SlideShare a Scribd company logo
1 of 24
Download to read offline
Hydraulic Fracturing Considerations for 
        Natural Gas Wells of the Marcellus Shale

                                           Authors
                            J. Daniel Arthur, P.E., ALL Consulting
                               Brian Bohm, P.G., ALL Consulting
                           Mark Layne, Ph.D., P.E., ALL Consulting
                              Dave Cornue, P.G., ALL Consulting

                                       Presented at
                     Ground Water Protection Council 2008 Annual Forum
                                      Cincinnati, Ohio
                                  September 21‐24, 2008


September 23, 2008                     Copyright (c), ALL Consulting, 2008   1
Unconventional 
      Natural Gas
    •    Unconventional resource plays are 
         a growing source of natural gas in 
         the U.S.
           –    Coal Bed Methane
           –    Tight Sands
           –    Gas Shales
    •    Since 1998, unconventional natural 
         gas has increased nearly 65%1.
    •    Through 2007, total gas from 
         unconventional plays approached  
         almost 50% of total natural gas 
         production in the U.S.1
    •    For Gas shales, key technologies 
         have included horizontal drilling 
         and hydraulic fracturing.



1   Source: Navigant, 2008                              Source: John Perez, Copyright ©, 2008


    September 23, 2008                    Copyright (c), ALL Consulting, 2008                   2
Shale Gas History
• First Commercial Gas well – Fredonia, NY (1821)
       – New York’s “Dunkirk Shale” at a depth of less than 30 feet
• Ohio Shale – Big Sandy Field (1880)
• Hydraulic Fracturing used in the Oil & Gas Industry (1950‐60s)
• Barnett Shale – Ft. Worth Basin Development (1982)
• Horizontal wells in Ohio Shales (1980s)
• Successful Horizontal Drilling in Barnett Shale (2003)
• Horizontal Drilling Technology Applied in Appalachian Basin, Ohio and 
  Marcellus Shales (2006)
• Active Companies in the Marcellus Shale Play
       – Chesapeake Energy, Fortuna Energy, Range Resources, North Coast 
         Energy, Chief Oil & Gas, East Resources, Cabot Oil & Gas, Southwestern 
         Energy Production, Atlas Energy, and others.

September 23, 2008                 Copyright (c), ALL Consulting, 2008             3
Gas Shale Basins of the U.S.
                                                             Marcellus/Devonian Shale




September 23, 2008     Copyright (c), ALL Consulting, 2008                         4
Marcellus Facts
•    The Marcellus is a Devonian Black Shale that spans a 
     distance of approximately 600 miles, trending 
     northeastward from West Virginia all the way into 
     New York.  By comparison, the Barnett Shale has of 
     linear extent of only about 120 miles.
•    America’s current proved natural gas reserves are in 
     the range of 200 TCF, the Marcellus has the potential 
     to increase this by 50 TCF or more.
•    The Marcellus Shale has a low permeability, thus 
     releasing gas very slowly.  This is why shale is one of 
     the last major source of undeveloped natural gas.  
     However, shales can hold an enormous amount of 
     gas and the formations are so large that their wells 
     can produce at steady rates for decades.
•    Effective and economic horizontal drilling and 
     hydraulic fracturing are the primary technologies 
     enabling the recent surge in shale gas production 
     from the Marcellus and in other regions.
                                                                              Outcrops of the Marcellus Shale from Leroy, NY (top) and
                                                                                    Lancaster, NY (bottom). Source: Penn State




