SlideShare a Scribd company logo
1 of 46
Download to read offline
INTRODUCTION TO COMPOSITE MATERIALS

                Carl Zweben, PhD
                     Life Fellow ASME
                 Fellow SAMPE and ASM
                 Associate Fellow, AIAA
     Composites & Thermal Materials Consultant
                    62 Arlington Road
                  Devon, PA 19333-1538
                   Phone: 610-688-1772
               E-mail: c.h.zweben@usa.net
    http://sites.google.com/site/zwebenconsulting




                  Copyright Carl Zweben 2010        Slide 1
The information in these slides is part of a short
 course on composite materials that is presented
              publicly and in-house

        Contact author for information




                 Copyright Carl Zweben 2010   Slide 2
OUTLINE

• Introduction
• Key fibers and composites
• Status of PMCs, MMCs, CAMCs, CMCs
• Applications
• Appendix




                 Copyright Carl Zweben 2010   Slide 3
INTRODUCTION




  Copyright Carl Zweben 2010   Slide 4
COMPOSITE MATERIAL

1. Two or more materials bonded together
   (Anthony Kelly)
   – Distinguishes composites from alloys


2. A material consisting of any combination of
   fibers, whiskers and particles in a common
   matrix




                  Copyright Carl Zweben 2010     Slide 5
WHY COMPOSITES?

• High specific strength (strength/density)
• High specific modulus (modulus/density)
• Fatigue resistance
• Creep and creep rupture resistance
• Low, tailorable coefficient of thermal expansion
• High temperature capability
• Wear resistance
• Corrosion resistance
• Tailorable electrical conductivity
   – Very low to very high


                    Copyright Carl Zweben 2010   Slide 6
WHY COMPOSITES? (continued)

• Tailorable thermal conductivity
   – very low to extremely high
• Tailorable mechanical and thermal properties
• Unique combinations of properties
• Great design flexibility
• Formable to complex shapes
• Low cost (some)
• Enabling technology for many applications, e.g.
   – Lightweight vehicle and aerospace structures
   – High-performance thermal management
   – Lightweight optical systems
   – Infrastructure repair
                  Copyright Carl Zweben 2010   Slide 7
DESIGN FLEXIBILITY




   Copyright Carl Zweben 2010   Slide 8
CLASSES OF COMPOSITE MATERIALS

                          REINFORCEMENT
             Polymer          Metal              Ceramic Carbon
MATRIX
Polymer         X                 X                X       X
 Metal          X                 X                X       X
Ceramic         X                 X                X       X
Carbon          X                 X                X       X
         Polymer Matrix Composites (PMCs)
          Metal Matrix Composites (CMCs)
          Ceramic Matrix Composite (CMC)
         Carbon Matrix Composites (CAMCs)
         Carbon/Carbon Composites (CCCs)
                    Copyright Carl Zweben 2010                 Slide 9
REINFORCEMENTS

                              Discontinuous Fibers,
Continuous Fibers                  Whiskers




      Particles                         Fabrics, Braids, etc.




           Copyright Carl Zweben 2010                  Slide 10
TERMINOLOGY

• Advanced composite: composite with properties
  superior to those of glass fiber-reinforced
  polymer (GFRP)


• Specific property
   – Absolute property divided by density (or
     specific gravity, which is dimensionless)




                   Copyright Carl Zweben 2010    Slide 11
BRIEF HISTORY OF COMPOSITES
• Straw--reinforced mud cited in Old Testament
   – Organic fiber-reinforced CMC
• GFRP well established by 1950s
• R&D on advanced composites: CCCs, PMCs,
  MMCs and CMCs started 1960s-1970s
• Carbon fiber-reinforced polymers (CFRPs)
  became dominant advanced composites in 1970s
• CCCs established for thermal protection ~ 1970s
• MMCs used in specialty applications
   – Automobile engines
   – Electronics thermal management

                  Copyright Carl Zweben 2010     Slide 12
BRIEF HISTORY OF COMPOSITES (continued)

• CMCs used in specialty applications
• GFRP most widely used composite, by far
• CFRP dominates high-performance applications
• Composites now baseline in numerous aerospace
  and commercial applications
• Industrial applications now largest sector
   – Everything except aerospace and sports
   – Wind turbine blades, infrastructure, etc.




                   Copyright Carl Zweben 2010    Slide 13
COMMON TYPES OF LAMINATES
COMMON TYPES OF LAMINATES




       Copyright Carl Zweben 2010   Slide 14
KEY FIBERS AND COMPOSITES




        Copyright Carl Zweben 2010   Slide 15
KEY FIBERS

• Glass
   – E-glass most widely used fiber by orders of
     magnitude
   – Others: high-strength, chemical-resistant
• Carbon
   – Workhorse high-performance fibers
   – Many types: polyacrylonitrile (PAN), pitch,
     CVD, etc.)
• Boron
• Silicon carbide-based
• Alumina-based

                   Copyright Carl Zweben 2010   Slide 16
KEY FIBERS (continued)

• High-modulus synthetic organics
   – Aramid (aromatic polyamide)
   – High density polyethylene
   – PBO
   – M5 PIPD
• Natural organic fibers, e.g.
      • Flax, jute, hemp and kenaf, wood, etc.
• Basalt




                   Copyright Carl Zweben 2010    Slide 17
CARBON FIBER IMPROVEMENTS 1965 - 2005

                                    1965**         2005
Max modulus, GPa (MSI)               380 (55)    965 (140)
Max tens str, GPa (KSI)             2.3 (330)    6.9 (1000)
No. of PAN-based fibers             3            Dozens
No. of pitch-based fibers           0            Many
Max therm cond, W/m.K                30          2000
Max fiber length                    1m           Continuous
Minimum cost                         $2000/Kg    $16/Kg


  ** Carbon fibers were experimental in 1965

                    Copyright Carl Zweben 2010            Slide 18
ELECTRICAL AND THERMAL CONDUCTIVITY




            Copyright Carl Zweben 2010   Slide 19
SPECIFIC TENSILE STRENGTH vs SPECIFIC MODULUS
    (Tensile strength/density vs. Modulus/density)
                                   2500
 Specific Tensile Strength (GPa)
                                              UHS PAN C/Ep                         Unidirectional
                                                                                   Quasi-Isotropic
                                   2000 E-Glass/Ep   Aramid/Ep
                                                                                  Aluminum, Steel,
                                                     SM PAN C/Ep                     Titanium,
                                   1500
                                                                                    Magnesium

                                   1000
                                                                                    UHM PAN C/Ep
                                                         Boron/Ep

                                    500
                                                                          Be
                                                                                        UHM Pitch C/Ep
                                                         SiCp/Al
                                     0
                                          0          100                          200            300

                                                 Specific Modulus (MPa)
                                                     Copyright Carl Zweben 2010                      Slide 20
MAXIMUM USE TEMPERATURE vs. DENSITY




