SlideShare a Scribd company logo
1 of 51
Download to read offline
CMSI C (2015/10/01)
ALPS
/ / NIMS
wistaria@phys.s.u-tokyo.ac.jp
- ( )
• 1968 

• 1996 Ph.D [ ( ) ]

• 1996 ( & )

• 2000 (Zürich)

• 2002 

• 2011 ( )

• 2014 

• ( ) NIMS ( )

• 

•
2
CMSI C
• 

• 

• 

•
•


• 

• 

• 

• 

•
3
CMSI C (1/2)
• (A) 

• A-1  

• A-2  ( ) 

• A-3  ( ) ( ) 

• (B)  

• B-1  

• B-2  

• (C)  

• C-1  

• C-2  

• C-3  ( ) 

• C-4  

• C-5  

• C-6  4
CMSI C (2/2)
• (D)  

• D-1  

• D-2  

• D-3  

• D-4  

• D-5  

• (E)  

• E-1  

• E-2  

• E-3  

• E-4  

• (F) 
5
CMSI C
• 10 1 10 8 : ALPS ( )

• 10 15 10 22 : OpenMX DFT ( )

• 10 29 : xTAPP DFT
(RIST)

• 11 5 : ( )

• 11 12 : ( )

• 11 19 : ( ) ( )

• 11 26 12 3 : feram ( )

• 12 10 12 17 : MODYLAS MD ( )

• 1 7 1 21 : ( )

• 1 14 : SMASH ( )
6
ALPS Agenda (1/2)
• CMSI C 

• 

• ALPS (Applications and Libraries for Physics Simulations) ?

• ? 

• ALPS 

• ALPS 

• ALPS 

• XML / HDF5 

• C++ 

• Python 

•
9
ALPS Agenda (2/2)
• ALPS 

• ALPLS 

• (
GUI )

• 

• ( )

• (MateriApps MateriApps LIVE!)

• ?
10
CMSI C (2015/10/01)
ALPS
:
“ ” ALPS
70, 275-282 (2015)
ALPS
•


• ALPS = C++


• ALPS =
: QMC
DMRG ED DMFT 

• ALPS =
ALPS = Algorithms and Libraries for Physics Simulations
Parameter XML Files
Outputs in XML Format
Quantum Lattice Model
Quantum Monte Carlo Exact Diagonalization DMRG
Lattice XML File Model XML File
12
(Quantum Lattice Models)
• (XXZ ) 

• Hubbard (fermionic / bosonic) 

• t-J
H = −t
⟨i,j⟩σ
(c†
iσcjσ + h.c.) + U
i
ni↑ni↓
H =
Jxy
2
⟨i,j⟩
(S+
i S−
j + S−
i S+
j ) + Jz
⟨i,j⟩
Sz
i Sz
j
H = −t
⟨i,j⟩σ
(c†
iσcjσ + h.c.) + J
i,j
(Si · Sj − ninj/4)
13
?
• 

• 

• : 

• 

• 

• 

• 

• 

• DMRG DMFT
14
QLM
• 

• (Householder ) Lanczos 

• 

• Metropolis etc

• 

• etc

• DMRG 

• DMRG ( ) (i)TEBD (i)PEPS MERA etc

• 

• QMC etc
15
ALPS
• 

• 

• 

• 

• 

• 

• 

• /


• (non-portable )
16
• 

• 

•


• 

• 

• 

• 

• · · ·
17
ALPS
• 1994 

• PALM++ C++ DMRG 

• 1997 

• looper ( ) 

• 2001 ~

• SSE 

• 2001 

• ALPS 

• 2002 

• 1 

• 2004 

• ALPS 1.0 1 

• 2015 1.3
18
: Spin ladder material Na2Fe2(C2O4)3(H2O)2
• Fe2+ ions in octahedral crystal field 