September 23, 2008                      Copyright (c), ALL Consulting, 2008                                                          5
Data Comparison of Shale Plays
            Gas Shale Basin                Barnett          Marcellus                 Fayetteville    Haynesville     Woodford
     Est. Arial Extent (sq. mi.)            5,000             95,000                       9,000        9,000          11,000
                                            6500‐
     Depth (feet)                                          4,000‐8,500                1,000‐7,000    10,500‐13,500   6,000‐11,000
                                            9500
     Net Thickness (feet)                 100‐600             50‐200                     20‐200          200           120‐220
     BTW (feet)                            ~1200               ~850                        ~500          ~400           ~400
     TOC, %                                  4.5                3‐12                      4.0‐9.8                       1‐14
     Total Porosity, %                       4‐5                                            2‐8
     Gas Content, scf/ton                 300‐350                                        60‐220
     Water Production (BWPD)                  0
     Well spacing (Acres)                  60‐160             40‐160                                    40‐560           640
     Gas‐In‐Place (TCF)                      327                1500                         52          717             52

     Reserves (TCF)                           44             262‐500                        41.6         251             11.4

     Est. Gas Production 
                                             338               3,100                        530        625‐1800          415
     (mcf/day/well)

     NOTE: See paper for data sources (Arthur, et. al., September 2008)




September 23, 2008                                          Copyright (c), ALL Consulting, 2008                                     6
Risk of Groundwater Contamination
                                                               •   A 1988 API study rated 
                                                                   Appalachian Basin as low risk to 
                                Pipeline to
 Christmas
                              Flow Process
                                                                   corrosion.
   Tree
                               and Storage                     •   Per a 1989 API Study for basins 
                      Surface                                      with “reasonable” likelihood of 
                      Casing                                       corrosion, risk probability of 
    Cement                                                         injectate reaching a USDW 
                        Intermediate
                           Casing
                                                                   ranged from one in 200,000 to 
                                                                   one in 200 million for wells 
     Cement
                     Production                                    injecting on a continuous basis.
                       Casing                                  •   Hydraulic fracturing events in 
       Tubing
                                                                   the Marcellus occurs through 
                                                                   multiple newly installed 
                       Cement                                      concentric casings over a short 
                                                                   duration with considerable 
  Well                  Oil or Gas Zone                            vertical separation (thousands of 
 Fluids                                                            feet) between USDWs and with 
                       Perforations
                                                                   overlying formations that are 
                                                                   comprised of confining type 
                                                                   zones.

September 23, 2008       Copyright (c), ALL Consulting, 2008                                        7
Fracturing Design
• A key to hydraulic fracturing is that the fractures created during the 
  stimulation remain in the target zone (e.g., the Marcellus Shale).  
• Fractures are designed, engineered, and monitored to assure desired 
  results are achieved.
• Fracture simulation (or modeling) is commonly used for purposes of 
  designing the fracturing process.  This may include developing 
  specifications on volumes of fluid and proppant to use, pressures to be 
  applied, make‐up of fracturing fluids and slurries, etc.
• Microseismic monitoring can also be incorporated into a fracturing 
  event to gain additional knowledge of the fracture process.
• Data collection in advance of fracturing is also common, including 
  coring and core analysis, geophysical logging, reservoir characteristics 
  research, correlation to other wells/stimulations, fracture pressure 
  analysis, among others.



September 23, 2008            Copyright (c), ALL Consulting, 2008         8
Fracture Modeling




             Example Output of a Hydraulic Fracture Stimulation Model.
             Source: Chesapeake Energy Corporation.




September 23, 2008                                       Copyright (c), ALL Consulting, 2008   9
Fracture Monitoring
        Monitoring is done on a 
       continuous basis during a 
          fracture treatment 




September 23, 2008              Copyright (c), ALL Consulting, 2008   10
Microseismic Analysis




                     Mapping of Microseismic Events
                     Source: Oilfield Service Company




September 23, 2008                                      Copyright (c), ALL Consulting, 2008   11
Water Management Considerations
•    Water used for fracture stimulation of the Marcellus 
     has generally been collected primarily from large 
     streams. 
•    Volumes ranging from ~500,000 to more than 5 
     million gallons of water are typically required for a 
     horizontal Marcellus well and approximately 300,000 
     to 500,000 gallons for many vertical wells. 
•    Fluid return water is collected into steel tanks and 
     hauled off‐site to approved facilities.  Disposal methods 
     generally include injection into a Class II injection wells 
     and/or commercial/municipal treatment facility 
     capable of treating flow‐back water.
•    Hydraulic fracturing of gas shales has been a routine 
     stimulation method for many years, with operations 
     designed to be protective of groundwater and the                          Fresh Water Storage Tanks
                                                                               Source: ALL Consulting
     environment.



