SlideShare a Scribd company logo
1 of 86
Download to read offline
Big data streams to elucidate the role of
environmental exposures in pediatric
outcomes
Chirag J Patel

Hot Topics!

12/8/2016
chirag@hms.harvard.edu

@chiragjp

www.chiragjpgroup.org
Conflicts of Interest Disclosure:

None
P = G + E
Phenotypes are a function of inherited and
environmental factors
P = G + EType 2 Diabetes

Cancer

Birthweight

Birth timing
Phenotype
Phenotypes are a function of inherited and
environmental factors
P = G + EType 2 Diabetes

Cancer

Birthweight

Birth timing
Phenotype Genome
polymorphisms
Phenotypes are a function of inherited and
environmental factors
P = G + EType 2 Diabetes

Cancer

Birthweight

Birth timing
Phenotype Genome
polymorphisms
Environment
Infectious agents

Nutrients

Pollutants

Drugs
Phenotypes are a function of inherited and
environmental factors
P = G + E
However: we lack methods to discover the role of E in
phenotypes and disease for precision medicine.
... and the case is different with genetics (e.g.,
genomics)!
over 1,400 

Genome-wide Association Studies (GWAS)

NHGRI GWAS Catalog

https://www.genome.gov/
G:
dad mom
me
A similar platform for discovery should exist

for E!
A similar platform for discovery should exist

for E!
Why?
σ2
P = σ2
G + σ2
E
σ2
G
σ2
P
H2 =
Heritability (H2) is the range of phenotypic variability
attributed to genetic variability in a population
Indicator of the proportion of phenotypic
differences attributed to G.
Height is an example of a heritable trait:

Francis Galton shows how its done (1887)
mid-height of 205 parents described
60% of variability of 928 offspring
σ2
G
σ2
P
Source: SNPedia.com
H2 estimates for complex traits are low and variable:
massive opportunity for high-throughput E research
Eye color
Hair curliness
Type−1 diabetes
Height
Schizophrenia
Epilepsy
Graves' disease
Celiac disease
Polycystic ovary syndrome
Attention deficit hyperactivity disorder
Bipolar disorder
Obesity
Alzheimer's disease
Anorexia nervosa
Psoriasis
Bone mineral density
Menarche, age at
Nicotine dependence
Sexual orientation
Alcoholism
Lupus
Rheumatoid arthritis
Crohn's disease
Migraine
Thyroid cancer
Autism
Blood pressure, diastolic
Body mass index
Depression
Coronary artery disease
Insomnia
Menopause, age at
Heart disease
Birthweight
Prostate cancer
QT interval
Breast cancer
Ovarian cancer
Preterm Birth
Hangover
Stroke
Asthma
Blood pressure, systolic
Hypertension
Osteoarthritis
Parkinson's disease
Longevity
Type−2 diabetes
Gallstone disease
Testicular cancer
Cervical cancer
Sciatica
Parturition Timing
Bladder cancer
Colon cancer
Lung cancer
Leukemia
Stomach cancer
0 25 50 75 100
Heritability: Var(G)/Var(Phenotype)
Source: SNPedia.com
H2 estimates for complex traits are low and variable:
massive opportunity for high-throughput E research
Eye color
Hair curliness
Type−1 diabetes
Height
Schizophrenia
Epilepsy
Graves' disease
Celiac disease
Polycystic ovary syndrome
Attention deficit hyperactivity disorder
Bipolar disorder
Obesity
Alzheimer's disease
Anorexia nervosa
Psoriasis
Bone mineral density
Menarche, age at
Nicotine dependence
Sexual orientation
Alcoholism
Lupus
Rheumatoid arthritis
Crohn's disease
Migraine
Thyroid cancer
Autism
Blood pressure, diastolic
Body mass index
Depression
Coronary artery disease
Insomnia
Menopause, age at
Heart disease
Birthweight
Prostate cancer
QT interval
Breast cancer
Ovarian cancer
Preterm Birth
Hangover
Stroke
Asthma
Blood pressure, systolic
Hypertension
Osteoarthritis
Parkinson's disease
Longevity
Type−2 diabetes
Gallstone disease
Testicular cancer
Cervical cancer
Sciatica
Parturition Timing
Bladder cancer
Colon cancer
Lung cancer
Leukemia
Stomach cancer
0 25 50 75 100
Heritability: Var(G)/Var(Phenotype)
Type 2 Diabetes
(25%)
Source: SNPedia.com
H2 estimates for complex traits are low and variable:
massive opportunity for high-throughput E research
Eye color
Hair curliness
Type−1 diabetes
Height
Schizophrenia
Epilepsy
Graves' disease
Celiac disease
Polycystic ovary syndrome
Attention deficit hyperactivity disorder
Bipolar disorder
Obesity
Alzheimer's disease
Anorexia nervosa
Psoriasis
Bone mineral density
Menarche, age at
Nicotine dependence
Sexual orientation
Alcoholism
Lupus
Rheumatoid arthritis
Crohn's disease
Migraine
Thyroid cancer
Autism
Blood pressure, diastolic
Body mass index
Depression
Coronary artery disease
Insomnia
Menopause, age at
Heart disease
Birthweight
Prostate cancer
QT interval
Breast cancer
Ovarian cancer
Preterm Birth
Hangover
Stroke
Asthma
Blood pressure, systolic
Hypertension
Osteoarthritis
Parkinson's disease
Longevity
Type−2 diabetes
Gallstone disease
Testicular cancer
Cervical cancer
Sciatica
Parturition Timing
Bladder cancer
Colon cancer
Lung cancer
Leukemia
Stomach cancer
0 25 50 75 100
Heritability: Var(G)/Var(Phenotype)
Type 2 Diabetes
(25%)
Heart Disease
(30-60%)
Source: SNPedia.com
H2 estimates for complex traits are low and variable:
massive opportunity for high-throughput E research
Eye color
Hair curliness
Type−1 diabetes
Height
Schizophrenia
Epilepsy
Graves' disease
Celiac disease
Polycystic ovary syndrome
Attention deficit hyperactivity disorder
Bipolar disorder
Obesity
Alzheimer's disease
Anorexia nervosa
Psoriasis
Bone mineral density
Menarche, age at
Nicotine dependence
Sexual orientation
Alcoholism
Lupus
Rheumatoid arthritis
Crohn's disease
Migraine
Thyroid cancer
Autism
Blood pressure, diastolic
Body mass index
Depression
Coronary artery disease
Insomnia
Menopause, age at
Heart disease
Birthweight
Prostate cancer
QT interval
Breast cancer
Ovarian cancer
Preterm Birth
Hangover
Stroke
Asthma
Blood pressure, systolic
Hypertension
Osteoarthritis
Parkinson's disease
Longevity
Type−2 diabetes
Gallstone disease
Testicular cancer
Cervical cancer
Sciatica
Parturition Timing
Bladder cancer
Colon cancer
Lung cancer
Leukemia
Stomach cancer
0 25 50 75 100
Heritability: Var(G)/Var(Phenotype)
Preterm Birth (37%)
Birthweight (40%)
Timing (20%)
Source: SNPedia.com
H2 estimates for complex traits are low and variable:
massive opportunity for high-throughput E research
Eye color
Hair curliness
Type−1 diabetes
Height
Schizophrenia
Epilepsy
Graves' disease
Celiac disease
Polycystic ovary syndrome
Attention deficit hyperactivity disorder
Bipolar disorder
Obesity
Alzheimer's disease
Anorexia nervosa
Psoriasis
Bone mineral density
Menarche, age at
Nicotine dependence
Sexual orientation
Alcoholism
Lupus
Rheumatoid arthritis
Crohn's disease
Migraine
Thyroid cancer
Autism
Blood pressure, diastolic
Body mass index
Depression
Coronary artery disease
Insomnia
Menopause, age at
Heart disease
Birthweight
Prostate cancer
QT interval
Breast cancer
Ovarian cancer
Preterm Birth
Hangover
Stroke
Asthma
Blood pressure, systolic
Hypertension
Osteoarthritis
Parkinson's disease
Longevity
Type−2 diabetes
Gallstone disease
Testicular cancer
Cervical cancer
Sciatica
Parturition Timing
Bladder cancer
Colon cancer
Lung cancer
Leukemia
Stomach cancer
0 25 50 75 100
Heritability: Var(G)/Var(Phenotype)
H2 < 50%
Explaining the other 50%:
A new data-driven paradigm for robust discovery of
E in disease via EWAS and the exposome
PERSPECTIVES
Xenobiotics
Inflammation
Preexisting disease
Lipid peroxidation
Oxidative stress
Gut flora
Internal
chemical
environment
Externalenvironment
ExposomeRADIATION
DIET
POLLUTION
INFECTIONS
DRUGS
LIFE-STYLE
STRESS
Reactive electrophiles
Metals
Endocrine disrupters
Immune modulators
Receptor-binding proteins
itical entity for disease eti-
ogy (7). Recent discussion
as focused on whether and
ow to implement this vision
8). Although fully charac-
rizing human exposomes
daunting, strategies can be
eveloped for getting “snap-
hots” of critical portions of
person’s exposome during
ifferent stages of life. At
ne extreme is a “bottom-up”
rategy in which all chemi-
als in each external source
f a subject’s exposome are
easured at each time point.
lthoughthisapproachwould
ave the advantage of relat-
g important exposures to
e air, water, or diet, it would
quire enormous effort and
ould miss essential compo-
ents of the internal chemi-
al environment due to such
actors as gender, obesity,
flammation, and stress. By
ontrast, a “top-down” strat-
gy would measure all chem-
als (or products of their
ownstream processing or
ffects, so-called read-outs
r signatures) in a subject’s
ood. This would require
nly a single blood specimen
each time point and would relate directly ruptors and can be measured through serum
some (telomere) length in
peripheral blood mono-
nuclear cells responded
to chronic psychological
stress, possibly mediated
by the production of reac-
tive oxygen species (15).
Characterizing the
exposome represents a tech-
nological challenge like that of
thehumangenomeproject,which
began when DNA sequencing
was in its infancy (16). Analyti-
cal systems are needed to pro-
cess small amounts of blood from
thousands of subjects. Assays
should be multiplexed for mea-
suring many chemicals in each
class of interest. Tandem mass
spectrometry, gene and protein
chips, and microfluidic systems
offer the means to do this. Plat-
forms for high-throughput assays
shouldleadtoeconomiesofscale,
again like those experienced by
the human genome project. And
because exposome technologies
would provide feedback for thera-
peuticinterventionsandpersonal-
ized medicine, they should moti-
vate the development of commer-
cial devices for screening impor-
tant environmental exposures in
blood samples.
With successful characterization of both
Characterizing the exposome. The exposome represents
the combined exposures from all sources that reach the
internal chemical environment. Toxicologically important
classes of exposome chemicals are shown. Signatures and
biomarkers can detect these agents in blood or serum.
onOctober21,2010www.sciencemag.orgrom
Wild, 2005

Rappaport and Smith, 2010, 2011

Buck-Louis and Sundaram 2012

Miller and Jones, 2014

Patel CJ and Ioannidis JPAI, 2014
Explaining the other 50%:
A new data-driven paradigm for robust discovery of
E in disease via EWAS and the exposome
what to
measure?
PERSPECTIVES
Xenobiotics
Inflammation
Preexisting disease
Lipid peroxidation
Oxidative stress
Gut flora
Internal
chemical
environment
Externalenvironment
ExposomeRADIATION
DIET
POLLUTION
INFECTIONS
DRUGS
LIFE-STYLE
STRESS
Reactive electrophiles
Metals
Endocrine disrupters
Immune modulators
Receptor-binding proteins
itical entity for disease eti-
ogy (7). Recent discussion
as focused on whether and
ow to implement this vision
8). Although fully charac-
rizing human exposomes
daunting, strategies can be
eveloped for getting “snap-
hots” of critical portions of
person’s exposome during
ifferent stages of life. At
ne extreme is a “bottom-up”
rategy in which all chemi-
als in each external source
f a subject’s exposome are
easured at each time point.
lthoughthisapproachwould
ave the advantage of relat-
g important exposures to
e air, water, or diet, it would
quire enormous effort and
ould miss essential compo-
ents of the internal chemi-
al environment due to such
actors as gender, obesity,
flammation, and stress. By
ontrast, a “top-down” strat-
gy would measure all chem-
als (or products of their
ownstream processing or
ffects, so-called read-outs
r signatures) in a subject’s
ood. This would require
nly a single blood specimen
each time point and would relate directly ruptors and can be measured through serum
some (telomere) length in
peripheral blood mono-
nuclear cells responded
to chronic psychological
stress, possibly mediated
by the production of reac-
tive oxygen species (15).
Characterizing the
exposome represents a tech-
nological challenge like that of
thehumangenomeproject,which
began when DNA sequencing
was in its infancy (16). Analyti-
cal systems are needed to pro-
cess small amounts of blood from
thousands of subjects. Assays
should be multiplexed for mea-
suring many chemicals in each
class of interest. Tandem mass
spectrometry, gene and protein
chips, and microfluidic systems
offer the means to do this. Plat-
forms for high-throughput assays
shouldleadtoeconomiesofscale,
again like those experienced by
the human genome project. And
because exposome technologies
would provide feedback for thera-
peuticinterventionsandpersonal-
ized medicine, they should moti-
vate the development of commer-
cial devices for screening impor-
tant environmental exposures in
blood samples.
With successful characterization of both
Characterizing the exposome. The exposome represents
the combined exposures from all sources that reach the
internal chemical environment. Toxicologically important
classes of exposome chemicals are shown. Signatures and
biomarkers can detect these agents in blood or serum.
onOctober21,2010www.sciencemag.orgrom
Wild, 2005

Rappaport and Smith, 2010, 2011

Buck-Louis and Sundaram 2012

Miller and Jones, 2014

Patel CJ and Ioannidis JPAI, 2014
Explaining the other 50%:
A new data-driven paradigm for robust discovery of
E in disease via EWAS and the exposome
what to
measure? how to measure?
PERSPECTIVES
Xenobiotics
Inflammation
Preexisting disease
Lipid peroxidation
Oxidative stress
Gut flora
Internal
chemical
environment
Externalenvironment
ExposomeRADIATION
DIET
POLLUTION
INFECTIONS
DRUGS
LIFE-STYLE
STRESS
Reactive electrophiles
Metals
Endocrine disrupters
Immune modulators
Receptor-binding proteins
itical entity for disease eti-
ogy (7). Recent discussion
as focused on whether and
ow to implement this vision
8). Although fully charac-
rizing human exposomes
daunting, strategies can be
eveloped for getting “snap-
hots” of critical portions of
person’s exposome during
ifferent stages of life. At
ne extreme is a “bottom-up”
rategy in which all chemi-
als in each external source
f a subject’s exposome are
easured at each time point.
lthoughthisapproachwould
ave the advantage of relat-
g important exposures to
e air, water, or diet, it would
quire enormous effort and
ould miss essential compo-
ents of the internal chemi-
al environment due to such
actors as gender, obesity,
flammation, and stress. By
ontrast, a “top-down” strat-
gy would measure all chem-
als (or products of their
ownstream processing or
ffects, so-called read-outs
r signatures) in a subject’s
ood. This would require
nly a single blood specimen
each time point and would relate directly ruptors and can be measured through serum
some (telomere) length in
peripheral blood mono-
nuclear cells responded
to chronic psychological
stress, possibly mediated
by the production of reac-
tive oxygen species (15).
Characterizing the
exposome represents a tech-
nological challenge like that of
thehumangenomeproject,which
began when DNA sequencing
was in its infancy (16). Analyti-
cal systems are needed to pro-
cess small amounts of blood from
thousands of subjects. Assays
should be multiplexed for mea-
suring many chemicals in each
class of interest. Tandem mass
spectrometry, gene and protein
chips, and microfluidic systems
offer the means to do this. Plat-
forms for high-throughput assays
shouldleadtoeconomiesofscale,
again like those experienced by
the human genome project. And
because exposome technologies
would provide feedback for thera-
peuticinterventionsandpersonal-
ized medicine, they should moti-
vate the development of commer-
cial devices for screening impor-
tant environmental exposures in
blood samples.
With successful characterization of both
Characterizing the exposome. The exposome represents
the combined exposures from all sources that reach the
internal chemical environment. Toxicologically important
classes of exposome chemicals are shown. Signatures and
biomarkers can detect these agents in blood or serum.
onOctober21,2010www.sciencemag.orgrom
Wild, 2005