            Copyright Carl Zweben 2010   Slide 21
CONTINUOUS FIBERS MAKE CERAMICS AND CARBON
       USEFUL STRUCTURAL MATERIALS




                Copyright Carl Zweben 2010   Slide 22
CTE OF SILICON-CARBIDE-PARTICLE-REINFORCED
ALUMINUM (Al/SiC) vs PARTICLE VOLUME FRACTION

                         25       Aluminum
COEFFICIENT OF THERMAL



                                                                          Powder Metallurgy
  EXPANSION (ppm/K)




                         20                                               Infiltration
                                  Copper
                                                      E-glass PCB
                         15                                                 Beryllium

                         10                                                   NEW MATERIAL
                                  Titanium, Steel
                                  Alumina
                          5
                                  Silicon

                          0
                              0       20         40            60            80     100
                                   PARTICLE VOLUME FRACTION (%)

                                             Copyright Carl Zweben 2010                   Slide 23
THERMAL CONDUCTIVITY vs CTE FOR
                                        PACKAGING MATERIALS

                                                                   1200             Si, GaAs, Silica, Alumina, Beryllia,
THERMAL CONDUCTIVITY (W/mK)

                                                                                         Aluminum Nitride, LTCC
                              600
                                           HOPG
                                           (1700)
                              500                                                           Diamond-Particle-Reinforced Metals
                                                                                                     and Ceramics
                                                                       C/Cu                                   Silver
                              400
                                         C/C                                                           Copper
                                                                          SiC/Cu
                              300        C/Ep               C/Al
                                                                                                                 Aluminum

                              200                            Cu/W                                          SiC/Al (Al/SiC)

                                                                                                   Si-Al
                              100
                                                    Invar          Kovar
                                                                                         E-glass PCB
                               0
                                    -5              0              5           10          15               20           25
                                    COEFFICIENT OF THERMAL EXPANSION (ppm/K)
                                                              Copyright Carl Zweben 2010                                     Slide 24
APPLICATIONS




  Copyright Carl Zweben 2010   Slide 25
STATUS OF COMPOSITES

• PMCs workhorse materials for structures
   – Wide range of commercial and aerospace
     applications
   – E-glass and carbon key fibers
   – Thermosets key resins
   – Increasing use of thermoplastics
   – Natural fibers in automotive secondary parts
   – Nanoclay/thermoplastics in automobiles
• Carbon matrix composites
   – CCCs well established for thermal protection
   – SiC/carbon in aircraft engine parts


                   Copyright Carl Zweben 2010   Slide 26
STATUS OF COMPOSITES (cont.)

• CMCs
   – Challenging CAMCs
   – Limited, but significant use
• MMCs
   – Cermets (ceramic/metal) widely used
      • E.g. “tungsten carbide” cutting tools
   – Used in Honda and Toyota auto engines
   – Limited use of fiber- and particle-reinforced
     materials in structures and machine parts
   – Transmission lines in early production
   – Widely used in electronic packaging


                   Copyright Carl Zweben 2010    Slide 27
KEY ADVANCED COMPOSITES APPLICATIONS

• Aerospace & defense structures
   – Aircraft
   – Spacecraft
   – Missiles and launch vehicles
   – Ships
   – Optical systems
• Aircraft engines
• Sports equipment
• Natural gas vehicle fuel tanks
• Wind turbine blades


                  Copyright Carl Zweben 2010   Slide 28
KEY ADVANCED COMPOSITES APPLICATIONS
                   (cont)

•   Infrastructure
•   Biomedical equipment
•   Precision machinery
•   Oil exploration and production
•   Automobile engines
•   High-end automobile structures and brakes
•   Machinery
•   Electronics and photonics thermal management




                   Copyright Carl Zweben 2010   Slide 29
COMPOSITES ARE THE MATERIALS OF
       THE HERE AND NOW




           Copyright Carl Zweben 2010   Slide 30
APPENDIX 1
PROPERTIES OF SELECTED
 COMPOSITE MATERIALS




       Copyright Carl Zweben 2010   Slide 31
PROPERTIES OF SELECTED COMPOSITES

• Thousands of different materials in production
• Polymer matrix composites
• Metal matrix composites
• Carbon matrix composites
   – Carbon/carbon composites
• Ceramic matrix composites




                   Copyright Carl Zweben 2010   Slide 32
PROPERTIES OF UNIDIRECTIONAL ULTRAHIGH-
    STRENGTH PAN CARBON/ POLYMER

Axial extensional modulus = 25 MSI (170 GPa)
Transverse extensional modulus = 1.5 MSI (10 GPa)
Axial shear modulus = 0.6 MSI (4.1 GPa)
Axial Poisson’s ratio = 0.25
Axial tensile strength = 510 KSI (3530 MPa)
Transverse tensile strength = 6 KSI (41 MPa)
Axial compression strength = 200 KSI (1380 MPa)
Transverse compression strength = 25 KSI (170 MPa)
Axial CTE = 0.3 PPM/F (0.5 PPM/K)
Transverse CTE = 15 PPM/F (27 PPM/K)
Axial Thermal Conductivity = 6 BTU/h-ft-F (10 W/mK)
Transverse Thermal Cond = 0.3 BTU/h-ft-F (0.5 W/mK)
Density = 0.058 PCI (1.61g/cm3)

                   Copyright Carl Zweben 2010         Slide 33
PROPERTIES OF QUASI-ISOTROPIC ULTRAHIGH-
    STRENGTH PAN CARBON/ POLYMER

Extensional modulus = 9.1 MSI (63 GPa)
Shear modulus = 3 MSI (21 GPa)
Poisson’s ratio = 0.32
Tensile strength = 200 KSI (1350 MPa)
Compression strength = 84 KSI (580 MPa)
Inplane CTE = 1.3 PPM/F (2.3 PPM/K)
Inplane thermal cond = 3 BTU/h-ft-F (6 W/mK)
Density = 0.058 PCI (1.61 g/cm3)




                  Copyright Carl Zweben 2010   Slide 34
PROPERTIES OF UNIDIRECTIONAL ULTRAHIGH-
    MODULUS PITCH CARBON/POLYMER
Axial extensional modulus = 70 MSI (480 GPa)
Transverse extensional modulus = 1.5 MSI (10 GPa)
Axial shear modulus = 0.6 MSI (4.1 GPa)
Axial Poisson’s ratio = 0.25
Axial tensile strength = 130 KSI (900 MPa)
Transverse tensile strength = 3 KSI (20 MPa)
Axial compression strength = 40 KSI (280 MPa)
Transverse compression strength = 15 KSI (100 MPa)
Inplane shear strength = 6 KSI (41 MPa)
Axial CTE = - 0.6 PPM/F (-1.1 PPM/K)
Transverse CTE = 15 PPM/F (27 PPM/K)
Axial Thermal Conductivity = 380 BTU/h-ft-F (660 W/mK)
Transverse Thermal Cond = 6 BTU/h-ft-F (10 W/mK)
Density = 0.065 PCI (1.8 g/cm3)

