
S = Ruang Sampel Rx = Nilai-nilai yang mungkin dari X sesuai s-nya
X = Peubah Acak
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 3
Karena X memenuhi syarat-syarat sebuah fungsi, maka X adalah peubah acak.
Apabila kita bisa memperoleh sebuah peristiwa berkenaan dengan ruang sampel
S dan sebuah peristiwa berkenaan dengan peubah acak X (yaitu himpunan
bagian dari ruang hasil Rx) maka dua peristiwa itu akan ekuivalen.
Dua Peristiwa yang ekuivalen bisa digambarkan sebagai berikut.
Teladan 2:
Ketika kita mengundi dua mata uang logam Rp.100 yang seimbang secara
sekaligus, maka ruang sampelnya: S = { HH, HG, GH, GG }.
Jika X menunjukkan banyak G yang terjadi, maka nilai-nilai yang mungkin dari X
adalah Rx = { 0,1,2 }.
Dua peristiwa A dan B yang ekuivalen ada tiga buah yaitu :
1. Ruang peristiwa dari B : B = {0}
Karena X(HH) = 0 jika dan hanya jika X(s) = 0, maka s = (HH) dan ia
merupakan ruang peristiwa dari peristiwa lainnya, yaitu A. Jadi A = {HH}.
Akibatnya, A dan B merupakan dua buah peristiwa yang ekivalen.
2. Ruang peristiwa dari B : B = {1}
Karena X(HG) = X(GH) = 1 jika dan hanya jika X(s) = 1, maka s = (HG) atau s
= (GH) dan ia merupakan ruang peristiwa dari peristiwa lainnya, yaitu A. Jadi
A = {HG,GH}.
Definisi A.2 : DUA PERISTIWA YANG EKIVALEN
Misalnya E adalah sebuah eksperimen dengan ruang sampelnya S.
X adalah peubah acak yang didefinisikan pada S dengan Rx adalah ruang
hasilnya, dan B adalah peristiwa yang berkenaan dengan Rx artinya B ⊂ Rx.
Jika Peristiwa A didefinisikan sebagai : A = {s ∈ S | X(s) ∈ B}, artinya A berisi
semua hasil dalam S dengan X(s) ∈ B, maka A dan B dikatakan dua peristiwa
yang ekuivalen.
B
S = Ruang Sampel Rx = Nilai-nilai yang mungkin dari X sesuai s-nya
 s  X(s)
)
A
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 4
Akibatnya, A dan B merupakan dua buah peristiwa yang ekivalen.
3. Ruang peristiwa dari B : B = {2}
Karena X(GG) = 2 jika dan hanya jika X(s) = 2, maka s = (GG) dan ia
merupakan ruang peristiwa dari peristiwa lainnya, yaitu A. Jadi A = {GG}.
Akibatnya, A dan B merupakan dua buah peristiwa yang ekivalen.
Kita sudah mengetahui bahwa peristiwa A yang berkaitan dengan ruang
sampel S ekivalen dengan peristiwa B yang berkaitan dengan nilai-nilai yang
mungkin dari peubah acak X.
Akibatnya, peluang dari kedua peristiwa itu akan sama, yaitu P(A) = P(B). Hal
ini bisa dilihat dari definisi dibawah ini.
Pemahaman penghitungan peluang dari kedua peristiwa yang ekivalen
dijelaskan melalui teladan di bawah ini.
Teladan 3:
Dalam pengundian dua mata uang logam Rp.100 yang seimbang, maka P(HG) =
P(GH) = P(GG) = P(HH) = ¼, Hitunglah P(X=0), P(X=1), dan P(X=2).
Penyelesaian:
a. Karena X=0 ekivalen dengan peristiwa yang ruang peristiwanya {HH} dan
P(HH) = ¼ , maka P(X=0) = P(HH) = ¼
b. Karena X=1 ekivalen dengan peristiwa yang ruang peristiwanya {GH} atau
{HG} dan P(GH atau HG) = P(HG) + P(GH) = ¼ + ¼ = ½ , maka P(X=1) =
P(HG atau GH) = ½.
c. Karena X=2 ekivalen dengan peristiwa yang ruang peristiwanya {GG} dan
P(GG) = 1/4, maka P(X=2) = P(GG) = ¼
Terdapat dua macam peubah acak, yaitu peubah acak diskrit dan peubah acak
kontinu. Pengertian kedua macam peubah acak tersebut bisa dilihat dalam
definisi dibawah ini :
Definisi A.3 : PELUANG DUA PERISTIWA YANG EKIVALEN
Jika B adalah sebuah peristiwa dalam ruang hasil Rx, maka P(B) didefinisikan
sebagai: P(B) = P(A), dengan A = { s ∈ S | X(s) ∈ B }.
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 5
Nilai-nilai yang mungkin dari X bisa ditulis sebagai: x1,x2,x3,…,xn,…
Pemahaman pengertian peubah acak diskrit diperjelas melalui teladan seperti
dibawah ini:
Teladan 4:
Coba lihat teladan 2 diatas, nilai-nilai yang mungkin dari Rx = {0,1,2}.
Karena banyak anggota dari Rx berhingga, maka X termasuk peubah acak
diskrit.
Teladan 5:
Misalnya sandy mengundi sebuah dadu yang seimbang. Jika peubah acak X
menunjukkan banyak pengulangan percobaan sampai mata dadu 5 muncul
pertama kali, maka nilai-nilai yang mungkin dari X adalah:
Rx = { 1,2,3,… }.
Karena banyak anggota dari Rx tak berhingga tapi dapat dihitung, maka X
termasuk peubah acak diskrit.
Pemahaman peubah acak kontinu akan dijelaskan melalui teladan dibawah ini :
Teladan 6 :
Misalnya sebuah universitas mempunyai mahasiswa berjumlah 25.000 orang dan
para mahasiswa itu diberi nomor induk mahasiswa mulai dari 00001 sampai
25.000. Kemudian seorang mahasiswa dipilih secara acak dan ia diukur berat
badannya. Dalam hal ini, ruang sampelnya adalah:
S = {s:s=00001,00002,00003,…,25.000}
Definisi A.4 : PEUBAH ACAK DISKRIT
Misalnya X adalah peubah acak. Jika banyak nilai-nilai yang mungkin dari X (yaitu
ruang hasil dari Rx) berhingga atau tak berhingga tapi dapat dihitung, maka X
adalah peubah acak diskrit.
Definisi A.5 : PEUBAH ACAK KONTINU
Misalnya X adalah peubah acak. Jika banyak nilai-nilai yang mungkin dari X (yaitu
ruang hasil dari Rx) merupakan sebuah interval pada garis bilangan real, maka X
dinamakan peubah acak kontinu.
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 6
Misalnya X menunjukkan berat badan dari mahasiswa yang terpilih, maka ia bisa
ditulis sebagai X(s), dengan s ∈ S. Kita mengasumsikan bahwa tidak ada
mahasiswa di universitas tersebut yang mempunyai berat badan kurang dari
20kg atau lebih dari 175kg, sehingga ruang hasil dari X adalah:
Rx = {X: 20≤ X ≤ 175}
Karena Rx merupakan sebuah interval, maka X termasuk ke dalam peubah acak
kontinu.
B. DISTRIBUSI PELUANG
Dalam sebuah peubah acak diskrit, nilai-nilai yang mungkin dari peubah acaknya
merupakan bilangan bulat. Seperti pada teladan 4 nilai-nilai dari X adalah 0,1
atau 2. Akan tetapi, dalam soalnya mungkin saja ada yang bertanda negative.
Kemudian kita dapat menghitung nilai peluang dari masing-masing nilai peubah
acak tersebut., dengan sebelumnya diasumsikan lebih dahulu nilai peluang untuk
masing-masing titik sampel dalam ruang sampel S. Nilai peluang dari peubah
acak yang berharga tertentu diperoleh berdasarkan nilai peluang dari titik-titik
sampelnya. Apabil nilai peluang dari peubah acak tersebut memenuhi
persyaratan tersebut tertentu, maka nilai peluang tersebut dinamakan fungsi
peluang. Berikut ini kita akan menjelaskan definisi fungsi peluang.
Adapun kumpulan pasangan yang diurutkan { x, p(x) } dinamakan distribusi
peluang dari X.
Bentuk umum dari fungsi peluang ada dua kemungkinan, yaitu berupa konstanta
dan berupa fungsi dari nilai peubah acak.
Definisi B.1 : FUNGSI PELUANG
Jika X adalah peubah acak diskrit, maka p(x) = P(X=x) untuk setiap x dalam
range X dinamakan fungsi peluang dari X.
Nilai fungsi peluang dari X, yaitu p(x) harus memenuhi sifat-sifat sebagai berikut.
a. p(x) ≥ 0
b. ∑ 𝑝(𝑥) = 1𝑥
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 7
 Fungsi peluang berupa konstanta bisa terdiri atas satu nilai atau lebih dari
satu nilai.Fungsi peluang berupa konstanta yang terdiri atas satu nilai artinya
untuk setiap nilai peubah acak yang diberikan, maka nilai fungsi peluangnya
sama. Misalnya fungsi peluang dari peubah acak Y berbentuk:
P(y) = ¼ ; y = -1,0,1,2
Fungsi peluang berupa konstanta yang terdiri atas lebih dari satu nilai artinya
untuk setiap nilai peubah acak yang diberikan masing-masing mempunyai
nilai fungsi peluangnya. Misalnya fungsi peluang dari peubah acak X
berbentuk :
p(x) = 1/3; x = 2, p(x) = 1/3; x = 3, p(x) = ¼; x = 4, p(x) = 1/12; x = 5
 Fungsi peluang berupa fungsi dari nilai peubah acak (FPBF) sebenarnya
sama dengan funsi peluang berupa konstanta yang terdiri atas lebih dari
satu nilai (FPBK), hanya bedanya FPBF ditulis secara umum dan berlaku
untuk nilai peubah acak tertentu sedangkan FPBK ditulis satu per satu yang
berlaku untuk masing-masing nilai peubah acaknya. Misalnya fungsi peluang
dari peubah acak X berbentuk :
p(x) = x/15; dimana x = 1,2,3,4,5
Pemahaman distribusi peluang dari sebuah peubah acak diperjelas melalui
teladan dibawah ini :
Teladan 7:
Misalkan percobaan kita berupa pelemparan 3 uang logam setimbang, Jika
kita misalkan Y menyatakan berapa kali sisi gambar muncul, maka Y adalah
suatu peubah acak yang mengambil nilai 0,1,2 atau 3 dengan peluang :
Penyelesaian :
Dalam hal ini, kita harus menghitung nilai peubah acak Y, yaitu y dan nilai
peluangnya.
Dik : S = {(A,A,A),(A,A,G),(A,G,A),(G,A,A),(A,G,G),(G,A,G),(G,G,A),(G,G,G)},
Karena Y menyatakan banyak G yang muncul, maka:
1. Untuk titik sampel AAA, bilangan bulat yang sesuai adalah 0, ditulis Y(s)
= Y(AAA) = 0
2. Untuk titik sampel AAG,AGA,GAA, bilangan bulat yang sesuai adalah 1,
ditulis Y(s) = Y(AAG) = Y(AGA) = Y(GAA) = 1
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 8
3. Untuk titik sampel AGG,GAG,GGA bilangan bulat yang sesuai adalah 2,
ditulis Y(s) = Y(AGG) = Y(GAG) = Y(GGA) = 2
4. Untuk titik sampel GGG, bilangan bulat yang sesuai adalah 3, ditulis Y(s)
= Y(GGG) = 3
Karena mata uang logam yang digunakan adalah seimbang maka peluang
masing-masing titik sampel sama yaitu : 1/8. Maka peluang untuk setiap nilai
peubah acaknya adalah sebagai berikut :
P{Y=0} = P{(A,A,A)} = 1/8
P{Y=1} = P{(A,A,G),(A,G,A),(G,A,A)} = 3/8
P{Y=2} = P{(G,G,A),(G,A,G),(A,G,G)} = 3/8
P{Y=3} = P{(G,G,G)} = 1/8
Jadi, distribusi peluang dari Y adalah :
Teladan 8:
Misalnya fungsi peluang dari peubah acak X berbentuk :
𝑝(𝑥) = {
1
5
(𝑘𝑥 + 1); 𝑥 = 0,1,2,3
0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
Tentukan nilai k.
Penyelesaian:
∑ 𝑝(𝑥) = 1
𝑥
∑ (
1
5
) (𝑘𝑥 + 1) = 1
3
𝑥=0
(1/5){1+(k+1)+(2k+1)+(3k+1)} = 1
6k + 4 = 5
6k = 1
K = 1/6.
Apabila kita menggambar grafik dari fungsi peluang atau distribusi peluang
maka grafiknya dapat berupa diagram batang atau histogram peluang.
x 0 1 2 3
p(x) 1/5 7/30 4/15 3/10
y 0 1 2 3
p(y) 1/8 3/8 3/8 1/8
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 9
Teladan 9 :
Lihat kembali teladan 7, Gambarkan grafik distribusi peluang dari Y
Penyelesaian :
Berikut ini distribusi peluang pada teladan 7 ;
Diagram batang dan histogram peluangnya masing-masing dapat dilihat
dalam gambar dibawah ini :
y 0 1 2 3
p(y) 1/8 3/8 3/8 1/8
y
p(y)
1/8
3/8
0 1 2 3
Diagram
Batang
y
p(y)
1/8
3/8
0 1 2 3
Histogram
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 10
Dalam peubah acak kontinu, fungsi yang memenuhi sifat-sifat tertentu
dinamakan fungsi densitas peluang atau fungsi densitas.
Sifat (c) diatas menunjukkan penghitungan peluang dari peubah acak kontinu
X yang mempunyai nilai dari a sampai b.
Berdasarkan gambar diatas, 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) sama dengan luas daerah dibawah
kurva f dari x = a sampai x = b.
Dalam peubah acak diskrit, peluang dari peubah acak yang berharga lebih
dari satu nilai yang membentuk sebuah interval bisa dihitung dengan mudah
tergantung bentuk intervalnya. Artinya jika kita akan menghitung 𝑃(0 < 𝑋 < 3)
hasilnya akan berbeda dengan 𝑃(0 ≤ 𝑋 < 3), 𝑃(0 < 𝑋 ≤ 3) atau 𝑃(0 ≤ 𝑋 ≤ 3).
Akan tetapi, penghitunga peluang dari peubah acak kontinu yang harganya
membentuk sebuah interval apa saja, hasilnya akan sama. Hal ini bisa dilihat
dalam dalil dibawah ini :