September 23, 2008                       Copyright (c), ALL Consulting, 2008                               12
Hydraulic Fracturing Fluids
• Acids are sometimes used to treat near wellbore damage from drilling 
  and completion operations, open fractures near the wellbore and 
  dissolve calcite that is naturally occurring in the fracture system.
• Biocides to prevent growth of bacteria in the well.
• Corrosion Inhibitors to prevent degradation of steel well casings.
• Friction Reducers to assist in pumping the fracturing fluid.
• Scale inhibitors to reduce the build‐up of minerals in the well.
• Guar Gel to thicken the water to help carry the proppant (typically 
  sand) into the formation
• Breaker to cause the guar gel to “break back” into an easier flowing 
  fluid so the fluids can be pumped back to the surface without carrying 
  back the sands.
• Iron Stabilizer to prevent precipitation by keeping ions in a soluble 
  form.
• Oxygen Scavenger to prevent degradation of the well casing.
September 23, 2008           Copyright (c), ALL Consulting, 2008        13
Fracture Fluid Composition




   NOTE: the above graphic is a hypothetical representation of fracture fluid 
   composition applicable to a Marcellus Shale hydraulic fracturing event.  Fluid 
   composition varies by well and depending on a variety of factors



September 23, 2008                                Copyright (c), ALL Consulting, 2008   14
Examples




September 23, 2008    Copyright (c), ALL Consulting, 2008   15
Well Sites




September 23, 2008    Copyright (c), ALL Consulting, 2008   16
Wellhead Configurations




September 23, 2008       Copyright (c), ALL Consulting, 2008   17
Perforating




September 23, 2008     Copyright (c), ALL Consulting, 2008   18
Connections/Seals




September 23, 2008        Copyright (c), ALL Consulting, 2008   19
Well Site Monitoring




September 23, 2008         Copyright (c), ALL Consulting, 2008   20
Manifold




September 23, 2008    Copyright (c), ALL Consulting, 2008   21
Sand/Proppant




September 23, 2008      Copyright (c), ALL Consulting, 2008   22
Flow‐Back Water




September 23, 2008       Copyright (c), ALL Consulting, 2008   23
Contact Information
                          J. Daniel Arthur, P.E.
                          darthur@all‐llc.com
                             ALL Consulting
                        1718 S. Cheyenne Avenue
                         Tulsa, Oklahoma 74119




September 23, 2008           Copyright (c), ALL Consulting, 2008   24

More Related Content

Viewers also liked

Shale gas economics
Shale gas economicsShale gas economics
Shale gas economicsE&C bvba
 
GHS Energy Conference Corporate Presentation June 2012
GHS Energy Conference Corporate Presentation June 2012GHS Energy Conference Corporate Presentation June 2012
GHS Energy Conference Corporate Presentation June 2012Underground_Energy
 
CBO: The Economic and Budgetary Effects of Producing Oil and Natural Gas from...
CBO: The Economic and Budgetary Effects of Producing Oil and Natural Gas from...CBO: The Economic and Budgetary Effects of Producing Oil and Natural Gas from...
CBO: The Economic and Budgetary Effects of Producing Oil and Natural Gas from...Marcellus Drilling News
 
Report: The Economics of Shale Gas Development
Report: The Economics of Shale Gas DevelopmentReport: The Economics of Shale Gas Development
Report: The Economics of Shale Gas DevelopmentMarcellus Drilling News
 