effective S=1 spins at low T

• Fitting experimental data by QMC results

for several theoretical models (ladders, 

dimers, etc)
2.2 Experimental methods
The magnetic susceptibilities of a single crystal of SIO
were measured at 100 Oe with a superconducting quantum
interference device (SQUID) magnetometer (Quantum
Design MPMS-XL7). High-field magnetizations in pulsed
magnetic fields up to about 53 T were measured utilizing a
non-destructive pulse magnet, and the magnetizations were
detected by an induction method using a standard pick-up
coil system.
ESR measurements on a single crystal of SIO in pulsed
magnetic fields up to about 53 T were carried out using our
a
b
c
C
O
Fe
b
c
a
b
c
(a)
(c)
(b)
Fig. 1. (Color online) (a) Crystal structure of Na2Fe2(C2O4)3(H2O)2.
Hydrogen and sodium atoms are omitted for clarity. Fe2þ
ions are
connected by oxalate molecules and form two-leg ladders along the
a-axis, as shown by red broken lines. (b) Distorted FeO6 octahedra
bridged by oxalate ion. (c) Arrangement of the ladders in the bc-plane,
and red broken lines corresponding to rungs of the ladders.
0.20
0.15
0.10
0.05
0.00
Susceptibility(emu/mol)
Fig. 2. Tempera
(C2O4)3(H2O)2
5
4
3
2
1
0
Magnetization(µB/ion)
0
Fig. 3. Magneti
and H ? a.
J. Phys. Soc. Jpn., Vol. 78, No. 12
5040
1623.6 GHz
1288.1 GHz
977.2 GHz
847.0 GHz
730.5 GHz
T=1.3 K
H//a
2O4)3(H2O)2 at 1.3 K for
strong and weak signals,
y
z
x
a
0.20
0.15
0.10
0.05
0.00
Susceptibility(emu/mol)
30252015105
Temperature (K)
H// a
H⊥ a
H = 100 Oe experiment
(a)
(b)
4
n)
H// a
24° y
z
H. YAMAGUCHI et al.
the QMC and the DMRG methods, respectively. For
these calculations, we use the following parameter values,
gz ¼ 4:7, gx ¼ 2:0, gy ¼ 2:5,  ¼ 0:30, and R ¼ 0:1{0:5 for
H k a ( ¼ 24
, ’ ¼ 90
) and H ? a ( ¼ 102
, ’ ¼ 45
).
The principal axis directions and their g-values are deter-
mined from the saturation magnetizations and the slopes of
the ESR resonance modes in the following isolated dimer
model analysis. In these field directions, the two sites of the
ladder are magnetically equivalent. In the calculation, we
add the temperature-independent Van Vleck paramagnetism
to both k and ?. The calculated results do not reproduce
the experimental ones well, especially the upturn of k
at approximately 5 K. In Fig. 6(b), the Van Vleck para-
manetic contributions are subtracted from both Mk and M?.
We find a small anomaly at half of the saturation magnet-
ization of R ¼ 0:1 calculated for H k a, which can be
considered to originate from a 1/2 magnetization plateau.
0.20
0.15
0.10
0.05
Susceptibility(emu/mol)
30252015105
Temperature (K)
H= 100 Oe
H//a
H⊥a
experiment
calculation
(a)
(b)
4
n)
H//a
J. Phys. Soc. Jpn., Vol. 78, No. 12 H. YAMAGUCHI et al.
Yamaguchi, Kimura, Honda, Okunishi, Todo, Kindo, Hagiwara (2009)
19
: Orbital ordering in eg orbital systems
• Mott insulators with partially filled d-shells

• Non-trivial interplay of charge, spin, and 

orbital degrees of freedom 

• Effective Hamiltonian for orbital degrees of freedom (120o model)
|x2
y2
i |3z2
r2
i
H120 =
X
i, =x,y
1
4
h
JzTz
i Tz
i+ + 3JxTx
i Tx
i+
±
p
3Jmix(Tz
i Tx
i+ + Tx
i Tz
i+ )
i X
i
JzTz
i Tz
i+z
0
0.5
1
1.5
2
orbitongap!
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Jx / Jz
0
2
4
Jmix/Jz
! ! ! !
! !
!

#
!
!

#
Tz
polarized
Tx
polarized
(xy planes)
van Rynbach, Todo, Trebst (2010)
20
: Supersolid in extended Bose-Hubbard model
• Interacting soft-core bosons

• Supersolid = co-existence of

diagonal long-range order (=solid) and

off-diagonal long-range order (=superfluid) 