Definisi B.2 : FUNGSI DENSITAS
Misalnya X adalah peubah acak kontinu yang didefinisikan dalam himpunan
bilangan real. Sebuah fungsi disebut fungsi densitas dari X, jika nilai-
nilainya yaitu f(x) memenuhi sifat-sifat sebagai berikut :
a. f(x) ≥ 0; untuk x ∈ (−∞, ∞) 𝑏. ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞
−∞
c. Untuk setiap a dan b, dimana −∞ < 𝑎 < 𝑏 < ∞, maka
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏
𝑎
f(x)
f
a b
x
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏)
= 𝐿𝑢𝑎𝑠 𝐷𝑎𝑒𝑟𝑎ℎ 𝑦𝑎𝑛𝑔 𝑑𝑖𝑝𝑢𝑙𝑎𝑠
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 11
Bukti :
Jika A = {x : x = a}, maka P(A) = P(X∈A) = P(X=a) = ∫ 𝑓(𝑥)𝑑𝑥 = 0
𝑎
𝑎
Jika A = {x : x = b}, maka P(B) = P(X∈B) = P(X=b) = ∫ 𝑓(𝑥)𝑑𝑥 = 0
𝑏
𝑏
Berdasarkan hasil diatas, kita akan membuktikan :
a. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏)
b. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏)
c. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏)
d. 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏)
e. 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏)
f. 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏)
Pembuktiannya bisa dilihat dibawah ini :
a. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) + 𝑃(𝑋 = 𝑏)
= 𝑃(𝑎 ≤ 𝑋 < 𝑏) + 0
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖.
b. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑋 = 𝑎) + 𝑃(𝑎 < 𝑋 ≤ 𝑏)
= 0 + 𝑃(𝑎 < 𝑋 ≤ 𝑏)
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖.
c. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑋 = 𝑎) + 𝑃(𝑎 < 𝑋 < 𝑏) + 𝑃(𝑋 =
= 0 + 𝑃(𝑎 < 𝑋 < 𝑏) + 0
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖.
d. 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑋 = 𝑎) + 𝑃(𝑎 < 𝑋 ≤ 𝑏) − 𝑃(𝑋 = 𝑏)
= 0 + 𝑃(𝑎 < 𝑋 ≤ 𝑏) − 0
𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖.
e. 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑋 = 𝑎) + 𝑃(𝑎 < 𝑋 < 𝑏)
= 0 + 𝑃(𝑎 < 𝑋 < 𝑏)
𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖.
f. 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) + 𝑃(𝑋 = 𝑏)
= 𝑃(𝑎 < 𝑋 < 𝑏) + 0
𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖.
Dalil B.1 : PELUANG PEUBAH ACAK KONTINU BERBENTUK INTERVAL
Jika X adalah peubah acak kontinu serta a dan b adalah dua konstanta real,
dengan a < b, maka :
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏)
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 12
Grafik dari fungsi densitas berupa sebuah kurva atau sebuah garis atau
bahkan kombinasi keduanya, yang penggambarannya disesuaikan dengan
bentuk fungsi densitasnya.
Pemahaman penghitungan peluang dari peubah acak kontinu yang
berharga tertentu sampai penggambaran grafiknya diperjelas melalui teladan
berikut ini :
Teladan 10:
Diketahui :
𝑓(𝑥) = {
𝑘𝑥2
; 0 < 𝑥 < 2
0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
Tentukan nilai k agar f(x) merupakan fungsi densitas dari peubah acak X.
a. Hitung P(1<X<2).
b. Gambarkan grafik dari fungsi densitasnya.
Penyelesaian:
a. Berdasarkan sifat kedua dari fungsi densitas, maka:
∫ 𝑓(𝑥)𝑑𝑥 = 1
∞
−∞
∫ 𝑘𝑥2
𝑑𝑥 = 1
2
0
𝑘. (
𝑥3
3
]
2
0
) = 1
k = 3/8
b. P(1 < X < 2) = ∫
3
8
𝑥2
𝑑𝑥 =
2
1
(
𝑥3
8
]
2
1
) =
7
8
c.
f(x) = 3/8x2
0 2
3/2
f(x) Grafik Fungsi Densitas
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 13
Fungsi densitas dari suatu peubah acak kontinu bisa mempunyai beberapa
nilai bergantung pada nilai peubah acaknya. Jika setiap nilai fungsi densitas itu
merupakan fungsi dari konstanta yang belum diketahui, maka penghitungan
konstanta itu tidak dilakukan terhadap masing-masing interval nilai peubah
acaknya melainkan terhadap semua interval nilai peubah acaknya.
Pemahaman uraian diatas akan diperjelas pada teladan berikut ini :
Teladan 11:
𝑔(𝑥) = {
𝑘𝑥; 0 ≤ 𝑥 < 1
𝑘; 1 ≤ 𝑥 < 2
−𝑘𝑥 + 3𝑘; 2 ≤ 𝑥 ≤ 3
0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
a. Hitunglah nilai k.
b. Gambarkan grafik dari g(x).
Penyelesaian:
Dalam hal ini, penghitungan nilai k tidak dilakukan untuk setiap interval nilai x
melainkan terhadap nilai x dari 0 sampai 3. Adapun batas-batas pengintegralan-
nya diisi dengan setiap interval nilai x
a. Berdasarkan sifat kedua dari fungsi densitas
∫ 𝑓(𝑥)𝑑𝑥 = 1
∞
−∞
∫ 𝑔(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 = 1
∞
3
3
2
2
1
1
0
0
−∞
∫ 0 𝑑𝑥 + ∫ 𝑘𝑥 𝑑𝑥 + ∫ 𝑘 𝑑𝑥 + ∫ −𝑘𝑥 + 3𝑘 𝑑𝑥 + ∫ 0 𝑑𝑥 = 1
∞
3
3
2
2
1
1
0
0
−∞
0 + (
𝑘𝑥2
2
)]
1
0
+ 𝑘𝑥]
2
1
+ (
−𝑘𝑥2
2
+ 3𝑘𝑥)]
3
2
+ 0 = 1
1
2
𝑘 + 𝑘 −
5
2
𝑘 + 3𝑘 = 1, 2𝑘 = 1, 𝑘 =
1
2
Jadi fungsi densitas dari X berbentuk:
𝑔(𝑥) =
{
1
2
𝑥; 0 ≤ 𝑥 < 1
1
2
; 1 ≤ 𝑥 < 2
−
1
2
𝑥 +
3
2
; 2 ≤ 𝑥 ≤ 3
0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 14
b. Grafik dari g(x) bisa dilihat pada gambar dibawah ini:
C. FUNGSI DISTRIBUSI
Apabila kita mempunyai distribusi peluang dari sebuah peubah acak diskrit, maka
kita bisa menghitung peluang dari peubah acak tersebut yang berharga tertentu.
Nilai peluang dari peubah acak tersebut bisa mempunyai beberapa kemungkinan
yaitu :
a. 𝑃(𝑋 < 𝑎)
b. 𝑃(𝑎 < 𝑋 < 𝑏)
c. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏)
d. 𝑃(𝑋 > 𝑏)
e. 𝑃(𝑋 ≥ 𝑏)
f. 𝑃(𝑋 ≤ 𝑎)
g. 𝑃(𝑎 ≤ 𝑋 < 𝑏)
h. 𝑃(𝑎 < 𝑋 ≤ 𝑏)
Dengan a dan b adalah dua buah konstanta.
Jika kita memperhatikan bentuk 𝑃(𝑋 ≤ 𝑎), maka bentuk umumnya ditulis
𝑃(𝑋 ≤ 𝑥). Bentuk 𝑃(𝑋 ≤ 𝑥) dinamakan fungsi distribusi kumulatif atau fungsi
distribusi saja.
x
g(x)
1/2
1
0 1 2 3
𝑔(𝑥) =
{
1
2
𝑥; 0 ≤ 𝑥 < 1
1
2
; 1 ≤ 𝑥 < 2
−
1
2
𝑥 +
3
2
; 2 ≤ 𝑥 ≤ 3
0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 15
Pada pembahasan selanjutnya, fungsi distribusi kumulatif dari peubah acak
diskrit akan dinyatakan sebagai fungsi distribusi saja. Jika peubah acak X
mempunyai nilai-nilai yang banyaknya berhingga yaitu x1, x2, x3,…xn dan masing-
masing mempunyai peluangnya p(x1), p(x2), p(x3),….,p(xn), maka fungsi
distribusinya ditentukan sebagai berikut.
F(x) = 0 ; 𝑥 < 𝑥1
= p(x1) ; 𝑥1 ≤ 𝑥 < 𝑥2
= p(x1) + p(x2) ; 𝑥2 ≤ 𝑥 < 𝑥3
= p(x1) + p(x2) + p(x3) ; 𝑥3 ≤ 𝑥 < 𝑥4
= p(x1) + p(x2) + p(x3) + … + p(xn) = 1 ; 𝑥 𝑛 ≤ 𝑥
Jika kita memperhatikan bentuk fungsi distribusi diatas, maka nilainya berupa
konstanta semua untuk setiap interval nilai x yang diberikan.
Seperti halnya fungsi peluang atau distribusi peluang dan fungsi densitas,
fungsi distribusi jug adapt digambarkan grafiknya. Dalam hal ini, grafik fungsi
distribusi dari peubah acak diskrit berupa fungsi tangga.
Penentuan fungsi distribusi dan gambarnya dari peubah acak diskrit
diperjelas melalui teladan dibawah ini :
Teladan 12:
Apabila kita mengundi dua mata uang logam Rp.100 yang seimbang secara
sekaligus, maka distribusi peluangnya berbentuk:
Dimana X menunjukkan banyak huruf “BANK
INDONESIA”
a. Tentukan fungsi distribusi dari X.
b. Gambarkan grafik fungsi distribusinya.
x 0 1 2
p(x) 1/4 1/2 1/4
Definisi C.1 : FUNGSI DISTRIBUSI KUMULATIF
Misalnya X adalah peubah acak, baik diskrit maupun kontinu. Kita
mendefinisikan F sebagai fungsi distribusi kumulatif dari peubah acak X,
dengan:
𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥)
Definisi C.2 : FUNGSI DISTRIBUSI KUMULATIF DISKRIT
Misalnya X adalah peubah acak diskrit,maka fungsi distribusi kumulatif dari X
berbentuk:
𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑝(𝑡)
𝑡≤𝑥
Dengan p(t) adalah fungsi peluang dari X di t
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 16
Penyelesaian:
a. Untuk x < 0,
F(x) = 0
Untuk 0 ≤ 𝑥 < 1,
𝐹(0) = ∑ 𝑝(𝑡) = 𝑝(0)
𝑡≤0
𝐹(0) =
1
4
Untuk 1 ≤ 𝑥 < 2
𝐹(1) = ∑ 𝑝(𝑡) = 𝑝(0) + 𝑝(1) =
1
4
+
1
2𝑡≤1
𝐹(1) =
3
4
Untuk 2 ≤ 𝑥
𝐹(2) = ∑ 𝑝(𝑡) = 𝑝(0) + 𝑝(1) + 𝑝(2) =
1
4
+
1
2
+
1
4𝑡≤2
𝐹(2) = 1
Jadi, fungsi distribusi dari X berbentuk:
𝐹(𝑥) =
{
0; 𝑥 < 0
1
4
; 0 ≤ 𝑥 < 1
3
4
; 1 ≤ 𝑥 < 2
1; 2 ≤ 𝑥
b. Grafik dari fungsi distribusinya bisa dilihat pada gambar dibawah ini :
x
F(x)
1/2
1
0 1 2 3
1/4
3/4
Grafik Fungsi
Distribusi Diskrit
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 17
Hal yang perlu diperhatikan dalam fungsi distribusi untuk peubah acak
diskrit adalah penulisan notasinya. Notasi untuk fungsi distribusi bisa ditulis
dengan huruf besar F, G, H atau lainnya yang diikuti dengan nilai peubah
acaknya.
Apabila fungsi peluang dari peubah acak X dinotasikan dengan p(x), maka
notasi untuk fungsi distribusinya bisa ditulis dengan F(x), G(x), H(x).
Pada pembahasan selanjutnya, fungsi distribusi kumulatif dari peubah acak
kontinu akan dinyatakan sebagai fungsi distribusi saja.
Nilai fungsi distribusi untuk peubah acak kontinu biasanya berupa konstanta
dan fungsi.
Grafik fungsi distribusinya berupa kombinasi dari beberapa kemungkinan
berikut ini : garis lurus, garis yang sejajar dengan sumbu datar, garis yang
berimpit dengan sumbu datar dan sebuah kurva.
Jadi grafik fungsi distribusi untuk peubah acak kontinu mempunyai
beberapa kemungkinan diantaranya sebagai berikut :
1. Grafiknya berupa garis yang berimpit dengan sumbu datar dan kurva.
2. Grafiknya berupa garis yang berimpit dengan sumbu datar, garis lurus dan
garis yang sejajar dengan sumbu datar.
3. Grafiknya berupa garis yang berimpit dengan sumbu datar, kurva, dan garis
yang sejajar dengan sumbu datar.
Penentuan fungsi distribusi dan grafiknya untuk peubah acak kontinu
diperjelas melalui teladan berikut ini :
Teladan 13:
Misalnya fungsi densitas dari peubah acak X berbentuk:
𝑓(𝑥) = {
3
8
𝑥2
; 0 < 𝑥 < 2
0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
a. Tentukan fungsi distribusi F(x).
b. Gambarkan grafik dari F(x).
Penyelesaian :
Definisi C.3 : FUNGSI DISTRIBUSI KUMULATIF KONTINU
Misalnya X adalah peubah acak kontinu,maka fungsi distribusi kumulatif dari X
berbentuk:
𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥
−∞
Dengan f(t) adalah nilai fungsi densitas dari X di t
Dengan p(t) adalah fungsi peluang dari X di t
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 18
a. Untuk x < 0,
F(x) = 0
Untuk 0 ≤ 𝑥 < 2,
𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓(𝑡)𝑑𝑡
𝑥
0
0
−∞
= ∫ 0 𝑑𝑡 + ∫
3
8
𝑡2
𝑑𝑡
𝑥
0
0
−∞
= 0 +
𝑡3
8
]
𝑥
0
𝐹(𝑥) =
𝑥3
8
Untuk 2 ≤ 𝑥
𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓(𝑡)𝑑𝑡
𝑥
2
2
0
0
−∞
= ∫ 0 𝑑𝑡 + ∫
3
8
𝑡2
𝑑𝑡
2
0
0
−∞
+ ∫ 0 𝑑𝑡
𝑥
2
= 0 +
𝑡3
8
]
2
0
+ 0
𝐹(𝑥) = 1
Jadi, fungsi distribusinya berbentuk:
𝐹(𝑥) = {
0; 𝑥 < 0
𝑥3
8
; 0 ≤ 𝑥 < 2
1; 𝑥 ≥ 2
b. Grafiknya bisa dilihat pada gambar dibawah ini:
x
F(x)
1/2
1
0 1 2 3
Grafik Fungsi
Distribusi Kontinu
𝐹(𝑥) =
𝑋3
8
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 19
Jika kita memperhatikan gambar diatas, maka grafiknya berupa garis yang
berimpit dengan sumbu datar, kurva, dan garis yang sejajar dengan sumbu
datar.
Hal yang perlu diperhatikan pada fungsi distribusi untuk peubah acak kontinu
adalah penulisan notasinya. Karena dari definisi fungsi distribusi notasi yang
digunakannya adalah F, notasi untuk fungsi distribusinya tidak selalu dengan F.
Notasi untuk fungsi distribusinya bisa ditulis dengan huruf besar F,G, H atau
lainnya yang diikuti dengan nilai peubah acaknya dan sebaiknya disesuaikan
dengan notasi fungsi densitasnya. Apabila fungsi densitas dari peubah acak Y
dinotasikan dengan g(y) maka notasi untuk fungsi distribusinya sebaiknya
digunakan G(y).
