SlideShare a Scribd company logo
1 of 52
Introduction to Machine Learning
Reminders ,[object Object],[object Object]
A Review ,[object Object],[object Object], 4  3  2  1 P(C|AB)  A,  B  A,B A,  B A,B
A Review ,[object Object],[object Object], 4 =6/11  3 =4/11  2 =1/11  1 =3/8 P(C|AB)  A,  B  A,B A,  B A,B 5 0 0 0 6 1 0 0 7 0 1 0 4 1 1 0 10 0 0 1 1 1 0 1 5 0 1 1 3 1 1 1 # obs C B A
Maximum Likelihood for BN ,[object Object],Alarm Earthquake Burglar E 500 B: 200 N=1000 P(E)  = 0.5 P(B)  = 0.2 A|E,B: 19/20 A|B: 188/200 A|E: 170/500 A|  : 1/380 0.003 F F 0.34 F T 0.95 T F 0.95 T T P(A|E,B) B E
Maximum A Posteriori ,[object Object],[object Object],[object Object], 4 =8/15  3 =6/15  2 =3/15  1 =5/14 P(C|AB)  A,  B  A,B A,  B A,B 5 0 0 0 6 1 0 0 7 0 1 0 4 1 1 0 10 0 0 1 1 1 0 1 5 0 1 1 3 1 1 1 # obs C B A
Discussion ,[object Object],[object Object],[object Object]
Motivation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Topics in Machine Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Tasks & settings Classification Ranking Clustering Regression Decision-making Supervised Unsupervised Semi-supervised Active Reinforcement learning Techniques Bayesian learning Decision trees Neural networks Support vector machines Boosting Case-based reasoning   Dimensionality reduction …
What is Learning? ,[object Object],[object Object],[object Object],[object Object]
Inductive Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Inductive learning method ,[object Object],[object Object],[object Object]
Inductive learning method ,[object Object],[object Object],[object Object]
Inductive learning method ,[object Object],[object Object],[object Object]
Inductive learning method ,[object Object],[object Object],[object Object]
Inductive learning method ,[object Object],[object Object],[object Object]
Inductive learning method ,[object Object],[object Object],[object Object],h=D is a trivial, but perhaps uninteresting solution (caching)
Classification Task ,[object Object],[object Object],[object Object],[object Object],a small one!
Logic-Based Inductive Learning ,[object Object]
Logic-Based Inductive Learning ,[object Object],Concept Note that the training set does not say whether  an observable predicate is pertinent or not
Rewarded Card Example ,[object Object],[object Object],[object Object]
Rewarded Card Example ,[object Object],[object Object],[object Object],[object Object],There are several possible  inductive hypotheses
Learning a Logical Predicate (Concept Classifier) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning a Logical Predicate (Concept Classifier) ,[object Object],[object Object],[object Object],[object Object]
Learning a Logical Predicate (Concept Classifier) ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],Hypothesis Space
Inductive Learning Scheme + + + + + + + + + + + + - - - - - - - - - - - - Example set X {[A, B, …, CONCEPT]} Hypothesis space H {[CONCEPT(x)     S(A,B, …)]} Training set D Inductive hypothesis h
Size of Hypothesis Space ,[object Object],[object Object],[object Object],[object Object],2 2 n
Multiple Inductive Hypotheses h 1     NUM(r)    BLACK(s)    REWARD([r,s]) h 2     BLACK(s)      (r=J)    REWARD([r,s]) h 3     ([r,s]=[4,C])     ([r,s]=[7,C])     [r,s]=[2,S])    REWARD([r,s]) h 4       ([r,s]=[5,H])      ([r,s]=[J,S])    REWARD([r,s]) agree with all the examples in the training set
Multiple Inductive Hypotheses h 1     NUM(r)    BLACK(s)    REWARD([r,s]) h 2     BLACK(s)      (r=J)    REWARD([r,s]) h 3     ([r,s]=[4,C])     ([r,s]=[7,C])     [r,s]=[2,S])    REWARD([r,s]) h 4       ([r,s]=[5,H])      ([r,s]=[J,S])    REWARD([r,s]) agree with all the examples in the training set Need for a system of preferences – called  an  inductive bias  – to compare possible hypotheses
Notion of Capacity ,[object Object],[object Object],[object Object],[object Object]
   Keep-It-Simple (KIS) Bias ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
   Keep-It-Simple (KIS) Bias ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Einstein: “A theory must be as simple as possible,  but not simpler than this”
   Keep-It-Simple (KIS) Bias ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],If the bias allows only sentences S that are conjunctions of k << n predicates picked from the n observable predicates, then the size of  H is O(n k )
Relation to Bayesian Learning ,[object Object],[object Object],[object Object], MAP  = argmin    - log P(D|  )  -  log P(  ) Measures accuracy on training set Minimum length encoding of   MAP learning is a form of KIS bias
Supervised Learning Flow Chart Training set Target concept Datapoints Inductive Hypothesis Prediction Learner Hypothesis space Choice of learning algorithm Unknown concept we want to approximate Observations we have seen Test set Observations we will see in the future Better quantities to assess performance
Capacity is Not the Only Criterion ,[object Object],Learn Test Example set X Hypothesis space H Training set D + + + + + + + + + + + + - - - - - - - - - - - -
Generalization Error ,[object Object],Learn Test Example set X Hypothesis space H + + + + + + + + + + + + - - - - - - - - - - - -
Assessing Performance of a Learning Algorithm ,[object Object],[object Object],[object Object],[object Object],[object Object]
Cross-Validation ,[object Object],Hypothesis space H Train Examples D + + + + + + + - - - - - - + + + + + - - - - - -
Cross-Validation ,[object Object],Hypothesis space H Testing set + + + + + + + - - - - - -
Cross-Validation ,[object Object],Hypothesis space H Testing set + + + + + - - - - - - + + Test
Cross-Validation ,[object Object],Hypothesis space H Testing set + + + + + - - - - - - + + 9/13 correct  + + + + + + + - - - - - -
Common Splitting Strategies ,[object Object],[object Object],Train Test Dataset
Cardinal sins of machine learning ,[object Object],[object Object],[object Object]
Tennis Example ,[object Object]
Tennis Example ,[object Object],Trained hypothesis PlayTennis = (T=Mild or Cool)    (W=Weak) Training errors = 3/10 Testing errors = 4/4
Tennis Example ,[object Object],Trained hypothesis PlayTennis = (T=Mild or Cool) Training errors = 3/10 Testing errors = 1/4
Tennis Example ,[object Object],Trained hypothesis PlayTennis = (T=Mild or Cool) Training errors = 3/10 Testing errors = 2/4
Tennis Example ,[object Object],Sum of all testing errors: 7/12
How to construct a better learner? ,[object Object]
Next Time ,[object Object]