• Experimental realization: optical lattice?
II. MODEL
We analyze the extended Bose-Hubbard Hamiltonian on a
bic lattice
H = − t͚͗ij͘
͑ai
†
aj + aiaj
†
͒ + V͚͗ij͘
ninj
+
1
2
U͚i
ni͑ni − 1͒ − ␮͚i
ni, ͑1͒
here ai
†
and ai are the creation and annihilation operators of
boson ͓͑ai,aj
†
͔=␦ij͒ and ni=ai
†
ai. The parameter t denotes
e hopping matrix element, U and V are the on-site and
arest-neighbor repulsions, respectively, and ␮ is the
emical potential. The notation ͗ij͘ means the sum over the
arest-neighbor pairs. The system size is N=L3
, where L is
e length of the system. The order parameter of the solid
te is
S␲ =
1
N2 ͚jk
eiQ·͑rj−rk͒
͗njnk͘, ͑2͒
here Q=͑␲,␲,␲͒ is the wave vector that represents the
ggered order. As for the order parameter of the superfluid
te, we adopt Bose-Einstein condensation fraction
B. Mean-field approximation
We also analyze the ordering processes by
approximation.22 In order to study the solid state,
sublattice structure which is characterized by a sta
der of the density. Here we adopt mean fields for
order and superfluid order at sublattices A and B. T
tonian for this MF is given by
HMF = HA + HB + C,
HA = − zt͑aA
†
+ aA͒␾B + zVnAmB +
U
2
nA͑nA − 1͒
HB = − zt͑aB
†
+ aB͒␾A + zVnBmA +
U
2
nB͑nB − 1͒
C = 2zt␾A␾B − zVmAmB,
where z͑=6͒ is the number of nearest-neighbor si
mA and mB are the mean fields corresponding to t
tation values of the number operators for A and B
AMAMOTO, TODO, AND MIYASHITA PHYSICAL REVIEW B 79, 094
II. MODEL
We analyze the extended Bose-Hubbard Hamiltonian on a
cubic lattice
H = − t͚͗ij͘
͑ai
†
aj + aiaj
†
͒ + V͚͗ij͘
ninj
+
1
2
U͚i
ni͑ni − 1͒ − ␮͚i
ni, ͑1͒
where ai
†
and ai are the creation and annihilation operators of
a boson ͓͑ai,aj
†
͔=␦ij͒ and ni=ai
†
ai. The parameter t denotes
the hopping matrix element, U and V are the on-site and
nearest-neighbor repulsions, respectively, and ␮ is the
chemical potential. The notation ͗ij͘ means the sum over the
nearest-neighbor pairs. The system size is N=L3
, where L is
the length of the system. The order parameter of the solid
state is
S␲ =
1
N2 ͚jk
eiQ·͑rj−rk͒
͗njnk͘, ͑2͒
where Q=͑␲,␲,␲͒ is the wave vector that represents the
staggered order. As for the order parameter of the superfluid
state, we adopt Bose-Einstein condensation fraction
␳k=0 =
1
N2 ͚jk
͗aj
†
ak + ak
†
aj͘ ͑3͒
B. Me
We also analyze
approximation.22 In o
sublattice structure wh
der of the density. He
order and superfluid o
tonian for this MF is
H
HA = − zt͑aA
†
+ aA͒
HB = − zt͑aB
†
+ aB͒
C =
where z͑=6͒ is the nu
mA and mB are the m
tation values of the n
spectively,
mA =
YAMAMOTO, TODO, AND MIYASHITA P
http://www.uibk.ac.at/th-physik/qo
successive transitions of superfluid and solid for ͑t/U
=0.045,␮/U=0.7͒. As was seen in the SSE simulation, here
we find again the suppression of the solid order by the su-
perfluid fraction. Namely, S␲ has a cusp at the superfluid
transition point. We also depict the phase diagram and com-
pare that to that of SSE ͑Fig. 8͒. They show a qualitatively