Kita sudah menjelaskan bahwa penghitungan peluang dari peubah acak yang
mempunyai nilai dalam bentuk interval dapat dilakukan berdasarkan fungsi
peluang atau fungsi densitas. Selain itu, nilai peluang tersebut, baik peubah
acak diskrit maupun kontinu, dapat diperoleh berdasarkan fungsi distribusi. Hal
ini bisa dilakukan dengan menggunakan rumus :
𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎)
Dimana, a dan b adalah dua bilangan real a < b.
Adapun penghitungan peluang dari peubah acak yang berharga satu nilai
dapat dilakukan dengan menggunakan rumus :
𝑃(𝑋 = 𝑏) = 𝐹𝑥(𝑏) − 𝐹𝑥(𝑏−)
Pemahaman penggunaan kedua rumus diatas untuk peubah acak diskrit dan
kontinu masing-masing diperjelas melalui teladan dibawah ini:
Teladan 14:
Misalnya fungsi distribusi dari peubah acak X berbentuk :
𝐹(𝑥) =
{
0; 𝑥 < −1
125
216
; −1 ≤ 𝑥 < 1
200
216
; 1 ≤ 𝑥 < 2
215
216
; 2 ≤ 𝑥 < 3
1; 3 ≤ 𝑥
a. Hitung 𝑃(0 ≤ 𝑋 < 3)
b. Hitung 𝑃(𝑋 ≤ 0)
c. Hitung 𝑃(𝑋 > 1)
d. Hitung 𝑃(−1 ≤ 𝑋 < 0)
e. Hitung 𝑃(𝑋 = 1)
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 20
Penyelesaian :
a. 𝑃(0 ≤ 𝑋 < 3) = 𝐹𝑥(3) − 𝐹𝑥(0)
= 1 −
125
216
𝑃(0 ≤ 𝑋 < 3) =
91
216
b. 𝑃(𝑋 ≤ 0) = 𝐹(0) =
125
216
c. 𝑃(𝑋 > 1) = 1 − 𝑃(𝑋 ≤ 1)
= 1 − 𝐹𝑥(1)
= 1 −
200
216
𝑃(𝑋 > 1) =
16
216
d. 𝑃(−1 ≤ 𝑋 < 0) = 𝐹𝑥(0) − 𝐹𝑥(−1)
=
125
216
−
125
216
𝑃(−1 ≤ 𝑋 < 0) = 0
e. 𝑃(𝑋 = 1) = 𝐹𝑥(1) − 𝐹𝑥(1−)
=
200
216
−
125
216
𝑃(𝑋 = 1) =
75
216
Teladan 15:
Misalkan fungsi distribusi dari peubah acak X berbentuk :
𝐹(𝑥) =
{
0; 𝑥 < 0
𝑥
2
; 0 ≤ 𝑥 < 1
𝑥 − 0,5 ; 1 ≤ 𝑥 < 1,5
1, 𝑥 ≥ 1,5
a. Hitung 𝑃(0,5 < 𝑋 ≤ 1,1)
b. Hitung 𝑃(𝑋 > 0,7)
c. Hitung 𝑃(1,1 < 𝑋 ≤ 2)
d. Hitung 𝑃(𝑋 ≤ 1,4)
e. Hitung 𝑃(𝑋 = 1)
Penyelesaian:
a. 𝑃(0,5 < 𝑋 ≤ 1,1) = 𝐹(1,1) − 𝐹(0,5)
= (1,1 − 0,5) −
0,5
2
= 0,6 − 0,25
𝑃(0,5 < 𝑋 ≤ 1,1) = 0,35
b. 𝑃(𝑋 > 0,7) = 1 − 𝑃(𝑋 ≤ 0,7)
= 1 − 𝐹(0,7)
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 21
= 1 −
0,7
2
= 1 − 0,35
𝑃(𝑋 > 0,7) = 0,65
c. 𝑃(1,1 < 𝑋 ≤ 2) = 𝐹(2) − 𝐹(1,1)
= 1 − (1,1 − 0,5)
= 1 − 0,6
𝑃(1,1 < 𝑋 ≤ 2) = 0,4
d. 𝑃(𝑋 ≤ 1,4) = 𝐹(1,4)
= 1,4 − 0,5
𝑃(𝑋 ≤ 1,4) = 0,9
e. 𝑃(𝑋 = 1) = 𝐹𝑥(1) − 𝐹𝑥(1−)
= (1 − 0,5) − 0,5
𝑃(𝑋 = 1) = 0
Kita sudah menjelaskan penghitungan peluang dari peubah acak yang
berharga tertentu berdasarkan fungsi peluangnya atau fungsi densitasnya dan
fungsi distribusinya.
Berikut ini akan diberikan contoh penghitungan peluang tersebut dengan
kedua cara di atas untuk peubah acak diskrit maupun kontinu, kemudian kita
akan membandingkan kedua hasilnya.
Teladan 16:
Misalnya distribusi peluang dari peubah acak Y berbentuk :
y 0 1 2
p(y) ¼ ½ ¼
Fungsi distribusi dari peubah acak Y berbentuk:
𝐺(𝑦) =
{
0; 𝑦 < 0
1
4
; 0 ≤ 𝑦 < 1
3
4
; 1 ≤ 𝑦 < 2
1; 𝑦 ≥ 2
Hitunglah peluang berikut ini dengan menggunakan perumusan fungsi peluang
dan fungsi distribusi.
a. 𝑃(0 < 𝑌 ≤ 2)
b. 𝑃(𝑌 ≤ 1)
c. 𝑃(𝑌 > 0,5)
Penyelesaian:
1. Fungsi Peluang
a. 𝑃(0 < 𝑌 ≤ 2) = 𝑃(𝑌 = 1,2)
= 𝑃(𝑌 = 1) + 𝑃(𝑌 = 2)
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 22
=
1
2
+
1
4
𝑃(0 < 𝑌 ≤ 2) =
3
4
b. 𝑃(𝑌 ≤ 1) = 𝑃(𝑌 = 0,1)
= 𝑃(𝑌 = 0) + 𝑃(𝑌 = 1)
=
1
4
+
1
2
𝑃(𝑌 ≤ 1) =
3
4
c. 𝑃(𝑌 > 0,5) = 𝑃(𝑌 ≥ 1)
= 𝑃(𝑌 = 1,2)
=
1
4
+
1
2
𝑃(𝑌 > 0,5) =
3
4
2. Fungsi Distribusi
a. 𝑃(0 < 𝑌 ≤ 2) = 𝐺 𝑦(2) − 𝐺 𝑦(0)
= 1 −
1
4
𝑃(0 < 𝑌 ≤ 2) =
3
4
b. 𝑃(𝑌 ≤ 1) = 𝐺 𝑦(1)
𝑃(𝑌 ≤ 1) =
3
4
c. 𝑃(𝑌 > 0,5) = 1 − 𝑃(𝑌 ≤ 0,5)
= 1 − 𝐺 𝑦(0,5)
= 1 −
1
4
𝑃(𝑌 > 0,5) =
3
4
Teladan 17:
Jika fungsi densitas dari peubah acak X berbentuk :
𝑓(𝑥) = {
3. 𝑒−3𝑥
, 𝑥 > 0
0, 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
dan fungsi distribusinya setelah ditentukan diperoleh:
𝐹(𝑥) = {
0, 𝑥 ≤ 0
1 − 𝑒−3𝑥
, 𝑥 > 0
Maka hitung peluang berikut ini dengan menggunakan perumusan fungsi
densitas dan fungsi distribusi.
a. 𝑃(0,5 < 𝑋 ≤ 1)
b. 𝑃(𝑋 ≤ 0,5)
c. 𝑃(𝑋 > 1,2)
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 23
Penyelesaian:
1. Fungsi Densitas
a. 𝑃(0,5 < 𝑋 ≤ 1) = ∫ 3. 𝑒−3𝑥
𝑑𝑥 = −𝑒−3𝑥]
1
0,5
1
0,5
𝑃(0,5 < 𝑋 ≤ 1) = 𝑒−1,5
− 𝑒−3
𝑏. 𝑃(𝑋 ≤ 0,5) = ∫ 3. 𝑒−3𝑥
𝑑𝑥 = −𝑒−3𝑥]0,5
0
0,5
0
𝑃(𝑋 ≤ 0,5) = 1 − 𝑒−1,5
𝑐. 𝑃(𝑋 > 1,2) = 1 − 𝑃(𝑋 ≤ 1,2) = 1 − ∫ 3. 𝑒−3𝑥
𝑑𝑥 = 1 + 𝑒−3𝑥]1,2
0
= 1 + 𝑒−3,6
− 1
1,2
0
𝑃(𝑋 > 1,2) = 𝑒−3,6
2. Fungsi Distribusi
a. 𝑃(0,5 < 𝑋 ≤ 1) = 𝐹𝑥 − 𝐹0,5(0,5) = (1 − 𝑒−3) − (1 − 𝑒−1,5)
𝑃(0,5 < 𝑋 ≤ 1) = 𝑒−1,5
− 𝑒−3
𝑏. 𝑃(𝑋 ≤ 0,5) = 𝐹𝑥(0,5)
𝑃(𝑋 ≤ 0,5) = 1 − 𝑒−1,5
𝑐. 𝑃(𝑋 > 1,2) = 1 − 𝑃(𝑋 ≤ 1,2) = 1 − 𝐹𝑥(1,2) = 1 − (1 − 𝑒−3,6
)
𝑃(𝑋 > 1,2) = 𝑒−3,6
Jika fungsi peluang atau fungsi densitas dari sebuah peubah acak diketahui,
maka kita dapat menentukan fungsi distribusinya. Sebaliknya, kita bisa
menentukan fungsi peluang atau fungsi densitas dari sebuah peubah acak, jika
fungsi distribusinya diketahui.
Berikut ini akan dijelaskan penentuan fungsi peluang atau fungsi densitas
untuk peubah acak diskrit dan kontinu, jika fungsi distribusinya diketahui.
A. Peubah Acak Diskrit
Misalnya bilangan real t terletak dalam interval (b-h, b] yaitu b-h < t ≤ b,
dengan h adalah bilangan positif.
Apabila nilai h menuju nol, maka interval tersebut akan menuju ke satu nilai,
yaitu t = b, dan ditulis :
lim
ℎ→∞
𝑃(𝑏 − ℎ < 𝑋 ≤ 𝑏) = lim
ℎ→∞
[𝐹𝑥(𝑏) − 𝐹𝑥(𝑏 − ℎ)] = 𝐹𝑥(𝑏) − 𝐹𝑥(𝑏 −)
Jadi, jika b adalah nilai diskontinu dari Fx maka b adalah nilai dari peubah
acak X dengan peluangnya positif. Peluang bahwa X = b merupakan ukuran
loncatan pada Fx(b).
Untuk lebih jelasnya, lihat gambar berikut ini:
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 24
Jadi, langkah-langkah untuk menentukan fungsi peluang berdasarkan fungsi
distribusi adalah sebagai berikut:
1. Tentukan nilai-nilai peubah acak X yang menyebabkan fungsi distribusi
Fx(x) diskontinu.
2. Tentukan peluang untuk setiap nilai x yang diskontinu, dengan rumus:
𝑃(𝑋 = 𝑥0) = 𝐹𝑥(𝑥0) − 𝐹𝑥(𝑥0−)
𝑑𝑖𝑚𝑎𝑛𝑎, 𝑥0 𝑎𝑑𝑎𝑙𝑎ℎ 𝑠𝑒𝑏𝑢𝑎ℎ 𝑛𝑖𝑙𝑎𝑖 𝑦𝑎𝑛𝑔 𝑚𝑒𝑛𝑦𝑒𝑏𝑎𝑏𝑘𝑎𝑛 𝐹𝑥 𝑑𝑖𝑠𝑘𝑜𝑛𝑡𝑖𝑛𝑢.
Untuk lebih memahami penentuan fungsi peluang sebuah peubah acak diskrit
berdasarkan fungsi distribusinya akan diperjelas dalam teladan berikut ini:
Teladan 18:
Misalnya fungsi distribusi dari peubah acak X berbentuk:
𝐹𝑥(𝑥) =
{
0; 𝑥 < 0
1
2
; 0 ≤ 𝑥 < 2
5
6
; 2 ≤ 𝑥 < 3
1; 𝑥 ≥ 3
Tentukan fungsi peluangnya.
Penyelesaian:
Jika kita memperhatikan 𝐹𝑥(𝑥), maka ada tiga nilai x yang menyebabkan 𝐹𝑥(𝑥)
diskontinu, yaitu x=0,2 dan 3.
Ketiga nilai itu merupakan nilai peubah acak X dengan peluangnya sebagai
berikut.
 𝑝(0) = 𝐹𝑥(0) − 𝐹𝑥(0 −) =
1
2
− 0 =
1
2
t
Fx(t)
1
0 a b c
Fungsi Distribusi
dan Fungsi
Peluang
P(x=a)
P(x=b)
P(x=c)
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 25
 𝑝(2) = 𝐹𝑥(2) − 𝐹𝑥(2 −) =
5
6
−
1
2
=
1
3
 𝑝(3) = 𝐹𝑥(3) − 𝐹𝑥(3 −) = 1 −
5
6
=
1
6
Jadi, fungsi peluang dari X adalah:
𝑝(𝑥) =
{
1
2
; 𝑥 = 0
1
3
; 𝑥 = 2
1
6
; 𝑥 = 3
0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
B. Peubah Acak Kontinu
Pemahaman akan penentuan fungsi densitas dari sebuah peubah acak
kontinu berdasarkan fungsi distribusinya akan dijelaskan pada teladan berikut
ini:
Teladan 19:
Misalnya fungsi distribusi dari peubah acak X berbentuk:
𝐹(𝑥) = {
0; 𝑥 ≤ 0
𝑥2
; 0 < 𝑥 ≤ 1
1; 𝑥 > 1
Tentukan fungsi densitasnya.
Penyelesaian:
Untuk 𝑥 ≤ 0 : f(x)=F’(x)=0
Untuk 0 < 𝑥 ≤ 1 : f(x)=F’(x)=2x
Untuk x > 1 : f(x)=F’(x)=0
Jadi fungsi densitasnya berbentuk:
𝑓(𝑥) = {
2𝑥 ; 0 < 𝑥 ≤ 1
0; 𝑥𝑙𝑎𝑖𝑛𝑛𝑦𝑎
Setelah kita menjelaskan teknik penentuan fungsi distribusi berdasarkan
fungsi peluangnya atau fungsi densitasnya atau sebaliknya, kita perlu
mengetahui beberapa sifat dari fungsi distribusi.
1. 0 < 𝐹(𝑥) ≤ 1, 𝑘𝑎𝑟𝑒𝑛𝑎 0 < 𝑃(𝑋 ≤ 𝑥) ≤ 1
Dalil C.1 : PENENTUAN FUNGSI DENSITAS
Jika f(x) dan F(x) masing-masing merupakan fungsi densitas dan fungsi
distribusi dari peubah acak X di x, maka ;
𝑓(𝑥) =
𝑑
𝑑𝑥
𝐹(𝑥)
Apabila hasil turunanya ada.
Dengan p(t) adalah fungsi peluang dari X di t
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 26
2. 𝐹(𝑥)𝑎𝑑𝑎𝑙𝑎ℎ 𝑓𝑢𝑛𝑔𝑠𝑖 𝑡𝑖𝑑𝑎𝑘 𝑡𝑢𝑟𝑢𝑛 𝑑𝑖 𝑥. 𝐴𝑟𝑡𝑖𝑛𝑦𝑎 𝑗𝑖𝑘𝑎 𝑥′
< 𝑥′′
, 𝑚𝑎𝑘𝑎 𝐹′(𝑥) <
𝐹′′(𝑥), ℎ𝑎𝑙 𝑖𝑛𝑖 𝑏𝑖𝑠𝑎 𝑑𝑖𝑙𝑖ℎ𝑎𝑡 𝑑𝑎𝑟𝑖 𝑢𝑟𝑎𝑖𝑎𝑛 𝑏𝑒𝑟𝑖𝑘𝑢𝑡 𝑖𝑛𝑖.
𝐽𝑖𝑘𝑎 𝑥′
< 𝑥′′
, 𝑚𝑎𝑘𝑎
{𝑥: 𝑥 ≤ 𝑥′′} = {𝑥: 𝑥 ≤ 𝑥′} ∪ {𝑥: 𝑥′
< 𝑥 ≤ 𝑥′′}
𝑃 (𝑋 ≤ 𝑥′′) = 𝑃(𝑋 ≤ 𝑥′) + 𝑃(𝑥′
< 𝑋 ≤ 𝑥′′
)
𝐹(𝑥′′) = 𝐹(𝑥′) + 𝑃(𝑥′
< 𝑋 < 𝑥′′)
𝐹(𝑥′′) − 𝐹(𝑥′) = 𝑃(𝑥′
< 𝑋 ≤ 𝑥′′), 𝑘𝑎𝑟𝑒𝑛𝑎 𝑃(𝑥′
< 𝑋 ≤ 𝑥′′) ≥ 0, 𝑚𝑎𝑘𝑎 ∶
𝐹(𝑥′′) − 𝐹(𝑥′) ≥ 0
𝐹(𝑥′′) ≥ 𝐹(𝑥′) 𝑎𝑡𝑎𝑢 𝐹(𝑥′) ≤ 𝐹(𝑥′′)
3. 𝐹(∞) = lim
𝑥→∞
𝐹(𝑥) = 1 𝑑𝑎𝑛 𝐹(−∞) = lim
𝑥→−∞
𝐹(𝑥) = 0
Hal ini bisa dibuktikan dengan uraian berikut ini:
𝑆 = {−∞ < 𝑥 ≤ 0} ∪ {0 < 𝑥 < ∞} 𝑑𝑒𝑛𝑔𝑎𝑛,
{−∞ < 𝑥 ≤ 0} = {−1 < 𝑥 ≤ 0} ∪ {−2 < 𝑥 ≤ −1} ∪ {−3 < 𝑥 ≤ −2} ∪ …
{0 < 𝑥 < ∞} = {0 < 𝑥 ≤ 1} ∪ {1 < 𝑥 ≤ 2} ∪ {2 < 𝑥 ≤ 3} ∪ …
𝐽𝑎𝑑𝑖, 𝑆 = ([⋃{−𝑥 < 𝑋 ≤ −𝑥 + 1}] ∪ [⋃{𝑥 < 𝑋 ≤ 𝑥 + 1}])
∞
𝑥=1
∞
𝑥=1
𝑃(𝑆) = 𝑃[⋃{−𝑥 < 𝑋 ≤ −𝑥 + 1}] + 𝑃[⋃{𝑥 < 𝑋 ≤ 𝑥 + 1}]
∞
𝑥=1
∞
𝑥=1
= ∑ 𝑃{𝑥 < 𝑋 ≤ −𝑥 + 1} + ∑ 𝑃{𝑥 < 𝑋 ≤ 𝑥 + 1}
∞
𝑥=1
∞
𝑥=1
1 = lim
𝑎→∞
∑ 𝑃{𝑥 < 𝑋 ≤ −𝑥 + 1}
𝑎
𝑥=1
+ lim
𝑏→∞
∑ 𝑃{𝑥 < 𝑋 ≤ 𝑥 + 1}
𝑏
𝑥=1
1 = lim
𝑎→∞
∑[𝐹(−𝑥 + 1) − 𝐹(−𝑥)] +
𝑎
𝑥=1
+ lim
𝑏→∞
∑[𝐹(𝑥 + 1) − 𝐹(𝑥)]
𝑏
𝑥=1
1 = lim
𝑎→∞
[𝐹(0) − 𝐹(−𝑎)] + lim
𝑏→∞
[𝐹(𝑏 + 1) − 𝐹(0)]
1 = [𝐹(0) − 𝐹(−∞)] + [𝐹(∞) − 𝐹(0)]
1 = 𝐹(∞) − 𝐹(−∞) … (1)
Karena −∞ < ∞, 𝑚𝑎𝑘𝑎 𝐹(−∞) ≤ 𝐹(∞) 𝑑𝑎𝑛 𝐹(−∞) ≥ 0, 𝐹(∞) ≤ 1;
𝑗𝑎𝑑𝑖, 0 ≤ 𝐹(−∞) ≤ 𝐹(∞) ≤ 1 … (2)
𝐷𝑎𝑟𝑖 𝑝𝑒𝑟𝑠𝑎𝑚𝑎𝑎𝑛 (1)𝑑𝑖𝑝𝑒𝑟𝑜𝑙𝑒ℎ ∶ 𝐹(∞) = 1 + 𝐹(−∞)
𝐷𝑎𝑟𝑖 𝑝𝑒𝑟𝑠𝑎𝑚𝑎𝑎𝑛 (2)𝑑𝑖𝑝𝑒𝑟𝑜𝑙𝑒ℎ ∶ 0 ≤ 𝐹(−∞) ≤ 1 + 𝐹(−∞)
≤ 1, 𝑠𝑒ℎ𝑖𝑛𝑔𝑔𝑎 𝑑𝑖𝑝𝑒𝑟𝑜𝑙𝑒ℎ: 𝐹(−∞) ≤ 0
𝐾𝑎𝑟𝑒𝑛𝑎, 𝐹(−∞) ≤ 0, 𝑚𝑎𝑘𝑎𝐹(−∞) = 0 ∶ 𝐴𝑘𝑖𝑏𝑎𝑡𝑛𝑦𝑎, 𝐹(∞) = 1
4. F(x) kontinu kanan pada setiap nilai x.
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 27
PENUTUP
A. KESIMPULAN
1. Misalnya E adalah sebuah eksperimen dengan ruang sampelnya S.
Sebuah fungsi X yang menetapkan setiap anggota s ∈ S dengan sebuah
bilangan real X(s) dinamakan peubah acak.
2. Misalnya X adalah peubah acak. Jika banyak nilai-nilai yang mungkin dari X
(yaitu ruang hasil dari Rx) berhingga atau tak berhingga tapi dapat dihitung,
maka X adalah peubah acak diskrit.
3. Misalnya X adalah peubah acak. Jika banyak nilai-nilai yang mungkin dari X
(yaitu ruang hasil dari Rx) merupakan sebuah interval pada garis bilangan
real, maka X dinamakan peubah acak kontinu.
4. Jika X adalah peubah acak diskrit, maka p(x) = P(X=x) untuk setiap x dalam
range X dinamakan fungsi peluang dari X.Nilai fungsi peluang dari X, yaitu
p(x) harus memenuhi sifat-sifat sebagai berikut.
p(x) ≥ 0
∑ 𝑝(𝑥) = 1
𝑥
5. Misalnya X adalah peubah acak kontinu yang didefinisikan dalam himpunan
bilangan real. Sebuah fungsi disebut fungsi densitas dari X, jika nilai-nilainya
yaitu f(x) memenuhi sifat-sifat sebagai berikut :
a. f(x) ≥ 0; untuk x ∈ (−∞, ∞) 𝑏. ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞
−∞
c. Untuk setiap a dan b, dimana −∞ < 𝑎 < 𝑏 < ∞, maka
𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏
𝑎
B. SARAN
Demikianlah makalah yang dapat kami buat, sebagai manusia biasa kita
menyadari dalam pembuatan makalah ini masih terdapat banyak kesalahan dan
kekurangan. Untuk itu kritik dan saran yang bersifat konstruktif sangat kami
harapkan demi kesempurnaan makalah ini dan berikutnya. Semoga makalah ini
bermanfaat bagi kita semua. Amin.
[PENGANTAR TEORI PELUANG] KELOMPOK 7
Peubah Acak Diskrit dan Kontinu 28
DAFTAR PUSTAKA
Herrhyanto Nar &Tuti Gantini. 2009. ”Pengantar Statistika Matematika”. Yrama
Widya. Bandung.
Ross Sheldon terj. Bambang Sumantri. 1996. “Suatu Pengantar Ke Teori Peluang”.
University Of California.Barkeley
Antou, Neltje Konda. 2009. “Pengantar Teori Peluang”. Universitas Negeri Manado.
Tondano