                   Copyright Carl Zweben 2010       Slide 35
PROPERTIES OF QUASI-ISOTROPIC ULTRAHIGH
    MODULUS PITCH CARBON/ POLYMER

Extensional modulus = 24 MSI (165 GPa)
Shear modulus = 9.2 MSI (9.2 GPa)
Poisson’s ratio = 0.32
Tensile strength = 45 KSI (310 MPa)
Compression strength = 14 KSI (96 MPa)
Inplane CTE = - 0.2 PPM/F (-0.4 PPM/K)
Inplane therm cond = 195 BTU/h-ft-F (335 W/mK)
Density = 0.065 PCI (1.80 g/cm3)




                Copyright Carl Zweben 2010   Slide 36
PROPERTIES OF SELECTED UNIDIRECTIONAL MMCs

Fiber      Matrix   Density      Axial        Trans        Axial   Trans   Axial
                     g/cm3       Mod           Mod         Tens    Tens    Comp
                                  GPa          GPa          Str     Str     Str
                                 (Msi)        (Msi)        MPa      MPa     MPa
                                                           (Msi)   (Ksi)   (Ksi)

UHM Carb    Al        2.4         450           15          690     15      340
(pitch)                           (65)          (5)        (100)    (5)     (50)


Boron       Al        2.6         210           140        1240    140     1720
                                  (30)          (20)       (180)   (20)    (250)

Alumina     Al        3.2         240           130        1700    120     1800
                                  (35)          (19)       (250)   (17)    (260)

SiC          Ti       3.6         260           170        1700    340     2760
                                  (38)          (25)       (250)   (50)    (400)



                              Copyright Carl Zweben 2010                   Slide 37
PROPERTIES OF ALUMINUM, TITANIUM AND
SILICON CARBIDE-PARTICLE REINFORCED ALUMINUM

              Aluminum Titanium                    Composite
              (6061-T6) (6Al-4V)                   Particle Vf (%)
Property                                          25     55      70
Modulus, GPa       69              100            114 186       265
Tens yield, MPa   275             1000            400 495         -
Tens Ult, Mpa     310             1100            485 530       225
Elongation, %      15               5             3.8    0.6    0.1
Cond, W/m-K       180              6.7           ~200 ~200 ~200
CTE, PPM/K         23               9            16.4 10.4      6.2
Density (g/cm3)   2.77            4.43           2.88 2.96 3.00

                    Copyright Carl Zweben 2010               Slide 38
TITANIUM CARBIDE PARTICLE-REINFORCED
             STEEL (“FERRO-TIC”)


                            Tool Steel          “Ferro-TiC”
Density, g/cm3                     7.9               6.60
Elastic modulus, GPa               200               290
Modulus/density, GPa                25                44
Tensile strength, GPa           0.6-2.0               1.5
Comp strength, GPa                   -                3.6




                                         Source: Alloy Technology

                  Copyright Carl Zweben 2010                 Slide 39
ULTRAHIGH-THERMAL-CONDUCTIVITY MATERIALS

                                  k              CTE          Specific         k/SG
MATERIAL                     (W/m-K)           (ppm/K)         Gravity (W/m-K)
Copper                          400                17             8.9            45
Diamond/Al                   325-600              7-9             3-4         93-171
Diamond/Cu                  400-1200            5-7.7.7         5.5-7         62-185
Diamond/Co                     >600               3.0             4.1          >146
Diamond/Ag                   550-650              5-8             6-7         85-100
Diamond/SiC                  600-680              1.8             3.3       182-206
---------------------------------------------------------------------------------------
Diamond/Si                      525               4.5              -              -
Diamond/Mg                      575               5.5              -              -
Diamond+SiC/Al                  575                 5              -              -
    Materials below line are experimental



                                Copyright Carl Zweben 2010                       Slide 40
MECHANICAL PROPERTIES OF 2D ACC-4
           ADVANCED CARBON/CARBON (0/90)

PROPERTY
Tensile modulus                                    103 GPa               15 Msi
Compression modulus                                103 GPa              15 Msi
Inplane shear modulus                               17 GPa              2.5 Msi
Interlaminar tensile modulus                        10 GPa              1.5 Msi
Tensile strength                                   276 MPa               40 Ksi
Compression strength                               165 MPa               24 Ksi
Inplane shear strength                              41 MPa              2.5 Ksi
Interlaminar shear strength                         10 MPa              1.5 Ksi
Interlaminar tensile strength                       10 MPa              0.9 Ksi

Source: H.G. Maahs, “Carbon-Carbon Composites”, Flight Vehicle Materials, Structures and
   Dynamics, vol. 3, ASME, New York, 1992




                                    Copyright Carl Zweben 2010                        Slide 41
PROPERTIES OF ENHANCED SiC/SiC
Reinforcement: CG “Nicalon” plain weave fabric
Process: chemical vapor infiltration
Proprietary materials added to matrix to protect fibers
Density: 2.30 g/cm3 (0.083 lb/in3)
Axial tensile modulus, GPa (Msi): 140 (20)
Inplane shear modulus, GPa (Ksi)       : 70 (10)
Tensile strength, MPa (Ksi): 225 (33)
Compressive strength, MPa (Ksi): 500 (73)
Inplane shear strength MPa, (Ksi)      : 180 (26)
Through-thickness tensile strength, MPa (Ksi): >13 (>1.9)
Interlam. shear strength, MPa (Ksi): 30 (4.3)

Source: AlliedSignal/Honeywell Advanced Composites/GE
  Power Systems


                       Copyright Carl Zweben 2010           Slide 42
APPENDIX 2
ABBREVIATIONS AND TERMINOLOGY




          Copyright Carl Zweben 2010   Slide 43
TERMINOLOGY

• Homogeneous
   – Properties constant throughout material
• Heterogeneous
   – Properties vary throughout material
   – E.g. different in matrix and reinforcement
   – Composites always heterogeneous
• Isotropic
   – Properties the same in every direction
   – Particulate composites can be isotropic




                   Copyright Carl Zweben 2010     Slide 44
TERMINOLOGY (continued)

• Anisotropic
   – Properties vary with direction
   – Fiber-reinforced materials typically anisotropic
   – May be inplane isotropic (transversely
     isotropic)
• Specific property
   – Absolute property divided by density (or
     specific gravity, which is dimensionless)