Rappaport and Smith, 2010, 2011

Buck-Louis and Sundaram 2012

Miller and Jones, 2014

Patel CJ and Ioannidis JPAI, 2014
Explaining the other 50%:
A new data-driven paradigm for robust discovery of
E in disease via EWAS and the exposome
what to
measure? how to measure?
PERSPECTIVES
Xenobiotics
Inflammation
Preexisting disease
Lipid peroxidation
Oxidative stress
Gut flora
Internal
chemical
environment
Externalenvironment
ExposomeRADIATION
DIET
POLLUTION
INFECTIONS
DRUGS
LIFE-STYLE
STRESS
Reactive electrophiles
Metals
Endocrine disrupters
Immune modulators
Receptor-binding proteins
itical entity for disease eti-
ogy (7). Recent discussion
as focused on whether and
ow to implement this vision
8). Although fully charac-
rizing human exposomes
daunting, strategies can be
eveloped for getting “snap-
hots” of critical portions of
person’s exposome during
ifferent stages of life. At
ne extreme is a “bottom-up”
rategy in which all chemi-
als in each external source
f a subject’s exposome are
easured at each time point.
lthoughthisapproachwould
ave the advantage of relat-
g important exposures to
e air, water, or diet, it would
quire enormous effort and
ould miss essential compo-
ents of the internal chemi-
al environment due to such
actors as gender, obesity,
flammation, and stress. By
ontrast, a “top-down” strat-
gy would measure all chem-
als (or products of their
ownstream processing or
ffects, so-called read-outs
r signatures) in a subject’s
ood. This would require
nly a single blood specimen
each time point and would relate directly ruptors and can be measured through serum
some (telomere) length in
peripheral blood mono-
nuclear cells responded
to chronic psychological
stress, possibly mediated
by the production of reac-
tive oxygen species (15).
Characterizing the
exposome represents a tech-
nological challenge like that of
thehumangenomeproject,which
began when DNA sequencing
was in its infancy (16). Analyti-
cal systems are needed to pro-
cess small amounts of blood from
thousands of subjects. Assays
should be multiplexed for mea-
suring many chemicals in each
class of interest. Tandem mass
spectrometry, gene and protein
chips, and microfluidic systems
offer the means to do this. Plat-
forms for high-throughput assays
shouldleadtoeconomiesofscale,
again like those experienced by
the human genome project. And
because exposome technologies
would provide feedback for thera-
peuticinterventionsandpersonal-
ized medicine, they should moti-
vate the development of commer-
cial devices for screening impor-
tant environmental exposures in
blood samples.
With successful characterization of both
Characterizing the exposome. The exposome represents
the combined exposures from all sources that reach the
internal chemical environment. Toxicologically important
classes of exposome chemicals are shown. Signatures and
biomarkers can detect these agents in blood or serum.
onOctober21,2010www.sciencemag.orgrom
how to analyze in relation to health?
Wild, 2005

Rappaport and Smith, 2010, 2011

Buck-Louis and Sundaram 2012

Miller and Jones, 2014

Patel CJ and Ioannidis JPAI, 2014
Explaining the other 50%:
A new data-driven paradigm for robust discovery of
E in disease via EWAS and the exposome
what to
measure? how to measure?
Xenobiotics
Inflammation
Preexisting disease
Lipid peroxidation
Oxidative stress
Gut flora
Internal
chemical
environment
Externalenvironment
ExposomeRADIATION
DIET
POLLUTION
INFECTIONS
DRUGS
LIFE-STYLE
STRESS
Reactive electrophiles
Metals
Endocrine disrupters
Immune modulators
Receptor-binding proteins
itical entity for disease eti-
). Recent discussion
as focused on whether and
ow to implement this vision
). Although fully charac-
rizing human exposomes
daunting, strategies can be
eveloped for getting “snap-
hots” of critical portions of
person’s exposome during
ifferent stages of life. At
ne extreme is a “bottom-up”
rategy in which all chemi-
als in each external source
f a subject’s exposome are
easured at each time point.
lthoughthisapproachwould
ave the advantage of relat-
g important exposures to
e air, water, or diet, it would
quire enormous effort and
ould miss essential compo-
ents of the internal chemi-
al environment due to such
actors as gender, obesity,
flammation, and stress. By
ontrast, a “top-down” strat-
gy would measure all chem-
als (or products of their
ownstream processing or
ffects, so-called read-outs
r signatures) in a subject’s
ood. This would require
nly a single blood specimen
exposome represents a tech-
nological challenge like that of
thehumangenomeproject,which
began when DNA sequencing
was in its infancy (
cal systems are needed to pro-
cess small amounts of blood from
thousands of subjects. Assays
should be multiplexed for mea-
suring many chemicals in each
class of interest. Tandem mass
spectrometry, gene and protein
chips, and microfluidic systems
offer the means to do this. Plat-
forms for high-throughput assays
shouldleadtoeconomiesofscale,
again like those experienced by
the human genome project. And
because exposome technologies
would provide feedback for thera-
peuticinterventionsandpersonal-
ized medicine, they should moti-
vate the development of commer-
cial devices for screening impor-
tant environmental exposures in
blood samples.
Characterizing the exposome. The exposome represents
the combined exposures from all sources that reach the
internal chemical environment. Toxicologically important
classes of exposome chemicals are shown. Signatures and
biomarkers can detect these agents in blood or serum.
how to analyze in relation to health?
Wild, 2005

Rappaport and Smith, 2010, 2011

Buck-Louis and Sundaram 2012

Miller and Jones, 2014

Patel CJ and Ioannidis JPAI, 2014
Explaining the other 50%:
A new data-driven paradigm for robust discovery of
E in disease via EWAS and the exposome
what to
measure? how to measure?
Xenobiotics
Inflammation
Preexisting disease
Lipid peroxidation
Oxidative stress
Gut flora
Internal
chemical
environment
Externalenvironment
ExposomeRADIATION
DIET
POLLUTION
INFECTIONS
DRUGS
LIFE-STYLE
STRESS
Reactive electrophiles
Metals
Endocrine disrupters
Immune modulators
Receptor-binding proteins
itical entity for disease eti-
). Recent discussion
as focused on whether and
ow to implement this vision
). Although fully charac-
rizing human exposomes
daunting, strategies can be
eveloped for getting “snap-
hots” of critical portions of
person’s exposome during
ifferent stages of life. At
ne extreme is a “bottom-up”
rategy in which all chemi-
als in each external source
f a subject’s exposome are
easured at each time point.
lthoughthisapproachwould
ave the advantage of relat-
g important exposures to
e air, water, or diet, it would
quire enormous effort and
ould miss essential compo-
ents of the internal chemi-
al environment due to such
actors as gender, obesity,
flammation, and stress. By
ontrast, a “top-down” strat-
gy would measure all chem-
als (or products of their
ownstream processing or
ffects, so-called read-outs
r signatures) in a subject’s
ood. This would require
nly a single blood specimen
exposome represents a tech-
nological challenge like that of
thehumangenomeproject,which
began when DNA sequencing
was in its infancy (
cal systems are needed to pro-
cess small amounts of blood from
thousands of subjects. Assays
should be multiplexed for mea-
suring many chemicals in each
class of interest. Tandem mass
spectrometry, gene and protein
chips, and microfluidic systems
offer the means to do this. Plat-
forms for high-throughput assays
shouldleadtoeconomiesofscale,
again like those experienced by
the human genome project. And
because exposome technologies
would provide feedback for thera-
peuticinterventionsandpersonal-
ized medicine, they should moti-
vate the development of commer-
cial devices for screening impor-
tant environmental exposures in
blood samples.
Characterizing the exposome. The exposome represents
the combined exposures from all sources that reach the
internal chemical environment. Toxicologically important
classes of exposome chemicals are shown. Signatures and
biomarkers can detect these agents in blood or serum.
“A more comprehensive view of
environmental exposure is
needed ... to discover major
causes of diseases...”
how to analyze in relation to health?
Wild, 2005

Rappaport and Smith, 2010, 2011

Buck-Louis and Sundaram 2012

Miller and Jones, 2014

Patel CJ and Ioannidis JPAI, 2014
Connecting Environmental Exposure with Disease:
Missing the “System” of Exposures?
E+ E-
diseased
non-
diseased
?
Exposed to many things, but do not assess the multiplicity.
Fragmented literature of associations.
Challenge to discover E associated with disease.
Example of fragmentation and vibration of effects:
Is everything we eat associated with cancer?
AJCN, 2012

JCE, 2015
50 random ingredients from
Boston Cooking School
Cookbook
Any associated with cancer?
Example of fragmentation and vibration of effects:
Is everything we eat associated with cancer?
AJCN, 2012

JCE, 2015
Of 50, 40 studied in a cancer risk
50 random ingredients from
Boston Cooking School
Cookbook
Any associated with cancer?
Example of fragmentation and vibration of effects:
Is everything we eat associated with cancer?
AJCN, 2012

JCE, 2015
FIGURE 1. Effect estimates reported in the literature by malignancy type (top) or ingredient (bottom). Only ingredients with $10 studie
outliers are not shown (effect estimates .10).
Of 50, 40 studied in a cancer risk
50 random ingredients from
Boston Cooking School
Cookbook
Any associated with cancer?
Example of fragmentation and vibration of effects:
Is everything we eat associated with cancer?
AJCN, 2012

JCE, 2015
FIGURE 1. Effect estimates reported in the literature by malignancy type (top) or ingredient (bottom). Only ingredients with $10 studie
outliers are not shown (effect estimates .10).
Of 50, 40 studied in a cancer risk
Weak statistical evidence:

non-replicated

inconsistent effects

non-standardized
50 random ingredients from
Boston Cooking School
Cookbook
Any associated with cancer?
Example of fragmentation and vibration of effects:
Is everything we eat associated with cancer?
AJCN, 2012

JCE, 2015
FIGURE 1. Effect estimates reported in the literature by malignancy type (top) or ingredient (bottom). Only ingredients with $10 studie
outliers are not shown (effect estimates .10).
Of 50, 40 studied in a cancer risk
Weak statistical evidence:

non-replicated

inconsistent effects

non-standardized
50 random ingredients from
Boston Cooking School
Cookbook
Any associated with cancer?
relative risk
riskprotection
Connecting Environmental Exposure with Disease:
Missing the “System” of Exposures?
E+ E-
diseased
non-
diseased
?
Exposed to many things, but do not assess the multiplicity.
Fragmented literature of associations.
Challenge to discover E associated with disease.
courtesy: colabria.com
Moving beyond the lamppost for discovery
Gold standard for breadth of human exposure information:
National Health and Nutrition Examination Survey1
since the 1960s

now biannual: 1999 onwards

10,000 participants per survey

The sample for the survey is selected to represent
the U.S. population of all ages. To produce reli-
able statistics, NHANES over-samples persons 60
and older, African Americans, and Hispanics.
Since the United States has experienced dramatic
growth in the number of older people during this
century, the aging population has major impli-
cations for health care needs, public policy, and
research priorities. NCHS is working with public
health agencies to increase the knowledge of the
health status of older Americans. NHANES has a
primary role in this endeavor.
All participants visit the physician. Dietary inter-
views and body measurements are included for
everyone. All but the very young have a blood
sample taken and will have a dental screening.
Depending upon the age of the participant, the
rest of the examination includes tests and proce-
dures to assess the various aspects of health listed
above. In general, the older the individual, the
more extensive the examination.
Survey Operations
Health interviews are conducted in respondents’
homes. Health measurements are performed in
specially-designed and equipped mobile centers,
which travel to locations throughout the country.
The study team consists of a physician, medical
and health technicians, as well as dietary and health
interviewers. Many of the study staff are
bilingual (English/Spanish).
An advanced computer system using high-
end servers, desktop PCs, and wide-area
networking collect and process all of the
NHANES data, nearly eliminating the need
for paper forms and manual coding operations.
This system allows interviewers to use note-
book computers with electronic pens. The staff
at the mobile center can automatically transmit
data into data bases through such devices as
digital scales and stadiometers. Touch-sensi-
tive computer screens let respondents enter
their own responses to certain sensitive ques-
tions in complete privacy. Survey information
is available to NCHS staff within 24 hours of
collection, which enhances the capability of
collecting quality data and increases the speed
with which results are released to the public.
In each location, local health and government
officials are notified of the upcoming survey.
Households in the study area receive a letter
from the NCHS Director to introduce the
survey. Local media may feature stories about
the survey.
NHANES is designed to facilitate and en-
courage participation. Transportation is provided
to and from the mobile center if necessary.
Participants receive compensation and a report
of medical findings is given to each participant.
All information collected in the survey is kept
strictly confidential. Privacy is protected by
public laws.
Uses of the Data
Information from NHANES is made available
through an extensive series of publications and
articles in scientific and technical journals. For
data users and researchers throughout the world,
survey data are available on the internet and on
easy-to-use CD-ROMs.
Research organizations, universities, health
care providers, and educators benefit from
survey information. Primary data users are
federal agencies that collaborated in the de-
sign and development of the survey. The
National Institutes of Health, the Food and
Drug Administration, and CDC are among the
agencies that rely upon NHANES to provide
data essential for the implementation and
evaluation of program activities. The U.S.
Department of Agriculture and NCHS coop-
erate in planning and reporting dietary and
nutrition information from the survey.
NHANES’ partnership with the U.S. Environ-
mental Protection Agency allows continued
study of the many important environmental
influences on our health.
• Physical fitness and physical functioning
• Reproductive history and sexual behavior
• Respiratory disease (asthma, chronic bron-
chitis, emphysema)
• Sexually transmitted diseases
• Vision
1 http://www.cdc.gov/nchs/nhanes.htm
Gold standard for breadth of human exposure information:
National Health and Nutrition Examination Survey1
since the 1960s

now biannual: 1999 onwards

10,000 participants per survey

The sample for the survey is selected to represent
the U.S. population of all ages. To produce reli-
able statistics, NHANES over-samples persons 60
and older, African Americans, and Hispanics.
Since the United States has experienced dramatic
growth in the number of older people during this
century, the aging population has major impli-
cations for health care needs, public policy, and
research priorities. NCHS is working with public
health agencies to increase the knowledge of the
health status of older Americans. NHANES has a
primary role in this endeavor.
All participants visit the physician. Dietary inter-
views and body measurements are included for
everyone. All but the very young have a blood
sample taken and will have a dental screening.
Depending upon the age of the participant, the
rest of the examination includes tests and proce-
dures to assess the various aspects of health listed
above. In general, the older the individual, the
more extensive the examination.
Survey Operations
Health interviews are conducted in respondents’
homes. Health measurements are performed in
specially-designed and equipped mobile centers,
which travel to locations throughout the country.
The study team consists of a physician, medical
and health technicians, as well as dietary and health
interviewers. Many of the study staff are
bilingual (English/Spanish).
An advanced computer system using high-
end servers, desktop PCs, and wide-area
networking collect and process all of the
NHANES data, nearly eliminating the need
for paper forms and manual coding operations.
This system allows interviewers to use note-
book computers with electronic pens. The staff
at the mobile center can automatically transmit
data into data bases through such devices as
digital scales and stadiometers. Touch-sensi-
tive computer screens let respondents enter
their own responses to certain sensitive ques-
tions in complete privacy. Survey information
is available to NCHS staff within 24 hours of
collection, which enhances the capability of
collecting quality data and increases the speed
with which results are released to the public.
In each location, local health and government
officials are notified of the upcoming survey.
Households in the study area receive a letter
from the NCHS Director to introduce the
survey. Local media may feature stories about
the survey.
NHANES is designed to facilitate and en-
courage participation. Transportation is provided
to and from the mobile center if necessary.
Participants receive compensation and a report
of medical findings is given to each participant.
All information collected in the survey is kept
strictly confidential. Privacy is protected by
public laws.
Uses of the Data
Information from NHANES is made available
through an extensive series of publications and
articles in scientific and technical journals. For
data users and researchers throughout the world,
survey data are available on the internet and on
easy-to-use CD-ROMs.
Research organizations, universities, health
care providers, and educators benefit from
survey information. Primary data users are
federal agencies that collaborated in the de-
sign and development of the survey. The
National Institutes of Health, the Food and
Drug Administration, and CDC are among the
agencies that rely upon NHANES to provide
data essential for the implementation and
evaluation of program activities. The U.S.
Department of Agriculture and NCHS coop-
erate in planning and reporting dietary and
nutrition information from the survey.
NHANES’ partnership with the U.S. Environ-
mental Protection Agency allows continued
study of the many important environmental
influences on our health.
• Physical fitness and physical functioning
• Reproductive history and sexual behavior
• Respiratory disease (asthma, chronic bron-
chitis, emphysema)
• Sexually transmitted diseases
• Vision
1 http://www.cdc.gov/nchs/nhanes.htm
>250 exposures (serum + urine)

>1,000 genetic loci 

>85 quantitative clinical traits
(e.g., serum glucose, lipids, body
mass index)
What maternal E are associated with preterm birth (< 37 weeks)?
Reprod Tox, 2014
What maternal E are associated with preterm birth (< 37 weeks)?:
What did we screen in moms?
What maternal E are associated with preterm birth (< 37 weeks)?:
What did we screen in moms?
Nutrients and Vitamins
vitamin D, carotenes
32
What maternal E are associated with preterm birth (< 37 weeks)?:
What did we screen in moms?
Infectious Agents
hepatitis, HIV, Staph. aureus
24
Nutrients and Vitamins
vitamin D, carotenes
32
What maternal E are associated with preterm birth (< 37 weeks)?:
What did we screen in moms?
Infectious Agents
hepatitis, HIV, Staph. aureus
24
Nutrients and Vitamins
vitamin D, carotenes
32
Plastics and consumables
phthalates, bisphenol A
49
What maternal E are associated with preterm birth (< 37 weeks)?:
What did we screen in moms?
Infectious Agents
hepatitis, HIV, Staph. aureus
24
Nutrients and Vitamins
vitamin D, carotenes
32
Plastics and consumables
phthalates, bisphenol A
49
Pesticides and air-related pollutants
atrazine; cadmium; hydrocarbons;
polychorinated biphenyls;
volatile organic compounds
95
NHANES 1999-2006
5772 reporting live births
What maternal E are associated with preterm birth (< 37 weeks)?:
Method for screening for associations
Reprod Tox, 2014
NHANES 1999-2006
5772 reporting live births
What maternal E are associated with preterm birth (< 37 weeks)?:
Method for screening for associations
Reprod Tox, 2014
Pregnant year prior to survey?
842 participants
NHANES 1999-2006
5772 reporting live births
What maternal E are associated with preterm birth (< 37 weeks)?:
Method for screening for associations
Reprod Tox, 2014
Pregnant year prior to survey?
842 participants
Any child born preterm?
< 37 weeks or earlier
NHANES 1999-2006
5772 reporting live births
What maternal E are associated with preterm birth (< 37 weeks)?:
Method for screening for associations
Reprod Tox, 2014
Pregnant year prior to survey?
842 participants
Any child born preterm?
< 37 weeks or earlier
Any preterm birth
N=62
No preterm birth
N=718
NHANES 1999-2006
5772 reporting live births
What maternal E are associated with preterm birth (< 37 weeks)?:
Method for screening for associations
Reprod Tox, 2014
logistic regression