More Related Content

What's hot

Lecture 7
Lecture 7Lecture 7
Lecture 7
butest
 
original
originaloriginal
original
butest
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
butest
 
Machine Learning: Decision Trees Chapter 18.1-18.3
Machine Learning: Decision Trees Chapter 18.1-18.3Machine Learning: Decision Trees Chapter 18.1-18.3
Machine Learning: Decision Trees Chapter 18.1-18.3
butest
 

What's hot (20)

Likelihood-free Design: a discussion
Likelihood-free Design: a discussionLikelihood-free Design: a discussion
Likelihood-free Design: a discussion
 
Naive Bayes Presentation
Naive Bayes PresentationNaive Bayes Presentation
Naive Bayes Presentation
 
Introduction to Bayesian Methods
Introduction to Bayesian MethodsIntroduction to Bayesian Methods
Introduction to Bayesian Methods
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Naive bayesian classification
Naive bayesian classificationNaive bayesian classification
Naive bayesian classification
 
original
originaloriginal
original
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
An introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using PythonAn introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using Python
 
Boston talk
Boston talkBoston talk
Boston talk
 
Module 4 part_1
Module 4 part_1Module 4 part_1
Module 4 part_1
 
M18 learning
M18 learningM18 learning
M18 learning
 
Madrid easy
Madrid easyMadrid easy
Madrid easy
 
Machine Learning: Decision Trees Chapter 18.1-18.3
Machine Learning: Decision Trees Chapter 18.1-18.3Machine Learning: Decision Trees Chapter 18.1-18.3
Machine Learning: Decision Trees Chapter 18.1-18.3
 