good agreement, e.g., there is the tetracritical point ͑tc,Tc͒
and the critical temperatures TS␲
and T␳s
are suppressed by
appearance of the other order as mentioned before.
Let us study the competition between the solid and super-
fluid orders by analyzing the Ginzburg Landau ͑GL͒ free
energy. Since the order parameters m and ␾ take small value
in the vicinity of the tetracritical point, the GL free energy is
0
0.05
0.1
0.15
0.2
0.25
0.04 0.045 0.05 0.055 0.06
T/U
t/U
NL
SS
NS SF
TSπ
by SSE
Tρs
by SSE
FIG. 6. The t-T phase diagram for V/U=1/z and ␮/U=0.7
obtained by SSE. The transition temperatures of the solid state TS␲
are plotted by solid circles and those of the superfluid state T␳s
are
plotted by open circles. The lines connect the data points for the
guide to the eyes.
SUCCESSIVE PHASE TRANSITIONS AT FINITE…
sity ␳Ͻ1/2. Therefore we confirm the existence of the su-
persolid phase in the region of ␳Ͻ1/2.
V. PHASE TRANSITIONS AT FINITE TEMPERATURES
Now, we study the ordered states at finite temperatures.
The phase transition between the normal liquid phase and the
solid phase is expected to belong to the universality class of
the Ising model because the phase transition occurs in the
spontaneous symmetry breaking of the order parameter with
the symmetry of Z2. On the other hand, the phase transition
of superfluid is expected to belong to the XY universality
class because the order parameter has the symmetry of U͑1͒.
In this section, we study the temperature dependence of these
order parameters.
A. Stochastic series expansion
First, we show the results obtained by SSE. The simula-
tions were performed in the grand canonical ensemble using
a system sizes N=103
and N=123
.
We plot the order parameters of solid, S␲, and that of
superfluid, ␳s, as a function of temperature for various values
of t. In Fig. 5͑a͒, we show the transition from normal liquid
to normal solid for t/U=0.02 in which only S␲ appears con-
tinuously. In the same way, the transition from normal liquid
to superfluid for t/U=0.08 is depicted in Fig. 5͑b͒. For
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
1/L
FIG. 4. The size dependence of the solid and the superfluid
order parameters for the parameter set ͑t/U=0.055,␮/U=0.25,V
=U/z͒ calculated by SSE. System sizes are from L=8 to L=16.
Dashed lines denote linear extrapolations of data points.
0
0 0.1 0.2 0.3 0.4
0
T/U(a)
0
0.05
0.1
0.15
0.2
0.25
0.3
0 0.1 0.2 0.3 0.4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Sπ
ρs
T/U
Sπ(L=12)
Sπ(L=10)
ρs(L=12)
ρs(L=10)
(b)
0
0.05
0.1
0.15
0.2
0.25
0.3
0 0.1 0.2 0.3 0.4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Sπ
ρs
T/U
Sπ(L=12)
Sπ(L=10)
ρs(L=12)
ρs(L=10)
(c)
FIG. 5. Temperature dependence of order parameters obtained
by SSE ͑V=U/z͒. ͑a͒ ͑t/U=0.02,␮/U=0.7͒: normal liquid-normal
solid transition. ͑b͒ ͑t/U=0.08,␮/U=0.7͒: normal liquid-superfluid
Yamamoto, Todo, Miyashita (2009)
21
ALPS
• 600 ALPS ( 2015 8 )