(age, race, poverty/income, education, number of births)
Pregnant year prior to survey?
842 participants
Any child born preterm?
< 37 weeks or earlier
Any preterm birth
N=62
No preterm birth
N=718
What maternal E are associated with preterm birth (< 37 weeks)?:
Volcano plot of 201 associations
Reprod Tox, 2014
0
1
2
0 2 4 6
Odds Ratio
−log10(p−value)
What maternal E are associated with preterm birth (< 37 weeks)?:
Volcano plot of 201 associations
Reprod Tox, 2014
0
1
2
0 2 4 6
Odds Ratio
−log10(p−value)
serum iron (OR: 1.6)
urine Cs (OR: 1.9)
urine hydroxypyrene (OR: 1.8)
What maternal E are associated with preterm birth (< 37 weeks)?:
Volcano plot of 201 associations
Reprod Tox, 2014
0
1
2
0 2 4 6
Odds Ratio
−log10(p−value)
urine bisphenol A (OR: 1.9)
serum iron (OR: 1.6)
urine Cs (OR: 1.9)
urine hydroxypyrene (OR: 1.8)
Tentative evaluation of higher Bisphenol A levels in moms who gave
preterm birth in a tertiary clinic
Reprod Tox, 2014
Lucile Packard Children’s Hospital
37 consenting mothers with urine

(during gestation)!
bisphenol A
Tentative evaluation of higher Bisphenol A levels in moms who gave
preterm birth in a tertiary clinic
Reprod Tox, 2014
Lucile Packard Children’s Hospital
37 consenting mothers with urine

(during gestation)!
bisphenol A
Child born preterm?
Tentative evaluation of higher Bisphenol A levels in moms who gave
preterm birth in a tertiary clinic
Reprod Tox, 2014
Lucile Packard Children’s Hospital
37 consenting mothers with urine

(during gestation)!
bisphenol A
Child born preterm?
Preterm
N=16
No Preterm
N=21
Tentative evaluation of higher Bisphenol A levels in moms who gave
preterm birth in a tertiary clinic
Reprod Tox, 2014
Lucile Packard Children’s Hospital
37 consenting mothers with urine

(during gestation)!
bisphenol A
0.07 ug/mL 0.03 ug/mL
Odds Ratio (1SD change): 3.5 (p=0.1)

(age, race, creatinine, gestational age)
Child born preterm?
Preterm
N=16
No Preterm
N=21
The spectrum of associations depends on age:

What E factors are associated with 

mortality?
EWAS to search for

exposures and behaviors associated with all-cause mortality.
NHANES: 1999-2004
National Death Index linked mortality

246 behaviors and exposures (serum/urine/self-report)
IJE, 2013
EWAS to search for

exposures and behaviors associated with all-cause mortality.
NHANES: 1999-2004
National Death Index linked mortality

246 behaviors and exposures (serum/urine/self-report)
NHANES: 1999-2001
N=330 to 6008 (26 to 655 deaths) 

~5.5 years of followup
IJE, 2013
EWAS to search for

exposures and behaviors associated with all-cause mortality.
NHANES: 1999-2004
National Death Index linked mortality

246 behaviors and exposures (serum/urine/self-report)
NHANES: 1999-2001
N=330 to 6008 (26 to 655 deaths) 

~5.5 years of followup
Cox proportional hazards

baseline exposure and time to death
IJE, 2013
EWAS to search for

exposures and behaviors associated with all-cause mortality.
NHANES: 1999-2004
National Death Index linked mortality

246 behaviors and exposures (serum/urine/self-report)
NHANES: 1999-2001
N=330 to 6008 (26 to 655 deaths) 

~5.5 years of followup
Cox proportional hazards

baseline exposure and time to death
False discovery rate < 5%
IJE, 2013
EWAS to search for

exposures and behaviors associated with all-cause mortality.
NHANES: 1999-2004
National Death Index linked mortality

246 behaviors and exposures (serum/urine/self-report)
NHANES: 1999-2001
N=330 to 6008 (26 to 655 deaths) 

~5.5 years of followup
Cox proportional hazards

baseline exposure and time to death
False discovery rate < 5%
NHANES: 2003-2004
N=177 to 3258 (20-202 deaths)

~2.8 years of followup
p < 0.05
IJE, 2013
Adjusted Hazard Ratio
-log10(pvalue)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8
02468
1
2
3
4
5
67
1 Physical Activity
2 Does anyone smoke in home?
3 Cadmium
4 Cadmium, urine
5 Past smoker
6 Current smoker
7 trans-lycopene
(11) 1
2
3 4
5 6
78
9
10 1112
13 14
1516
1 age (10 year increment)
2 SES_1
3 male
4 SES_0
5 black
6 SES_2
7 SES_3
8 education_hs
9 other_eth
10 mexican
11 occupation_blue_semi
12 education_less_hs
13 occupation_never
14 occupation_blue_high
15 occupation_white_semi
16 other_hispanic
(69)
EWAS (re)-identifies factors associated with all-cause mortality:

Volcano plot of 200 associations
age, sex, income, education, race/ethnicity, occupation [in red]
Adjusted Hazard Ratio
-log10(pvalue)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8
02468
1
2
3
4
5
67
1 Physical Activity
2 Does anyone smoke in home?
3 Cadmium
4 Cadmium, urine
5 Past smoker
6 Current smoker
7 trans-lycopene
(11) 1
2
3 4
5 6
78
9
10 1112
13 14
1516
1 age (10 year increment)
2 SES_1
3 male
4 SES_0
5 black
6 SES_2
7 SES_3
8 education_hs
9 other_eth
10 mexican
11 occupation_blue_semi
12 education_less_hs
13 occupation_never
14 occupation_blue_high
15 occupation_white_semi
16 other_hispanic
(69)
EWAS (re)-identifies factors associated with all-cause mortality:

Volcano plot of 200 associations
age (10 years)
income (quintile 2)
income (quintile 1)
male
black income (quintile 3)
age, sex, income, education, race/ethnicity, occupation [in red]
Adjusted Hazard Ratio
-log10(pvalue)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8
02468
1
2
3
4
5
67
1 Physical Activity
2 Does anyone smoke in home?
3 Cadmium
4 Cadmium, urine
5 Past smoker
6 Current smoker
7 trans-lycopene
(11) 1
2
3 4
5 6
78
9
10 1112
13 14
1516
1 age (10 year increment)
2 SES_1
3 male
4 SES_0
5 black
6 SES_2
7 SES_3
8 education_hs
9 other_eth
10 mexican
11 occupation_blue_semi
12 education_less_hs
13 occupation_never
14 occupation_blue_high
15 occupation_white_semi
16 other_hispanic
(69)
EWAS (re)-identifies factors associated with all-cause mortality:

Volcano plot of 200 associations
age (10 years)
income (quintile 2)
income (quintile 1)
male
black income (quintile 3)
age, sex, income, education, race/ethnicity, occupation [in red]
serum lycopene
[1SD]
Adjusted Hazard Ratio
-log10(pvalue)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8
02468
1
2
3
4
5
67
1 Physical Activity
2 Does anyone smoke in home?
3 Cadmium
4 Cadmium, urine
5 Past smoker
6 Current smoker
7 trans-lycopene
(11) 1
2
3 4
5 6
78
9
10 1112
13 14
1516
1 age (10 year increment)
2 SES_1
3 male
4 SES_0
5 black
6 SES_2
7 SES_3
8 education_hs
9 other_eth
10 mexican
11 occupation_blue_semi
12 education_less_hs
13 occupation_never
14 occupation_blue_high
15 occupation_white_semi
16 other_hispanic
(69)
EWAS (re)-identifies factors associated with all-cause mortality:

Volcano plot of 200 associations
age (10 years)
income (quintile 2)
income (quintile 1)
male
black income (quintile 3)
age, sex, income, education, race/ethnicity, occupation [in red]
past smoker?
current smoker?serum lycopene
[1SD]
Adjusted Hazard Ratio
-log10(pvalue)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8
02468
1
2
3
4
5
67
1 Physical Activity
2 Does anyone smoke in home?
3 Cadmium
4 Cadmium, urine
5 Past smoker
6 Current smoker
7 trans-lycopene
(11) 1
2
3 4
5 6
78
9
10 1112
13 14
1516
1 age (10 year increment)
2 SES_1
3 male
4 SES_0
5 black
6 SES_2
7 SES_3
8 education_hs
9 other_eth
10 mexican
11 occupation_blue_semi
12 education_less_hs
13 occupation_never
14 occupation_blue_high
15 occupation_white_semi
16 other_hispanic
(69)
EWAS (re)-identifies factors associated with all-cause mortality:

Volcano plot of 200 associations
age (10 years)
income (quintile 2)
income (quintile 1)
male
black income (quintile 3)
any one smoke in home?
age, sex, income, education, race/ethnicity, occupation [in red]
past smoker?
current smoker?serum lycopene
[1SD]
Adjusted Hazard Ratio
-log10(pvalue)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8
02468
1
2
3
4
5
67
1 Physical Activity
2 Does anyone smoke in home?
3 Cadmium
4 Cadmium, urine
5 Past smoker
6 Current smoker
7 trans-lycopene
(11) 1
2
3 4
5 6
78
9
10 1112
13 14
1516
1 age (10 year increment)
2 SES_1
3 male
4 SES_0
5 black
6 SES_2
7 SES_3
8 education_hs
9 other_eth
10 mexican
11 occupation_blue_semi
12 education_less_hs
13 occupation_never
14 occupation_blue_high
15 occupation_white_semi
16 other_hispanic
(69)
EWAS (re)-identifies factors associated with all-cause mortality:

Volcano plot of 200 associations
age (10 years)
income (quintile 2)
income (quintile 1)
male
black income (quintile 3)
any one smoke in home?
age, sex, income, education, race/ethnicity, occupation [in red]
serum and urine cadmium
[1 SD]
past smoker?
current smoker?serum lycopene
[1SD]
Adjusted Hazard Ratio
-log10(pvalue)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8
02468
1
2
3
4
5
67
1 Physical Activity
2 Does anyone smoke in home?
3 Cadmium
4 Cadmium, urine
5 Past smoker
6 Current smoker
7 trans-lycopene
(11) 1
2
3 4
5 6
78
9
10 1112
13 14
1516
1 age (10 year increment)
2 SES_1
3 male
4 SES_0
5 black
6 SES_2
7 SES_3
8 education_hs
9 other_eth
10 mexican
11 occupation_blue_semi
12 education_less_hs
13 occupation_never
14 occupation_blue_high
15 occupation_white_semi
16 other_hispanic
(69)
EWAS (re)-identifies factors associated with all-cause mortality:

Volcano plot of 200 associations
age (10 years)
income (quintile 2)
income (quintile 1)
male
black income (quintile 3)
any one smoke in home?
age, sex, income, education, race/ethnicity, occupation [in red]
serum and urine cadmium
[1 SD]
past smoker?
current smoker?serum lycopene
[1SD]
physical activity
[low, moderate, high activity]*
*derived from METs per activity and categorized by Health.gov guidelines
Adjusted Hazard Ratio
-log10(pvalue)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8
02468
1
2
3
4
5
67
1 Physical Activity
2 Does anyone smoke in home?
3 Cadmium
4 Cadmium, urine
5 Past smoker
6 Current smoker
7 trans-lycopene
(11) 1
2
3 4
5 6
78
9
10 1112
13 14
1516
1 age (10 year increment)
2 SES_1
3 male
4 SES_0
5 black
6 SES_2
7 SES_3
8 education_hs
9 other_eth
10 mexican
11 occupation_blue_semi
12 education_less_hs
13 occupation_never
14 occupation_blue_high
15 occupation_white_semi
16 other_hispanic
(69)
EWAS (re)-identifies factors associated with all-cause mortality:

Volcano plot of 200 associations
age (10 years)
income (quintile 2)
income (quintile 1)
male
black income (quintile 3)
any one smoke in home?
age, sex, income, education, race/ethnicity, occupation [in red]
serum and urine cadmium
[1 SD]
past smoker?
current smoker?serum lycopene
[1SD]
physical activity
[low, moderate, high activity]*
*derived from METs per activity and categorized by Health.gov guidelines
R2 ~ 2%
Eye color
Hair curliness
Type-1 diabetes
Height
Schizophrenia
Epilepsy
Graves' disease
Celiac disease
Polycystic ovary syndrome
Attention deficit hyperactivity disorder
Bipolar disorder
Obesity
Alzheimer's disease
Anorexia nervosa
Psoriasis
Bone mineral density
Menarche, age at
Nicotine dependence
Sexual orientation
Alcoholism
Lupus
Rheumatoid arthritis
Crohn's disease
Migraine
Thyroid cancer
Autism
Blood pressure, diastolic
Body mass index
Depression
Coronary artery disease
Insomnia
Menopause, age at
Heart disease
Prostate cancer
QT interval
Breast cancer
Ovarian cancer
Hangover
Stroke
Asthma
Blood pressure, systolic
Hypertension
Osteoarthritis
Parkinson's disease
Longevity
Type-2 diabetes
Gallstone disease
Testicular cancer
Cervical cancer
Sciatica
Bladder cancer
Colon cancer
Lung cancer
Leukemia
Stomach cancer
0 25 50 75 100
Heritability: Var(G)/Var(Phenotype) Source: SNPedia.com
Remember: >50% of disease risk and phenotypic variability is
in E!
H2 < 50%
Where can it be found?
>50% of disease risk and phenotypic variability
is in E!
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
proach (an analogy to genome-wide association stud-
ies).Forexample,Wangetal4
screenedmorethan2000
chemicalsinserumtodiscoverendogenousexposuresas-
sociated with risk for cardiovascular disease.
Therearenotablehurdlesinanalyzing“big”environ-
mental data. These same problems affect epidemiology
of1-risk-factor-at-a-time,butinEWAStheirprevalencebe-
comes more clearly manifest at large scale. When study-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets,
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observational
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
the multiple correlations also highlights the challenge
thatinterveningtomodify1putativeriskfactoralsomay
inadvertently affect multiple other correlated factors.
Even when a seemingly simple intervention is tested in
randomizedtrials(affectingasingleriskfactoramongthe
manycorrelations),theinterventionisnotreallysimple.
In essence what is tested are multiple perturbations of
factors correlated with the one targeted for interven-
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
JAMA, 2014

JECH, 2014

Proc Symp Biocomp, 2015
How can we proceed to study the elusive environment in
large scale for discovery-based research?
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observationa
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
proach (an analogy to genome-wide association stud-
ies).Forexample,Wangetal4
screenedmorethan2000
chemicalsinserumtodiscoverendogenousexposuresas-
sociated with risk for cardiovascular disease.
Therearenotablehurdlesinanalyzing“big”environ-
mental data. These same problems affect epidemiology
of1-risk-factor-at-a-time,butinEWAStheirprevalencebe-
comes more clearly manifest at large scale. When study-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets,
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observational
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
the multiple correlations also highlights the challenge
thatinterveningtomodify1putativeriskfactoralsomay
inadvertently affect multiple other correlated factors.
Even when a seemingly simple intervention is tested in
randomizedtrials(affectingasingleriskfactoramongthe
manycorrelations),theinterventionisnotreallysimple.
In essence what is tested are multiple perturbations of
factors correlated with the one targeted for interven-
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
JAMA, 2014

JECH, 2014

Proc Symp Biocomp, 2015
How can we proceed to study the elusive environment in
large scale for discovery-based research?
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observationa
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
•new ‘omics technologies
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
proach (an analogy to genome-wide association stud-
ies).Forexample,Wangetal4
screenedmorethan2000
chemicalsinserumtodiscoverendogenousexposuresas-
sociated with risk for cardiovascular disease.
Therearenotablehurdlesinanalyzing“big”environ-
mental data. These same problems affect epidemiology
of1-risk-factor-at-a-time,butinEWAStheirprevalencebe-
comes more clearly manifest at large scale. When study-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets,
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observational
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
the multiple correlations also highlights the challenge
thatinterveningtomodify1putativeriskfactoralsomay
inadvertently affect multiple other correlated factors.
Even when a seemingly simple intervention is tested in
randomizedtrials(affectingasingleriskfactoramongthe
manycorrelations),theinterventionisnotreallysimple.
In essence what is tested are multiple perturbations of
factors correlated with the one targeted for interven-
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
JAMA, 2014

JECH, 2014

Proc Symp Biocomp, 2015
•longitudinal publicly available data
How can we proceed to study the elusive environment in
large scale for discovery-based research?
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observationa
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
•new ‘omics technologies
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
proach (an analogy to genome-wide association stud-
ies).Forexample,Wangetal4
screenedmorethan2000
chemicalsinserumtodiscoverendogenousexposuresas-
sociated with risk for cardiovascular disease.
Therearenotablehurdlesinanalyzing“big”environ-
mental data. These same problems affect epidemiology
of1-risk-factor-at-a-time,butinEWAStheirprevalencebe-
comes more clearly manifest at large scale. When study-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets,
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observational
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
the multiple correlations also highlights the challenge
thatinterveningtomodify1putativeriskfactoralsomay
inadvertently affect multiple other correlated factors.
Even when a seemingly simple intervention is tested in
randomizedtrials(affectingasingleriskfactoramongthe
manycorrelations),theinterventionisnotreallysimple.
In essence what is tested are multiple perturbations of
factors correlated with the one targeted for interven-
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
JAMA, 2014