More Related Content

What's hot

Bilangan kompleks lengkap
Bilangan kompleks lengkapBilangan kompleks lengkap
Bilangan kompleks lengkap
agus_budiarto
 
Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)
Dyas Arientiyya
 
Pertemuan 02 teori dasar himpunan
Pertemuan 02   teori dasar himpunanPertemuan 02   teori dasar himpunan
Pertemuan 02 teori dasar himpunan
Fajar Istiqomah
 
Contoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrupContoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrup
Kabhi Na Kehna
 
Momen kemiringan dan_keruncingan(7)
Momen kemiringan dan_keruncingan(7)Momen kemiringan dan_keruncingan(7)
Momen kemiringan dan_keruncingan(7)
rizka_safa
 

What's hot (20)

Sub grup normal dan grup fakto
Sub grup normal dan grup faktoSub grup normal dan grup fakto
Sub grup normal dan grup fakto
 
Turunan Fungsi Kompleks
Turunan Fungsi KompleksTurunan Fungsi Kompleks
Turunan Fungsi Kompleks
 
Integral Lipat Dua ( Kalkulus 2 )
Integral Lipat Dua ( Kalkulus 2 )Integral Lipat Dua ( Kalkulus 2 )
Integral Lipat Dua ( Kalkulus 2 )
 
Peluang ppt
Peluang pptPeluang ppt
Peluang ppt
 
Beberapa distribusi peluang diskrit (1)
Beberapa distribusi peluang diskrit (1)Beberapa distribusi peluang diskrit (1)
Beberapa distribusi peluang diskrit (1)
 
Bilangan kompleks
Bilangan kompleksBilangan kompleks
Bilangan kompleks
 
Teori Group
Teori GroupTeori Group
Teori Group
 
Bilangan kompleks lengkap
Bilangan kompleks lengkapBilangan kompleks lengkap
Bilangan kompleks lengkap
 
Teori Peluang | Pengantar Statistik Matematis
Teori Peluang | Pengantar Statistik MatematisTeori Peluang | Pengantar Statistik Matematis
Teori Peluang | Pengantar Statistik Matematis
 
Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)
 
Ring
RingRing
Ring
 
Pertemuan 02 teori dasar himpunan
Pertemuan 02   teori dasar himpunanPertemuan 02   teori dasar himpunan
Pertemuan 02 teori dasar himpunan
 
Contoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrupContoh soal dan pembahasan subgrup
Contoh soal dan pembahasan subgrup
 
Momen kemiringan dan_keruncingan(7)
Momen kemiringan dan_keruncingan(7)Momen kemiringan dan_keruncingan(7)
Momen kemiringan dan_keruncingan(7)
 
Beberapa distribusi peluang kontinu
Beberapa distribusi peluang kontinuBeberapa distribusi peluang kontinu
Beberapa distribusi peluang kontinu
 
Basis dan Dimensi
Basis dan DimensiBasis dan Dimensi
Basis dan Dimensi
 
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.2
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.2Analisis Real (Barisan Bilangan Real) Latihan bagian 2.2
Analisis Real (Barisan Bilangan Real) Latihan bagian 2.2
 
Struktur aljabar-2
Struktur aljabar-2Struktur aljabar-2
Struktur aljabar-2
 
Distribusi hipergeometrik
Distribusi hipergeometrikDistribusi hipergeometrik
Distribusi hipergeometrik
 
Aljabar 3-struktur-aljabar
Aljabar 3-struktur-aljabarAljabar 3-struktur-aljabar
Aljabar 3-struktur-aljabar
 

Similar to Peubah acak diskrit dan kontinu

Peluang dan peubah acak diskrit
Peluang dan peubah acak diskritPeluang dan peubah acak diskrit
Peluang dan peubah acak diskrit
Nida Hilya
 
jbptunikompp-gdl-triraharjo-23425-4-4.peuba-).ppt
jbptunikompp-gdl-triraharjo-23425-4-4.peuba-).pptjbptunikompp-gdl-triraharjo-23425-4-4.peuba-).ppt
jbptunikompp-gdl-triraharjo-23425-4-4.peuba-).ppt
RoulyPinyEshylvesthe
 
makalah VARIABEL RANDOM DAN DISTRIBUSI PROBABILITAS UNTUK VARIABEL RANDOM DIS...
makalah VARIABEL RANDOM DAN DISTRIBUSI PROBABILITAS UNTUK VARIABEL RANDOM DIS...makalah VARIABEL RANDOM DAN DISTRIBUSI PROBABILITAS UNTUK VARIABEL RANDOM DIS...
makalah VARIABEL RANDOM DAN DISTRIBUSI PROBABILITAS UNTUK VARIABEL RANDOM DIS...
sri rahayu
 

Similar to Peubah acak diskrit dan kontinu (20)

Matematika minat variabel acak
Matematika minat variabel acakMatematika minat variabel acak
Matematika minat variabel acak
 
pembahasan terdahulu rumus yg terjadi di
pembahasan terdahulu rumus yg terjadi dipembahasan terdahulu rumus yg terjadi di
pembahasan terdahulu rumus yg terjadi di
 
Peluang dan peubah acak diskrit
Peluang dan peubah acak diskritPeluang dan peubah acak diskrit
Peluang dan peubah acak diskrit
 
statistik
statistikstatistik
statistik
 
Peubah acak
Peubah acakPeubah acak
Peubah acak
 
ditribusi teoritis
ditribusi teoritisditribusi teoritis
ditribusi teoritis
 
4_Random Variables dan jenis random variabel.pptx
4_Random Variables dan jenis random variabel.pptx4_Random Variables dan jenis random variabel.pptx
4_Random Variables dan jenis random variabel.pptx
 
jbptunikompp-gdl-triraharjo-23425-4-4.peuba-).ppt
jbptunikompp-gdl-triraharjo-23425-4-4.peuba-).pptjbptunikompp-gdl-triraharjo-23425-4-4.peuba-).ppt
jbptunikompp-gdl-triraharjo-23425-4-4.peuba-).ppt
 
Distribusi teoretis
Distribusi teoretisDistribusi teoretis
Distribusi teoretis
 
STATISTIK MATEMATIKA (Distribusi)
STATISTIK MATEMATIKA (Distribusi) STATISTIK MATEMATIKA (Distribusi)
STATISTIK MATEMATIKA (Distribusi)
 
Matematika Diskrit
Matematika DiskritMatematika Diskrit
Matematika Diskrit
 
05 - Variabel Random dan Distribusi Peluang.pdf
05 - Variabel Random dan Distribusi Peluang.pdf05 - Variabel Random dan Distribusi Peluang.pdf
05 - Variabel Random dan Distribusi Peluang.pdf
 
Makalah STATISTIK MAEMATIKA II VARIABEL RANDOM
Makalah STATISTIK MAEMATIKA II VARIABEL RANDOMMakalah STATISTIK MAEMATIKA II VARIABEL RANDOM
Makalah STATISTIK MAEMATIKA II VARIABEL RANDOM
 
Pemisahan variabel
Pemisahan variabelPemisahan variabel
Pemisahan variabel
 
Transformasi Peubah Acak dan Distribusinya
Transformasi Peubah Acak dan Distribusinya Transformasi Peubah Acak dan Distribusinya
Transformasi Peubah Acak dan Distribusinya
 
3 (1)
3 (1)3 (1)
3 (1)
 
P5 Statistika.pptx
P5 Statistika.pptxP5 Statistika.pptx
P5 Statistika.pptx
 
Statistika - Distribusi peluang
Statistika - Distribusi peluangStatistika - Distribusi peluang
Statistika - Distribusi peluang
 
makalah VARIABEL RANDOM DAN DISTRIBUSI PROBABILITAS UNTUK VARIABEL RANDOM DIS...
makalah VARIABEL RANDOM DAN DISTRIBUSI PROBABILITAS UNTUK VARIABEL RANDOM DIS...makalah VARIABEL RANDOM DAN DISTRIBUSI PROBABILITAS UNTUK VARIABEL RANDOM DIS...
makalah VARIABEL RANDOM DAN DISTRIBUSI PROBABILITAS UNTUK VARIABEL RANDOM DIS...
 