Four Steps Toward a Digital Oilfield Future
Four Steps Toward a Digital Oilfield FutureFour Steps Toward a Digital Oilfield Future
Four Steps Toward a Digital Oilfield FutureGE Canada
 
“The Digital Oilfield” : Using IoT to reduce costs in an era of decreasing oi...
“The Digital Oilfield” : Using IoT to reduce costs in an era of decreasing oi...“The Digital Oilfield” : Using IoT to reduce costs in an era of decreasing oi...
“The Digital Oilfield” : Using IoT to reduce costs in an era of decreasing oi...Karthikeyan Rajamanickam
 

Viewers also liked (7)

Shale gas economics
Shale gas economicsShale gas economics
Shale gas economics
 
GHS Energy Conference Corporate Presentation June 2012
GHS Energy Conference Corporate Presentation June 2012GHS Energy Conference Corporate Presentation June 2012
GHS Energy Conference Corporate Presentation June 2012
 
Shale gas - vivek priayadarshi
Shale gas -  vivek priayadarshiShale gas -  vivek priayadarshi
Shale gas - vivek priayadarshi
 
CBO: The Economic and Budgetary Effects of Producing Oil and Natural Gas from...
CBO: The Economic and Budgetary Effects of Producing Oil and Natural Gas from...CBO: The Economic and Budgetary Effects of Producing Oil and Natural Gas from...
CBO: The Economic and Budgetary Effects of Producing Oil and Natural Gas from...
 
Report: The Economics of Shale Gas Development
Report: The Economics of Shale Gas DevelopmentReport: The Economics of Shale Gas Development
Report: The Economics of Shale Gas Development
 
Four Steps Toward a Digital Oilfield Future
Four Steps Toward a Digital Oilfield FutureFour Steps Toward a Digital Oilfield Future
Four Steps Toward a Digital Oilfield Future
 
“The Digital Oilfield” : Using IoT to reduce costs in an era of decreasing oi...
“The Digital Oilfield” : Using IoT to reduce costs in an era of decreasing oi...“The Digital Oilfield” : Using IoT to reduce costs in an era of decreasing oi...
“The Digital Oilfield” : Using IoT to reduce costs in an era of decreasing oi...
 

Similar to Hydraulic Fracturing Considerations for Natural Gas Wells of the Marcellus Shale

Modern Shale Gas Development
Modern Shale Gas DevelopmentModern Shale Gas Development
Modern Shale Gas DevelopmentDan Arthur
 
The Marcellus Shale: Environmental Issues for Landowners
The Marcellus Shale: Environmental Issues for LandownersThe Marcellus Shale: Environmental Issues for Landowners
The Marcellus Shale: Environmental Issues for LandownersDan Arthur
 
April 2012 - Michigan Energy Forum - Donald H. Williams
April 2012 - Michigan Energy Forum - Donald H. WilliamsApril 2012 - Michigan Energy Forum - Donald H. Williams
April 2012 - Michigan Energy Forum - Donald H. WilliamsAnnArborSPARK
 
Dr. David Dzombak - Need and Challenge of Alternative Water Sources for use i...
Dr. David Dzombak - Need and Challenge of Alternative Water Sources for use i...Dr. David Dzombak - Need and Challenge of Alternative Water Sources for use i...
Dr. David Dzombak - Need and Challenge of Alternative Water Sources for use i...engineerou
 
CSC Benchmarking Resource Plays
CSC Benchmarking Resource PlaysCSC Benchmarking Resource Plays
CSC Benchmarking Resource Playsseifertm
 
State & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
State & Federal Regulation of Hydraulic Fracturing: A Comparative AnalysisState & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
State & Federal Regulation of Hydraulic Fracturing: A Comparative AnalysisDan Arthur
 
Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...
Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...
Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...Leonardo ENERGY
 
Euro parliament ingraffea_june_2012
Euro parliament ingraffea_june_2012Euro parliament ingraffea_june_2012
Euro parliament ingraffea_june_2012gdecock
 