JECH, 2014

Proc Symp Biocomp, 2015
•longitudinal publicly available data
How can we proceed to study the elusive environment in
large scale for discovery-based research?
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observationa
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
High-throughputascertainmentofendogenousindicatorsofen-
vironmentalexposurethatmayreflecttheexposomeincreasinglyat-
tractattention,andtheirperformanceneedstobecarefullyevaluated.
These include chemical detection of indicators of exposure through
US federally funded gene expression experiment data be d
itedinpublicrepositoriessuchastheGeneExpressionOmnibu
repositoryhasbeeninstrumentalindevelopmentoftechnolo
measurement of gene expression, data standardization, and
Figure. Correlation Interdependency Globes for 4 Environmental Exposures (Cotinine, Mercury, Cadmium, Trans-β-Carotene) in National Health
Nutrition Examination Survey (NHANES) Participants, 2003-2004
A Serum cotinine B Serum total mercury C Serum cadmium D Serum trans-β-carotene
37 Total correlations 42 Total correlations 68 Total correlations 68 Total correlations
Negative correlation Positive correl
Infectious
agents
Pollutants
Nutrients
and vitamins
Demographic
attributes
Eachcorrelationinterdependencyglobeincludes317environmentalexposures
representedbythenodesaroundtheperipheryoftheglobe.Pairwisecorrelations
aredepictedbyedges(lines)betweenthenodeofinterest(arrowhead)andother
nodes.Correlationswithabsolutevaluesexceeding0.2areshown(stronges
Thesizeofeachnodeisproportionaltothenumberofedgesforanode,and
thicknessofeachedgeindicatesthemagnitudeofthecorrelation.
Opinion Viewpoint
•data mining and informatics to tackle complexity
what causes what?
confounding
•new ‘omics technologies
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
proach (an analogy to genome-wide association stud-
ies).Forexample,Wangetal4
screenedmorethan2000
chemicalsinserumtodiscoverendogenousexposuresas-
sociated with risk for cardiovascular disease.
Therearenotablehurdlesinanalyzing“big”environ-
mental data. These same problems affect epidemiology
of1-risk-factor-at-a-time,butinEWAStheirprevalencebe-
comes more clearly manifest at large scale. When study-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets,
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observational
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
the multiple correlations also highlights the challenge
thatinterveningtomodify1putativeriskfactoralsomay
inadvertently affect multiple other correlated factors.
Even when a seemingly simple intervention is tested in
randomizedtrials(affectingasingleriskfactoramongthe
manycorrelations),theinterventionisnotreallysimple.
In essence what is tested are multiple perturbations of
factors correlated with the one targeted for interven-
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
JAMA, 2014

JECH, 2014

Proc Symp Biocomp, 2015
•longitudinal publicly available data
How can we proceed to study the elusive environment in
large scale for discovery-based research?
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observationa
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
High-throughputascertainmentofendogenousindicatorsofen-
vironmentalexposurethatmayreflecttheexposomeincreasinglyat-
tractattention,andtheirperformanceneedstobecarefullyevaluated.
These include chemical detection of indicators of exposure through
US federally funded gene expression experiment data be d
itedinpublicrepositoriessuchastheGeneExpressionOmnibu
repositoryhasbeeninstrumentalindevelopmentoftechnolo
measurement of gene expression, data standardization, and
Figure. Correlation Interdependency Globes for 4 Environmental Exposures (Cotinine, Mercury, Cadmium, Trans-β-Carotene) in National Health
Nutrition Examination Survey (NHANES) Participants, 2003-2004
A Serum cotinine B Serum total mercury C Serum cadmium D Serum trans-β-carotene
37 Total correlations 42 Total correlations 68 Total correlations 68 Total correlations
Negative correlation Positive correl
Infectious
agents
Pollutants
Nutrients
and vitamins
Demographic
attributes
Eachcorrelationinterdependencyglobeincludes317environmentalexposures
representedbythenodesaroundtheperipheryoftheglobe.Pairwisecorrelations
aredepictedbyedges(lines)betweenthenodeofinterest(arrowhead)andother
nodes.Correlationswithabsolutevaluesexceeding0.2areshown(stronges
Thesizeofeachnodeisproportionaltothenumberofedgesforanode,and
thicknessofeachedgeindicatesthemagnitudeofthecorrelation.
Opinion Viewpoint
•data mining and informatics to tackle complexity
what causes what?
confounding
•new ‘omics technologies
EWAS
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
proach (an analogy to genome-wide association stud-
ies).Forexample,Wangetal4
screenedmorethan2000
chemicalsinserumtodiscoverendogenousexposuresas-
sociated with risk for cardiovascular disease.
Therearenotablehurdlesinanalyzing“big”environ-
mental data. These same problems affect epidemiology
of1-risk-factor-at-a-time,butinEWAStheirprevalencebe-
comes more clearly manifest at large scale. When study-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets,
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observational
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
the multiple correlations also highlights the challenge
thatinterveningtomodify1putativeriskfactoralsomay
inadvertently affect multiple other correlated factors.
Even when a seemingly simple intervention is tested in
randomizedtrials(affectingasingleriskfactoramongthe
manycorrelations),theinterventionisnotreallysimple.
In essence what is tested are multiple perturbations of
factors correlated with the one targeted for interven-
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
JAMA, 2014

JECH, 2014

Proc Symp Biocomp, 2015
•longitudinal publicly available data
How can we proceed to study the elusive environment in
large scale for discovery-based research?
Studying the Elusive Environment in Large Scale
Itispossiblethatmorethan50%ofcomplexdiseaserisk
isattributedtodifferencesinanindividual’senvironment.1
Airpollution,smoking,anddietaredocumentedenviron-
mental factors affecting health, yet these factors are but
a fraction of the “exposome,” the totality of the exposure
loadoccurringthroughoutaperson’slifetime.1
Investigat-
ing one or a handful of exposures at a time has led to a
highly fragmented literature of epidemiologic associa-
tions. Much of that literature is not reproducible, and se-
lectivereportingmaybeamajorreasonforthelackofre-
producibility. A new model is required to discover
environmental exposures associated with disease while
mitigating possibilities of selective reporting.
Toremedythelackofreproducibilityandconcernsof
validity, multiple personal exposures can be assessed si-
multaneously in terms of their association with a condi-
tion or disease of interest; the strongest associations can
then be tentatively validated in independent data sets
(eg, as done in references 2 and 3).2,3
The main advan-
tages of this process include the ability to search the list
ofexposuresandadjustformultiplicitysystematicallyand
reportalltheprobedassociationsinsteadofonlythemost
significant results. The term “environment-wide associa-
tion studies” (EWAS) has been used to describe this ap-
the EWAS vantage point, intervening on β-carotene
(Figure, D) seems a futile exercise given its complex rela-
tionship with other nutrients and pollutants.
Giventhiscomplexity,howcanstudiesofenvironmen-
talriskmoveforward?First,EWASanalysesshouldbeap-
pliedtomultipledatasets,andconsistencycanbeformally
examinedforallassessedcorrelations.Second,thetempo-
ral relationship between exposure and changes in health
parametersmayofferhelpfulhintsaboutwhichofthesig-
nalsaremorethansimplecorrelations.Third,standardized
adjustedanalyses,inwhichadjustmentsareperformedsys-
tematicallyandinthesamewayacrossmultipledatasets
may also help. This is in stark contrast with the current
model,wherebymostepidemiologicstudiesusesingledata
setswithoutreplicationaswellasnon–time-dependentas-
sessments,andreportedadjustmentsaremarkedlydiffer-
entacrossreportsanddatasets,eventhoseperformedby
thesameteam(differentapproachesincreasevaliditybut
mustbereconciledandassimilated).
However, eventually for most environmental cor-
relates,theremaybeunsurpassabledifficultyestablish-
ing potential causal inferences based on observationa
data alone. Factors that seem protective may some-
times be tested in randomized trials. The complexity of
VIEWPOINT
Chirag J. Patel, PhD
Center for Biomedical
Informatics, Harvard
Medical School,
Boston, Massachusetts.
John P. A. Ioannidis,
MD, DSc
Stanford Prevention
Research Center,
Department of Health
Research and Policy,
Department of
Medicine, Stanford
University School of
Medicine, Stanford,
California, Department
of Statistics, Stanford
University School of
Humanities and
Sciences, Stanford,
California, and
Meta-Research
Innovation Center at
Stanford (METRICS),
Stanford, California.
Opinion
High-throughputascertainmentofendogenousindicatorsofen-
vironmentalexposurethatmayreflecttheexposomeincreasinglyat-
tractattention,andtheirperformanceneedstobecarefullyevaluated.
These include chemical detection of indicators of exposure through
US federally funded gene expression experiment data be d
itedinpublicrepositoriessuchastheGeneExpressionOmnibu
repositoryhasbeeninstrumentalindevelopmentoftechnolo
measurement of gene expression, data standardization, and
Figure. Correlation Interdependency Globes for 4 Environmental Exposures (Cotinine, Mercury, Cadmium, Trans-β-Carotene) in National Health
Nutrition Examination Survey (NHANES) Participants, 2003-2004
A Serum cotinine B Serum total mercury C Serum cadmium D Serum trans-β-carotene
37 Total correlations 42 Total correlations 68 Total correlations 68 Total correlations
Negative correlation Positive correl
Infectious
agents
Pollutants
Nutrients
and vitamins
Demographic
attributes
Eachcorrelationinterdependencyglobeincludes317environmentalexposures
representedbythenodesaroundtheperipheryoftheglobe.Pairwisecorrelations
aredepictedbyedges(lines)betweenthenodeofinterest(arrowhead)andother
nodes.Correlationswithabsolutevaluesexceeding0.2areshown(stronges
Thesizeofeachnodeisproportionaltothenumberofedgesforanode,and
thicknessofeachedgeindicatesthemagnitudeofthecorrelation.
Opinion Viewpoint
•data mining and informatics to tackle complexity
what causes what?
confounding
•new ‘omics technologies
EWAS
with Paul Avillach, Michael McDuffie, Jeremy Easton-Marks, 

Cartik Saravanamuthu and the BD2K PIC-SURE team
40K participants

>1000 indicators of exposure

Data and API available now

http://nhanes.hms.harvard.edu
Download all the data:

NHANES exposome browser
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes
Big data exposome and pediatric outcomes

More Related Content

What's hot

NSF Northeast Hub Big Data Workshop
NSF Northeast Hub Big Data WorkshopNSF Northeast Hub Big Data Workshop
NSF Northeast Hub Big Data WorkshopChirag Patel
 
10.1164@rccm.201706 1248 le
10.1164@rccm.201706 1248 le10.1164@rccm.201706 1248 le
10.1164@rccm.201706 1248 leJulio A. Diaz M.
 
BRN Seminar 12/06/14 Introduction to Network Medicine
BRN Seminar 12/06/14 Introduction to Network Medicine BRN Seminar 12/06/14 Introduction to Network Medicine
BRN Seminar 12/06/14 Introduction to Network Medicine brnmomentum
 
Introduction to Network Medicine
Introduction to Network MedicineIntroduction to Network Medicine
Introduction to Network Medicinebrnbarcelona
 
10.1164@rccm.201701 0053 ed
10.1164@rccm.201701 0053 ed10.1164@rccm.201701 0053 ed
10.1164@rccm.201701 0053 edJulio A. Diaz M.
 
Environmental Factor - August 2015_ Intramural papers of the month
Environmental Factor - August 2015_ Intramural papers of the monthEnvironmental Factor - August 2015_ Intramural papers of the month
Environmental Factor - August 2015_ Intramural papers of the monthXunhai 郑训海
 
Is susceptibility to tuberculosis acquired
Is susceptibility to tuberculosis acquiredIs susceptibility to tuberculosis acquired
Is susceptibility to tuberculosis acquiredThanka Elango
 
Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AI...
Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AI...Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AI...
Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AI...Dr. Juan Rodriguez-Tafur
 
Sherlyn's genetic epidemiology
Sherlyn's genetic epidemiologySherlyn's genetic epidemiology
Sherlyn's genetic epidemiologyvavaponnu
 
Gb 2011-12-9-228
Gb 2011-12-9-228Gb 2011-12-9-228
Gb 2011-12-9-228鋒博 蔡
 
CDC July 2009 Selected Zoonotic Diseases Conference Call
CDC July 2009 Selected Zoonotic Diseases Conference CallCDC July 2009 Selected Zoonotic Diseases Conference Call
CDC July 2009 Selected Zoonotic Diseases Conference Callgoa4
 
Scientific Publications and Scholarly National and International Presentations
Scientific Publications and Scholarly National and International PresentationsScientific Publications and Scholarly National and International Presentations
Scientific Publications and Scholarly National and International PresentationsTheresa Swift-Scanlan
 
Placental gene expression mediates the interaction between obstetrical histor...
Placental gene expression mediates the interaction between obstetrical histor...Placental gene expression mediates the interaction between obstetrical histor...
Placental gene expression mediates the interaction between obstetrical histor...BARRY STANLEY 2 fasd
 
Genetics in periodontics
Genetics in periodonticsGenetics in periodontics
Genetics in periodonticssuma priyanka
 

What's hot (19)

NSF Northeast Hub Big Data Workshop
NSF Northeast Hub Big Data WorkshopNSF Northeast Hub Big Data Workshop
NSF Northeast Hub Big Data Workshop
 
10.1164@rccm.201706 1248 le
10.1164@rccm.201706 1248 le10.1164@rccm.201706 1248 le
10.1164@rccm.201706 1248 le
 
BRN Seminar 12/06/14 Introduction to Network Medicine
BRN Seminar 12/06/14 Introduction to Network Medicine BRN Seminar 12/06/14 Introduction to Network Medicine
BRN Seminar 12/06/14 Introduction to Network Medicine
 
Osmf rnk
Osmf rnkOsmf rnk
Osmf rnk
 
Introduction to Network Medicine
Introduction to Network MedicineIntroduction to Network Medicine
Introduction to Network Medicine
 
Role of Human Genome Project in Medical Science
Role of Human Genome Project in Medical ScienceRole of Human Genome Project in Medical Science
Role of Human Genome Project in Medical Science
 
10.1164@rccm.201701 0053 ed
10.1164@rccm.201701 0053 ed10.1164@rccm.201701 0053 ed
10.1164@rccm.201701 0053 ed
 
Environmental Factor - August 2015_ Intramural papers of the month
Environmental Factor - August 2015_ Intramural papers of the monthEnvironmental Factor - August 2015_ Intramural papers of the month
Environmental Factor - August 2015_ Intramural papers of the month
 
Genetic factors
Genetic factorsGenetic factors
Genetic factors
 
Is susceptibility to tuberculosis acquired
Is susceptibility to tuberculosis acquiredIs susceptibility to tuberculosis acquired
Is susceptibility to tuberculosis acquired
 
Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AI...
Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AI...Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AI...
Associations of MHC Ancestral Haplotypes with Resistance/Susceptibility to AI...
 
Sherlyn's genetic epidemiology
Sherlyn's genetic epidemiologySherlyn's genetic epidemiology
Sherlyn's genetic epidemiology
 
Gb 2011-12-9-228
Gb 2011-12-9-228Gb 2011-12-9-228
Gb 2011-12-9-228
 
CDC July 2009 Selected Zoonotic Diseases Conference Call
CDC July 2009 Selected Zoonotic Diseases Conference CallCDC July 2009 Selected Zoonotic Diseases Conference Call
CDC July 2009 Selected Zoonotic Diseases Conference Call
 
73 84
73 8473 84
73 84
 
Scientific Publications and Scholarly National and International Presentations
Scientific Publications and Scholarly National and International PresentationsScientific Publications and Scholarly National and International Presentations
Scientific Publications and Scholarly National and International Presentations
 
Sci-Disc-Web-2014
Sci-Disc-Web-2014Sci-Disc-Web-2014
Sci-Disc-Web-2014
 
Placental gene expression mediates the interaction between obstetrical histor...
Placental gene expression mediates the interaction between obstetrical histor...Placental gene expression mediates the interaction between obstetrical histor...
Placental gene expression mediates the interaction between obstetrical histor...
 