STATISTIK MATEMATIKA
STATISTIK MATEMATIKASTATISTIK MATEMATIKA
STATISTIK MATEMATIKA
 

More from Anderzend Awuy

Soal pilihan ganda himpunan
Soal pilihan ganda himpunanSoal pilihan ganda himpunan
Soal pilihan ganda himpunan
Anderzend Awuy
 
Soal pilihan ganda kardinalitas
Soal pilihan ganda kardinalitasSoal pilihan ganda kardinalitas
Soal pilihan ganda kardinalitas
Anderzend Awuy
 

More from Anderzend Awuy (16)

Soal pilihan ganda fungsi
Soal pilihan ganda fungsiSoal pilihan ganda fungsi
Soal pilihan ganda fungsi
 
Soal pilihan ganda validitas pembuktian
Soal pilihan ganda validitas pembuktianSoal pilihan ganda validitas pembuktian
Soal pilihan ganda validitas pembuktian
 
Soal pilihan ganda tautologi, ekivalen dan kontradiksi
Soal pilihan ganda tautologi, ekivalen dan kontradiksiSoal pilihan ganda tautologi, ekivalen dan kontradiksi
Soal pilihan ganda tautologi, ekivalen dan kontradiksi
 
Soal pilihan ganda operasi himpunan
Soal pilihan ganda operasi himpunanSoal pilihan ganda operasi himpunan
Soal pilihan ganda operasi himpunan
 
Soal pilihan ganda pendahuluan pengantar dasar matematika
Soal pilihan ganda pendahuluan pengantar dasar matematikaSoal pilihan ganda pendahuluan pengantar dasar matematika
Soal pilihan ganda pendahuluan pengantar dasar matematika
 
Soal pilihan ganda kardinalitas
Soal pilihan ganda kardinalitasSoal pilihan ganda kardinalitas
Soal pilihan ganda kardinalitas
 
Soal pilihan ganda logika matematika
Soal pilihan ganda logika matematikaSoal pilihan ganda logika matematika
Soal pilihan ganda logika matematika
 
Soal pilihan ganda kuantor
Soal pilihan ganda kuantorSoal pilihan ganda kuantor
Soal pilihan ganda kuantor
 
Soal pilihan ganda himpunan
Soal pilihan ganda himpunanSoal pilihan ganda himpunan
Soal pilihan ganda himpunan
 
Soal pilihan ganda kardinalitas
Soal pilihan ganda kardinalitasSoal pilihan ganda kardinalitas
Soal pilihan ganda kardinalitas
 
Logika dan teori himpunan
Logika dan teori himpunanLogika dan teori himpunan
Logika dan teori himpunan
 
Operasi himpunan
Operasi himpunanOperasi himpunan
Operasi himpunan
 
Operasi himpunan
Operasi himpunanOperasi himpunan
Operasi himpunan
 
Operasi himpunan
Operasi himpunanOperasi himpunan
Operasi himpunan
 
Logika matematika
Logika matematikaLogika matematika
Logika matematika
 
Cover ptp 2
Cover ptp 2Cover ptp 2
Cover ptp 2
 

Recently uploaded

Membuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docxMembuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docx
NurindahSetyawati1
 
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
pipinafindraputri1
 
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptxBab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
ssuser35630b
 
SEJARAH PERKEMBANGAN KEPERAWATAN JIWA dan Trend Issue.ppt
SEJARAH PERKEMBANGAN KEPERAWATAN JIWA dan Trend Issue.pptSEJARAH PERKEMBANGAN KEPERAWATAN JIWA dan Trend Issue.ppt
SEJARAH PERKEMBANGAN KEPERAWATAN JIWA dan Trend Issue.ppt
AlfandoWibowo2
 
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdfAksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
JarzaniIsmail
 
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.pptHAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
nabilafarahdiba95
 
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ikabab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
AtiAnggiSupriyati
 
BAB 5 KERJASAMA DALAM BERBAGAI BIDANG KEHIDUPAN.pptx
BAB 5 KERJASAMA DALAM BERBAGAI BIDANG KEHIDUPAN.pptxBAB 5 KERJASAMA DALAM BERBAGAI BIDANG KEHIDUPAN.pptx
BAB 5 KERJASAMA DALAM BERBAGAI BIDANG KEHIDUPAN.pptx
JuliBriana2
 

Recently uploaded (20)

7.PPT TENTANG TUGAS Keseimbangan-AD-AS .pptx
7.PPT TENTANG TUGAS Keseimbangan-AD-AS .pptx7.PPT TENTANG TUGAS Keseimbangan-AD-AS .pptx
7.PPT TENTANG TUGAS Keseimbangan-AD-AS .pptx
 
AKSI NYATA BERBAGI PRAKTIK BAIK MELALUI PMM
AKSI NYATA BERBAGI PRAKTIK BAIK MELALUI PMMAKSI NYATA BERBAGI PRAKTIK BAIK MELALUI PMM
AKSI NYATA BERBAGI PRAKTIK BAIK MELALUI PMM
 
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdfContoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
Contoh Laporan Observasi Pembelajaran Rekan Sejawat.pdf
 
Membuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docxMembuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docx
 
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
Modul 2 - Bagaimana membangun lingkungan belajar yang mendukung transisi PAUD...
 
Bab 4 Persatuan dan Kesatuan di Lingkup Wilayah Kabupaten dan Kota.pptx
Bab 4 Persatuan dan Kesatuan di Lingkup Wilayah Kabupaten dan Kota.pptxBab 4 Persatuan dan Kesatuan di Lingkup Wilayah Kabupaten dan Kota.pptx
Bab 4 Persatuan dan Kesatuan di Lingkup Wilayah Kabupaten dan Kota.pptx
 
Lingkungan bawah airLingkungan bawah air.ppt
Lingkungan bawah airLingkungan bawah air.pptLingkungan bawah airLingkungan bawah air.ppt
Lingkungan bawah airLingkungan bawah air.ppt
 
MATEMATIKA EKONOMI MATERI ANUITAS DAN NILAI ANUITAS
MATEMATIKA EKONOMI MATERI ANUITAS DAN NILAI ANUITASMATEMATIKA EKONOMI MATERI ANUITAS DAN NILAI ANUITAS
MATEMATIKA EKONOMI MATERI ANUITAS DAN NILAI ANUITAS
 
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)
 
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptxBab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
Bab 7 - Perilaku Ekonomi dan Kesejahteraan Sosial.pptx
 
Salinan dari JUrnal Refleksi Mingguan modul 1.3.pdf
Salinan dari JUrnal Refleksi Mingguan modul 1.3.pdfSalinan dari JUrnal Refleksi Mingguan modul 1.3.pdf
Salinan dari JUrnal Refleksi Mingguan modul 1.3.pdf
 
power point bahasa indonesia "Karya Ilmiah"
power point bahasa indonesia "Karya Ilmiah"power point bahasa indonesia "Karya Ilmiah"
power point bahasa indonesia "Karya Ilmiah"
 
SEJARAH PERKEMBANGAN KEPERAWATAN JIWA dan Trend Issue.ppt
SEJARAH PERKEMBANGAN KEPERAWATAN JIWA dan Trend Issue.pptSEJARAH PERKEMBANGAN KEPERAWATAN JIWA dan Trend Issue.ppt
SEJARAH PERKEMBANGAN KEPERAWATAN JIWA dan Trend Issue.ppt
 
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdfAksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
Aksi Nyata Sosialisasi Profil Pelajar Pancasila.pdf
 
Membaca dengan Metode Fonik - Membuat Rancangan Pembelajaran dengan Metode Fo...
Membaca dengan Metode Fonik - Membuat Rancangan Pembelajaran dengan Metode Fo...Membaca dengan Metode Fonik - Membuat Rancangan Pembelajaran dengan Metode Fo...
Membaca dengan Metode Fonik - Membuat Rancangan Pembelajaran dengan Metode Fo...
 
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKAKELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
 
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.pptHAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
HAK DAN KEWAJIBAN WARGA NEGARA ppkn i.ppt
 
algoritma dan pemrograman komputer, tugas kelas 10
algoritma dan pemrograman komputer, tugas kelas 10algoritma dan pemrograman komputer, tugas kelas 10
algoritma dan pemrograman komputer, tugas kelas 10
 
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ikabab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
bab 6 ancaman terhadap negara dalam bingkai bhinneka tunggal ika
 
BAB 5 KERJASAMA DALAM BERBAGAI BIDANG KEHIDUPAN.pptx
BAB 5 KERJASAMA DALAM BERBAGAI BIDANG KEHIDUPAN.pptxBAB 5 KERJASAMA DALAM BERBAGAI BIDANG KEHIDUPAN.pptx
BAB 5 KERJASAMA DALAM BERBAGAI BIDANG KEHIDUPAN.pptx
 