                   Copyright Carl Zweben 2010    Slide 45
KEY ABBREVIATIONS
•   PMC: polymer matrix composite
•   CMC: ceramic matrix composite
•   MMC: metal matrix composite
•   CAMC: carbon matrix composite
•   CCC: carbon/carbon composite
•   CFRP: carbon fiber-reinforced polymer
•   GFRP: glass fiber-reinforced polymer
•   AFRP: aramid fiber-reinforced polymer
•   C: carbon
•   CNT: carbon nanotube
•   PAN: polyacrylonitrile
•   Ep: epoxy
•   BMI: bismaleimide
•   PI: polyimide
•   DRA: discontinuously reinforced aluminum USAF
     – SiC particle-reinforced aluminum
     – Called Al/SiC in electronic packaging industry

                        Copyright Carl Zweben 2010      Slide 46

More Related Content

What's hot

Polymer Matrix Composites (PMC) Manufacturing and application
Polymer Matrix Composites (PMC) Manufacturing and applicationPolymer Matrix Composites (PMC) Manufacturing and application
Polymer Matrix Composites (PMC) Manufacturing and applicationSazzad Hossain
 
Particle reinforced composites
Particle reinforced compositesParticle reinforced composites
Particle reinforced compositeshaseeb muhsin
 
Metal Matrix Composite (MMC)
Metal Matrix Composite (MMC)Metal Matrix Composite (MMC)
Metal Matrix Composite (MMC)Sazzad Hossain
 
Composite materials presentation
Composite materials presentationComposite materials presentation
Composite materials presentationDidarul Alam
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix compositesDr. Ramesh B
 
Sheet Moulding Compounds
Sheet Moulding Compounds Sheet Moulding Compounds
Sheet Moulding Compounds ShravanPathak4
 
Ramkaran ppt
Ramkaran pptRamkaran ppt
Ramkaran pptyramkaran
 
Composite materials
Composite materialsComposite materials
Composite materialsJokiYagit
 
textile composites and its application
textile composites and its applicationtextile composites and its application
textile composites and its applicationalankar619
 
Composite materials
Composite materialsComposite materials
Composite materialsBESSY JOHNY
 
Material matrix polymer matrix composite
Material matrix polymer matrix compositeMaterial matrix polymer matrix composite
Material matrix polymer matrix compositeARKA JAIN University
 
Fibre reinforced composites 3
Fibre reinforced composites 3Fibre reinforced composites 3
Fibre reinforced composites 3Naga Muruga
 

What's hot (20)

Ceramics Matrix Composite
Ceramics Matrix CompositeCeramics Matrix Composite
Ceramics Matrix Composite
 
composites
compositescomposites
composites
 
Polymer Matrix Composites (PMC) Manufacturing and application
Polymer Matrix Composites (PMC) Manufacturing and applicationPolymer Matrix Composites (PMC) Manufacturing and application
Polymer Matrix Composites (PMC) Manufacturing and application
 
Introduction to Polymer composites
Introduction to Polymer composites  Introduction to Polymer composites
Introduction to Polymer composites
 
Particle reinforced composites
Particle reinforced compositesParticle reinforced composites
Particle reinforced composites
 
Composites
CompositesComposites
Composites
 
Metal Matrix Composite (MMC)
Metal Matrix Composite (MMC)Metal Matrix Composite (MMC)
Metal Matrix Composite (MMC)
 
Composite materials presentation
Composite materials presentationComposite materials presentation
Composite materials presentation
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix composites
 
Composites
CompositesComposites
Composites
 
Sheet Moulding Compounds
Sheet Moulding Compounds Sheet Moulding Compounds
Sheet Moulding Compounds
 
Ramkaran ppt
Ramkaran pptRamkaran ppt
Ramkaran ppt
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Composite material
Composite materialComposite material
Composite material
 
textile composites and its application
textile composites and its applicationtextile composites and its application
textile composites and its application
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Material matrix polymer matrix composite
Material matrix polymer matrix compositeMaterial matrix polymer matrix composite
Material matrix polymer matrix composite
 
Composite Materials
Composite MaterialsComposite Materials
Composite Materials
 
Fibre reinforced composites 3
Fibre reinforced composites 3Fibre reinforced composites 3
Fibre reinforced composites 3
 

Viewers also liked

Optimization of Heavy Vehicle Suspension System Using Composites
Optimization of Heavy Vehicle Suspension System Using CompositesOptimization of Heavy Vehicle Suspension System Using Composites
Optimization of Heavy Vehicle Suspension System Using CompositesIOSR Journals
 
Composites lecture notes
Composites lecture notesComposites lecture notes
Composites lecture notesCOLLINS OTIENO
 
ANALYSIS AND SIZE OPTIMIZATION OF COMPOSITE LEAF SPRING USING FEA
ANALYSIS AND SIZE OPTIMIZATION OF COMPOSITE LEAF SPRING USING FEAANALYSIS AND SIZE OPTIMIZATION OF COMPOSITE LEAF SPRING USING FEA
ANALYSIS AND SIZE OPTIMIZATION OF COMPOSITE LEAF SPRING USING FEAAmit Kotadiya
 
D. hull, t. w. clyne an introduction to composite materials (cambridge solid ...
D. hull, t. w. clyne an introduction to composite materials (cambridge solid ...D. hull, t. w. clyne an introduction to composite materials (cambridge solid ...
D. hull, t. w. clyne an introduction to composite materials (cambridge solid ...Subodh Kumar
 
DESIGN AND FABRICATION OF HYBRID COMPOSITE SPRINGS
DESIGN AND FABRICATION OF HYBRID COMPOSITE SPRINGS DESIGN AND FABRICATION OF HYBRID COMPOSITE SPRINGS
DESIGN AND FABRICATION OF HYBRID COMPOSITE SPRINGS IAEME Publication
 
Experimental and fea analysis of composite leaf spring by varying thickness
Experimental and fea analysis of composite leaf spring by varying thicknessExperimental and fea analysis of composite leaf spring by varying thickness
Experimental and fea analysis of composite leaf spring by varying thicknesseSAT Journals
 
DESIGN AND ANALYSIS OF LEAF SPRING BY USING COMPOSITE MATERIAL FOR LIGHT VEHI...
DESIGN AND ANALYSIS OF LEAF SPRING BY USING COMPOSITE MATERIAL FOR LIGHT VEHI...DESIGN AND ANALYSIS OF LEAF SPRING BY USING COMPOSITE MATERIAL FOR LIGHT VEHI...
DESIGN AND ANALYSIS OF LEAF SPRING BY USING COMPOSITE MATERIAL FOR LIGHT VEHI...IAEME Publication
 
Analysis of Glass Epoxy Reinforced Monolithic Leaf Spring
Analysis of Glass Epoxy Reinforced Monolithic Leaf SpringAnalysis of Glass Epoxy Reinforced Monolithic Leaf Spring
Analysis of Glass Epoxy Reinforced Monolithic Leaf SpringIJMER
 

Viewers also liked (10)