Genetics in periodontics
Genetics in periodonticsGenetics in periodontics
Genetics in periodontics
 

Similar to Big data exposome and pediatric outcomes

Search engine for E NEU network science 080817
Search engine for E NEU network science 080817Search engine for E NEU network science 080817
Search engine for E NEU network science 080817Chirag Patel
 
Genetics and internal medicine (1& 2)
Genetics and internal medicine  (1& 2) Genetics and internal medicine  (1& 2)
Genetics and internal medicine (1& 2) Ahmed Elshebiny
 
Genetic Syndromes and Thyroid Cancer by Pamela Brock, MS, LGC
Genetic Syndromes and Thyroid Cancer by Pamela Brock, MS, LGCGenetic Syndromes and Thyroid Cancer by Pamela Brock, MS, LGC
Genetic Syndromes and Thyroid Cancer by Pamela Brock, MS, LGCOSUCCC - James
 
Comprehensive survey of human genetic diseases
Comprehensive survey of human genetic diseasesComprehensive survey of human genetic diseases
Comprehensive survey of human genetic diseasesEnharmonic Melodies
 
헬스케어 빅데이터로 무엇을 할 수 있는가?
헬스케어 빅데이터로 무엇을 할 수 있는가?헬스케어 빅데이터로 무엇을 할 수 있는가?
헬스케어 빅데이터로 무엇을 할 수 있는가? Hyung Jin Choi
 
Chapter 5 hereditary cancer syndrome next generation
Chapter 5 hereditary cancer syndrome next generationChapter 5 hereditary cancer syndrome next generation
Chapter 5 hereditary cancer syndrome next generationNilesh Kucha
 
Mark Daly - Finding risk genes in psychiatric disorders
Mark Daly - Finding risk genes in psychiatric disordersMark Daly - Finding risk genes in psychiatric disorders
Mark Daly - Finding risk genes in psychiatric disorderswef
 
Sudden Death and The Genome: Utilizing Genomic Surveying Tools to Improve Sud...
Sudden Death and The Genome: Utilizing Genomic Surveying Tools to Improve Sud...Sudden Death and The Genome: Utilizing Genomic Surveying Tools to Improve Sud...
Sudden Death and The Genome: Utilizing Genomic Surveying Tools to Improve Sud...Daniel A. Perez, BS, CCRP (he/him/his)
 
PROTEASE DETECTION ON BLOOD SPOT CARDS FOR FUTURE COMPANION DIAGNOSTICS
PROTEASE DETECTION ON BLOOD SPOT CARDS FOR FUTURE COMPANION DIAGNOSTICSPROTEASE DETECTION ON BLOOD SPOT CARDS FOR FUTURE COMPANION DIAGNOSTICS
PROTEASE DETECTION ON BLOOD SPOT CARDS FOR FUTURE COMPANION DIAGNOSTICSiQHub
 
1 Introduction To Oncology
1 Introduction To Oncology1 Introduction To Oncology
1 Introduction To OncologyMiami Dade
 
Genetics and Internal Medicine (1)
Genetics and Internal Medicine  (1) Genetics and Internal Medicine  (1)
Genetics and Internal Medicine (1) Ahmed Elshebiny
 
Genetics and internal medicine (1)
Genetics and internal medicine  (1) Genetics and internal medicine  (1)
Genetics and internal medicine (1) Ahmed Elshebiny
 
158 genomic and proteomic risk factors
158 genomic and proteomic risk factors158 genomic and proteomic risk factors
158 genomic and proteomic risk factorsSHAPE Society
 
Coronary Heart Disease
Coronary Heart DiseaseCoronary Heart Disease
Coronary Heart Diseasecphcosu
 

Similar to Big data exposome and pediatric outcomes (20)

Search engine for E NEU network science 080817
Search engine for E NEU network science 080817Search engine for E NEU network science 080817
Search engine for E NEU network science 080817
 
Cancer (1)
 Cancer (1) Cancer (1)
Cancer (1)
 
Genetics and internal medicine (1& 2)
Genetics and internal medicine  (1& 2) Genetics and internal medicine  (1& 2)
Genetics and internal medicine (1& 2)
 
Genetic Syndromes and Thyroid Cancer by Pamela Brock, MS, LGC
Genetic Syndromes and Thyroid Cancer by Pamela Brock, MS, LGCGenetic Syndromes and Thyroid Cancer by Pamela Brock, MS, LGC
Genetic Syndromes and Thyroid Cancer by Pamela Brock, MS, LGC
 
Comprehensive survey of human genetic diseases
Comprehensive survey of human genetic diseasesComprehensive survey of human genetic diseases
Comprehensive survey of human genetic diseases
 
헬스케어 빅데이터로 무엇을 할 수 있는가?
헬스케어 빅데이터로 무엇을 할 수 있는가?헬스케어 빅데이터로 무엇을 할 수 있는가?
헬스케어 빅데이터로 무엇을 할 수 있는가?
 
Chapter 5 hereditary cancer syndrome next generation
Chapter 5 hereditary cancer syndrome next generationChapter 5 hereditary cancer syndrome next generation
Chapter 5 hereditary cancer syndrome next generation
 
Mark Daly - Finding risk genes in psychiatric disorders
Mark Daly - Finding risk genes in psychiatric disordersMark Daly - Finding risk genes in psychiatric disorders
Mark Daly - Finding risk genes in psychiatric disorders
 
Goldman04082010
Goldman04082010Goldman04082010
Goldman04082010
 
Etiology of Cancer
Etiology of CancerEtiology of Cancer
Etiology of Cancer
 
Sudden Death and The Genome: Utilizing Genomic Surveying Tools to Improve Sud...
Sudden Death and The Genome: Utilizing Genomic Surveying Tools to Improve Sud...Sudden Death and The Genome: Utilizing Genomic Surveying Tools to Improve Sud...
Sudden Death and The Genome: Utilizing Genomic Surveying Tools to Improve Sud...
 
Etiology of cancer
Etiology of cancerEtiology of cancer
Etiology of cancer
 
PROTEASE DETECTION ON BLOOD SPOT CARDS FOR FUTURE COMPANION DIAGNOSTICS
PROTEASE DETECTION ON BLOOD SPOT CARDS FOR FUTURE COMPANION DIAGNOSTICSPROTEASE DETECTION ON BLOOD SPOT CARDS FOR FUTURE COMPANION DIAGNOSTICS
PROTEASE DETECTION ON BLOOD SPOT CARDS FOR FUTURE COMPANION DIAGNOSTICS
 
1 Introduction To Oncology
1 Introduction To Oncology1 Introduction To Oncology
1 Introduction To Oncology
 
Genetics and Internal Medicine (1)
Genetics and Internal Medicine  (1) Genetics and Internal Medicine  (1)
Genetics and Internal Medicine (1)
 
Genetics and internal medicine (1)
Genetics and internal medicine  (1) Genetics and internal medicine  (1)
Genetics and internal medicine (1)
 
158 genomic and proteomic risk factors
158 genomic and proteomic risk factors158 genomic and proteomic risk factors
158 genomic and proteomic risk factors
 
158 genomic and proteomic risk factors
158 genomic and proteomic risk factors158 genomic and proteomic risk factors
158 genomic and proteomic risk factors
 
14. kidney cancer
14. kidney cancer14. kidney cancer
14. kidney cancer
 
Coronary Heart Disease
Coronary Heart DiseaseCoronary Heart Disease
Coronary Heart Disease
 

More from Chirag Patel

EWAS and the exposome: Mt Sinai in Brescia 052119
EWAS and the exposome: Mt Sinai in Brescia 052119EWAS and the exposome: Mt Sinai in Brescia 052119
EWAS and the exposome: Mt Sinai in Brescia 052119Chirag Patel
 
NCI systems epidemiology 03012019
NCI systems epidemiology 03012019NCI systems epidemiology 03012019
NCI systems epidemiology 03012019Chirag Patel
 
Chirag patel unite for sight 041418
Chirag patel unite for sight 041418Chirag patel unite for sight 041418
Chirag patel unite for sight 041418Chirag Patel
 
Japanese Environmental Children's Study and Data-driven E
Japanese Environmental Children's Study and Data-driven EJapanese Environmental Children's Study and Data-driven E
Japanese Environmental Children's Study and Data-driven EChirag Patel
 
Bioinformatics Strategies for Exposome 100416
Bioinformatics Strategies for Exposome 100416Bioinformatics Strategies for Exposome 100416
Bioinformatics Strategies for Exposome 100416Chirag Patel
 
Correlation globes of the exposome 2016
Correlation globes of the exposome 2016Correlation globes of the exposome 2016
Correlation globes of the exposome 2016Chirag Patel
 
Methods to enhance the validity of precision guidelines emerging from big data
Methods to enhance the validity of precision guidelines emerging from big dataMethods to enhance the validity of precision guidelines emerging from big data
Methods to enhance the validity of precision guidelines emerging from big dataChirag Patel
 
Data analytics to support exposome research course slides
Data analytics to support exposome research course slidesData analytics to support exposome research course slides
Data analytics to support exposome research course slidesChirag Patel
 
Searching for predictors of male fecundity
Searching for predictors of male fecunditySearching for predictors of male fecundity
Searching for predictors of male fecundityChirag Patel
 
Repurposing large datasets to dissect exposomic (and genomic) contributions i...
Repurposing large datasets to dissect exposomic (and genomic) contributions i...Repurposing large datasets to dissect exposomic (and genomic) contributions i...
Repurposing large datasets to dissect exposomic (and genomic) contributions i...Chirag Patel
 

More from Chirag Patel (10)

EWAS and the exposome: Mt Sinai in Brescia 052119
EWAS and the exposome: Mt Sinai in Brescia 052119EWAS and the exposome: Mt Sinai in Brescia 052119
EWAS and the exposome: Mt Sinai in Brescia 052119
 
NCI systems epidemiology 03012019
NCI systems epidemiology 03012019NCI systems epidemiology 03012019
NCI systems epidemiology 03012019
 
Chirag patel unite for sight 041418
Chirag patel unite for sight 041418Chirag patel unite for sight 041418
Chirag patel unite for sight 041418
 
Japanese Environmental Children's Study and Data-driven E
Japanese Environmental Children's Study and Data-driven EJapanese Environmental Children's Study and Data-driven E
Japanese Environmental Children's Study and Data-driven E
 
Bioinformatics Strategies for Exposome 100416
Bioinformatics Strategies for Exposome 100416Bioinformatics Strategies for Exposome 100416
Bioinformatics Strategies for Exposome 100416
 
Correlation globes of the exposome 2016
Correlation globes of the exposome 2016Correlation globes of the exposome 2016
Correlation globes of the exposome 2016
 
Methods to enhance the validity of precision guidelines emerging from big data
Methods to enhance the validity of precision guidelines emerging from big dataMethods to enhance the validity of precision guidelines emerging from big data
Methods to enhance the validity of precision guidelines emerging from big data
 
Data analytics to support exposome research course slides
Data analytics to support exposome research course slidesData analytics to support exposome research course slides
Data analytics to support exposome research course slides
 
Searching for predictors of male fecundity
Searching for predictors of male fecunditySearching for predictors of male fecundity
Searching for predictors of male fecundity
 
Repurposing large datasets to dissect exposomic (and genomic) contributions i...
Repurposing large datasets to dissect exposomic (and genomic) contributions i...Repurposing large datasets to dissect exposomic (and genomic) contributions i...
Repurposing large datasets to dissect exposomic (and genomic) contributions i...
 

Recently uploaded

Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Gabriel Guevara MD
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingNehru place Escorts
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceNehru place Escorts
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknownarwatsonia7
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...rajnisinghkjn
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipurparulsinha
 
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Serviceparulsinha
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersnarwatsonia7
 
Glomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxGlomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxDr.Nusrat Tariq
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Bookingnarwatsonia7
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbaisonalikaur4
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...narwatsonia7
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girlsnehamumbai
 
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000aliya bhat
 

Recently uploaded (20)

Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service MumbaiLow Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
Low Rate Call Girls Mumbai Suman 9910780858 Independent Escort Service Mumbai
 
Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024Asthma Review - GINA guidelines summary 2024
Asthma Review - GINA guidelines summary 2024
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
 
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original PhotosCall Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
Call Girl Service Bidadi - For 7001305949 Cheap & Best with original Photos
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
 
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service LucknowVIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
VIP Call Girls Lucknow Nandini 7001305949 Independent Escort Service Lucknow
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
 
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
 
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
 
Glomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxGlomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptx
 
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment BookingCall Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
Call Girl Koramangala | 7001305949 At Low Cost Cash Payment Booking
 
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service MumbaiVIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
VIP Call Girls Mumbai Arpita 9910780858 Independent Escort Service Mumbai
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
 