Imprecision in learning: an overview
Imprecision in learning: an overviewImprecision in learning: an overview
Imprecision in learning: an overview
 
Naive Bayes Classifier
Naive Bayes ClassifierNaive Bayes Classifier
Naive Bayes Classifier
 
Naive bayes
Naive bayesNaive bayes
Naive bayes
 
Hands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive ModelingHands-On Algorithms for Predictive Modeling
Hands-On Algorithms for Predictive Modeling
 
Artificial Intelligence 06.3 Bayesian Networks - Belief Propagation - Junctio...
Artificial Intelligence 06.3 Bayesian Networks - Belief Propagation - Junctio...Artificial Intelligence 06.3 Bayesian Networks - Belief Propagation - Junctio...
Artificial Intelligence 06.3 Bayesian Networks - Belief Propagation - Junctio...
 
Coordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like samplerCoordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like sampler
 
Text classification
Text classificationText classification
Text classification
 

Viewers also liked

Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
butest
 
Machine Learning and Inductive Inference
Machine Learning and Inductive InferenceMachine Learning and Inductive Inference
Machine Learning and Inductive Inference
butest
 
CS364 Artificial Intelligence Machine Learning
CS364 Artificial Intelligence Machine LearningCS364 Artificial Intelligence Machine Learning
CS364 Artificial Intelligence Machine Learning
butest
 
Machine Learning presentation.
Machine Learning presentation.Machine Learning presentation.
Machine Learning presentation.
butest
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
Lior Rokach
 

Viewers also liked (10)

Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 
Machine Learning and Inductive Inference
Machine Learning and Inductive InferenceMachine Learning and Inductive Inference
Machine Learning and Inductive Inference
 
CS364 Artificial Intelligence Machine Learning
CS364 Artificial Intelligence Machine LearningCS364 Artificial Intelligence Machine Learning
CS364 Artificial Intelligence Machine Learning
 
Bayesian networks
Bayesian networksBayesian networks
Bayesian networks
 
Lecture 3: Basic Concepts of Machine Learning - Induction & Evaluation
Lecture 3: Basic Concepts of Machine Learning - Induction & EvaluationLecture 3: Basic Concepts of Machine Learning - Induction & Evaluation
Lecture 3: Basic Concepts of Machine Learning - Induction & Evaluation
 
Bayesian Networks - A Brief Introduction
Bayesian Networks - A Brief IntroductionBayesian Networks - A Brief Introduction
Bayesian Networks - A Brief Introduction
 
Machine Learning presentation.
Machine Learning presentation.Machine Learning presentation.
Machine Learning presentation.
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 
introduction to data mining tutorial
introduction to data mining tutorial introduction to data mining tutorial
introduction to data mining tutorial
 

Similar to Introduction to machine learning

Lecture 7
Lecture 7Lecture 7
Lecture 7
butest
 
Machine learning (1)
Machine learning (1)Machine learning (1)
Machine learning (1)
NYversity
 
Alpaydin - Chapter 2
Alpaydin - Chapter 2Alpaydin - Chapter 2
Alpaydin - Chapter 2
butest
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic Reasoning
Tameem Ahmad
 
Alpaydin - Chapter 2
Alpaydin - Chapter 2Alpaydin - Chapter 2
Alpaydin - Chapter 2
butest
 
3_learning.ppt
3_learning.ppt3_learning.ppt
3_learning.ppt
butest
 
Resources
ResourcesResources
Resources
butest
 

Similar to Introduction to machine learning (20)

Lecture 7
Lecture 7Lecture 7
Lecture 7
 
ppt
pptppt
ppt
 
Recitation decision trees-adaboost-02-09-2006-3
Recitation decision trees-adaboost-02-09-2006-3Recitation decision trees-adaboost-02-09-2006-3
Recitation decision trees-adaboost-02-09-2006-3
 