Optimization of Heavy Vehicle Suspension System Using Composites
Optimization of Heavy Vehicle Suspension System Using CompositesOptimization of Heavy Vehicle Suspension System Using Composites
Optimization of Heavy Vehicle Suspension System Using Composites
 
Composites lecture notes
Composites lecture notesComposites lecture notes
Composites lecture notes
 
U130403146155
U130403146155U130403146155
U130403146155
 
ANALYSIS AND SIZE OPTIMIZATION OF COMPOSITE LEAF SPRING USING FEA
ANALYSIS AND SIZE OPTIMIZATION OF COMPOSITE LEAF SPRING USING FEAANALYSIS AND SIZE OPTIMIZATION OF COMPOSITE LEAF SPRING USING FEA
ANALYSIS AND SIZE OPTIMIZATION OF COMPOSITE LEAF SPRING USING FEA
 
D. hull, t. w. clyne an introduction to composite materials (cambridge solid ...
D. hull, t. w. clyne an introduction to composite materials (cambridge solid ...D. hull, t. w. clyne an introduction to composite materials (cambridge solid ...
D. hull, t. w. clyne an introduction to composite materials (cambridge solid ...
 
DESIGN AND FABRICATION OF HYBRID COMPOSITE SPRINGS
DESIGN AND FABRICATION OF HYBRID COMPOSITE SPRINGS DESIGN AND FABRICATION OF HYBRID COMPOSITE SPRINGS
DESIGN AND FABRICATION OF HYBRID COMPOSITE SPRINGS
 
Experimental and fea analysis of composite leaf spring by varying thickness
Experimental and fea analysis of composite leaf spring by varying thicknessExperimental and fea analysis of composite leaf spring by varying thickness
Experimental and fea analysis of composite leaf spring by varying thickness
 
Composite material
Composite materialComposite material
Composite material
 
DESIGN AND ANALYSIS OF LEAF SPRING BY USING COMPOSITE MATERIAL FOR LIGHT VEHI...
DESIGN AND ANALYSIS OF LEAF SPRING BY USING COMPOSITE MATERIAL FOR LIGHT VEHI...DESIGN AND ANALYSIS OF LEAF SPRING BY USING COMPOSITE MATERIAL FOR LIGHT VEHI...
DESIGN AND ANALYSIS OF LEAF SPRING BY USING COMPOSITE MATERIAL FOR LIGHT VEHI...
 
Analysis of Glass Epoxy Reinforced Monolithic Leaf Spring
Analysis of Glass Epoxy Reinforced Monolithic Leaf SpringAnalysis of Glass Epoxy Reinforced Monolithic Leaf Spring
Analysis of Glass Epoxy Reinforced Monolithic Leaf Spring
 

Similar to Introduction to Composite Materials

Overview of Advanced Thermal Materials
Overview of Advanced Thermal MaterialsOverview of Advanced Thermal Materials
Overview of Advanced Thermal MaterialsDr Carl Zweben
 
Materials selection and design consideration
Materials selection and design considerationMaterials selection and design consideration
Materials selection and design considerationRafael Manzano
 
Mac Medical Overview Presentation
Mac Medical Overview PresentationMac Medical Overview Presentation
Mac Medical Overview Presentationmrozen
 
Material selection fo aircraft compressor blade
Material selection fo aircraft compressor bladeMaterial selection fo aircraft compressor blade
Material selection fo aircraft compressor bladeAhmad Bamasak
 
Developing Markets for Natural Graphite by George C Hawley
Developing Markets for Natural Graphite by George C HawleyDeveloping Markets for Natural Graphite by George C Hawley
Developing Markets for Natural Graphite by George C HawleyGraphite Graphite
 
FT-9 Braking Pinch Rolls from Project Sales Corp
FT-9 Braking Pinch Rolls from Project Sales CorpFT-9 Braking Pinch Rolls from Project Sales Corp
FT-9 Braking Pinch Rolls from Project Sales CorpProject Sales Corp
 
FSIN Analyst Day 2008 - Bimetallic Products
FSIN Analyst Day 2008 - Bimetallic ProductsFSIN Analyst Day 2008 - Bimetallic Products
FSIN Analyst Day 2008 - Bimetallic ProductsFushiCopperweld
 
Carbon Foam Military Applications
Carbon Foam Military ApplicationsCarbon Foam Military Applications
Carbon Foam Military ApplicationsSeminar Links
 
Metallurgy of co based alloys produced by powder bed fusion additive manufact...
Metallurgy of co based alloys produced by powder bed fusion additive manufact...Metallurgy of co based alloys produced by powder bed fusion additive manufact...
Metallurgy of co based alloys produced by powder bed fusion additive manufact...Khuram Shahzad
 
Nickel and Titanium alloys
Nickel and Titanium alloys Nickel and Titanium alloys
Nickel and Titanium alloys SOORAJ V R
 
Column choices feb2008
Column choices feb2008Column choices feb2008
Column choices feb2008Gopal Pawar
 
FABRICATION OF SiC/SiCf COMPOSITE
FABRICATION OF SiC/SiCf COMPOSITEFABRICATION OF SiC/SiCf COMPOSITE
FABRICATION OF SiC/SiCf COMPOSITEion009
 
Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719Riikka Puurunen
 
Laser Processing on Graphite
Laser Processing on GraphiteLaser Processing on Graphite
Laser Processing on GraphiteDeepak Rajput
 

Similar to Introduction to Composite Materials (20)

Overview of Advanced Thermal Materials
Overview of Advanced Thermal MaterialsOverview of Advanced Thermal Materials
Overview of Advanced Thermal Materials
 
Materials selection and design consideration
Materials selection and design considerationMaterials selection and design consideration
Materials selection and design consideration
 
Composites
CompositesComposites
Composites
 
Mac Medical Overview Presentation
Mac Medical Overview PresentationMac Medical Overview Presentation
Mac Medical Overview Presentation
 
Material selection fo aircraft compressor blade
Material selection fo aircraft compressor bladeMaterial selection fo aircraft compressor blade
Material selection fo aircraft compressor blade
 
Developing Markets for Natural Graphite by George C Hawley
Developing Markets for Natural Graphite by George C HawleyDeveloping Markets for Natural Graphite by George C Hawley
Developing Markets for Natural Graphite by George C Hawley
 
Unit 6
Unit 6Unit 6
Unit 6
 
FT-9 Braking Pinch Rolls from Project Sales Corp
FT-9 Braking Pinch Rolls from Project Sales CorpFT-9 Braking Pinch Rolls from Project Sales Corp
FT-9 Braking Pinch Rolls from Project Sales Corp
 
FSIN Analyst Day 2008 - Bimetallic Products
FSIN Analyst Day 2008 - Bimetallic ProductsFSIN Analyst Day 2008 - Bimetallic Products
FSIN Analyst Day 2008 - Bimetallic Products
 
Carbon Foam Military Applications
Carbon Foam Military ApplicationsCarbon Foam Military Applications
Carbon Foam Military Applications
 
Metallurgy of co based alloys produced by powder bed fusion additive manufact...
Metallurgy of co based alloys produced by powder bed fusion additive manufact...Metallurgy of co based alloys produced by powder bed fusion additive manufact...
Metallurgy of co based alloys produced by powder bed fusion additive manufact...
 