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
 

Big data exposome and pediatric outcomes

  • 1. Big data streams to elucidate the role of environmental exposures in pediatric outcomes Chirag J Patel Hot Topics! 12/8/2016 chirag@hms.harvard.edu @chiragjp www.chiragjpgroup.org
  • 2. Conflicts of Interest Disclosure: None
  • 3. P = G + E Phenotypes are a function of inherited and environmental factors
  • 4. P = G + EType 2 Diabetes Cancer Birthweight Birth timing Phenotype Phenotypes are a function of inherited and environmental factors
  • 5. P = G + EType 2 Diabetes Cancer Birthweight Birth timing Phenotype Genome polymorphisms Phenotypes are a function of inherited and environmental factors
  • 6. P = G + EType 2 Diabetes Cancer Birthweight Birth timing Phenotype Genome polymorphisms Environment Infectious agents Nutrients Pollutants Drugs Phenotypes are a function of inherited and environmental factors
  • 7. P = G + E However: we lack methods to discover the role of E in phenotypes and disease for precision medicine.
  • 8. ... and the case is different with genetics (e.g., genomics)! over 1,400 Genome-wide Association Studies (GWAS) NHGRI GWAS Catalog https://www.genome.gov/ G: dad mom me
  • 9. A similar platform for discovery should exist for E!
  • 10. A similar platform for discovery should exist for E! Why?
  • 11. σ2 P = σ2 G + σ2 E
  • 12. σ2 G σ2 P H2 = Heritability (H2) is the range of phenotypic variability attributed to genetic variability in a population Indicator of the proportion of phenotypic differences attributed to G.
  • 13. Height is an example of a heritable trait: Francis Galton shows how its done (1887) mid-height of 205 parents described 60% of variability of 928 offspring σ2 G σ2 P
  • 14. Source: SNPedia.com H2 estimates for complex traits are low and variable: massive opportunity for high-throughput E research Eye color Hair curliness Type−1 diabetes Height Schizophrenia Epilepsy Graves' disease Celiac disease Polycystic ovary syndrome Attention deficit hyperactivity disorder Bipolar disorder Obesity Alzheimer's disease Anorexia nervosa Psoriasis Bone mineral density Menarche, age at Nicotine dependence Sexual orientation Alcoholism Lupus Rheumatoid arthritis Crohn's disease Migraine Thyroid cancer Autism Blood pressure, diastolic Body mass index Depression Coronary artery disease Insomnia Menopause, age at Heart disease Birthweight Prostate cancer QT interval Breast cancer Ovarian cancer Preterm Birth Hangover Stroke Asthma Blood pressure, systolic Hypertension Osteoarthritis Parkinson's disease Longevity Type−2 diabetes Gallstone disease Testicular cancer Cervical cancer Sciatica Parturition Timing Bladder cancer Colon cancer Lung cancer Leukemia Stomach cancer 0 25 50 75 100 Heritability: Var(G)/Var(Phenotype)
  • 15. Source: SNPedia.com H2 estimates for complex traits are low and variable: massive opportunity for high-throughput E research Eye color Hair curliness Type−1 diabetes Height Schizophrenia Epilepsy Graves' disease Celiac disease Polycystic ovary syndrome Attention deficit hyperactivity disorder Bipolar disorder Obesity Alzheimer's disease Anorexia nervosa Psoriasis Bone mineral density Menarche, age at Nicotine dependence Sexual orientation Alcoholism Lupus Rheumatoid arthritis Crohn's disease Migraine Thyroid cancer Autism Blood pressure, diastolic Body mass index Depression Coronary artery disease Insomnia Menopause, age at Heart disease Birthweight Prostate cancer QT interval Breast cancer Ovarian cancer Preterm Birth Hangover Stroke Asthma Blood pressure, systolic Hypertension Osteoarthritis Parkinson's disease Longevity Type−2 diabetes Gallstone disease Testicular cancer Cervical cancer Sciatica Parturition Timing Bladder cancer Colon cancer Lung cancer Leukemia Stomach cancer 0 25 50 75 100 Heritability: Var(G)/Var(Phenotype) Type 2 Diabetes (25%)
  • 16. Source: SNPedia.com H2 estimates for complex traits are low and variable: massive opportunity for high-throughput E research Eye color Hair curliness Type−1 diabetes Height Schizophrenia Epilepsy Graves' disease Celiac disease Polycystic ovary syndrome Attention deficit hyperactivity disorder Bipolar disorder Obesity Alzheimer's disease Anorexia nervosa Psoriasis Bone mineral density Menarche, age at Nicotine dependence Sexual orientation Alcoholism Lupus Rheumatoid arthritis Crohn's disease Migraine Thyroid cancer Autism Blood pressure, diastolic Body mass index Depression Coronary artery disease Insomnia Menopause, age at Heart disease Birthweight Prostate cancer QT interval Breast cancer Ovarian cancer Preterm Birth Hangover Stroke Asthma Blood pressure, systolic Hypertension Osteoarthritis Parkinson's disease Longevity Type−2 diabetes Gallstone disease Testicular cancer Cervical cancer Sciatica Parturition Timing Bladder cancer Colon cancer Lung cancer Leukemia Stomach cancer 0 25 50 75 100 Heritability: Var(G)/Var(Phenotype) Type 2 Diabetes (25%) Heart Disease (30-60%)
  • 17. Source: SNPedia.com H2 estimates for complex traits are low and variable: massive opportunity for high-throughput E research Eye color Hair curliness Type−1 diabetes Height Schizophrenia Epilepsy Graves' disease Celiac disease Polycystic ovary syndrome Attention deficit hyperactivity disorder Bipolar disorder Obesity Alzheimer's disease Anorexia nervosa Psoriasis Bone mineral density Menarche, age at Nicotine dependence Sexual orientation Alcoholism Lupus Rheumatoid arthritis Crohn's disease Migraine Thyroid cancer Autism Blood pressure, diastolic Body mass index Depression Coronary artery disease Insomnia Menopause, age at Heart disease Birthweight Prostate cancer QT interval Breast cancer Ovarian cancer Preterm Birth Hangover Stroke Asthma Blood pressure, systolic Hypertension Osteoarthritis Parkinson's disease Longevity Type−2 diabetes Gallstone disease Testicular cancer Cervical cancer Sciatica Parturition Timing Bladder cancer Colon cancer Lung cancer Leukemia Stomach cancer 0 25 50 75 100 Heritability: Var(G)/Var(Phenotype) Preterm Birth (37%) Birthweight (40%) Timing (20%)
  • 18. Source: SNPedia.com H2 estimates for complex traits are low and variable: massive opportunity for high-throughput E research Eye color Hair curliness Type−1 diabetes Height Schizophrenia Epilepsy Graves' disease Celiac disease Polycystic ovary syndrome Attention deficit hyperactivity disorder Bipolar disorder Obesity Alzheimer's disease Anorexia nervosa Psoriasis Bone mineral density Menarche, age at Nicotine dependence Sexual orientation Alcoholism Lupus Rheumatoid arthritis Crohn's disease Migraine Thyroid cancer Autism Blood pressure, diastolic Body mass index Depression Coronary artery disease Insomnia Menopause, age at Heart disease Birthweight Prostate cancer QT interval Breast cancer Ovarian cancer Preterm Birth Hangover Stroke Asthma Blood pressure, systolic Hypertension Osteoarthritis Parkinson's disease Longevity Type−2 diabetes Gallstone disease Testicular cancer Cervical cancer Sciatica Parturition Timing Bladder cancer Colon cancer Lung cancer Leukemia Stomach cancer 0 25 50 75 100 Heritability: Var(G)/Var(Phenotype) H2 < 50%
  • 19. Explaining the other 50%: A new data-driven paradigm for robust discovery of E in disease via EWAS and the exposome PERSPECTIVES Xenobiotics Inflammation Preexisting disease Lipid peroxidation Oxidative stress Gut flora Internal chemical environment Externalenvironment ExposomeRADIATION DIET POLLUTION INFECTIONS DRUGS LIFE-STYLE STRESS Reactive electrophiles Metals Endocrine disrupters Immune modulators Receptor-binding proteins itical entity for disease eti- ogy (7). Recent discussion as focused on whether and ow to implement this vision 8). Although fully charac- rizing human exposomes daunting, strategies can be eveloped for getting “snap- hots” of critical portions of person’s exposome during ifferent stages of life. At ne extreme is a “bottom-up” rategy in which all chemi- als in each external source f a subject’s exposome are easured at each time point. lthoughthisapproachwould ave the advantage of relat- g important exposures to e air, water, or diet, it would quire enormous effort and ould miss essential compo- ents of the internal chemi- al environment due to such actors as gender, obesity, flammation, and stress. By ontrast, a “top-down” strat- gy would measure all chem- als (or products of their ownstream processing or ffects, so-called read-outs r signatures) in a subject’s ood. This would require nly a single blood specimen each time point and would relate directly ruptors and can be measured through serum some (telomere) length in peripheral blood mono- nuclear cells responded to chronic psychological stress, possibly mediated by the production of reac- tive oxygen species (15). Characterizing the exposome represents a tech- nological challenge like that of thehumangenomeproject,which began when DNA sequencing was in its infancy (16). Analyti- cal systems are needed to pro- cess small amounts of blood from thousands of subjects. Assays should be multiplexed for mea- suring many chemicals in each class of interest. Tandem mass spectrometry, gene and protein chips, and microfluidic systems offer the means to do this. Plat- forms for high-throughput assays shouldleadtoeconomiesofscale, again like those experienced by the human genome project. And because exposome technologies would provide feedback for thera- peuticinterventionsandpersonal- ized medicine, they should moti- vate the development of commer- cial devices for screening impor- tant environmental exposures in blood samples. With successful characterization of both Characterizing the exposome. The exposome represents the combined exposures from all sources that reach the internal chemical environment. Toxicologically important classes of exposome chemicals are shown. Signatures and biomarkers can detect these agents in blood or serum. onOctober21,2010www.sciencemag.orgrom Wild, 2005 Rappaport and Smith, 2010, 2011 Buck-Louis and Sundaram 2012 Miller and Jones, 2014 Patel CJ and Ioannidis JPAI, 2014
  • 20. Explaining the other 50%: A new data-driven paradigm for robust discovery of E in disease via EWAS and the exposome what to measure? PERSPECTIVES Xenobiotics Inflammation Preexisting disease Lipid peroxidation Oxidative stress Gut flora Internal chemical environment Externalenvironment ExposomeRADIATION DIET POLLUTION INFECTIONS DRUGS LIFE-STYLE STRESS Reactive electrophiles Metals Endocrine disrupters Immune modulators Receptor-binding proteins itical entity for disease eti- ogy (7). Recent discussion as focused on whether and ow to implement this vision 8). Although fully charac- rizing human exposomes daunting, strategies can be eveloped for getting “snap- hots” of critical portions of person’s exposome during ifferent stages of life. At ne extreme is a “bottom-up” rategy in which all chemi- als in each external source f a subject’s exposome are easured at each time point. lthoughthisapproachwould ave the advantage of relat- g important exposures to e air, water, or diet, it would quire enormous effort and ould miss essential compo- ents of the internal chemi- al environment due to such actors as gender, obesity, flammation, and stress. By ontrast, a “top-down” strat- gy would measure all chem- als (or products of their ownstream processing or ffects, so-called read-outs r signatures) in a subject’s ood. This would require nly a single blood specimen each time point and would relate directly ruptors and can be measured through serum some (telomere) length in peripheral blood mono- nuclear cells responded to chronic psychological stress, possibly mediated by the production of reac- tive oxygen species (15). Characterizing the exposome represents a tech- nological challenge like that of thehumangenomeproject,which began when DNA sequencing was in its infancy (16). Analyti- cal systems are needed to pro- cess small amounts of blood from thousands of subjects. Assays should be multiplexed for mea- suring many chemicals in each class of interest. Tandem mass spectrometry, gene and protein chips, and microfluidic systems offer the means to do this. Plat- forms for high-throughput assays shouldleadtoeconomiesofscale, again like those experienced by the human genome project. And because exposome technologies would provide feedback for thera- peuticinterventionsandpersonal- ized medicine, they should moti- vate the development of commer- cial devices for screening impor- tant environmental exposures in blood samples. With successful characterization of both Characterizing the exposome. The exposome represents the combined exposures from all sources that reach the internal chemical environment. Toxicologically important classes of exposome chemicals are shown. Signatures and biomarkers can detect these agents in blood or serum. onOctober21,2010www.sciencemag.orgrom Wild, 2005 Rappaport and Smith, 2010, 2011 Buck-Louis and Sundaram 2012 Miller and Jones, 2014 Patel CJ and Ioannidis JPAI, 2014
  • 21. Explaining the other 50%: A new data-driven paradigm for robust discovery of E in disease via EWAS and the exposome what to measure? how to measure? PERSPECTIVES Xenobiotics Inflammation Preexisting disease Lipid peroxidation Oxidative stress Gut flora Internal chemical environment Externalenvironment ExposomeRADIATION DIET POLLUTION INFECTIONS DRUGS LIFE-STYLE STRESS Reactive electrophiles Metals Endocrine disrupters Immune modulators Receptor-binding proteins itical entity for disease eti- ogy (7). Recent discussion as focused on whether and ow to implement this vision 8). Although fully charac- rizing human exposomes daunting, strategies can be eveloped for getting “snap- hots” of critical portions of person’s exposome during ifferent stages of life. At ne extreme is a “bottom-up” rategy in which all chemi- als in each external source f a subject’s exposome are easured at each time point. lthoughthisapproachwould ave the advantage of relat- g important exposures to e air, water, or diet, it would quire enormous effort and ould miss essential compo- ents of the internal chemi- al environment due to such actors as gender, obesity, flammation, and stress. By ontrast, a “top-down” strat- gy would measure all chem- als (or products of their ownstream processing or ffects, so-called read-outs r signatures) in a subject’s ood. This would require nly a single blood specimen each time point and would relate directly ruptors and can be measured through serum some (telomere) length in peripheral blood mono- nuclear cells responded to chronic psychological stress, possibly mediated by the production of reac- tive oxygen species (15). Characterizing the exposome represents a tech- nological challenge like that of thehumangenomeproject,which began when DNA sequencing was in its infancy (16). Analyti- cal systems are needed to pro- cess small amounts of blood from thousands of subjects. Assays should be multiplexed for mea- suring many chemicals in each class of interest. Tandem mass spectrometry, gene and protein chips, and microfluidic systems offer the means to do this. Plat- forms for high-throughput assays shouldleadtoeconomiesofscale, again like those experienced by the human genome project. And because exposome technologies would provide feedback for thera- peuticinterventionsandpersonal- ized medicine, they should moti- vate the development of commer- cial devices for screening impor- tant environmental exposures in blood samples. With successful characterization of both Characterizing the exposome. The exposome represents the combined exposures from all sources that reach the internal chemical environment. Toxicologically important classes of exposome chemicals are shown. Signatures and biomarkers can detect these agents in blood or serum. onOctober21,2010www.sciencemag.orgrom Wild, 2005 Rappaport and Smith, 2010, 2011 Buck-Louis and Sundaram 2012 Miller and Jones, 2014 Patel CJ and Ioannidis JPAI, 2014
  • 22. Explaining the other 50%: A new data-driven paradigm for robust discovery of E in disease via EWAS and the exposome what to measure? how to measure? PERSPECTIVES Xenobiotics Inflammation Preexisting disease Lipid peroxidation Oxidative stress Gut flora Internal chemical environment Externalenvironment ExposomeRADIATION DIET POLLUTION INFECTIONS DRUGS LIFE-STYLE STRESS Reactive electrophiles Metals Endocrine disrupters Immune modulators Receptor-binding proteins itical entity for disease eti- ogy (7). Recent discussion as focused on whether and ow to implement this vision 8). Although fully charac- rizing human exposomes daunting, strategies can be eveloped for getting “snap- hots” of critical portions of person’s exposome during ifferent stages of life. At ne extreme is a “bottom-up” rategy in which all chemi- als in each external source f a subject’s exposome are easured at each time point. lthoughthisapproachwould ave the advantage of relat- g important exposures to e air, water, or diet, it would quire enormous effort and ould miss essential compo- ents of the internal chemi- al environment due to such actors as gender, obesity, flammation, and stress. By ontrast, a “top-down” strat- gy would measure all chem- als (or products of their ownstream processing or ffects, so-called read-outs r signatures) in a subject’s ood. This would require nly a single blood specimen each time point and would relate directly ruptors and can be measured through serum some (telomere) length in peripheral blood mono- nuclear cells responded to chronic psychological stress, possibly mediated by the production of reac- tive oxygen species (15). Characterizing the exposome represents a tech- nological challenge like that of thehumangenomeproject,which began when DNA sequencing was in its infancy (16). Analyti- cal systems are needed to pro- cess small amounts of blood from thousands of subjects. Assays should be multiplexed for mea- suring many chemicals in each class of interest. Tandem mass spectrometry, gene and protein chips, and microfluidic systems offer the means to do this. Plat- forms for high-throughput assays shouldleadtoeconomiesofscale, again like those experienced by the human genome project. And because exposome technologies would provide feedback for thera- peuticinterventionsandpersonal- ized medicine, they should moti- vate the development of commer- cial devices for screening impor- tant environmental exposures in blood samples. With successful characterization of both Characterizing the exposome. The exposome represents the combined exposures from all sources that reach the internal chemical environment. Toxicologically important classes of exposome chemicals are shown. Signatures and biomarkers can detect these agents in blood or serum. onOctober21,2010www.sciencemag.orgrom how to analyze in relation to health? Wild, 2005 Rappaport and Smith, 2010, 2011 Buck-Louis and Sundaram 2012 Miller and Jones, 2014 Patel CJ and Ioannidis JPAI, 2014
  • 23. Explaining the other 50%: A new data-driven paradigm for robust discovery of E in disease via EWAS and the exposome what to measure? how to measure? Xenobiotics Inflammation Preexisting disease Lipid peroxidation Oxidative stress Gut flora Internal chemical environment Externalenvironment ExposomeRADIATION DIET POLLUTION INFECTIONS DRUGS LIFE-STYLE STRESS Reactive electrophiles Metals Endocrine disrupters Immune modulators Receptor-binding proteins itical entity for disease eti- ). Recent discussion as focused on whether and ow to implement this vision ). Although fully charac- rizing human exposomes daunting, strategies can be eveloped for getting “snap- hots” of critical portions of person’s exposome during ifferent stages of life. At ne extreme is a “bottom-up” rategy in which all chemi- als in each external source f a subject’s exposome are easured at each time point. lthoughthisapproachwould ave the advantage of relat- g important exposures to e air, water, or diet, it would quire enormous effort and ould miss essential compo- ents of the internal chemi- al environment due to such actors as gender, obesity, flammation, and stress. By ontrast, a “top-down” strat- gy would measure all chem- als (or products of their ownstream processing or ffects, so-called read-outs r signatures) in a subject’s ood. This would require nly a single blood specimen exposome represents a tech- nological challenge like that of thehumangenomeproject,which began when DNA sequencing was in its infancy ( cal systems are needed to pro- cess small amounts of blood from thousands of subjects. Assays should be multiplexed for mea- suring many chemicals in each class of interest. Tandem mass spectrometry, gene and protein chips, and microfluidic systems offer the means to do this. Plat- forms for high-throughput assays shouldleadtoeconomiesofscale, again like those experienced by the human genome project. And because exposome technologies would provide feedback for thera- peuticinterventionsandpersonal- ized medicine, they should moti- vate the development of commer- cial devices for screening impor- tant environmental exposures in blood samples. Characterizing the exposome. The exposome represents the combined exposures from all sources that reach the internal chemical environment. Toxicologically important classes of exposome chemicals are shown. Signatures and biomarkers can detect these agents in blood or serum. how to analyze in relation to health? Wild, 2005 Rappaport and Smith, 2010, 2011 Buck-Louis and Sundaram 2012 Miller and Jones, 2014 Patel CJ and Ioannidis JPAI, 2014