• First-order commensurate-incommensurate magnetic phase transition in the
coupled FM spin-1/2 two-leg ladders

• Critical behavior of the site diluted quantum anisotropic Heisenberg model in two
dimensions

• Dimerized ground states in spin-S frustrated systems

• Practical, Reliable Error Bars in Quantum Tomography

• Fulde-Ferrell-Larkin-Ovchinnikov pairing as leading instability on the square lattice

• Mott Transition for Strongly-Interacting 1D Bosons in a Shallow Periodic Potential

• Pair Correlations in Doped Hubbard Ladders

• Theoretical investigation of the behavior of CuSe2O5 compound in high magnetic
fields

• FLEX+DMFT approach to the d -wave superconducting phase diagram of the two-
dimensional Hubbard model

• Transport properties for a quantum dot coupled to normal leads with a pseudogap

•
http://alps.comp-phys.org/mediawiki/index.php/PapersTalks
22
CMSI C (2015/10/01)
ALPS ( )
ALPS
• 

• XML 

• 

• ( ) 

• ( )

• XML 

• 

• ( ): ED CMC QMC DMRG DMFT 

• ALPS 

• Python
24
ALPS
parameter2xml
tool
application programs
Python based evaluation tools
Parameter XML File
Outputs in HDF5  XML
Quantum Monte Carlo
Quantum Lattice Model
Exact Diagonalization DMRG
Lattice XML File
square lattice
LATTICES
LATTICE name=square lattice dimension=2
PARAMETER name=a default=1/
BASISVECTORa 0/VECTORVECTOR0 a/VECTOR/BASIS
/LATTICE
UNITCELL name=simple2d dimension=2
VERTEX/
EDGE
SOURCE vertex=1 offset=0 0/
TARGET vertex=1 offset=0 1/
/EDGE
EDGE
SOURCE vertex=1 offset=0 0/
TARGET vertex=1 offset=1 0/
/EDGE
/UNITCELL
LATTICEGRAPH name=square lattice
FINITELATTICE
LATTICE ref=square lattice/
EXTENT dimension=1 size=L/
EXTENT dimension=2 size=L/
BOUNDARY type=periodic/
/FINITELATTICE
UNITCELL ref=simple2d/
/LATTICEGRAPH
/LATTICES
(0,0)
(0,1)
(1,0)
MODELS
BASIS name=spin
SITEBASIS name=spin
PARAMETER name=local_S default=1/2/
QUANTUMNUMBER name=S min=local_S max=local_S/
QUANTUMNUMBER name=Sz min=-S max=S/
OPERATOR name=Sz matrixelement=Sz/
OPERATOR name=Splus matrixelement=sqrt(S*(S+1)-Sz*(Sz+1))
CHANGE quantumnumber=Sz change=1/
/OPERATOR
OPERATOR name=Sminus matrixelement=sqrt(S*(S+1)-Sz*(Sz-1))
CHANGE quantumnumber=Sz change=-1/
/OPERATOR
/SITEBASIS
/BASIS
HAMILTONIAN name=spin
PARAMETER name=J default=1/
PARAMETER name=h default=0/
BASIS ref=spin/
SITETERM
-h * Sz(i)
/SITETERM
BONDTERM source=i target=j
J * (Sz(i)*Sz(j) + (Splus(i)*Sminus(j)+Sminus(i)*Splus(j)))/2
/BONDTERM
/HAMILTONIAN
/MODELS
Model XML File
H = J
 i,j
[ Sz
i Sz
j + ( S+
i S-
j + S-
i S+
j )/ 2 - h
i
Sz
i]Σ Σ
Plots
Parameter File
LATTICE = square lattice
MODEL = spin
L = 16
Jxy = 1
Jz = 2
SWEEPS = 10000
THERMALIZATION = 1000
{ T = 0.1 }
{ T = 0.2 }
{ T = 0.5 }
{ T = 1.0 }
DMFT
25
ALPS
generic C++
numerics
domain-specific
libraries
applications
tools
C / Fortran BLAS LAPACK MPI
graph serialization XML/XSLT
iterative eigenvalue solverrandom ublas
lattice model observables scheduler
MC QMC ED DMRG DMFT
XML manipulation Python binding GUI
Boost library
26
• Boost C++ Library

• 

• HDF5 (Hierarchical Data Format)

• 

• MPI (Message Passing Interface)

• 

• BLAS LAPACK

• ( )
27
ALPS/alea
• 

• 

• 

•
alps::RealObservable mag2(Magnetization^2);
...
mag2  m * m; // at each MC step
std::cout  mag2  std::endl;
Magnetization^2: 3.142 +/- 0.001; tau = 10.3
alps::RealObsEvaluator binder = mag2 * mag2 / mag4;
std::cout  binder.mean()  ‘ ‘  binder.error()  ‘n’;
28
ALPS/lattice
• 

• site vertex

• bond edge 

• Boost Graph Library 

• XML 

• 

• 

• 

• “hain lattice” “square lattice” “triangular lattice” “honeycomb
lattice” “simple cubic lattice”
29
XML
LATTICE name=chain lattice dimension=1
BASISVECTOR 1 /VECTOR/BASIS
/LATTICE
UNITCELL name=simple1d dimension=1 vertices=”1”
EDGE
SOURCE vertex=1 offset=0/TARGET vertex=1 offset=1/
/EDGE
/UNITCELL
LATTICEGRAPH name = chain lattice
FINITELATTICE
LATTICE ref=chain lattice/
PARAMETER name=”L”/
EXTENT size =L/
BOUNDARY type=periodic/
/FINITELATTICE
UNITCELL ref=simple1d/
/LATTICEGRAPH
30
ALPS/model
• XML 

• 

• 

• 

• 

• ALPS Model HOWTO: http://alps.comp-phys.org/mediawiki/ index.php/
Tutorials:ModelHOWTO/ja 