Managing carbon geological storage and natural resources in sedimentary basins
Managing carbon geological storage and natural resources in sedimentary basinsManaging carbon geological storage and natural resources in sedimentary basins
Managing carbon geological storage and natural resources in sedimentary basinsGlobal CCS Institute
 
Introduction to Sediment Erosion in Hydro-Turbines
Introduction to Sediment Erosion in Hydro-TurbinesIntroduction to Sediment Erosion in Hydro-Turbines
Introduction to Sediment Erosion in Hydro-TurbinesAnuj Pathak
 
IEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyIEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyDan Arthur
 
Doe dollar per watt overview
Doe dollar per watt overviewDoe dollar per watt overview
Doe dollar per watt overviewchandyGhosh
 
First Development Plan for a Small Offshore Field
First Development Plan for a Small Offshore FieldFirst Development Plan for a Small Offshore Field
First Development Plan for a Small Offshore Fieldijtsrd
 
LW BEER 1.6.10
LW BEER 1.6.10LW BEER 1.6.10
LW BEER 1.6.10lmwest
 
The Potential for Geologic Carbon Sequestration in Indiana
The Potential for Geologic Carbon Sequestration in IndianaThe Potential for Geologic Carbon Sequestration in Indiana
The Potential for Geologic Carbon Sequestration in IndianaCristian Medina
 
Cathodic Protection for Above Ground Storage Tanks (AGSTs)
Cathodic Protection for Above Ground Storage Tanks (AGSTs) Cathodic Protection for Above Ground Storage Tanks (AGSTs)
Cathodic Protection for Above Ground Storage Tanks (AGSTs) Audubon Engineering Company
 
Asr Spe Paper 114025 Ioreor Conference
Asr Spe Paper 114025 Ioreor ConferenceAsr Spe Paper 114025 Ioreor Conference
Asr Spe Paper 114025 Ioreor Conferencebillwooden
 

Similar to Hydraulic Fracturing Considerations for Natural Gas Wells of the Marcellus Shale (20)

Modern Shale Gas Development
Modern Shale Gas DevelopmentModern Shale Gas Development
Modern Shale Gas Development
 
The Marcellus Shale: Environmental Issues for Landowners
The Marcellus Shale: Environmental Issues for LandownersThe Marcellus Shale: Environmental Issues for Landowners
The Marcellus Shale: Environmental Issues for Landowners
 
April 2012 - Michigan Energy Forum - Donald H. Williams
April 2012 - Michigan Energy Forum - Donald H. WilliamsApril 2012 - Michigan Energy Forum - Donald H. Williams
April 2012 - Michigan Energy Forum - Donald H. Williams
 
Dr. David Dzombak - Need and Challenge of Alternative Water Sources for use i...
Dr. David Dzombak - Need and Challenge of Alternative Water Sources for use i...Dr. David Dzombak - Need and Challenge of Alternative Water Sources for use i...
Dr. David Dzombak - Need and Challenge of Alternative Water Sources for use i...
 
CSC Benchmarking Resource Plays
CSC Benchmarking Resource PlaysCSC Benchmarking Resource Plays
CSC Benchmarking Resource Plays
 
Pn gz 2014
Pn gz 2014Pn gz 2014
Pn gz 2014
 
State & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
State & Federal Regulation of Hydraulic Fracturing: A Comparative AnalysisState & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
State & Federal Regulation of Hydraulic Fracturing: A Comparative Analysis
 
Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...
Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...
Webinar - A Plan for Powering the World for all Purposes With Wind, Water, an...
 