Refractory MgO-C
Refractory MgO-CRefractory MgO-C
Refractory MgO-C
 
Nickel and Titanium alloys
Nickel and Titanium alloys Nickel and Titanium alloys
Nickel and Titanium alloys
 
Column choices feb2008
Column choices feb2008Column choices feb2008
Column choices feb2008
 
FABRICATION OF SiC/SiCf COMPOSITE
FABRICATION OF SiC/SiCf COMPOSITEFABRICATION OF SiC/SiCf COMPOSITE
FABRICATION OF SiC/SiCf COMPOSITE
 
Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719
 
arch wires
 arch wires arch wires
arch wires
 
2
22
2
 
Chap 1 final
Chap 1 finalChap 1 final
Chap 1 final
 
Laser Processing on Graphite
Laser Processing on GraphiteLaser Processing on Graphite
Laser Processing on Graphite
 

Recently uploaded

Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 

Recently uploaded (20)

Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 

Introduction to Composite Materials

  • 1. INTRODUCTION TO COMPOSITE MATERIALS Carl Zweben, PhD Life Fellow ASME Fellow SAMPE and ASM Associate Fellow, AIAA Composites & Thermal Materials Consultant 62 Arlington Road Devon, PA 19333-1538 Phone: 610-688-1772 E-mail: c.h.zweben@usa.net http://sites.google.com/site/zwebenconsulting Copyright Carl Zweben 2010 Slide 1
  • 2. The information in these slides is part of a short course on composite materials that is presented publicly and in-house Contact author for information Copyright Carl Zweben 2010 Slide 2
  • 3. OUTLINE • Introduction • Key fibers and composites • Status of PMCs, MMCs, CAMCs, CMCs • Applications • Appendix Copyright Carl Zweben 2010 Slide 3
  • 4. INTRODUCTION Copyright Carl Zweben 2010 Slide 4
  • 5. COMPOSITE MATERIAL 1. Two or more materials bonded together (Anthony Kelly) – Distinguishes composites from alloys 2. A material consisting of any combination of fibers, whiskers and particles in a common matrix Copyright Carl Zweben 2010 Slide 5
  • 6. WHY COMPOSITES? • High specific strength (strength/density) • High specific modulus (modulus/density) • Fatigue resistance • Creep and creep rupture resistance • Low, tailorable coefficient of thermal expansion • High temperature capability • Wear resistance • Corrosion resistance • Tailorable electrical conductivity – Very low to very high Copyright Carl Zweben 2010 Slide 6
  • 7. WHY COMPOSITES? (continued) • Tailorable thermal conductivity – very low to extremely high • Tailorable mechanical and thermal properties • Unique combinations of properties • Great design flexibility • Formable to complex shapes • Low cost (some) • Enabling technology for many applications, e.g. – Lightweight vehicle and aerospace structures – High-performance thermal management – Lightweight optical systems – Infrastructure repair Copyright Carl Zweben 2010 Slide 7
  • 8. DESIGN FLEXIBILITY Copyright Carl Zweben 2010 Slide 8
  • 9. CLASSES OF COMPOSITE MATERIALS REINFORCEMENT Polymer Metal Ceramic Carbon MATRIX Polymer X X X X Metal X X X X Ceramic X X X X Carbon X X X X Polymer Matrix Composites (PMCs) Metal Matrix Composites (CMCs) Ceramic Matrix Composite (CMC) Carbon Matrix Composites (CAMCs) Carbon/Carbon Composites (CCCs) Copyright Carl Zweben 2010 Slide 9
  • 10. REINFORCEMENTS Discontinuous Fibers, Continuous Fibers Whiskers Particles Fabrics, Braids, etc. Copyright Carl Zweben 2010 Slide 10
  • 11. TERMINOLOGY • Advanced composite: composite with properties superior to those of glass fiber-reinforced polymer (GFRP) • Specific property – Absolute property divided by density (or specific gravity, which is dimensionless) Copyright Carl Zweben 2010 Slide 11
  • 12. BRIEF HISTORY OF COMPOSITES • Straw--reinforced mud cited in Old Testament – Organic fiber-reinforced CMC • GFRP well established by 1950s • R&D on advanced composites: CCCs, PMCs, MMCs and CMCs started 1960s-1970s • Carbon fiber-reinforced polymers (CFRPs) became dominant advanced composites in 1970s • CCCs established for thermal protection ~ 1970s • MMCs used in specialty applications – Automobile engines – Electronics thermal management Copyright Carl Zweben 2010 Slide 12
  • 13. BRIEF HISTORY OF COMPOSITES (continued) • CMCs used in specialty applications • GFRP most widely used composite, by far • CFRP dominates high-performance applications • Composites now baseline in numerous aerospace and commercial applications • Industrial applications now largest sector – Everything except aerospace and sports – Wind turbine blades, infrastructure, etc. Copyright Carl Zweben 2010 Slide 13
  • 14. COMMON TYPES OF LAMINATES COMMON TYPES OF LAMINATES Copyright Carl Zweben 2010 Slide 14
  • 15. KEY FIBERS AND COMPOSITES Copyright Carl Zweben 2010 Slide 15
  • 16. KEY FIBERS • Glass – E-glass most widely used fiber by orders of magnitude – Others: high-strength, chemical-resistant • Carbon – Workhorse high-performance fibers – Many types: polyacrylonitrile (PAN), pitch, CVD, etc.) • Boron • Silicon carbide-based • Alumina-based Copyright Carl Zweben 2010 Slide 16
  • 17. KEY FIBERS (continued) • High-modulus synthetic organics – Aramid (aromatic polyamide) – High density polyethylene – PBO – M5 PIPD • Natural organic fibers, e.g. • Flax, jute, hemp and kenaf, wood, etc. • Basalt Copyright Carl Zweben 2010 Slide 17