Poster of ECAI 2020
Poster of ECAI 2020Poster of ECAI 2020
Poster of ECAI 2020
 
My7class
My7classMy7class
My7class
 
.ppt
.ppt.ppt
.ppt
 
Bagging_and_Boosting.pptx
Bagging_and_Boosting.pptxBagging_and_Boosting.pptx
Bagging_and_Boosting.pptx
 
Machine learning (1)
Machine learning (1)Machine learning (1)
Machine learning (1)
 
Bayesian Learning- part of machine learning
Bayesian Learning-  part of machine learningBayesian Learning-  part of machine learning
Bayesian Learning- part of machine learning
 
Alpaydin - Chapter 2
Alpaydin - Chapter 2Alpaydin - Chapter 2
Alpaydin - Chapter 2
 
ML_Unit_1_Part_B
ML_Unit_1_Part_BML_Unit_1_Part_B
ML_Unit_1_Part_B
 
Scala as a Declarative Language
Scala as a Declarative LanguageScala as a Declarative Language
Scala as a Declarative Language
 
Gradient-based optimization for Deep Learning: a short introduction
Gradient-based optimization for Deep Learning: a short introductionGradient-based optimization for Deep Learning: a short introduction
Gradient-based optimization for Deep Learning: a short introduction
 
CS229 Machine Learning Lecture Notes
CS229 Machine Learning Lecture NotesCS229 Machine Learning Lecture Notes
CS229 Machine Learning Lecture Notes
 
Probabilistic Reasoning
Probabilistic ReasoningProbabilistic Reasoning
Probabilistic Reasoning
 
Alpaydin - Chapter 2
Alpaydin - Chapter 2Alpaydin - Chapter 2
Alpaydin - Chapter 2
 
3_learning.ppt
3_learning.ppt3_learning.ppt
3_learning.ppt
 
Dempster shafer theory
Dempster shafer theoryDempster shafer theory
Dempster shafer theory
 
Resources
ResourcesResources
Resources
 
Discrete mathematics notes
Discrete mathematics notesDiscrete mathematics notes
Discrete mathematics notes
 

More from butest

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
butest
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
butest
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
butest
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
butest
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
butest
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
butest
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
butest
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
butest
 
Facebook
Facebook Facebook
Facebook
butest
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
butest
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
butest
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
butest
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
butest
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
butest
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
butest
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
butest
 

More from butest (20)

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
 
PPT
PPTPPT
PPT
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
 
Facebook
Facebook Facebook
Facebook
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
 
hier
hierhier
hier
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
 

Introduction to machine learning

  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27. Inductive Learning Scheme + + + + + + + + + + + + - - - - - - - - - - - - Example set X {[A, B, …, CONCEPT]} Hypothesis space H {[CONCEPT(x)  S(A,B, …)]} Training set D Inductive hypothesis h
  • 28.
  • 29. Multiple Inductive Hypotheses h 1  NUM(r)  BLACK(s)  REWARD([r,s]) h 2  BLACK(s)   (r=J)  REWARD([r,s]) h 3  ([r,s]=[4,C])  ([r,s]=[7,C])  [r,s]=[2,S])  REWARD([r,s]) h 4   ([r,s]=[5,H])   ([r,s]=[J,S])  REWARD([r,s]) agree with all the examples in the training set
  • 30. Multiple Inductive Hypotheses h 1  NUM(r)  BLACK(s)  REWARD([r,s]) h 2  BLACK(s)   (r=J)  REWARD([r,s]) h 3  ([r,s]=[4,C])  ([r,s]=[7,C])  [r,s]=[2,S])  REWARD([r,s]) h 4   ([r,s]=[5,H])   ([r,s]=[J,S])  REWARD([r,s]) agree with all the examples in the training set Need for a system of preferences – called an inductive bias – to compare possible hypotheses
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36. Supervised Learning Flow Chart Training set Target concept Datapoints Inductive Hypothesis Prediction Learner Hypothesis space Choice of learning algorithm Unknown concept we want to approximate Observations we have seen Test set Observations we will see in the future Better quantities to assess performance
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.