Euro parliament ingraffea_june_2012
Euro parliament ingraffea_june_2012Euro parliament ingraffea_june_2012
Euro parliament ingraffea_june_2012
 
Managing carbon geological storage and natural resources in sedimentary basins
Managing carbon geological storage and natural resources in sedimentary basinsManaging carbon geological storage and natural resources in sedimentary basins
Managing carbon geological storage and natural resources in sedimentary basins
 
Introduction to Sediment Erosion in Hydro-Turbines
Introduction to Sediment Erosion in Hydro-TurbinesIntroduction to Sediment Erosion in Hydro-Turbines
Introduction to Sediment Erosion in Hydro-Turbines
 
IEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyIEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of Energy
 
Deng - Permeability characterization and alteration due to reactive transport
Deng - Permeability characterization and  alteration due to reactive transportDeng - Permeability characterization and  alteration due to reactive transport
Deng - Permeability characterization and alteration due to reactive transport
 
Mark Jacobson
Mark JacobsonMark Jacobson
Mark Jacobson
 
Doe dollar per watt overview
Doe dollar per watt overviewDoe dollar per watt overview
Doe dollar per watt overview
 
First Development Plan for a Small Offshore Field
First Development Plan for a Small Offshore FieldFirst Development Plan for a Small Offshore Field
First Development Plan for a Small Offshore Field
 
LW BEER 1.6.10
LW BEER 1.6.10LW BEER 1.6.10
LW BEER 1.6.10
 
The Potential for Geologic Carbon Sequestration in Indiana
The Potential for Geologic Carbon Sequestration in IndianaThe Potential for Geologic Carbon Sequestration in Indiana
The Potential for Geologic Carbon Sequestration in Indiana
 
Cathodic Protection for Above Ground Storage Tanks (AGSTs)
Cathodic Protection for Above Ground Storage Tanks (AGSTs) Cathodic Protection for Above Ground Storage Tanks (AGSTs)
Cathodic Protection for Above Ground Storage Tanks (AGSTs)
 
Asr Spe Paper 114025 Ioreor Conference
Asr Spe Paper 114025 Ioreor ConferenceAsr Spe Paper 114025 Ioreor Conference
Asr Spe Paper 114025 Ioreor Conference
 