Peubah acak diskrit dan kontinu

  • 1. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 1 PENDAHULUAN A. LATAR BELAKANG Dalam makalah ini akan dibahas macam-macam peubah acak, distribusi peluang danfungsi densitas, dan fungsi distribusi. Seperti yang kita ketahui bahwa materi ini merupakan pengantar untuk kita dapat memahami materi selanjutnya mengenai fungsi peluang untuk peubah acak diskrit dan fungsi densitas untuk peubah acak kontinu dimana perananya sangat banyak yakni penghitungan beberapa macam ekspetasi matematis, pembahasan beberapa distribusi khusus yang dikenal, dan penentuan distribusi dari fungsi peubah acak. Sehingga dalam hal ini fungsi peluang maupun fungsi densitas mempunyai bentuk yang berbeda- beda. B. RUMUSAN MASALAH 1. Apa yang dimaksud dengan peubah acak ? 2. Apa saja macam-macam peubah acak ? 3. Apa yang dimaksud dengan distribusi peluang? 4. Apa yang dimaksud dengan Fungsi distribusi ? C. TUJUAN PENULISAN 1. Mampu membedakan peubah acak diskrit dan peubah acak kontinu. 2. Mampu Menentukan distribusi peluang dari sebuah peubah acak diskrit dan modifikasinya. 3. Mampu menghitung peluang dari sebuah peubah acak diskrit yang berharga tertentu. 4. Mampu menentukan konstanta dari fungsi densitas untuk peubah acak kontinu berdasarkan sifatnya. 5. Mampu menghitung peluang dari peubah acak kontinu berharga tertentu. 6. Mampu menggambar grafik berdasarkan fungsi peluang dan densitas. 7. Mampu menentukan fungsi distribusi dari sebuah peubah acak, baik diskrit maupun kontinu. 8. Mampu Menggambar grafik dari fungsi distribusi untuk satu peubah acak. 9. Mampu menghitung peluang serta menentukan distribusi peluang dari sebuah peubah acak yang berharga tertentu berdasarkan fungsi distribusinya.
  • 2. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 2 PEMBAHASAN A. PEUBAH ACAK Berikut ini akan dijelaskan definisi secara umum dari peubah acak (random variable). Berdasarkan definisi diatas, ada dua buah himpunan yang melibatkan peubah acak, yaitu ruang sampel S yang berisi anggotanya (titik sampel) s dan Rx berupa nilai-nilai yang mungkin dari X yang berkaitan dengan anggota S-nya. Pendefinisian peubah acak bisa dijelaskan dalam gambar berikut. Teladan 1: Misalnya sandy melakukan pelemparan dua buah mata uang logam Rp.100 yang seimbang secara sekaligus. Jika X menunjukkan banyak huruf “BANK INDONESIA” yang terjadi, maka apakah X merupakan peubah acak ? Penyelesaian: Ruang sampelnya S = {HH,HG,GH,GG} Dengan G = Gambar “KARAPAN SAPI” dan H = Huruf “BANK INDONESIA” Untuk s1 = HH, maka X(s1) = X(HH) = 2 Untuk s2 = HG, maka X(s2) = X(HG) = 1 Untuk s3 = GH, maka X(s3) = X(GH) = 1 Untuk s4 = GG, maka X(s4) = X(GG) = 0 Sehingga, nilai-nilai yang mungkin dari X, Rx = 0,1 atau 2. Definisi A.1 : PEUBAH ACAK Misalnya E adalah sebuah eksperimen dengan ruang sampelnya S. Sebuah fungsi X yang menetapkan setiap anggota s ∈ S dengan sebuah bilangan real X(s) dinamakan peubah acak.  s  X(s) X S = Ruang Sampel Rx = Nilai-nilai yang mungkin dari X sesuai s-nya X = Peubah Acak
  • 3. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 3 Karena X memenuhi syarat-syarat sebuah fungsi, maka X adalah peubah acak. Apabila kita bisa memperoleh sebuah peristiwa berkenaan dengan ruang sampel S dan sebuah peristiwa berkenaan dengan peubah acak X (yaitu himpunan bagian dari ruang hasil Rx) maka dua peristiwa itu akan ekuivalen. Dua Peristiwa yang ekuivalen bisa digambarkan sebagai berikut. Teladan 2: Ketika kita mengundi dua mata uang logam Rp.100 yang seimbang secara sekaligus, maka ruang sampelnya: S = { HH, HG, GH, GG }. Jika X menunjukkan banyak G yang terjadi, maka nilai-nilai yang mungkin dari X adalah Rx = { 0,1,2 }. Dua peristiwa A dan B yang ekuivalen ada tiga buah yaitu : 1. Ruang peristiwa dari B : B = {0} Karena X(HH) = 0 jika dan hanya jika X(s) = 0, maka s = (HH) dan ia merupakan ruang peristiwa dari peristiwa lainnya, yaitu A. Jadi A = {HH}. Akibatnya, A dan B merupakan dua buah peristiwa yang ekivalen. 2. Ruang peristiwa dari B : B = {1} Karena X(HG) = X(GH) = 1 jika dan hanya jika X(s) = 1, maka s = (HG) atau s = (GH) dan ia merupakan ruang peristiwa dari peristiwa lainnya, yaitu A. Jadi A = {HG,GH}. Definisi A.2 : DUA PERISTIWA YANG EKIVALEN Misalnya E adalah sebuah eksperimen dengan ruang sampelnya S. X adalah peubah acak yang didefinisikan pada S dengan Rx adalah ruang hasilnya, dan B adalah peristiwa yang berkenaan dengan Rx artinya B ⊂ Rx. Jika Peristiwa A didefinisikan sebagai : A = {s ∈ S | X(s) ∈ B}, artinya A berisi semua hasil dalam S dengan X(s) ∈ B, maka A dan B dikatakan dua peristiwa yang ekuivalen. B S = Ruang Sampel Rx = Nilai-nilai yang mungkin dari X sesuai s-nya  s  X(s) ) A
  • 4. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 4 Akibatnya, A dan B merupakan dua buah peristiwa yang ekivalen. 3. Ruang peristiwa dari B : B = {2} Karena X(GG) = 2 jika dan hanya jika X(s) = 2, maka s = (GG) dan ia merupakan ruang peristiwa dari peristiwa lainnya, yaitu A. Jadi A = {GG}. Akibatnya, A dan B merupakan dua buah peristiwa yang ekivalen. Kita sudah mengetahui bahwa peristiwa A yang berkaitan dengan ruang sampel S ekivalen dengan peristiwa B yang berkaitan dengan nilai-nilai yang mungkin dari peubah acak X. Akibatnya, peluang dari kedua peristiwa itu akan sama, yaitu P(A) = P(B). Hal ini bisa dilihat dari definisi dibawah ini. Pemahaman penghitungan peluang dari kedua peristiwa yang ekivalen dijelaskan melalui teladan di bawah ini. Teladan 3: Dalam pengundian dua mata uang logam Rp.100 yang seimbang, maka P(HG) = P(GH) = P(GG) = P(HH) = ¼, Hitunglah P(X=0), P(X=1), dan P(X=2). Penyelesaian: a. Karena X=0 ekivalen dengan peristiwa yang ruang peristiwanya {HH} dan P(HH) = ¼ , maka P(X=0) = P(HH) = ¼ b. Karena X=1 ekivalen dengan peristiwa yang ruang peristiwanya {GH} atau {HG} dan P(GH atau HG) = P(HG) + P(GH) = ¼ + ¼ = ½ , maka P(X=1) = P(HG atau GH) = ½. c. Karena X=2 ekivalen dengan peristiwa yang ruang peristiwanya {GG} dan P(GG) = 1/4, maka P(X=2) = P(GG) = ¼ Terdapat dua macam peubah acak, yaitu peubah acak diskrit dan peubah acak kontinu. Pengertian kedua macam peubah acak tersebut bisa dilihat dalam definisi dibawah ini : Definisi A.3 : PELUANG DUA PERISTIWA YANG EKIVALEN Jika B adalah sebuah peristiwa dalam ruang hasil Rx, maka P(B) didefinisikan sebagai: P(B) = P(A), dengan A = { s ∈ S | X(s) ∈ B }.
  • 5. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 5 Nilai-nilai yang mungkin dari X bisa ditulis sebagai: x1,x2,x3,…,xn,… Pemahaman pengertian peubah acak diskrit diperjelas melalui teladan seperti dibawah ini: Teladan 4: Coba lihat teladan 2 diatas, nilai-nilai yang mungkin dari Rx = {0,1,2}. Karena banyak anggota dari Rx berhingga, maka X termasuk peubah acak diskrit. Teladan 5: Misalnya sandy mengundi sebuah dadu yang seimbang. Jika peubah acak X menunjukkan banyak pengulangan percobaan sampai mata dadu 5 muncul pertama kali, maka nilai-nilai yang mungkin dari X adalah: Rx = { 1,2,3,… }. Karena banyak anggota dari Rx tak berhingga tapi dapat dihitung, maka X termasuk peubah acak diskrit. Pemahaman peubah acak kontinu akan dijelaskan melalui teladan dibawah ini : Teladan 6 : Misalnya sebuah universitas mempunyai mahasiswa berjumlah 25.000 orang dan para mahasiswa itu diberi nomor induk mahasiswa mulai dari 00001 sampai 25.000. Kemudian seorang mahasiswa dipilih secara acak dan ia diukur berat badannya. Dalam hal ini, ruang sampelnya adalah: S = {s:s=00001,00002,00003,…,25.000} Definisi A.4 : PEUBAH ACAK DISKRIT Misalnya X adalah peubah acak. Jika banyak nilai-nilai yang mungkin dari X (yaitu ruang hasil dari Rx) berhingga atau tak berhingga tapi dapat dihitung, maka X adalah peubah acak diskrit. Definisi A.5 : PEUBAH ACAK KONTINU Misalnya X adalah peubah acak. Jika banyak nilai-nilai yang mungkin dari X (yaitu ruang hasil dari Rx) merupakan sebuah interval pada garis bilangan real, maka X dinamakan peubah acak kontinu.
  • 6. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 6 Misalnya X menunjukkan berat badan dari mahasiswa yang terpilih, maka ia bisa ditulis sebagai X(s), dengan s ∈ S. Kita mengasumsikan bahwa tidak ada mahasiswa di universitas tersebut yang mempunyai berat badan kurang dari 20kg atau lebih dari 175kg, sehingga ruang hasil dari X adalah: Rx = {X: 20≤ X ≤ 175} Karena Rx merupakan sebuah interval, maka X termasuk ke dalam peubah acak kontinu. B. DISTRIBUSI PELUANG Dalam sebuah peubah acak diskrit, nilai-nilai yang mungkin dari peubah acaknya merupakan bilangan bulat. Seperti pada teladan 4 nilai-nilai dari X adalah 0,1 atau 2. Akan tetapi, dalam soalnya mungkin saja ada yang bertanda negative. Kemudian kita dapat menghitung nilai peluang dari masing-masing nilai peubah acak tersebut., dengan sebelumnya diasumsikan lebih dahulu nilai peluang untuk masing-masing titik sampel dalam ruang sampel S. Nilai peluang dari peubah acak yang berharga tertentu diperoleh berdasarkan nilai peluang dari titik-titik sampelnya. Apabil nilai peluang dari peubah acak tersebut memenuhi persyaratan tersebut tertentu, maka nilai peluang tersebut dinamakan fungsi peluang. Berikut ini kita akan menjelaskan definisi fungsi peluang. Adapun kumpulan pasangan yang diurutkan { x, p(x) } dinamakan distribusi peluang dari X. Bentuk umum dari fungsi peluang ada dua kemungkinan, yaitu berupa konstanta dan berupa fungsi dari nilai peubah acak. Definisi B.1 : FUNGSI PELUANG Jika X adalah peubah acak diskrit, maka p(x) = P(X=x) untuk setiap x dalam range X dinamakan fungsi peluang dari X. Nilai fungsi peluang dari X, yaitu p(x) harus memenuhi sifat-sifat sebagai berikut. a. p(x) ≥ 0 b. ∑ 𝑝(𝑥) = 1𝑥
  • 7. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 7  Fungsi peluang berupa konstanta bisa terdiri atas satu nilai atau lebih dari satu nilai.Fungsi peluang berupa konstanta yang terdiri atas satu nilai artinya untuk setiap nilai peubah acak yang diberikan, maka nilai fungsi peluangnya sama. Misalnya fungsi peluang dari peubah acak Y berbentuk: P(y) = ¼ ; y = -1,0,1,2 Fungsi peluang berupa konstanta yang terdiri atas lebih dari satu nilai artinya untuk setiap nilai peubah acak yang diberikan masing-masing mempunyai nilai fungsi peluangnya. Misalnya fungsi peluang dari peubah acak X berbentuk : p(x) = 1/3; x = 2, p(x) = 1/3; x = 3, p(x) = ¼; x = 4, p(x) = 1/12; x = 5  Fungsi peluang berupa fungsi dari nilai peubah acak (FPBF) sebenarnya sama dengan funsi peluang berupa konstanta yang terdiri atas lebih dari satu nilai (FPBK), hanya bedanya FPBF ditulis secara umum dan berlaku untuk nilai peubah acak tertentu sedangkan FPBK ditulis satu per satu yang berlaku untuk masing-masing nilai peubah acaknya. Misalnya fungsi peluang dari peubah acak X berbentuk : p(x) = x/15; dimana x = 1,2,3,4,5 Pemahaman distribusi peluang dari sebuah peubah acak diperjelas melalui teladan dibawah ini : Teladan 7: Misalkan percobaan kita berupa pelemparan 3 uang logam setimbang, Jika kita misalkan Y menyatakan berapa kali sisi gambar muncul, maka Y adalah suatu peubah acak yang mengambil nilai 0,1,2 atau 3 dengan peluang : Penyelesaian : Dalam hal ini, kita harus menghitung nilai peubah acak Y, yaitu y dan nilai peluangnya. Dik : S = {(A,A,A),(A,A,G),(A,G,A),(G,A,A),(A,G,G),(G,A,G),(G,G,A),(G,G,G)}, Karena Y menyatakan banyak G yang muncul, maka: 1. Untuk titik sampel AAA, bilangan bulat yang sesuai adalah 0, ditulis Y(s) = Y(AAA) = 0 2. Untuk titik sampel AAG,AGA,GAA, bilangan bulat yang sesuai adalah 1, ditulis Y(s) = Y(AAG) = Y(AGA) = Y(GAA) = 1