  • 18. CARBON FIBER IMPROVEMENTS 1965 - 2005 1965** 2005 Max modulus, GPa (MSI) 380 (55) 965 (140) Max tens str, GPa (KSI) 2.3 (330) 6.9 (1000) No. of PAN-based fibers 3 Dozens No. of pitch-based fibers 0 Many Max therm cond, W/m.K 30 2000 Max fiber length 1m Continuous Minimum cost $2000/Kg $16/Kg ** Carbon fibers were experimental in 1965 Copyright Carl Zweben 2010 Slide 18
  • 19. ELECTRICAL AND THERMAL CONDUCTIVITY Copyright Carl Zweben 2010 Slide 19
  • 20. SPECIFIC TENSILE STRENGTH vs SPECIFIC MODULUS (Tensile strength/density vs. Modulus/density) 2500 Specific Tensile Strength (GPa) UHS PAN C/Ep Unidirectional Quasi-Isotropic 2000 E-Glass/Ep Aramid/Ep Aluminum, Steel, SM PAN C/Ep Titanium, 1500 Magnesium 1000 UHM PAN C/Ep Boron/Ep 500 Be UHM Pitch C/Ep SiCp/Al 0 0 100 200 300 Specific Modulus (MPa) Copyright Carl Zweben 2010 Slide 20
  • 21. MAXIMUM USE TEMPERATURE vs. DENSITY Copyright Carl Zweben 2010 Slide 21
  • 22. CONTINUOUS FIBERS MAKE CERAMICS AND CARBON USEFUL STRUCTURAL MATERIALS Copyright Carl Zweben 2010 Slide 22
  • 23. CTE OF SILICON-CARBIDE-PARTICLE-REINFORCED ALUMINUM (Al/SiC) vs PARTICLE VOLUME FRACTION 25 Aluminum COEFFICIENT OF THERMAL Powder Metallurgy EXPANSION (ppm/K) 20 Infiltration Copper E-glass PCB 15 Beryllium 10 NEW MATERIAL Titanium, Steel Alumina 5 Silicon 0 0 20 40 60 80 100 PARTICLE VOLUME FRACTION (%) Copyright Carl Zweben 2010 Slide 23
  • 24. THERMAL CONDUCTIVITY vs CTE FOR PACKAGING MATERIALS 1200 Si, GaAs, Silica, Alumina, Beryllia, THERMAL CONDUCTIVITY (W/mK) Aluminum Nitride, LTCC 600 HOPG (1700) 500 Diamond-Particle-Reinforced Metals and Ceramics C/Cu Silver 400 C/C Copper SiC/Cu 300 C/Ep C/Al Aluminum 200 Cu/W SiC/Al (Al/SiC) Si-Al 100 Invar Kovar E-glass PCB 0 -5 0 5 10 15 20 25 COEFFICIENT OF THERMAL EXPANSION (ppm/K) Copyright Carl Zweben 2010 Slide 24
  • 25. APPLICATIONS Copyright Carl Zweben 2010 Slide 25
  • 26. STATUS OF COMPOSITES • PMCs workhorse materials for structures – Wide range of commercial and aerospace applications – E-glass and carbon key fibers – Thermosets key resins – Increasing use of thermoplastics – Natural fibers in automotive secondary parts – Nanoclay/thermoplastics in automobiles • Carbon matrix composites – CCCs well established for thermal protection – SiC/carbon in aircraft engine parts Copyright Carl Zweben 2010 Slide 26
  • 27. STATUS OF COMPOSITES (cont.) • CMCs – Challenging CAMCs – Limited, but significant use • MMCs – Cermets (ceramic/metal) widely used • E.g. “tungsten carbide” cutting tools – Used in Honda and Toyota auto engines – Limited use of fiber- and particle-reinforced materials in structures and machine parts – Transmission lines in early production – Widely used in electronic packaging Copyright Carl Zweben 2010 Slide 27
  • 28. KEY ADVANCED COMPOSITES APPLICATIONS • Aerospace & defense structures – Aircraft – Spacecraft – Missiles and launch vehicles – Ships – Optical systems • Aircraft engines • Sports equipment • Natural gas vehicle fuel tanks • Wind turbine blades Copyright Carl Zweben 2010 Slide 28
  • 29. KEY ADVANCED COMPOSITES APPLICATIONS (cont) • Infrastructure • Biomedical equipment • Precision machinery • Oil exploration and production • Automobile engines • High-end automobile structures and brakes • Machinery • Electronics and photonics thermal management Copyright Carl Zweben 2010 Slide 29
  • 30. COMPOSITES ARE THE MATERIALS OF THE HERE AND NOW Copyright Carl Zweben 2010 Slide 30
  • 31. APPENDIX 1 PROPERTIES OF SELECTED COMPOSITE MATERIALS Copyright Carl Zweben 2010 Slide 31
  • 32. PROPERTIES OF SELECTED COMPOSITES • Thousands of different materials in production • Polymer matrix composites • Metal matrix composites • Carbon matrix composites – Carbon/carbon composites • Ceramic matrix composites Copyright Carl Zweben 2010 Slide 32
  • 33. PROPERTIES OF UNIDIRECTIONAL ULTRAHIGH- STRENGTH PAN CARBON/ POLYMER Axial extensional modulus = 25 MSI (170 GPa) Transverse extensional modulus = 1.5 MSI (10 GPa) Axial shear modulus = 0.6 MSI (4.1 GPa) Axial Poisson’s ratio = 0.25 Axial tensile strength = 510 KSI (3530 MPa) Transverse tensile strength = 6 KSI (41 MPa) Axial compression strength = 200 KSI (1380 MPa) Transverse compression strength = 25 KSI (170 MPa) Axial CTE = 0.3 PPM/F (0.5 PPM/K) Transverse CTE = 15 PPM/F (27 PPM/K) Axial Thermal Conductivity = 6 BTU/h-ft-F (10 W/mK) Transverse Thermal Cond = 0.3 BTU/h-ft-F (0.5 W/mK) Density = 0.058 PCI (1.61g/cm3) Copyright Carl Zweben 2010 Slide 33
  • 34. PROPERTIES OF QUASI-ISOTROPIC ULTRAHIGH- STRENGTH PAN CARBON/ POLYMER Extensional modulus = 9.1 MSI (63 GPa) Shear modulus = 3 MSI (21 GPa) Poisson’s ratio = 0.32 Tensile strength = 200 KSI (1350 MPa) Compression strength = 84 KSI (580 MPa) Inplane CTE = 1.3 PPM/F (2.3 PPM/K) Inplane thermal cond = 3 BTU/h-ft-F (6 W/mK) Density = 0.058 PCI (1.61 g/cm3) Copyright Carl Zweben 2010 Slide 34