Hydraulic Fracturing Considerations for Natural Gas Wells of the Marcellus Shale

  • 1. Hydraulic Fracturing Considerations for  Natural Gas Wells of the Marcellus Shale Authors J. Daniel Arthur, P.E., ALL Consulting Brian Bohm, P.G., ALL Consulting Mark Layne, Ph.D., P.E., ALL Consulting Dave Cornue, P.G., ALL Consulting Presented at Ground Water Protection Council 2008 Annual Forum Cincinnati, Ohio September 21‐24, 2008 September 23, 2008 Copyright (c), ALL Consulting, 2008 1
  • 2. Unconventional  Natural Gas • Unconventional resource plays are  a growing source of natural gas in  the U.S. – Coal Bed Methane – Tight Sands – Gas Shales • Since 1998, unconventional natural  gas has increased nearly 65%1. • Through 2007, total gas from  unconventional plays approached   almost 50% of total natural gas  production in the U.S.1 • For Gas shales, key technologies  have included horizontal drilling  and hydraulic fracturing. 1 Source: Navigant, 2008 Source: John Perez, Copyright ©, 2008 September 23, 2008 Copyright (c), ALL Consulting, 2008 2
  • 3. Shale Gas History • First Commercial Gas well – Fredonia, NY (1821) – New York’s “Dunkirk Shale” at a depth of less than 30 feet • Ohio Shale – Big Sandy Field (1880) • Hydraulic Fracturing used in the Oil & Gas Industry (1950‐60s) • Barnett Shale – Ft. Worth Basin Development (1982) • Horizontal wells in Ohio Shales (1980s) • Successful Horizontal Drilling in Barnett Shale (2003) • Horizontal Drilling Technology Applied in Appalachian Basin, Ohio and  Marcellus Shales (2006) • Active Companies in the Marcellus Shale Play – Chesapeake Energy, Fortuna Energy, Range Resources, North Coast  Energy, Chief Oil & Gas, East Resources, Cabot Oil & Gas, Southwestern  Energy Production, Atlas Energy, and others. September 23, 2008 Copyright (c), ALL Consulting, 2008 3
  • 4. Gas Shale Basins of the U.S. Marcellus/Devonian Shale September 23, 2008 Copyright (c), ALL Consulting, 2008 4
  • 5. Marcellus Facts • The Marcellus is a Devonian Black Shale that spans a  distance of approximately 600 miles, trending  northeastward from West Virginia all the way into  New York.  By comparison, the Barnett Shale has of  linear extent of only about 120 miles. • America’s current proved natural gas reserves are in  the range of 200 TCF, the Marcellus has the potential  to increase this by 50 TCF or more. • The Marcellus Shale has a low permeability, thus  releasing gas very slowly.  This is why shale is one of  the last major source of undeveloped natural gas.   However, shales can hold an enormous amount of  gas and the formations are so large that their wells  can produce at steady rates for decades. • Effective and economic horizontal drilling and  hydraulic fracturing are the primary technologies  enabling the recent surge in shale gas production  from the Marcellus and in other regions. Outcrops of the Marcellus Shale from Leroy, NY (top) and Lancaster, NY (bottom). Source: Penn State September 23, 2008 Copyright (c), ALL Consulting, 2008 5
  • 6. Data Comparison of Shale Plays Gas Shale Basin Barnett Marcellus Fayetteville Haynesville Woodford Est. Arial Extent (sq. mi.) 5,000 95,000 9,000 9,000 11,000 6500‐ Depth (feet) 4,000‐8,500 1,000‐7,000 10,500‐13,500 6,000‐11,000 9500 Net Thickness (feet) 100‐600 50‐200 20‐200 200 120‐220 BTW (feet) ~1200 ~850 ~500 ~400 ~400 TOC, % 4.5 3‐12 4.0‐9.8 1‐14 Total Porosity, % 4‐5 2‐8 Gas Content, scf/ton 300‐350 60‐220 Water Production (BWPD) 0 Well spacing (Acres) 60‐160 40‐160 40‐560 640 Gas‐In‐Place (TCF) 327 1500 52 717 52 Reserves (TCF) 44 262‐500 41.6 251 11.4 Est. Gas Production  338 3,100 530 625‐1800 415 (mcf/day/well) NOTE: See paper for data sources (Arthur, et. al., September 2008) September 23, 2008 Copyright (c), ALL Consulting, 2008 6
  • 7. Risk of Groundwater Contamination • A 1988 API study rated  Appalachian Basin as low risk to  Pipeline to Christmas Flow Process corrosion. Tree and Storage • Per a 1989 API Study for basins  Surface with “reasonable” likelihood of  Casing corrosion, risk probability of  Cement injectate reaching a USDW  Intermediate Casing ranged from one in 200,000 to  one in 200 million for wells  Cement Production injecting on a continuous basis. Casing • Hydraulic fracturing events in  Tubing the Marcellus occurs through  multiple newly installed  Cement concentric casings over a short  duration with considerable  Well Oil or Gas Zone vertical separation (thousands of  Fluids feet) between USDWs and with  Perforations overlying formations that are  comprised of confining type  zones. September 23, 2008 Copyright (c), ALL Consulting, 2008 7