  • 8. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 8 3. Untuk titik sampel AGG,GAG,GGA bilangan bulat yang sesuai adalah 2, ditulis Y(s) = Y(AGG) = Y(GAG) = Y(GGA) = 2 4. Untuk titik sampel GGG, bilangan bulat yang sesuai adalah 3, ditulis Y(s) = Y(GGG) = 3 Karena mata uang logam yang digunakan adalah seimbang maka peluang masing-masing titik sampel sama yaitu : 1/8. Maka peluang untuk setiap nilai peubah acaknya adalah sebagai berikut : P{Y=0} = P{(A,A,A)} = 1/8 P{Y=1} = P{(A,A,G),(A,G,A),(G,A,A)} = 3/8 P{Y=2} = P{(G,G,A),(G,A,G),(A,G,G)} = 3/8 P{Y=3} = P{(G,G,G)} = 1/8 Jadi, distribusi peluang dari Y adalah : Teladan 8: Misalnya fungsi peluang dari peubah acak X berbentuk : 𝑝(𝑥) = { 1 5 (𝑘𝑥 + 1); 𝑥 = 0,1,2,3 0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎 Tentukan nilai k. Penyelesaian: ∑ 𝑝(𝑥) = 1 𝑥 ∑ ( 1 5 ) (𝑘𝑥 + 1) = 1 3 𝑥=0 (1/5){1+(k+1)+(2k+1)+(3k+1)} = 1 6k + 4 = 5 6k = 1 K = 1/6. Apabila kita menggambar grafik dari fungsi peluang atau distribusi peluang maka grafiknya dapat berupa diagram batang atau histogram peluang. x 0 1 2 3 p(x) 1/5 7/30 4/15 3/10 y 0 1 2 3 p(y) 1/8 3/8 3/8 1/8
  • 9. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 9 Teladan 9 : Lihat kembali teladan 7, Gambarkan grafik distribusi peluang dari Y Penyelesaian : Berikut ini distribusi peluang pada teladan 7 ; Diagram batang dan histogram peluangnya masing-masing dapat dilihat dalam gambar dibawah ini : y 0 1 2 3 p(y) 1/8 3/8 3/8 1/8 y p(y) 1/8 3/8 0 1 2 3 Diagram Batang y p(y) 1/8 3/8 0 1 2 3 Histogram
  • 10. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 10 Dalam peubah acak kontinu, fungsi yang memenuhi sifat-sifat tertentu dinamakan fungsi densitas peluang atau fungsi densitas. Sifat (c) diatas menunjukkan penghitungan peluang dari peubah acak kontinu X yang mempunyai nilai dari a sampai b. Berdasarkan gambar diatas, 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) sama dengan luas daerah dibawah kurva f dari x = a sampai x = b. Dalam peubah acak diskrit, peluang dari peubah acak yang berharga lebih dari satu nilai yang membentuk sebuah interval bisa dihitung dengan mudah tergantung bentuk intervalnya. Artinya jika kita akan menghitung 𝑃(0 < 𝑋 < 3) hasilnya akan berbeda dengan 𝑃(0 ≤ 𝑋 < 3), 𝑃(0 < 𝑋 ≤ 3) atau 𝑃(0 ≤ 𝑋 ≤ 3). Akan tetapi, penghitunga peluang dari peubah acak kontinu yang harganya membentuk sebuah interval apa saja, hasilnya akan sama. Hal ini bisa dilihat dalam dalil dibawah ini : Definisi B.2 : FUNGSI DENSITAS Misalnya X adalah peubah acak kontinu yang didefinisikan dalam himpunan bilangan real. Sebuah fungsi disebut fungsi densitas dari X, jika nilai- nilainya yaitu f(x) memenuhi sifat-sifat sebagai berikut : a. f(x) ≥ 0; untuk x ∈ (−∞, ∞) 𝑏. ∫ 𝑓(𝑥)𝑑𝑥 = 1 ∞ −∞ c. Untuk setiap a dan b, dimana −∞ < 𝑎 < 𝑏 < ∞, maka 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥 𝑏 𝑎 f(x) f a b x 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐿𝑢𝑎𝑠 𝐷𝑎𝑒𝑟𝑎ℎ 𝑦𝑎𝑛𝑔 𝑑𝑖𝑝𝑢𝑙𝑎𝑠
  • 11. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 11 Bukti : Jika A = {x : x = a}, maka P(A) = P(X∈A) = P(X=a) = ∫ 𝑓(𝑥)𝑑𝑥 = 0 𝑎 𝑎 Jika A = {x : x = b}, maka P(B) = P(X∈B) = P(X=b) = ∫ 𝑓(𝑥)𝑑𝑥 = 0 𝑏 𝑏 Berdasarkan hasil diatas, kita akan membuktikan : a. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) b. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) c. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) d. 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) e. 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) f. 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) Pembuktiannya bisa dilihat dibawah ini : a. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) + 𝑃(𝑋 = 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) + 0 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖. b. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑋 = 𝑎) + 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 0 + 𝑃(𝑎 < 𝑋 ≤ 𝑏) 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖. c. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑋 = 𝑎) + 𝑃(𝑎 < 𝑋 < 𝑏) + 𝑃(𝑋 = = 0 + 𝑃(𝑎 < 𝑋 < 𝑏) + 0 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖. d. 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑋 = 𝑎) + 𝑃(𝑎 < 𝑋 ≤ 𝑏) − 𝑃(𝑋 = 𝑏) = 0 + 𝑃(𝑎 < 𝑋 ≤ 𝑏) − 0 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖. e. 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑋 = 𝑎) + 𝑃(𝑎 < 𝑋 < 𝑏) = 0 + 𝑃(𝑎 < 𝑋 < 𝑏) 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖. f. 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) + 𝑃(𝑋 = 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) + 0 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏) 𝑇𝑒𝑟𝑏𝑢𝑘𝑡𝑖. Dalil B.1 : PELUANG PEUBAH ACAK KONTINU BERBENTUK INTERVAL Jika X adalah peubah acak kontinu serta a dan b adalah dua konstanta real, dengan a < b, maka : 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑃(𝑎 ≤ 𝑋 < 𝑏) = 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝑃(𝑎 < 𝑋 < 𝑏)
  • 12. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 12 Grafik dari fungsi densitas berupa sebuah kurva atau sebuah garis atau bahkan kombinasi keduanya, yang penggambarannya disesuaikan dengan bentuk fungsi densitasnya. Pemahaman penghitungan peluang dari peubah acak kontinu yang berharga tertentu sampai penggambaran grafiknya diperjelas melalui teladan berikut ini : Teladan 10: Diketahui : 𝑓(𝑥) = { 𝑘𝑥2 ; 0 < 𝑥 < 2 0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎 Tentukan nilai k agar f(x) merupakan fungsi densitas dari peubah acak X. a. Hitung P(1<X<2). b. Gambarkan grafik dari fungsi densitasnya. Penyelesaian: a. Berdasarkan sifat kedua dari fungsi densitas, maka: ∫ 𝑓(𝑥)𝑑𝑥 = 1 ∞ −∞ ∫ 𝑘𝑥2 𝑑𝑥 = 1 2 0 𝑘. ( 𝑥3 3 ] 2 0 ) = 1 k = 3/8 b. P(1 < X < 2) = ∫ 3 8 𝑥2 𝑑𝑥 = 2 1 ( 𝑥3 8 ] 2 1 ) = 7 8 c. f(x) = 3/8x2 0 2 3/2 f(x) Grafik Fungsi Densitas
  • 13. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 13 Fungsi densitas dari suatu peubah acak kontinu bisa mempunyai beberapa nilai bergantung pada nilai peubah acaknya. Jika setiap nilai fungsi densitas itu merupakan fungsi dari konstanta yang belum diketahui, maka penghitungan konstanta itu tidak dilakukan terhadap masing-masing interval nilai peubah acaknya melainkan terhadap semua interval nilai peubah acaknya. Pemahaman uraian diatas akan diperjelas pada teladan berikut ini : Teladan 11: 𝑔(𝑥) = { 𝑘𝑥; 0 ≤ 𝑥 < 1 𝑘; 1 ≤ 𝑥 < 2 −𝑘𝑥 + 3𝑘; 2 ≤ 𝑥 ≤ 3 0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎 a. Hitunglah nilai k. b. Gambarkan grafik dari g(x). Penyelesaian: Dalam hal ini, penghitungan nilai k tidak dilakukan untuk setiap interval nilai x melainkan terhadap nilai x dari 0 sampai 3. Adapun batas-batas pengintegralan- nya diisi dengan setiap interval nilai x a. Berdasarkan sifat kedua dari fungsi densitas ∫ 𝑓(𝑥)𝑑𝑥 = 1 ∞ −∞ ∫ 𝑔(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 = 1 ∞ 3 3 2 2 1 1 0 0 −∞ ∫ 0 𝑑𝑥 + ∫ 𝑘𝑥 𝑑𝑥 + ∫ 𝑘 𝑑𝑥 + ∫ −𝑘𝑥 + 3𝑘 𝑑𝑥 + ∫ 0 𝑑𝑥 = 1 ∞ 3 3 2 2 1 1 0 0 −∞ 0 + ( 𝑘𝑥2 2 )] 1 0 + 𝑘𝑥] 2 1 + ( −𝑘𝑥2 2 + 3𝑘𝑥)] 3 2 + 0 = 1 1 2 𝑘 + 𝑘 − 5 2 𝑘 + 3𝑘 = 1, 2𝑘 = 1, 𝑘 = 1 2 Jadi fungsi densitas dari X berbentuk: 𝑔(𝑥) = { 1 2 𝑥; 0 ≤ 𝑥 < 1 1 2 ; 1 ≤ 𝑥 < 2 − 1 2 𝑥 + 3 2 ; 2 ≤ 𝑥 ≤ 3 0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
  • 14. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 14 b. Grafik dari g(x) bisa dilihat pada gambar dibawah ini: C. FUNGSI DISTRIBUSI Apabila kita mempunyai distribusi peluang dari sebuah peubah acak diskrit, maka kita bisa menghitung peluang dari peubah acak tersebut yang berharga tertentu. Nilai peluang dari peubah acak tersebut bisa mempunyai beberapa kemungkinan yaitu : a. 𝑃(𝑋 < 𝑎) b. 𝑃(𝑎 < 𝑋 < 𝑏) c. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) d. 𝑃(𝑋 > 𝑏) e. 𝑃(𝑋 ≥ 𝑏) f. 𝑃(𝑋 ≤ 𝑎) g. 𝑃(𝑎 ≤ 𝑋 < 𝑏) h. 𝑃(𝑎 < 𝑋 ≤ 𝑏) Dengan a dan b adalah dua buah konstanta. Jika kita memperhatikan bentuk 𝑃(𝑋 ≤ 𝑎), maka bentuk umumnya ditulis 𝑃(𝑋 ≤ 𝑥). Bentuk 𝑃(𝑋 ≤ 𝑥) dinamakan fungsi distribusi kumulatif atau fungsi distribusi saja. x g(x) 1/2 1 0 1 2 3 𝑔(𝑥) = { 1 2 𝑥; 0 ≤ 𝑥 < 1 1 2 ; 1 ≤ 𝑥 < 2 − 1 2 𝑥 + 3 2 ; 2 ≤ 𝑥 ≤ 3 0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎
  • 15. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 15 Pada pembahasan selanjutnya, fungsi distribusi kumulatif dari peubah acak diskrit akan dinyatakan sebagai fungsi distribusi saja. Jika peubah acak X mempunyai nilai-nilai yang banyaknya berhingga yaitu x1, x2, x3,…xn dan masing- masing mempunyai peluangnya p(x1), p(x2), p(x3),….,p(xn), maka fungsi distribusinya ditentukan sebagai berikut. F(x) = 0 ; 𝑥 < 𝑥1 = p(x1) ; 𝑥1 ≤ 𝑥 < 𝑥2 = p(x1) + p(x2) ; 𝑥2 ≤ 𝑥 < 𝑥3 = p(x1) + p(x2) + p(x3) ; 𝑥3 ≤ 𝑥 < 𝑥4 = p(x1) + p(x2) + p(x3) + … + p(xn) = 1 ; 𝑥 𝑛 ≤ 𝑥 Jika kita memperhatikan bentuk fungsi distribusi diatas, maka nilainya berupa konstanta semua untuk setiap interval nilai x yang diberikan. Seperti halnya fungsi peluang atau distribusi peluang dan fungsi densitas, fungsi distribusi jug adapt digambarkan grafiknya. Dalam hal ini, grafik fungsi distribusi dari peubah acak diskrit berupa fungsi tangga. Penentuan fungsi distribusi dan gambarnya dari peubah acak diskrit diperjelas melalui teladan dibawah ini : Teladan 12: Apabila kita mengundi dua mata uang logam Rp.100 yang seimbang secara sekaligus, maka distribusi peluangnya berbentuk: Dimana X menunjukkan banyak huruf “BANK INDONESIA” a. Tentukan fungsi distribusi dari X. b. Gambarkan grafik fungsi distribusinya. x 0 1 2 p(x) 1/4 1/2 1/4 Definisi C.1 : FUNGSI DISTRIBUSI KUMULATIF Misalnya X adalah peubah acak, baik diskrit maupun kontinu. Kita mendefinisikan F sebagai fungsi distribusi kumulatif dari peubah acak X, dengan: 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) Definisi C.2 : FUNGSI DISTRIBUSI KUMULATIF DISKRIT Misalnya X adalah peubah acak diskrit,maka fungsi distribusi kumulatif dari X berbentuk: 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑝(𝑡) 𝑡≤𝑥 Dengan p(t) adalah fungsi peluang dari X di t
  • 16. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 16 Penyelesaian: a. Untuk x < 0, F(x) = 0 Untuk 0 ≤ 𝑥 < 1, 𝐹(0) = ∑ 𝑝(𝑡) = 𝑝(0) 𝑡≤0 𝐹(0) = 1 4 Untuk 1 ≤ 𝑥 < 2 𝐹(1) = ∑ 𝑝(𝑡) = 𝑝(0) + 𝑝(1) = 1 4 + 1 2𝑡≤1 𝐹(1) = 3 4 Untuk 2 ≤ 𝑥 𝐹(2) = ∑ 𝑝(𝑡) = 𝑝(0) + 𝑝(1) + 𝑝(2) = 1 4 + 1 2 + 1 4𝑡≤2 𝐹(2) = 1 Jadi, fungsi distribusi dari X berbentuk: 𝐹(𝑥) = { 0; 𝑥 < 0 1 4 ; 0 ≤ 𝑥 < 1 3 4 ; 1 ≤ 𝑥 < 2 1; 2 ≤ 𝑥 b. Grafik dari fungsi distribusinya bisa dilihat pada gambar dibawah ini : x F(x) 1/2 1 0 1 2 3 1/4 3/4 Grafik Fungsi Distribusi Diskrit
  • 17. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 17 Hal yang perlu diperhatikan dalam fungsi distribusi untuk peubah acak diskrit adalah penulisan notasinya. Notasi untuk fungsi distribusi bisa ditulis dengan huruf besar F, G, H atau lainnya yang diikuti dengan nilai peubah acaknya. Apabila fungsi peluang dari peubah acak X dinotasikan dengan p(x), maka notasi untuk fungsi distribusinya bisa ditulis dengan F(x), G(x), H(x). Pada pembahasan selanjutnya, fungsi distribusi kumulatif dari peubah acak kontinu akan dinyatakan sebagai fungsi distribusi saja. Nilai fungsi distribusi untuk peubah acak kontinu biasanya berupa konstanta dan fungsi. Grafik fungsi distribusinya berupa kombinasi dari beberapa kemungkinan berikut ini : garis lurus, garis yang sejajar dengan sumbu datar, garis yang berimpit dengan sumbu datar dan sebuah kurva. Jadi grafik fungsi distribusi untuk peubah acak kontinu mempunyai beberapa kemungkinan diantaranya sebagai berikut : 1. Grafiknya berupa garis yang berimpit dengan sumbu datar dan kurva. 2. Grafiknya berupa garis yang berimpit dengan sumbu datar, garis lurus dan garis yang sejajar dengan sumbu datar. 3. Grafiknya berupa garis yang berimpit dengan sumbu datar, kurva, dan garis yang sejajar dengan sumbu datar. Penentuan fungsi distribusi dan grafiknya untuk peubah acak kontinu diperjelas melalui teladan berikut ini : Teladan 13: Misalnya fungsi densitas dari peubah acak X berbentuk: 𝑓(𝑥) = { 3 8 𝑥2 ; 0 < 𝑥 < 2 0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎 a. Tentukan fungsi distribusi F(x). b. Gambarkan grafik dari F(x). Penyelesaian : Definisi C.3 : FUNGSI DISTRIBUSI KUMULATIF KONTINU Misalnya X adalah peubah acak kontinu,maka fungsi distribusi kumulatif dari X berbentuk: 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 𝑥 −∞ Dengan f(t) adalah nilai fungsi densitas dari X di t Dengan p(t) adalah fungsi peluang dari X di t