  • 24. Explaining the other 50%: A new data-driven paradigm for robust discovery of E in disease via EWAS and the exposome what to measure? how to measure? Xenobiotics Inflammation Preexisting disease Lipid peroxidation Oxidative stress Gut flora Internal chemical environment Externalenvironment ExposomeRADIATION DIET POLLUTION INFECTIONS DRUGS LIFE-STYLE STRESS Reactive electrophiles Metals Endocrine disrupters Immune modulators Receptor-binding proteins itical entity for disease eti- ). Recent discussion as focused on whether and ow to implement this vision ). Although fully charac- rizing human exposomes daunting, strategies can be eveloped for getting “snap- hots” of critical portions of person’s exposome during ifferent stages of life. At ne extreme is a “bottom-up” rategy in which all chemi- als in each external source f a subject’s exposome are easured at each time point. lthoughthisapproachwould ave the advantage of relat- g important exposures to e air, water, or diet, it would quire enormous effort and ould miss essential compo- ents of the internal chemi- al environment due to such actors as gender, obesity, flammation, and stress. By ontrast, a “top-down” strat- gy would measure all chem- als (or products of their ownstream processing or ffects, so-called read-outs r signatures) in a subject’s ood. This would require nly a single blood specimen exposome represents a tech- nological challenge like that of thehumangenomeproject,which began when DNA sequencing was in its infancy ( cal systems are needed to pro- cess small amounts of blood from thousands of subjects. Assays should be multiplexed for mea- suring many chemicals in each class of interest. Tandem mass spectrometry, gene and protein chips, and microfluidic systems offer the means to do this. Plat- forms for high-throughput assays shouldleadtoeconomiesofscale, again like those experienced by the human genome project. And because exposome technologies would provide feedback for thera- peuticinterventionsandpersonal- ized medicine, they should moti- vate the development of commer- cial devices for screening impor- tant environmental exposures in blood samples. Characterizing the exposome. The exposome represents the combined exposures from all sources that reach the internal chemical environment. Toxicologically important classes of exposome chemicals are shown. Signatures and biomarkers can detect these agents in blood or serum. “A more comprehensive view of environmental exposure is needed ... to discover major causes of diseases...” how to analyze in relation to health? Wild, 2005 Rappaport and Smith, 2010, 2011 Buck-Louis and Sundaram 2012 Miller and Jones, 2014 Patel CJ and Ioannidis JPAI, 2014
  • 25. Connecting Environmental Exposure with Disease: Missing the “System” of Exposures? E+ E- diseased non- diseased ? Exposed to many things, but do not assess the multiplicity. Fragmented literature of associations. Challenge to discover E associated with disease.
  • 26. Example of fragmentation and vibration of effects: Is everything we eat associated with cancer? AJCN, 2012 JCE, 2015 50 random ingredients from Boston Cooking School Cookbook Any associated with cancer?
  • 27. Example of fragmentation and vibration of effects: Is everything we eat associated with cancer? AJCN, 2012 JCE, 2015 Of 50, 40 studied in a cancer risk 50 random ingredients from Boston Cooking School Cookbook Any associated with cancer?
  • 28. Example of fragmentation and vibration of effects: Is everything we eat associated with cancer? AJCN, 2012 JCE, 2015 FIGURE 1. Effect estimates reported in the literature by malignancy type (top) or ingredient (bottom). Only ingredients with $10 studie outliers are not shown (effect estimates .10). Of 50, 40 studied in a cancer risk 50 random ingredients from Boston Cooking School Cookbook Any associated with cancer?
  • 29. Example of fragmentation and vibration of effects: Is everything we eat associated with cancer? AJCN, 2012 JCE, 2015 FIGURE 1. Effect estimates reported in the literature by malignancy type (top) or ingredient (bottom). Only ingredients with $10 studie outliers are not shown (effect estimates .10). Of 50, 40 studied in a cancer risk Weak statistical evidence: non-replicated inconsistent effects non-standardized 50 random ingredients from Boston Cooking School Cookbook Any associated with cancer?
  • 30. Example of fragmentation and vibration of effects: Is everything we eat associated with cancer? AJCN, 2012 JCE, 2015 FIGURE 1. Effect estimates reported in the literature by malignancy type (top) or ingredient (bottom). Only ingredients with $10 studie outliers are not shown (effect estimates .10). Of 50, 40 studied in a cancer risk Weak statistical evidence: non-replicated inconsistent effects non-standardized 50 random ingredients from Boston Cooking School Cookbook Any associated with cancer? relative risk riskprotection
  • 31. Connecting Environmental Exposure with Disease: Missing the “System” of Exposures? E+ E- diseased non- diseased ? Exposed to many things, but do not assess the multiplicity. Fragmented literature of associations. Challenge to discover E associated with disease.
  • 32. courtesy: colabria.com Moving beyond the lamppost for discovery
  • 33. Gold standard for breadth of human exposure information: National Health and Nutrition Examination Survey1 since the 1960s now biannual: 1999 onwards 10,000 participants per survey The sample for the survey is selected to represent the U.S. population of all ages. To produce reli- able statistics, NHANES over-samples persons 60 and older, African Americans, and Hispanics. Since the United States has experienced dramatic growth in the number of older people during this century, the aging population has major impli- cations for health care needs, public policy, and research priorities. NCHS is working with public health agencies to increase the knowledge of the health status of older Americans. NHANES has a primary role in this endeavor. All participants visit the physician. Dietary inter- views and body measurements are included for everyone. All but the very young have a blood sample taken and will have a dental screening. Depending upon the age of the participant, the rest of the examination includes tests and proce- dures to assess the various aspects of health listed above. In general, the older the individual, the more extensive the examination. Survey Operations Health interviews are conducted in respondents’ homes. Health measurements are performed in specially-designed and equipped mobile centers, which travel to locations throughout the country. The study team consists of a physician, medical and health technicians, as well as dietary and health interviewers. Many of the study staff are bilingual (English/Spanish). An advanced computer system using high- end servers, desktop PCs, and wide-area networking collect and process all of the NHANES data, nearly eliminating the need for paper forms and manual coding operations. This system allows interviewers to use note- book computers with electronic pens. The staff at the mobile center can automatically transmit data into data bases through such devices as digital scales and stadiometers. Touch-sensi- tive computer screens let respondents enter their own responses to certain sensitive ques- tions in complete privacy. Survey information is available to NCHS staff within 24 hours of collection, which enhances the capability of collecting quality data and increases the speed with which results are released to the public. In each location, local health and government officials are notified of the upcoming survey. Households in the study area receive a letter from the NCHS Director to introduce the survey. Local media may feature stories about the survey. NHANES is designed to facilitate and en- courage participation. Transportation is provided to and from the mobile center if necessary. Participants receive compensation and a report of medical findings is given to each participant. All information collected in the survey is kept strictly confidential. Privacy is protected by public laws. Uses of the Data Information from NHANES is made available through an extensive series of publications and articles in scientific and technical journals. For data users and researchers throughout the world, survey data are available on the internet and on easy-to-use CD-ROMs. Research organizations, universities, health care providers, and educators benefit from survey information. Primary data users are federal agencies that collaborated in the de- sign and development of the survey. The National Institutes of Health, the Food and Drug Administration, and CDC are among the agencies that rely upon NHANES to provide data essential for the implementation and evaluation of program activities. The U.S. Department of Agriculture and NCHS coop- erate in planning and reporting dietary and nutrition information from the survey. NHANES’ partnership with the U.S. Environ- mental Protection Agency allows continued study of the many important environmental influences on our health. • Physical fitness and physical functioning • Reproductive history and sexual behavior • Respiratory disease (asthma, chronic bron- chitis, emphysema) • Sexually transmitted diseases • Vision 1 http://www.cdc.gov/nchs/nhanes.htm
  • 34. Gold standard for breadth of human exposure information: National Health and Nutrition Examination Survey1 since the 1960s now biannual: 1999 onwards 10,000 participants per survey The sample for the survey is selected to represent the U.S. population of all ages. To produce reli- able statistics, NHANES over-samples persons 60 and older, African Americans, and Hispanics. Since the United States has experienced dramatic growth in the number of older people during this century, the aging population has major impli- cations for health care needs, public policy, and research priorities. NCHS is working with public health agencies to increase the knowledge of the health status of older Americans. NHANES has a primary role in this endeavor. All participants visit the physician. Dietary inter- views and body measurements are included for everyone. All but the very young have a blood sample taken and will have a dental screening. Depending upon the age of the participant, the rest of the examination includes tests and proce- dures to assess the various aspects of health listed above. In general, the older the individual, the more extensive the examination. Survey Operations Health interviews are conducted in respondents’ homes. Health measurements are performed in specially-designed and equipped mobile centers, which travel to locations throughout the country. The study team consists of a physician, medical and health technicians, as well as dietary and health interviewers. Many of the study staff are bilingual (English/Spanish). An advanced computer system using high- end servers, desktop PCs, and wide-area networking collect and process all of the NHANES data, nearly eliminating the need for paper forms and manual coding operations. This system allows interviewers to use note- book computers with electronic pens. The staff at the mobile center can automatically transmit data into data bases through such devices as digital scales and stadiometers. Touch-sensi- tive computer screens let respondents enter their own responses to certain sensitive ques- tions in complete privacy. Survey information is available to NCHS staff within 24 hours of collection, which enhances the capability of collecting quality data and increases the speed with which results are released to the public. In each location, local health and government officials are notified of the upcoming survey. Households in the study area receive a letter from the NCHS Director to introduce the survey. Local media may feature stories about the survey. NHANES is designed to facilitate and en- courage participation. Transportation is provided to and from the mobile center if necessary. Participants receive compensation and a report of medical findings is given to each participant. All information collected in the survey is kept strictly confidential. Privacy is protected by public laws. Uses of the Data Information from NHANES is made available through an extensive series of publications and articles in scientific and technical journals. For data users and researchers throughout the world, survey data are available on the internet and on easy-to-use CD-ROMs. Research organizations, universities, health care providers, and educators benefit from survey information. Primary data users are federal agencies that collaborated in the de- sign and development of the survey. The National Institutes of Health, the Food and Drug Administration, and CDC are among the agencies that rely upon NHANES to provide data essential for the implementation and evaluation of program activities. The U.S. Department of Agriculture and NCHS coop- erate in planning and reporting dietary and nutrition information from the survey. NHANES’ partnership with the U.S. Environ- mental Protection Agency allows continued study of the many important environmental influences on our health. • Physical fitness and physical functioning • Reproductive history and sexual behavior • Respiratory disease (asthma, chronic bron- chitis, emphysema) • Sexually transmitted diseases • Vision 1 http://www.cdc.gov/nchs/nhanes.htm >250 exposures (serum + urine) >1,000 genetic loci >85 quantitative clinical traits (e.g., serum glucose, lipids, body mass index)
  • 35. What maternal E are associated with preterm birth (< 37 weeks)? Reprod Tox, 2014
  • 36. What maternal E are associated with preterm birth (< 37 weeks)?: What did we screen in moms?
  • 37. What maternal E are associated with preterm birth (< 37 weeks)?: What did we screen in moms? Nutrients and Vitamins vitamin D, carotenes 32
  • 38. What maternal E are associated with preterm birth (< 37 weeks)?: What did we screen in moms? Infectious Agents hepatitis, HIV, Staph. aureus 24 Nutrients and Vitamins vitamin D, carotenes 32
  • 39. What maternal E are associated with preterm birth (< 37 weeks)?: What did we screen in moms? Infectious Agents hepatitis, HIV, Staph. aureus 24 Nutrients and Vitamins vitamin D, carotenes 32 Plastics and consumables phthalates, bisphenol A 49
  • 40. What maternal E are associated with preterm birth (< 37 weeks)?: What did we screen in moms? Infectious Agents hepatitis, HIV, Staph. aureus 24 Nutrients and Vitamins vitamin D, carotenes 32 Plastics and consumables phthalates, bisphenol A 49 Pesticides and air-related pollutants atrazine; cadmium; hydrocarbons; polychorinated biphenyls; volatile organic compounds 95
  • 41. NHANES 1999-2006 5772 reporting live births What maternal E are associated with preterm birth (< 37 weeks)?: Method for screening for associations Reprod Tox, 2014
  • 42. NHANES 1999-2006 5772 reporting live births What maternal E are associated with preterm birth (< 37 weeks)?: Method for screening for associations Reprod Tox, 2014 Pregnant year prior to survey? 842 participants
  • 43. NHANES 1999-2006 5772 reporting live births What maternal E are associated with preterm birth (< 37 weeks)?: Method for screening for associations Reprod Tox, 2014 Pregnant year prior to survey? 842 participants Any child born preterm? < 37 weeks or earlier
  • 44. NHANES 1999-2006 5772 reporting live births What maternal E are associated with preterm birth (< 37 weeks)?: Method for screening for associations Reprod Tox, 2014 Pregnant year prior to survey? 842 participants Any child born preterm? < 37 weeks or earlier Any preterm birth N=62 No preterm birth N=718
  • 45. NHANES 1999-2006 5772 reporting live births What maternal E are associated with preterm birth (< 37 weeks)?: Method for screening for associations Reprod Tox, 2014 logistic regression (age, race, poverty/income, education, number of births) Pregnant year prior to survey? 842 participants Any child born preterm? < 37 weeks or earlier Any preterm birth N=62 No preterm birth N=718
  • 46. What maternal E are associated with preterm birth (< 37 weeks)?: Volcano plot of 201 associations Reprod Tox, 2014 0 1 2 0 2 4 6 Odds Ratio −log10(p−value)
  • 47. What maternal E are associated with preterm birth (< 37 weeks)?: Volcano plot of 201 associations Reprod Tox, 2014 0 1 2 0 2 4 6 Odds Ratio −log10(p−value) serum iron (OR: 1.6) urine Cs (OR: 1.9) urine hydroxypyrene (OR: 1.8)
  • 48. What maternal E are associated with preterm birth (< 37 weeks)?: Volcano plot of 201 associations Reprod Tox, 2014 0 1 2 0 2 4 6 Odds Ratio −log10(p−value) urine bisphenol A (OR: 1.9) serum iron (OR: 1.6) urine Cs (OR: 1.9) urine hydroxypyrene (OR: 1.8)
  • 49. Tentative evaluation of higher Bisphenol A levels in moms who gave preterm birth in a tertiary clinic Reprod Tox, 2014 Lucile Packard Children’s Hospital 37 consenting mothers with urine (during gestation)! bisphenol A
  • 50. Tentative evaluation of higher Bisphenol A levels in moms who gave preterm birth in a tertiary clinic Reprod Tox, 2014 Lucile Packard Children’s Hospital 37 consenting mothers with urine (during gestation)! bisphenol A Child born preterm?
  • 51. Tentative evaluation of higher Bisphenol A levels in moms who gave preterm birth in a tertiary clinic Reprod Tox, 2014 Lucile Packard Children’s Hospital 37 consenting mothers with urine (during gestation)! bisphenol A Child born preterm? Preterm N=16 No Preterm N=21
  • 52. Tentative evaluation of higher Bisphenol A levels in moms who gave preterm birth in a tertiary clinic Reprod Tox, 2014 Lucile Packard Children’s Hospital 37 consenting mothers with urine (during gestation)! bisphenol A 0.07 ug/mL 0.03 ug/mL Odds Ratio (1SD change): 3.5 (p=0.1) (age, race, creatinine, gestational age) Child born preterm? Preterm N=16 No Preterm N=21
  • 53. The spectrum of associations depends on age: What E factors are associated with mortality?
  • 54. EWAS to search for exposures and behaviors associated with all-cause mortality. NHANES: 1999-2004 National Death Index linked mortality 246 behaviors and exposures (serum/urine/self-report) IJE, 2013
  • 55. EWAS to search for exposures and behaviors associated with all-cause mortality. NHANES: 1999-2004 National Death Index linked mortality 246 behaviors and exposures (serum/urine/self-report) NHANES: 1999-2001 N=330 to 6008 (26 to 655 deaths) ~5.5 years of followup IJE, 2013
  • 56. EWAS to search for exposures and behaviors associated with all-cause mortality. NHANES: 1999-2004 National Death Index linked mortality 246 behaviors and exposures (serum/urine/self-report) NHANES: 1999-2001 N=330 to 6008 (26 to 655 deaths) ~5.5 years of followup Cox proportional hazards baseline exposure and time to death IJE, 2013
  • 57. EWAS to search for exposures and behaviors associated with all-cause mortality. NHANES: 1999-2004 National Death Index linked mortality 246 behaviors and exposures (serum/urine/self-report) NHANES: 1999-2001 N=330 to 6008 (26 to 655 deaths) ~5.5 years of followup Cox proportional hazards baseline exposure and time to death False discovery rate < 5% IJE, 2013
  • 58. EWAS to search for exposures and behaviors associated with all-cause mortality. NHANES: 1999-2004 National Death Index linked mortality 246 behaviors and exposures (serum/urine/self-report) NHANES: 1999-2001 N=330 to 6008 (26 to 655 deaths) ~5.5 years of followup Cox proportional hazards baseline exposure and time to death False discovery rate < 5% NHANES: 2003-2004 N=177 to 3258 (20-202 deaths) ~2.8 years of followup p < 0.05 IJE, 2013
  • 59. Adjusted Hazard Ratio -log10(pvalue) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 02468 1 2 3 4 5 67 1 Physical Activity 2 Does anyone smoke in home? 3 Cadmium 4 Cadmium, urine 5 Past smoker 6 Current smoker 7 trans-lycopene (11) 1 2 3 4 5 6 78 9 10 1112 13 14 1516 1 age (10 year increment) 2 SES_1 3 male 4 SES_0 5 black 6 SES_2 7 SES_3 8 education_hs 9 other_eth 10 mexican 11 occupation_blue_semi 12 education_less_hs 13 occupation_never 14 occupation_blue_high 15 occupation_white_semi 16 other_hispanic (69) EWAS (re)-identifies factors associated with all-cause mortality: Volcano plot of 200 associations age, sex, income, education, race/ethnicity, occupation [in red]
  • 60. Adjusted Hazard Ratio -log10(pvalue) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 02468 1 2 3 4 5 67 1 Physical Activity 2 Does anyone smoke in home? 3 Cadmium 4 Cadmium, urine 5 Past smoker 6 Current smoker 7 trans-lycopene (11) 1 2 3 4 5 6 78 9 10 1112 13 14 1516 1 age (10 year increment) 2 SES_1 3 male 4 SES_0 5 black 6 SES_2 7 SES_3 8 education_hs 9 other_eth 10 mexican 11 occupation_blue_semi 12 education_less_hs 13 occupation_never 14 occupation_blue_high 15 occupation_white_semi 16 other_hispanic (69) EWAS (re)-identifies factors associated with all-cause mortality: Volcano plot of 200 associations age (10 years) income (quintile 2) income (quintile 1) male black income (quintile 3) age, sex, income, education, race/ethnicity, occupation [in red]
  • 61. Adjusted Hazard Ratio -log10(pvalue) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 02468 1 2 3 4 5 67 1 Physical Activity 2 Does anyone smoke in home? 3 Cadmium 4 Cadmium, urine 5 Past smoker 6 Current smoker 7 trans-lycopene (11) 1 2 3 4 5 6 78 9 10 1112 13 14 1516 1 age (10 year increment) 2 SES_1 3 male 4 SES_0 5 black 6 SES_2 7 SES_3 8 education_hs 9 other_eth 10 mexican 11 occupation_blue_semi 12 education_less_hs 13 occupation_never 14 occupation_blue_high 15 occupation_white_semi 16 other_hispanic (69) EWAS (re)-identifies factors associated with all-cause mortality: Volcano plot of 200 associations age (10 years) income (quintile 2) income (quintile 1) male black income (quintile 3) age, sex, income, education, race/ethnicity, occupation [in red] serum lycopene [1SD]