  • 35. PROPERTIES OF UNIDIRECTIONAL ULTRAHIGH- MODULUS PITCH CARBON/POLYMER Axial extensional modulus = 70 MSI (480 GPa) Transverse extensional modulus = 1.5 MSI (10 GPa) Axial shear modulus = 0.6 MSI (4.1 GPa) Axial Poisson’s ratio = 0.25 Axial tensile strength = 130 KSI (900 MPa) Transverse tensile strength = 3 KSI (20 MPa) Axial compression strength = 40 KSI (280 MPa) Transverse compression strength = 15 KSI (100 MPa) Inplane shear strength = 6 KSI (41 MPa) Axial CTE = - 0.6 PPM/F (-1.1 PPM/K) Transverse CTE = 15 PPM/F (27 PPM/K) Axial Thermal Conductivity = 380 BTU/h-ft-F (660 W/mK) Transverse Thermal Cond = 6 BTU/h-ft-F (10 W/mK) Density = 0.065 PCI (1.8 g/cm3) Copyright Carl Zweben 2010 Slide 35
  • 36. PROPERTIES OF QUASI-ISOTROPIC ULTRAHIGH MODULUS PITCH CARBON/ POLYMER Extensional modulus = 24 MSI (165 GPa) Shear modulus = 9.2 MSI (9.2 GPa) Poisson’s ratio = 0.32 Tensile strength = 45 KSI (310 MPa) Compression strength = 14 KSI (96 MPa) Inplane CTE = - 0.2 PPM/F (-0.4 PPM/K) Inplane therm cond = 195 BTU/h-ft-F (335 W/mK) Density = 0.065 PCI (1.80 g/cm3) Copyright Carl Zweben 2010 Slide 36
  • 37. PROPERTIES OF SELECTED UNIDIRECTIONAL MMCs Fiber Matrix Density Axial Trans Axial Trans Axial g/cm3 Mod Mod Tens Tens Comp GPa GPa Str Str Str (Msi) (Msi) MPa MPa MPa (Msi) (Ksi) (Ksi) UHM Carb Al 2.4 450 15 690 15 340 (pitch) (65) (5) (100) (5) (50) Boron Al 2.6 210 140 1240 140 1720 (30) (20) (180) (20) (250) Alumina Al 3.2 240 130 1700 120 1800 (35) (19) (250) (17) (260) SiC Ti 3.6 260 170 1700 340 2760 (38) (25) (250) (50) (400) Copyright Carl Zweben 2010 Slide 37
  • 38. PROPERTIES OF ALUMINUM, TITANIUM AND SILICON CARBIDE-PARTICLE REINFORCED ALUMINUM Aluminum Titanium Composite (6061-T6) (6Al-4V) Particle Vf (%) Property 25 55 70 Modulus, GPa 69 100 114 186 265 Tens yield, MPa 275 1000 400 495 - Tens Ult, Mpa 310 1100 485 530 225 Elongation, % 15 5 3.8 0.6 0.1 Cond, W/m-K 180 6.7 ~200 ~200 ~200 CTE, PPM/K 23 9 16.4 10.4 6.2 Density (g/cm3) 2.77 4.43 2.88 2.96 3.00 Copyright Carl Zweben 2010 Slide 38
  • 39. TITANIUM CARBIDE PARTICLE-REINFORCED STEEL (“FERRO-TIC”) Tool Steel “Ferro-TiC” Density, g/cm3 7.9 6.60 Elastic modulus, GPa 200 290 Modulus/density, GPa 25 44 Tensile strength, GPa 0.6-2.0 1.5 Comp strength, GPa - 3.6 Source: Alloy Technology Copyright Carl Zweben 2010 Slide 39
  • 40. ULTRAHIGH-THERMAL-CONDUCTIVITY MATERIALS k CTE Specific k/SG MATERIAL (W/m-K) (ppm/K) Gravity (W/m-K) Copper 400 17 8.9 45 Diamond/Al 325-600 7-9 3-4 93-171 Diamond/Cu 400-1200 5-7.7.7 5.5-7 62-185 Diamond/Co >600 3.0 4.1 >146 Diamond/Ag 550-650 5-8 6-7 85-100 Diamond/SiC 600-680 1.8 3.3 182-206 --------------------------------------------------------------------------------------- Diamond/Si 525 4.5 - - Diamond/Mg 575 5.5 - - Diamond+SiC/Al 575 5 - - Materials below line are experimental Copyright Carl Zweben 2010 Slide 40
  • 41. MECHANICAL PROPERTIES OF 2D ACC-4 ADVANCED CARBON/CARBON (0/90) PROPERTY Tensile modulus 103 GPa 15 Msi Compression modulus 103 GPa 15 Msi Inplane shear modulus 17 GPa 2.5 Msi Interlaminar tensile modulus 10 GPa 1.5 Msi Tensile strength 276 MPa 40 Ksi Compression strength 165 MPa 24 Ksi Inplane shear strength 41 MPa 2.5 Ksi Interlaminar shear strength 10 MPa 1.5 Ksi Interlaminar tensile strength 10 MPa 0.9 Ksi Source: H.G. Maahs, “Carbon-Carbon Composites”, Flight Vehicle Materials, Structures and Dynamics, vol. 3, ASME, New York, 1992 Copyright Carl Zweben 2010 Slide 41
  • 42. PROPERTIES OF ENHANCED SiC/SiC Reinforcement: CG “Nicalon” plain weave fabric Process: chemical vapor infiltration Proprietary materials added to matrix to protect fibers Density: 2.30 g/cm3 (0.083 lb/in3) Axial tensile modulus, GPa (Msi): 140 (20) Inplane shear modulus, GPa (Ksi) : 70 (10) Tensile strength, MPa (Ksi): 225 (33) Compressive strength, MPa (Ksi): 500 (73) Inplane shear strength MPa, (Ksi) : 180 (26) Through-thickness tensile strength, MPa (Ksi): >13 (>1.9) Interlam. shear strength, MPa (Ksi): 30 (4.3) Source: AlliedSignal/Honeywell Advanced Composites/GE Power Systems Copyright Carl Zweben 2010 Slide 42
  • 43. APPENDIX 2 ABBREVIATIONS AND TERMINOLOGY Copyright Carl Zweben 2010 Slide 43
  • 44. TERMINOLOGY • Homogeneous – Properties constant throughout material • Heterogeneous – Properties vary throughout material – E.g. different in matrix and reinforcement – Composites always heterogeneous • Isotropic – Properties the same in every direction – Particulate composites can be isotropic Copyright Carl Zweben 2010 Slide 44
  • 45. TERMINOLOGY (continued) • Anisotropic – Properties vary with direction – Fiber-reinforced materials typically anisotropic – May be inplane isotropic (transversely isotropic) • Specific property – Absolute property divided by density (or specific gravity, which is dimensionless) Copyright Carl Zweben 2010 Slide 45
  • 46. KEY ABBREVIATIONS • PMC: polymer matrix composite • CMC: ceramic matrix composite • MMC: metal matrix composite • CAMC: carbon matrix composite • CCC: carbon/carbon composite • CFRP: carbon fiber-reinforced polymer • GFRP: glass fiber-reinforced polymer • AFRP: aramid fiber-reinforced polymer • C: carbon • CNT: carbon nanotube • PAN: polyacrylonitrile • Ep: epoxy • BMI: bismaleimide • PI: polyimide • DRA: discontinuously reinforced aluminum USAF – SiC particle-reinforced aluminum – Called Al/SiC in electronic packaging industry Copyright Carl Zweben 2010 Slide 46