  • 18. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 18 a. Untuk x < 0, F(x) = 0 Untuk 0 ≤ 𝑥 < 2, 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓(𝑡)𝑑𝑡 𝑥 0 0 −∞ = ∫ 0 𝑑𝑡 + ∫ 3 8 𝑡2 𝑑𝑡 𝑥 0 0 −∞ = 0 + 𝑡3 8 ] 𝑥 0 𝐹(𝑥) = 𝑥3 8 Untuk 2 ≤ 𝑥 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓(𝑡)𝑑𝑡 + ∫ 𝑓(𝑡)𝑑𝑡 𝑥 2 2 0 0 −∞ = ∫ 0 𝑑𝑡 + ∫ 3 8 𝑡2 𝑑𝑡 2 0 0 −∞ + ∫ 0 𝑑𝑡 𝑥 2 = 0 + 𝑡3 8 ] 2 0 + 0 𝐹(𝑥) = 1 Jadi, fungsi distribusinya berbentuk: 𝐹(𝑥) = { 0; 𝑥 < 0 𝑥3 8 ; 0 ≤ 𝑥 < 2 1; 𝑥 ≥ 2 b. Grafiknya bisa dilihat pada gambar dibawah ini: x F(x) 1/2 1 0 1 2 3 Grafik Fungsi Distribusi Kontinu 𝐹(𝑥) = 𝑋3 8
  • 19. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 19 Jika kita memperhatikan gambar diatas, maka grafiknya berupa garis yang berimpit dengan sumbu datar, kurva, dan garis yang sejajar dengan sumbu datar. Hal yang perlu diperhatikan pada fungsi distribusi untuk peubah acak kontinu adalah penulisan notasinya. Karena dari definisi fungsi distribusi notasi yang digunakannya adalah F, notasi untuk fungsi distribusinya tidak selalu dengan F. Notasi untuk fungsi distribusinya bisa ditulis dengan huruf besar F,G, H atau lainnya yang diikuti dengan nilai peubah acaknya dan sebaiknya disesuaikan dengan notasi fungsi densitasnya. Apabila fungsi densitas dari peubah acak Y dinotasikan dengan g(y) maka notasi untuk fungsi distribusinya sebaiknya digunakan G(y). Kita sudah menjelaskan bahwa penghitungan peluang dari peubah acak yang mempunyai nilai dalam bentuk interval dapat dilakukan berdasarkan fungsi peluang atau fungsi densitas. Selain itu, nilai peluang tersebut, baik peubah acak diskrit maupun kontinu, dapat diperoleh berdasarkan fungsi distribusi. Hal ini bisa dilakukan dengan menggunakan rumus : 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) Dimana, a dan b adalah dua bilangan real a < b. Adapun penghitungan peluang dari peubah acak yang berharga satu nilai dapat dilakukan dengan menggunakan rumus : 𝑃(𝑋 = 𝑏) = 𝐹𝑥(𝑏) − 𝐹𝑥(𝑏−) Pemahaman penggunaan kedua rumus diatas untuk peubah acak diskrit dan kontinu masing-masing diperjelas melalui teladan dibawah ini: Teladan 14: Misalnya fungsi distribusi dari peubah acak X berbentuk : 𝐹(𝑥) = { 0; 𝑥 < −1 125 216 ; −1 ≤ 𝑥 < 1 200 216 ; 1 ≤ 𝑥 < 2 215 216 ; 2 ≤ 𝑥 < 3 1; 3 ≤ 𝑥 a. Hitung 𝑃(0 ≤ 𝑋 < 3) b. Hitung 𝑃(𝑋 ≤ 0) c. Hitung 𝑃(𝑋 > 1) d. Hitung 𝑃(−1 ≤ 𝑋 < 0) e. Hitung 𝑃(𝑋 = 1)
  • 20. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 20 Penyelesaian : a. 𝑃(0 ≤ 𝑋 < 3) = 𝐹𝑥(3) − 𝐹𝑥(0) = 1 − 125 216 𝑃(0 ≤ 𝑋 < 3) = 91 216 b. 𝑃(𝑋 ≤ 0) = 𝐹(0) = 125 216 c. 𝑃(𝑋 > 1) = 1 − 𝑃(𝑋 ≤ 1) = 1 − 𝐹𝑥(1) = 1 − 200 216 𝑃(𝑋 > 1) = 16 216 d. 𝑃(−1 ≤ 𝑋 < 0) = 𝐹𝑥(0) − 𝐹𝑥(−1) = 125 216 − 125 216 𝑃(−1 ≤ 𝑋 < 0) = 0 e. 𝑃(𝑋 = 1) = 𝐹𝑥(1) − 𝐹𝑥(1−) = 200 216 − 125 216 𝑃(𝑋 = 1) = 75 216 Teladan 15: Misalkan fungsi distribusi dari peubah acak X berbentuk : 𝐹(𝑥) = { 0; 𝑥 < 0 𝑥 2 ; 0 ≤ 𝑥 < 1 𝑥 − 0,5 ; 1 ≤ 𝑥 < 1,5 1, 𝑥 ≥ 1,5 a. Hitung 𝑃(0,5 < 𝑋 ≤ 1,1) b. Hitung 𝑃(𝑋 > 0,7) c. Hitung 𝑃(1,1 < 𝑋 ≤ 2) d. Hitung 𝑃(𝑋 ≤ 1,4) e. Hitung 𝑃(𝑋 = 1) Penyelesaian: a. 𝑃(0,5 < 𝑋 ≤ 1,1) = 𝐹(1,1) − 𝐹(0,5) = (1,1 − 0,5) − 0,5 2 = 0,6 − 0,25 𝑃(0,5 < 𝑋 ≤ 1,1) = 0,35 b. 𝑃(𝑋 > 0,7) = 1 − 𝑃(𝑋 ≤ 0,7) = 1 − 𝐹(0,7)
  • 21. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 21 = 1 − 0,7 2 = 1 − 0,35 𝑃(𝑋 > 0,7) = 0,65 c. 𝑃(1,1 < 𝑋 ≤ 2) = 𝐹(2) − 𝐹(1,1) = 1 − (1,1 − 0,5) = 1 − 0,6 𝑃(1,1 < 𝑋 ≤ 2) = 0,4 d. 𝑃(𝑋 ≤ 1,4) = 𝐹(1,4) = 1,4 − 0,5 𝑃(𝑋 ≤ 1,4) = 0,9 e. 𝑃(𝑋 = 1) = 𝐹𝑥(1) − 𝐹𝑥(1−) = (1 − 0,5) − 0,5 𝑃(𝑋 = 1) = 0 Kita sudah menjelaskan penghitungan peluang dari peubah acak yang berharga tertentu berdasarkan fungsi peluangnya atau fungsi densitasnya dan fungsi distribusinya. Berikut ini akan diberikan contoh penghitungan peluang tersebut dengan kedua cara di atas untuk peubah acak diskrit maupun kontinu, kemudian kita akan membandingkan kedua hasilnya. Teladan 16: Misalnya distribusi peluang dari peubah acak Y berbentuk : y 0 1 2 p(y) ¼ ½ ¼ Fungsi distribusi dari peubah acak Y berbentuk: 𝐺(𝑦) = { 0; 𝑦 < 0 1 4 ; 0 ≤ 𝑦 < 1 3 4 ; 1 ≤ 𝑦 < 2 1; 𝑦 ≥ 2 Hitunglah peluang berikut ini dengan menggunakan perumusan fungsi peluang dan fungsi distribusi. a. 𝑃(0 < 𝑌 ≤ 2) b. 𝑃(𝑌 ≤ 1) c. 𝑃(𝑌 > 0,5) Penyelesaian: 1. Fungsi Peluang a. 𝑃(0 < 𝑌 ≤ 2) = 𝑃(𝑌 = 1,2) = 𝑃(𝑌 = 1) + 𝑃(𝑌 = 2)
  • 22. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 22 = 1 2 + 1 4 𝑃(0 < 𝑌 ≤ 2) = 3 4 b. 𝑃(𝑌 ≤ 1) = 𝑃(𝑌 = 0,1) = 𝑃(𝑌 = 0) + 𝑃(𝑌 = 1) = 1 4 + 1 2 𝑃(𝑌 ≤ 1) = 3 4 c. 𝑃(𝑌 > 0,5) = 𝑃(𝑌 ≥ 1) = 𝑃(𝑌 = 1,2) = 1 4 + 1 2 𝑃(𝑌 > 0,5) = 3 4 2. Fungsi Distribusi a. 𝑃(0 < 𝑌 ≤ 2) = 𝐺 𝑦(2) − 𝐺 𝑦(0) = 1 − 1 4 𝑃(0 < 𝑌 ≤ 2) = 3 4 b. 𝑃(𝑌 ≤ 1) = 𝐺 𝑦(1) 𝑃(𝑌 ≤ 1) = 3 4 c. 𝑃(𝑌 > 0,5) = 1 − 𝑃(𝑌 ≤ 0,5) = 1 − 𝐺 𝑦(0,5) = 1 − 1 4 𝑃(𝑌 > 0,5) = 3 4 Teladan 17: Jika fungsi densitas dari peubah acak X berbentuk : 𝑓(𝑥) = { 3. 𝑒−3𝑥 , 𝑥 > 0 0, 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎 dan fungsi distribusinya setelah ditentukan diperoleh: 𝐹(𝑥) = { 0, 𝑥 ≤ 0 1 − 𝑒−3𝑥 , 𝑥 > 0 Maka hitung peluang berikut ini dengan menggunakan perumusan fungsi densitas dan fungsi distribusi. a. 𝑃(0,5 < 𝑋 ≤ 1) b. 𝑃(𝑋 ≤ 0,5) c. 𝑃(𝑋 > 1,2)
  • 23. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 23 Penyelesaian: 1. Fungsi Densitas a. 𝑃(0,5 < 𝑋 ≤ 1) = ∫ 3. 𝑒−3𝑥 𝑑𝑥 = −𝑒−3𝑥] 1 0,5 1 0,5 𝑃(0,5 < 𝑋 ≤ 1) = 𝑒−1,5 − 𝑒−3 𝑏. 𝑃(𝑋 ≤ 0,5) = ∫ 3. 𝑒−3𝑥 𝑑𝑥 = −𝑒−3𝑥]0,5 0 0,5 0 𝑃(𝑋 ≤ 0,5) = 1 − 𝑒−1,5 𝑐. 𝑃(𝑋 > 1,2) = 1 − 𝑃(𝑋 ≤ 1,2) = 1 − ∫ 3. 𝑒−3𝑥 𝑑𝑥 = 1 + 𝑒−3𝑥]1,2 0 = 1 + 𝑒−3,6 − 1 1,2 0 𝑃(𝑋 > 1,2) = 𝑒−3,6 2. Fungsi Distribusi a. 𝑃(0,5 < 𝑋 ≤ 1) = 𝐹𝑥 − 𝐹0,5(0,5) = (1 − 𝑒−3) − (1 − 𝑒−1,5) 𝑃(0,5 < 𝑋 ≤ 1) = 𝑒−1,5 − 𝑒−3 𝑏. 𝑃(𝑋 ≤ 0,5) = 𝐹𝑥(0,5) 𝑃(𝑋 ≤ 0,5) = 1 − 𝑒−1,5 𝑐. 𝑃(𝑋 > 1,2) = 1 − 𝑃(𝑋 ≤ 1,2) = 1 − 𝐹𝑥(1,2) = 1 − (1 − 𝑒−3,6 ) 𝑃(𝑋 > 1,2) = 𝑒−3,6 Jika fungsi peluang atau fungsi densitas dari sebuah peubah acak diketahui, maka kita dapat menentukan fungsi distribusinya. Sebaliknya, kita bisa menentukan fungsi peluang atau fungsi densitas dari sebuah peubah acak, jika fungsi distribusinya diketahui. Berikut ini akan dijelaskan penentuan fungsi peluang atau fungsi densitas untuk peubah acak diskrit dan kontinu, jika fungsi distribusinya diketahui. A. Peubah Acak Diskrit Misalnya bilangan real t terletak dalam interval (b-h, b] yaitu b-h < t ≤ b, dengan h adalah bilangan positif. Apabila nilai h menuju nol, maka interval tersebut akan menuju ke satu nilai, yaitu t = b, dan ditulis : lim ℎ→∞ 𝑃(𝑏 − ℎ < 𝑋 ≤ 𝑏) = lim ℎ→∞ [𝐹𝑥(𝑏) − 𝐹𝑥(𝑏 − ℎ)] = 𝐹𝑥(𝑏) − 𝐹𝑥(𝑏 −) Jadi, jika b adalah nilai diskontinu dari Fx maka b adalah nilai dari peubah acak X dengan peluangnya positif. Peluang bahwa X = b merupakan ukuran loncatan pada Fx(b). Untuk lebih jelasnya, lihat gambar berikut ini:
  • 24. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 24 Jadi, langkah-langkah untuk menentukan fungsi peluang berdasarkan fungsi distribusi adalah sebagai berikut: 1. Tentukan nilai-nilai peubah acak X yang menyebabkan fungsi distribusi Fx(x) diskontinu. 2. Tentukan peluang untuk setiap nilai x yang diskontinu, dengan rumus: 𝑃(𝑋 = 𝑥0) = 𝐹𝑥(𝑥0) − 𝐹𝑥(𝑥0−) 𝑑𝑖𝑚𝑎𝑛𝑎, 𝑥0 𝑎𝑑𝑎𝑙𝑎ℎ 𝑠𝑒𝑏𝑢𝑎ℎ 𝑛𝑖𝑙𝑎𝑖 𝑦𝑎𝑛𝑔 𝑚𝑒𝑛𝑦𝑒𝑏𝑎𝑏𝑘𝑎𝑛 𝐹𝑥 𝑑𝑖𝑠𝑘𝑜𝑛𝑡𝑖𝑛𝑢. Untuk lebih memahami penentuan fungsi peluang sebuah peubah acak diskrit berdasarkan fungsi distribusinya akan diperjelas dalam teladan berikut ini: Teladan 18: Misalnya fungsi distribusi dari peubah acak X berbentuk: 𝐹𝑥(𝑥) = { 0; 𝑥 < 0 1 2 ; 0 ≤ 𝑥 < 2 5 6 ; 2 ≤ 𝑥 < 3 1; 𝑥 ≥ 3 Tentukan fungsi peluangnya. Penyelesaian: Jika kita memperhatikan 𝐹𝑥(𝑥), maka ada tiga nilai x yang menyebabkan 𝐹𝑥(𝑥) diskontinu, yaitu x=0,2 dan 3. Ketiga nilai itu merupakan nilai peubah acak X dengan peluangnya sebagai berikut.  𝑝(0) = 𝐹𝑥(0) − 𝐹𝑥(0 −) = 1 2 − 0 = 1 2 t Fx(t) 1 0 a b c Fungsi Distribusi dan Fungsi Peluang P(x=a) P(x=b) P(x=c)
  • 25. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 25  𝑝(2) = 𝐹𝑥(2) − 𝐹𝑥(2 −) = 5 6 − 1 2 = 1 3  𝑝(3) = 𝐹𝑥(3) − 𝐹𝑥(3 −) = 1 − 5 6 = 1 6 Jadi, fungsi peluang dari X adalah: 𝑝(𝑥) = { 1 2 ; 𝑥 = 0 1 3 ; 𝑥 = 2 1 6 ; 𝑥 = 3 0; 𝑥 𝑙𝑎𝑖𝑛𝑛𝑦𝑎 B. Peubah Acak Kontinu Pemahaman akan penentuan fungsi densitas dari sebuah peubah acak kontinu berdasarkan fungsi distribusinya akan dijelaskan pada teladan berikut ini: Teladan 19: Misalnya fungsi distribusi dari peubah acak X berbentuk: 𝐹(𝑥) = { 0; 𝑥 ≤ 0 𝑥2 ; 0 < 𝑥 ≤ 1 1; 𝑥 > 1 Tentukan fungsi densitasnya. Penyelesaian: Untuk 𝑥 ≤ 0 : f(x)=F’(x)=0 Untuk 0 < 𝑥 ≤ 1 : f(x)=F’(x)=2x Untuk x > 1 : f(x)=F’(x)=0 Jadi fungsi densitasnya berbentuk: 𝑓(𝑥) = { 2𝑥 ; 0 < 𝑥 ≤ 1 0; 𝑥𝑙𝑎𝑖𝑛𝑛𝑦𝑎 Setelah kita menjelaskan teknik penentuan fungsi distribusi berdasarkan fungsi peluangnya atau fungsi densitasnya atau sebaliknya, kita perlu mengetahui beberapa sifat dari fungsi distribusi. 1. 0 < 𝐹(𝑥) ≤ 1, 𝑘𝑎𝑟𝑒𝑛𝑎 0 < 𝑃(𝑋 ≤ 𝑥) ≤ 1 Dalil C.1 : PENENTUAN FUNGSI DENSITAS Jika f(x) dan F(x) masing-masing merupakan fungsi densitas dan fungsi distribusi dari peubah acak X di x, maka ; 𝑓(𝑥) = 𝑑 𝑑𝑥 𝐹(𝑥) Apabila hasil turunanya ada. Dengan p(t) adalah fungsi peluang dari X di t
  • 26. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 26 2. 𝐹(𝑥)𝑎𝑑𝑎𝑙𝑎ℎ 𝑓𝑢𝑛𝑔𝑠𝑖 𝑡𝑖𝑑𝑎𝑘 𝑡𝑢𝑟𝑢𝑛 𝑑𝑖 𝑥. 𝐴𝑟𝑡𝑖𝑛𝑦𝑎 𝑗𝑖𝑘𝑎 𝑥′ < 𝑥′′ , 𝑚𝑎𝑘𝑎 𝐹′(𝑥) < 𝐹′′(𝑥), ℎ𝑎𝑙 𝑖𝑛𝑖 𝑏𝑖𝑠𝑎 𝑑𝑖𝑙𝑖ℎ𝑎𝑡 𝑑𝑎𝑟𝑖 𝑢𝑟𝑎𝑖𝑎𝑛 𝑏𝑒𝑟𝑖𝑘𝑢𝑡 𝑖𝑛𝑖. 𝐽𝑖𝑘𝑎 𝑥′ < 𝑥′′ , 𝑚𝑎𝑘𝑎 {𝑥: 𝑥 ≤ 𝑥′′} = {𝑥: 𝑥 ≤ 𝑥′} ∪ {𝑥: 𝑥′ < 𝑥 ≤ 𝑥′′} 𝑃 (𝑋 ≤ 𝑥′′) = 𝑃(𝑋 ≤ 𝑥′) + 𝑃(𝑥′ < 𝑋 ≤ 𝑥′′ ) 𝐹(𝑥′′) = 𝐹(𝑥′) + 𝑃(𝑥′ < 𝑋 < 𝑥′′) 𝐹(𝑥′′) − 𝐹(𝑥′) = 𝑃(𝑥′ < 𝑋 ≤ 𝑥′′), 𝑘𝑎𝑟𝑒𝑛𝑎 𝑃(𝑥′ < 𝑋 ≤ 𝑥′′) ≥ 0, 𝑚𝑎𝑘𝑎 ∶ 𝐹(𝑥′′) − 𝐹(𝑥′) ≥ 0 𝐹(𝑥′′) ≥ 𝐹(𝑥′) 𝑎𝑡𝑎𝑢 𝐹(𝑥′) ≤ 𝐹(𝑥′′) 3. 𝐹(∞) = lim 𝑥→∞ 𝐹(𝑥) = 1 𝑑𝑎𝑛 𝐹(−∞) = lim 𝑥→−∞ 𝐹(𝑥) = 0 Hal ini bisa dibuktikan dengan uraian berikut ini: 𝑆 = {−∞ < 𝑥 ≤ 0} ∪ {0 < 𝑥 < ∞} 𝑑𝑒𝑛𝑔𝑎𝑛, {−∞ < 𝑥 ≤ 0} = {−1 < 𝑥 ≤ 0} ∪ {−2 < 𝑥 ≤ −1} ∪ {−3 < 𝑥 ≤ −2} ∪ … {0 < 𝑥 < ∞} = {0 < 𝑥 ≤ 1} ∪ {1 < 𝑥 ≤ 2} ∪ {2 < 𝑥 ≤ 3} ∪ … 𝐽𝑎𝑑𝑖, 𝑆 = ([⋃{−𝑥 < 𝑋 ≤ −𝑥 + 1}] ∪ [⋃{𝑥 < 𝑋 ≤ 𝑥 + 1}]) ∞ 𝑥=1 ∞ 𝑥=1 𝑃(𝑆) = 𝑃[⋃{−𝑥 < 𝑋 ≤ −𝑥 + 1}] + 𝑃[⋃{𝑥 < 𝑋 ≤ 𝑥 + 1}] ∞ 𝑥=1 ∞ 𝑥=1 = ∑ 𝑃{𝑥 < 𝑋 ≤ −𝑥 + 1} + ∑ 𝑃{𝑥 < 𝑋 ≤ 𝑥 + 1} ∞ 𝑥=1 ∞ 𝑥=1 1 = lim 𝑎→∞ ∑ 𝑃{𝑥 < 𝑋 ≤ −𝑥 + 1} 𝑎 𝑥=1 + lim 𝑏→∞ ∑ 𝑃{𝑥 < 𝑋 ≤ 𝑥 + 1} 𝑏 𝑥=1 1 = lim 𝑎→∞ ∑[𝐹(−𝑥 + 1) − 𝐹(−𝑥)] + 𝑎 𝑥=1 + lim 𝑏→∞ ∑[𝐹(𝑥 + 1) − 𝐹(𝑥)] 𝑏 𝑥=1 1 = lim 𝑎→∞ [𝐹(0) − 𝐹(−𝑎)] + lim 𝑏→∞ [𝐹(𝑏 + 1) − 𝐹(0)] 1 = [𝐹(0) − 𝐹(−∞)] + [𝐹(∞) − 𝐹(0)] 1 = 𝐹(∞) − 𝐹(−∞) … (1) Karena −∞ < ∞, 𝑚𝑎𝑘𝑎 𝐹(−∞) ≤ 𝐹(∞) 𝑑𝑎𝑛 𝐹(−∞) ≥ 0, 𝐹(∞) ≤ 1; 𝑗𝑎𝑑𝑖, 0 ≤ 𝐹(−∞) ≤ 𝐹(∞) ≤ 1 … (2) 𝐷𝑎𝑟𝑖 𝑝𝑒𝑟𝑠𝑎𝑚𝑎𝑎𝑛 (1)𝑑𝑖𝑝𝑒𝑟𝑜𝑙𝑒ℎ ∶ 𝐹(∞) = 1 + 𝐹(−∞) 𝐷𝑎𝑟𝑖 𝑝𝑒𝑟𝑠𝑎𝑚𝑎𝑎𝑛 (2)𝑑𝑖𝑝𝑒𝑟𝑜𝑙𝑒ℎ ∶ 0 ≤ 𝐹(−∞) ≤ 1 + 𝐹(−∞) ≤ 1, 𝑠𝑒ℎ𝑖𝑛𝑔𝑔𝑎 𝑑𝑖𝑝𝑒𝑟𝑜𝑙𝑒ℎ: 𝐹(−∞) ≤ 0 𝐾𝑎𝑟𝑒𝑛𝑎, 𝐹(−∞) ≤ 0, 𝑚𝑎𝑘𝑎𝐹(−∞) = 0 ∶ 𝐴𝑘𝑖𝑏𝑎𝑡𝑛𝑦𝑎, 𝐹(∞) = 1 4. F(x) kontinu kanan pada setiap nilai x.
  • 27. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 27 PENUTUP A. KESIMPULAN 1. Misalnya E adalah sebuah eksperimen dengan ruang sampelnya S. Sebuah fungsi X yang menetapkan setiap anggota s ∈ S dengan sebuah bilangan real X(s) dinamakan peubah acak. 2. Misalnya X adalah peubah acak. Jika banyak nilai-nilai yang mungkin dari X (yaitu ruang hasil dari Rx) berhingga atau tak berhingga tapi dapat dihitung, maka X adalah peubah acak diskrit. 3. Misalnya X adalah peubah acak. Jika banyak nilai-nilai yang mungkin dari X (yaitu ruang hasil dari Rx) merupakan sebuah interval pada garis bilangan real, maka X dinamakan peubah acak kontinu. 4. Jika X adalah peubah acak diskrit, maka p(x) = P(X=x) untuk setiap x dalam range X dinamakan fungsi peluang dari X.Nilai fungsi peluang dari X, yaitu p(x) harus memenuhi sifat-sifat sebagai berikut. p(x) ≥ 0 ∑ 𝑝(𝑥) = 1 𝑥 5. Misalnya X adalah peubah acak kontinu yang didefinisikan dalam himpunan bilangan real. Sebuah fungsi disebut fungsi densitas dari X, jika nilai-nilainya yaitu f(x) memenuhi sifat-sifat sebagai berikut : a. f(x) ≥ 0; untuk x ∈ (−∞, ∞) 𝑏. ∫ 𝑓(𝑥)𝑑𝑥 = 1 ∞ −∞ c. Untuk setiap a dan b, dimana −∞ < 𝑎 < 𝑏 < ∞, maka 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥 𝑏 𝑎 B. SARAN Demikianlah makalah yang dapat kami buat, sebagai manusia biasa kita menyadari dalam pembuatan makalah ini masih terdapat banyak kesalahan dan kekurangan. Untuk itu kritik dan saran yang bersifat konstruktif sangat kami harapkan demi kesempurnaan makalah ini dan berikutnya. Semoga makalah ini bermanfaat bagi kita semua. Amin.
  • 28. [PENGANTAR TEORI PELUANG] KELOMPOK 7 Peubah Acak Diskrit dan Kontinu 28 DAFTAR PUSTAKA Herrhyanto Nar &Tuti Gantini. 2009. ”Pengantar Statistika Matematika”. Yrama Widya. Bandung. Ross Sheldon terj. Bambang Sumantri. 1996. “Suatu Pengantar Ke Teori Peluang”. University Of California.Barkeley Antou, Neltje Konda. 2009. “Pengantar Teori Peluang”. Universitas Negeri Manado. Tondano