  • 8. Fracturing Design • A key to hydraulic fracturing is that the fractures created during the  stimulation remain in the target zone (e.g., the Marcellus Shale).   • Fractures are designed, engineered, and monitored to assure desired  results are achieved. • Fracture simulation (or modeling) is commonly used for purposes of  designing the fracturing process.  This may include developing  specifications on volumes of fluid and proppant to use, pressures to be  applied, make‐up of fracturing fluids and slurries, etc. • Microseismic monitoring can also be incorporated into a fracturing  event to gain additional knowledge of the fracture process. • Data collection in advance of fracturing is also common, including  coring and core analysis, geophysical logging, reservoir characteristics  research, correlation to other wells/stimulations, fracture pressure  analysis, among others. September 23, 2008 Copyright (c), ALL Consulting, 2008 8
  • 9. Fracture Modeling Example Output of a Hydraulic Fracture Stimulation Model. Source: Chesapeake Energy Corporation. September 23, 2008 Copyright (c), ALL Consulting, 2008 9
  • 10. Fracture Monitoring Monitoring is done on a  continuous basis during a  fracture treatment  September 23, 2008 Copyright (c), ALL Consulting, 2008 10
  • 11. Microseismic Analysis Mapping of Microseismic Events Source: Oilfield Service Company September 23, 2008 Copyright (c), ALL Consulting, 2008 11
  • 12. Water Management Considerations • Water used for fracture stimulation of the Marcellus  has generally been collected primarily from large  streams.  • Volumes ranging from ~500,000 to more than 5  million gallons of water are typically required for a  horizontal Marcellus well and approximately 300,000  to 500,000 gallons for many vertical wells.  • Fluid return water is collected into steel tanks and  hauled off‐site to approved facilities.  Disposal methods  generally include injection into a Class II injection wells  and/or commercial/municipal treatment facility  capable of treating flow‐back water. • Hydraulic fracturing of gas shales has been a routine  stimulation method for many years, with operations  designed to be protective of groundwater and the  Fresh Water Storage Tanks Source: ALL Consulting environment. September 23, 2008 Copyright (c), ALL Consulting, 2008 12
  • 13. Hydraulic Fracturing Fluids • Acids are sometimes used to treat near wellbore damage from drilling  and completion operations, open fractures near the wellbore and  dissolve calcite that is naturally occurring in the fracture system. • Biocides to prevent growth of bacteria in the well. • Corrosion Inhibitors to prevent degradation of steel well casings. • Friction Reducers to assist in pumping the fracturing fluid. • Scale inhibitors to reduce the build‐up of minerals in the well. • Guar Gel to thicken the water to help carry the proppant (typically  sand) into the formation • Breaker to cause the guar gel to “break back” into an easier flowing  fluid so the fluids can be pumped back to the surface without carrying  back the sands. • Iron Stabilizer to prevent precipitation by keeping ions in a soluble  form. • Oxygen Scavenger to prevent degradation of the well casing. September 23, 2008 Copyright (c), ALL Consulting, 2008 13
  • 14. Fracture Fluid Composition NOTE: the above graphic is a hypothetical representation of fracture fluid  composition applicable to a Marcellus Shale hydraulic fracturing event.  Fluid  composition varies by well and depending on a variety of factors September 23, 2008 Copyright (c), ALL Consulting, 2008 14
  • 15. Examples September 23, 2008 Copyright (c), ALL Consulting, 2008 15
  • 16. Well Sites September 23, 2008 Copyright (c), ALL Consulting, 2008 16
  • 17. Wellhead Configurations September 23, 2008 Copyright (c), ALL Consulting, 2008 17
  • 18. Perforating September 23, 2008 Copyright (c), ALL Consulting, 2008 18
  • 19. Connections/Seals September 23, 2008 Copyright (c), ALL Consulting, 2008 19
  • 20. Well Site Monitoring September 23, 2008 Copyright (c), ALL Consulting, 2008 20
  • 21. Manifold September 23, 2008 Copyright (c), ALL Consulting, 2008 21
  • 22. Sand/Proppant September 23, 2008 Copyright (c), ALL Consulting, 2008 22
  • 23. Flow‐Back Water September 23, 2008 Copyright (c), ALL Consulting, 2008 23
  • 24. Contact Information J. Daniel Arthur, P.E. darthur@all‐llc.com ALL Consulting 1718 S. Cheyenne Avenue Tulsa, Oklahoma 74119 September 23, 2008 Copyright (c), ALL Consulting, 2008 24