  • 62. Adjusted Hazard Ratio -log10(pvalue) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 02468 1 2 3 4 5 67 1 Physical Activity 2 Does anyone smoke in home? 3 Cadmium 4 Cadmium, urine 5 Past smoker 6 Current smoker 7 trans-lycopene (11) 1 2 3 4 5 6 78 9 10 1112 13 14 1516 1 age (10 year increment) 2 SES_1 3 male 4 SES_0 5 black 6 SES_2 7 SES_3 8 education_hs 9 other_eth 10 mexican 11 occupation_blue_semi 12 education_less_hs 13 occupation_never 14 occupation_blue_high 15 occupation_white_semi 16 other_hispanic (69) EWAS (re)-identifies factors associated with all-cause mortality: Volcano plot of 200 associations age (10 years) income (quintile 2) income (quintile 1) male black income (quintile 3) age, sex, income, education, race/ethnicity, occupation [in red] past smoker? current smoker?serum lycopene [1SD]
  • 63. Adjusted Hazard Ratio -log10(pvalue) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 02468 1 2 3 4 5 67 1 Physical Activity 2 Does anyone smoke in home? 3 Cadmium 4 Cadmium, urine 5 Past smoker 6 Current smoker 7 trans-lycopene (11) 1 2 3 4 5 6 78 9 10 1112 13 14 1516 1 age (10 year increment) 2 SES_1 3 male 4 SES_0 5 black 6 SES_2 7 SES_3 8 education_hs 9 other_eth 10 mexican 11 occupation_blue_semi 12 education_less_hs 13 occupation_never 14 occupation_blue_high 15 occupation_white_semi 16 other_hispanic (69) EWAS (re)-identifies factors associated with all-cause mortality: Volcano plot of 200 associations age (10 years) income (quintile 2) income (quintile 1) male black income (quintile 3) any one smoke in home? age, sex, income, education, race/ethnicity, occupation [in red] past smoker? current smoker?serum lycopene [1SD]
  • 64. Adjusted Hazard Ratio -log10(pvalue) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 02468 1 2 3 4 5 67 1 Physical Activity 2 Does anyone smoke in home? 3 Cadmium 4 Cadmium, urine 5 Past smoker 6 Current smoker 7 trans-lycopene (11) 1 2 3 4 5 6 78 9 10 1112 13 14 1516 1 age (10 year increment) 2 SES_1 3 male 4 SES_0 5 black 6 SES_2 7 SES_3 8 education_hs 9 other_eth 10 mexican 11 occupation_blue_semi 12 education_less_hs 13 occupation_never 14 occupation_blue_high 15 occupation_white_semi 16 other_hispanic (69) EWAS (re)-identifies factors associated with all-cause mortality: Volcano plot of 200 associations age (10 years) income (quintile 2) income (quintile 1) male black income (quintile 3) any one smoke in home? age, sex, income, education, race/ethnicity, occupation [in red] serum and urine cadmium [1 SD] past smoker? current smoker?serum lycopene [1SD]
  • 65. Adjusted Hazard Ratio -log10(pvalue) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 02468 1 2 3 4 5 67 1 Physical Activity 2 Does anyone smoke in home? 3 Cadmium 4 Cadmium, urine 5 Past smoker 6 Current smoker 7 trans-lycopene (11) 1 2 3 4 5 6 78 9 10 1112 13 14 1516 1 age (10 year increment) 2 SES_1 3 male 4 SES_0 5 black 6 SES_2 7 SES_3 8 education_hs 9 other_eth 10 mexican 11 occupation_blue_semi 12 education_less_hs 13 occupation_never 14 occupation_blue_high 15 occupation_white_semi 16 other_hispanic (69) EWAS (re)-identifies factors associated with all-cause mortality: Volcano plot of 200 associations age (10 years) income (quintile 2) income (quintile 1) male black income (quintile 3) any one smoke in home? age, sex, income, education, race/ethnicity, occupation [in red] serum and urine cadmium [1 SD] past smoker? current smoker?serum lycopene [1SD] physical activity [low, moderate, high activity]* *derived from METs per activity and categorized by Health.gov guidelines
  • 66. Adjusted Hazard Ratio -log10(pvalue) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0 2.4 2.8 02468 1 2 3 4 5 67 1 Physical Activity 2 Does anyone smoke in home? 3 Cadmium 4 Cadmium, urine 5 Past smoker 6 Current smoker 7 trans-lycopene (11) 1 2 3 4 5 6 78 9 10 1112 13 14 1516 1 age (10 year increment) 2 SES_1 3 male 4 SES_0 5 black 6 SES_2 7 SES_3 8 education_hs 9 other_eth 10 mexican 11 occupation_blue_semi 12 education_less_hs 13 occupation_never 14 occupation_blue_high 15 occupation_white_semi 16 other_hispanic (69) EWAS (re)-identifies factors associated with all-cause mortality: Volcano plot of 200 associations age (10 years) income (quintile 2) income (quintile 1) male black income (quintile 3) any one smoke in home? age, sex, income, education, race/ethnicity, occupation [in red] serum and urine cadmium [1 SD] past smoker? current smoker?serum lycopene [1SD] physical activity [low, moderate, high activity]* *derived from METs per activity and categorized by Health.gov guidelines R2 ~ 2%
  • 67. Eye color Hair curliness Type-1 diabetes Height Schizophrenia Epilepsy Graves' disease Celiac disease Polycystic ovary syndrome Attention deficit hyperactivity disorder Bipolar disorder Obesity Alzheimer's disease Anorexia nervosa Psoriasis Bone mineral density Menarche, age at Nicotine dependence Sexual orientation Alcoholism Lupus Rheumatoid arthritis Crohn's disease Migraine Thyroid cancer Autism Blood pressure, diastolic Body mass index Depression Coronary artery disease Insomnia Menopause, age at Heart disease Prostate cancer QT interval Breast cancer Ovarian cancer Hangover Stroke Asthma Blood pressure, systolic Hypertension Osteoarthritis Parkinson's disease Longevity Type-2 diabetes Gallstone disease Testicular cancer Cervical cancer Sciatica Bladder cancer Colon cancer Lung cancer Leukemia Stomach cancer 0 25 50 75 100 Heritability: Var(G)/Var(Phenotype) Source: SNPedia.com Remember: >50% of disease risk and phenotypic variability is in E! H2 < 50%
  • 68. Where can it be found? >50% of disease risk and phenotypic variability is in E!
  • 69. Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- proach (an analogy to genome-wide association stud- ies).Forexample,Wangetal4 screenedmorethan2000 chemicalsinserumtodiscoverendogenousexposuresas- sociated with risk for cardiovascular disease. Therearenotablehurdlesinanalyzing“big”environ- mental data. These same problems affect epidemiology of1-risk-factor-at-a-time,butinEWAStheirprevalencebe- comes more clearly manifest at large scale. When study- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets, may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observational data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of the multiple correlations also highlights the challenge thatinterveningtomodify1putativeriskfactoralsomay inadvertently affect multiple other correlated factors. Even when a seemingly simple intervention is tested in randomizedtrials(affectingasingleriskfactoramongthe manycorrelations),theinterventionisnotreallysimple. In essence what is tested are multiple perturbations of factors correlated with the one targeted for interven- VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion JAMA, 2014 JECH, 2014 Proc Symp Biocomp, 2015 How can we proceed to study the elusive environment in large scale for discovery-based research? Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observationa data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion
  • 70. Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- proach (an analogy to genome-wide association stud- ies).Forexample,Wangetal4 screenedmorethan2000 chemicalsinserumtodiscoverendogenousexposuresas- sociated with risk for cardiovascular disease. Therearenotablehurdlesinanalyzing“big”environ- mental data. These same problems affect epidemiology of1-risk-factor-at-a-time,butinEWAStheirprevalencebe- comes more clearly manifest at large scale. When study- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets, may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observational data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of the multiple correlations also highlights the challenge thatinterveningtomodify1putativeriskfactoralsomay inadvertently affect multiple other correlated factors. Even when a seemingly simple intervention is tested in randomizedtrials(affectingasingleriskfactoramongthe manycorrelations),theinterventionisnotreallysimple. In essence what is tested are multiple perturbations of factors correlated with the one targeted for interven- VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion JAMA, 2014 JECH, 2014 Proc Symp Biocomp, 2015 How can we proceed to study the elusive environment in large scale for discovery-based research? Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observationa data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion •new ‘omics technologies
  • 71. Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- proach (an analogy to genome-wide association stud- ies).Forexample,Wangetal4 screenedmorethan2000 chemicalsinserumtodiscoverendogenousexposuresas- sociated with risk for cardiovascular disease. Therearenotablehurdlesinanalyzing“big”environ- mental data. These same problems affect epidemiology of1-risk-factor-at-a-time,butinEWAStheirprevalencebe- comes more clearly manifest at large scale. When study- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets, may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observational data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of the multiple correlations also highlights the challenge thatinterveningtomodify1putativeriskfactoralsomay inadvertently affect multiple other correlated factors. Even when a seemingly simple intervention is tested in randomizedtrials(affectingasingleriskfactoramongthe manycorrelations),theinterventionisnotreallysimple. In essence what is tested are multiple perturbations of factors correlated with the one targeted for interven- VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion JAMA, 2014 JECH, 2014 Proc Symp Biocomp, 2015 •longitudinal publicly available data How can we proceed to study the elusive environment in large scale for discovery-based research? Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observationa data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion •new ‘omics technologies
  • 72. Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- proach (an analogy to genome-wide association stud- ies).Forexample,Wangetal4 screenedmorethan2000 chemicalsinserumtodiscoverendogenousexposuresas- sociated with risk for cardiovascular disease. Therearenotablehurdlesinanalyzing“big”environ- mental data. These same problems affect epidemiology of1-risk-factor-at-a-time,butinEWAStheirprevalencebe- comes more clearly manifest at large scale. When study- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets, may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observational data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of the multiple correlations also highlights the challenge thatinterveningtomodify1putativeriskfactoralsomay inadvertently affect multiple other correlated factors. Even when a seemingly simple intervention is tested in randomizedtrials(affectingasingleriskfactoramongthe manycorrelations),theinterventionisnotreallysimple. In essence what is tested are multiple perturbations of factors correlated with the one targeted for interven- VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion JAMA, 2014 JECH, 2014 Proc Symp Biocomp, 2015 •longitudinal publicly available data How can we proceed to study the elusive environment in large scale for discovery-based research? Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observationa data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion High-throughputascertainmentofendogenousindicatorsofen- vironmentalexposurethatmayreflecttheexposomeincreasinglyat- tractattention,andtheirperformanceneedstobecarefullyevaluated. These include chemical detection of indicators of exposure through US federally funded gene expression experiment data be d itedinpublicrepositoriessuchastheGeneExpressionOmnibu repositoryhasbeeninstrumentalindevelopmentoftechnolo measurement of gene expression, data standardization, and Figure. Correlation Interdependency Globes for 4 Environmental Exposures (Cotinine, Mercury, Cadmium, Trans-β-Carotene) in National Health Nutrition Examination Survey (NHANES) Participants, 2003-2004 A Serum cotinine B Serum total mercury C Serum cadmium D Serum trans-β-carotene 37 Total correlations 42 Total correlations 68 Total correlations 68 Total correlations Negative correlation Positive correl Infectious agents Pollutants Nutrients and vitamins Demographic attributes Eachcorrelationinterdependencyglobeincludes317environmentalexposures representedbythenodesaroundtheperipheryoftheglobe.Pairwisecorrelations aredepictedbyedges(lines)betweenthenodeofinterest(arrowhead)andother nodes.Correlationswithabsolutevaluesexceeding0.2areshown(stronges Thesizeofeachnodeisproportionaltothenumberofedgesforanode,and thicknessofeachedgeindicatesthemagnitudeofthecorrelation. Opinion Viewpoint •data mining and informatics to tackle complexity what causes what? confounding •new ‘omics technologies
  • 73. Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- proach (an analogy to genome-wide association stud- ies).Forexample,Wangetal4 screenedmorethan2000 chemicalsinserumtodiscoverendogenousexposuresas- sociated with risk for cardiovascular disease. Therearenotablehurdlesinanalyzing“big”environ- mental data. These same problems affect epidemiology of1-risk-factor-at-a-time,butinEWAStheirprevalencebe- comes more clearly manifest at large scale. When study- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets, may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observational data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of the multiple correlations also highlights the challenge thatinterveningtomodify1putativeriskfactoralsomay inadvertently affect multiple other correlated factors. Even when a seemingly simple intervention is tested in randomizedtrials(affectingasingleriskfactoramongthe manycorrelations),theinterventionisnotreallysimple. In essence what is tested are multiple perturbations of factors correlated with the one targeted for interven- VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion JAMA, 2014 JECH, 2014 Proc Symp Biocomp, 2015 •longitudinal publicly available data How can we proceed to study the elusive environment in large scale for discovery-based research? Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observationa data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion High-throughputascertainmentofendogenousindicatorsofen- vironmentalexposurethatmayreflecttheexposomeincreasinglyat- tractattention,andtheirperformanceneedstobecarefullyevaluated. These include chemical detection of indicators of exposure through US federally funded gene expression experiment data be d itedinpublicrepositoriessuchastheGeneExpressionOmnibu repositoryhasbeeninstrumentalindevelopmentoftechnolo measurement of gene expression, data standardization, and Figure. Correlation Interdependency Globes for 4 Environmental Exposures (Cotinine, Mercury, Cadmium, Trans-β-Carotene) in National Health Nutrition Examination Survey (NHANES) Participants, 2003-2004 A Serum cotinine B Serum total mercury C Serum cadmium D Serum trans-β-carotene 37 Total correlations 42 Total correlations 68 Total correlations 68 Total correlations Negative correlation Positive correl Infectious agents Pollutants Nutrients and vitamins Demographic attributes Eachcorrelationinterdependencyglobeincludes317environmentalexposures representedbythenodesaroundtheperipheryoftheglobe.Pairwisecorrelations aredepictedbyedges(lines)betweenthenodeofinterest(arrowhead)andother nodes.Correlationswithabsolutevaluesexceeding0.2areshown(stronges Thesizeofeachnodeisproportionaltothenumberofedgesforanode,and thicknessofeachedgeindicatesthemagnitudeofthecorrelation. Opinion Viewpoint •data mining and informatics to tackle complexity what causes what? confounding •new ‘omics technologies EWAS
  • 74. Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- proach (an analogy to genome-wide association stud- ies).Forexample,Wangetal4 screenedmorethan2000 chemicalsinserumtodiscoverendogenousexposuresas- sociated with risk for cardiovascular disease. Therearenotablehurdlesinanalyzing“big”environ- mental data. These same problems affect epidemiology of1-risk-factor-at-a-time,butinEWAStheirprevalencebe- comes more clearly manifest at large scale. When study- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets, may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observational data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of the multiple correlations also highlights the challenge thatinterveningtomodify1putativeriskfactoralsomay inadvertently affect multiple other correlated factors. Even when a seemingly simple intervention is tested in randomizedtrials(affectingasingleriskfactoramongthe manycorrelations),theinterventionisnotreallysimple. In essence what is tested are multiple perturbations of factors correlated with the one targeted for interven- VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion JAMA, 2014 JECH, 2014 Proc Symp Biocomp, 2015 •longitudinal publicly available data How can we proceed to study the elusive environment in large scale for discovery-based research? Studying the Elusive Environment in Large Scale Itispossiblethatmorethan50%ofcomplexdiseaserisk isattributedtodifferencesinanindividual’senvironment.1 Airpollution,smoking,anddietaredocumentedenviron- mental factors affecting health, yet these factors are but a fraction of the “exposome,” the totality of the exposure loadoccurringthroughoutaperson’slifetime.1 Investigat- ing one or a handful of exposures at a time has led to a highly fragmented literature of epidemiologic associa- tions. Much of that literature is not reproducible, and se- lectivereportingmaybeamajorreasonforthelackofre- producibility. A new model is required to discover environmental exposures associated with disease while mitigating possibilities of selective reporting. Toremedythelackofreproducibilityandconcernsof validity, multiple personal exposures can be assessed si- multaneously in terms of their association with a condi- tion or disease of interest; the strongest associations can then be tentatively validated in independent data sets (eg, as done in references 2 and 3).2,3 The main advan- tages of this process include the ability to search the list ofexposuresandadjustformultiplicitysystematicallyand reportalltheprobedassociationsinsteadofonlythemost significant results. The term “environment-wide associa- tion studies” (EWAS) has been used to describe this ap- the EWAS vantage point, intervening on β-carotene (Figure, D) seems a futile exercise given its complex rela- tionship with other nutrients and pollutants. Giventhiscomplexity,howcanstudiesofenvironmen- talriskmoveforward?First,EWASanalysesshouldbeap- pliedtomultipledatasets,andconsistencycanbeformally examinedforallassessedcorrelations.Second,thetempo- ral relationship between exposure and changes in health parametersmayofferhelpfulhintsaboutwhichofthesig- nalsaremorethansimplecorrelations.Third,standardized adjustedanalyses,inwhichadjustmentsareperformedsys- tematicallyandinthesamewayacrossmultipledatasets may also help. This is in stark contrast with the current model,wherebymostepidemiologicstudiesusesingledata setswithoutreplicationaswellasnon–time-dependentas- sessments,andreportedadjustmentsaremarkedlydiffer- entacrossreportsanddatasets,eventhoseperformedby thesameteam(differentapproachesincreasevaliditybut mustbereconciledandassimilated). However, eventually for most environmental cor- relates,theremaybeunsurpassabledifficultyestablish- ing potential causal inferences based on observationa data alone. Factors that seem protective may some- times be tested in randomized trials. The complexity of VIEWPOINT Chirag J. Patel, PhD Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts. John P. A. Ioannidis, MD, DSc Stanford Prevention Research Center, Department of Health Research and Policy, Department of Medicine, Stanford University School of Medicine, Stanford, California, Department of Statistics, Stanford University School of Humanities and Sciences, Stanford, California, and Meta-Research Innovation Center at Stanford (METRICS), Stanford, California. Opinion High-throughputascertainmentofendogenousindicatorsofen- vironmentalexposurethatmayreflecttheexposomeincreasinglyat- tractattention,andtheirperformanceneedstobecarefullyevaluated. These include chemical detection of indicators of exposure through US federally funded gene expression experiment data be d itedinpublicrepositoriessuchastheGeneExpressionOmnibu repositoryhasbeeninstrumentalindevelopmentoftechnolo measurement of gene expression, data standardization, and Figure. Correlation Interdependency Globes for 4 Environmental Exposures (Cotinine, Mercury, Cadmium, Trans-β-Carotene) in National Health Nutrition Examination Survey (NHANES) Participants, 2003-2004 A Serum cotinine B Serum total mercury C Serum cadmium D Serum trans-β-carotene 37 Total correlations 42 Total correlations 68 Total correlations 68 Total correlations Negative correlation Positive correl Infectious agents Pollutants Nutrients and vitamins Demographic attributes Eachcorrelationinterdependencyglobeincludes317environmentalexposures representedbythenodesaroundtheperipheryoftheglobe.Pairwisecorrelations aredepictedbyedges(lines)betweenthenodeofinterest(arrowhead)andother nodes.Correlationswithabsolutevaluesexceeding0.2areshown(stronges Thesizeofeachnodeisproportionaltothenumberofedgesforanode,and thicknessofeachedgeindicatesthemagnitudeofthecorrelation. Opinion Viewpoint •data mining and informatics to tackle complexity what causes what? confounding •new ‘omics technologies EWAS
  • 75. with Paul Avillach, Michael McDuffie, Jeremy Easton-Marks, Cartik Saravanamuthu and the BD2K PIC-SURE team 40K participants >1000 indicators of exposure Data and API available now http://nhanes.hms.harvard.edu Download all the data: NHANES exposome browser