• : “spin” “boson Hubbard” “hardcore boson”
“fermion Hubbard” “alternative fermion Hubbard” “spinless fermions” “Kondo
lattice” “t-J”
Jz*Sz(i)*Sz(j)+Jxy/2*(Splus(i)*Sminus(j)+Sminus(i)*Splus(j))
31
XML
HAMILTONIAN name=”spin”
PARAMETER name=”Jz” default=”J”/
PARAMETER name=”Jxy” default=”J”/
PARAMETER name=”J” default=”1”/
PARAMETER name=”Jz'” default=”J'”/
PARAMETER name=”Jxy'” default=”J'”/
PARAMETER name=”J'” default=”0”/
PARAMETER name=”h” default=”0”/
BASIS ref=”spin”/
SITETERM site=”i” -h * Sz(i) /SITETERM
BONDTERM type=”0” source=”i” target=”j”
Jz * Sz(i) * Sz(j) + Jxy * (Splus(x)*Sminus(y)+Sminus(x)*Splus(y)) / 2
/BONDTERM
BONDTERM type=”1” source=”i” target=”j”
Jz' * Sz(i) * Sz(j) + Jxy' * (Splus(x)*Sminus(y)+Sminus(x)*Splus(y)) / 2
/BONDTERM
/HAMILTONIAN
H =
⟨i,j⟩
[JzSz
i Sz
j +
Jxy
2
(S+
i S−
j + S−
i S+
j )] −
i
hSz
i
32
• XML HDF5 

• ( )

• • 

• C++ 

• 

• 

• C++ Boost 

• 

• 

• MPI + OpenMP 

• (Python) 

• 

•
33
XML
• XML eXtensible Marckup Landuage

• 

• 

• 

• XML : HTML (XHTML)
an attribute
contents
empty element (no contents)
opening tag
closing tag
html
h1 align=”center”Header/h1
pA paragraph... And below it an image/p
img src=”img.jpg”/
/html
34
XML
• 

• 

• XML 

• XML ( )
( : Document Type Definition (DTD) XML Schema)
html
imgh1 p
align=center A paragraph... src=img.jpgHeader
html
h1 align=”center”Header/h1
pA paragraph... And below it an image/p
img src=”img.jpg”/
/html
35
XML ?
• ?

• ?

• ?
plain text file
# parameters
10 0.5 10000 1000
# mean, error
-10.451 0.043
PARAMETER name=“L”10/PARAMETER
PARAMETER name=“T”0.5/PARAMETER
PARAMETER name=“SWEEPS”10000/PARAMETER
PARAMETER name=“THERMALIZATION”1000/PARAMETER
AVERAGE name=“Energy”
MEAN -10.451 /MEAN
ERROR 0.043 /ERROR
/AVERAGE
XML file
36
• 

• 

• XML ( )
# parameters
10 0.5 10000 1000 12
# RNG
“lagged fibonacci”
# mean, error
-10.451 0.043
PARAMETER name=“L”10/PARAMETER
PARAMETER name=“T”0.5/PARAMETER
PARAMETER name=“SWEEPS”10000/PARAMETER
PARAMETER name=“THERMALIZATION”1000/PARAMETER
PARAMETER name=”SEED”12/PARAMETER
RNG name=”lagged fibonacci”/
AVERAGE name=“Energy”
MEAN -10.451 /MEAN
ERROR 0.043 /ERROR
/AVERAGE
37
C (Fortran) vs C++
• C++ C ( ) 

• 

• ( ) 

• (inheritance) (virtual function)

• (+ * …) 

• 

• etc...
38
class Complex {
public:
Complex(double r, double i) { re=r; im=i; } //
double real() const { return re; } //
double imag() const { return im; }
double abs() const { return sqrt(re*re + im*im); }
Complex operator=(const Complex rhs) {
re = rhs.re; im = rhs.im;
} //
Complex operator+(const Complex c) const {
return Complex(re + c.re, im + c.im);
} // +
// ...
private:
double re, im; // ( )
};
Complex a(1,0), b(0,1); // Complex a,b
Complex c = a+b;

cout  c.real()  ‘ ‘  c.imag()  ‘ ‘  c.abs; //
39
• ( ) 

• 

• 

• 

• 

• 

• ( ) ( )


• ( ) 

• (or ) 

•
40
//
class Number {
public:
virtual double abs();
};
// 1
class RealNumber : public Number {
public:
double abs() { return val; }
double val;
};
// 2

class Complex : public Number {
public:
double abs() { return c.abs(); }
Complex c;
};
// 

void output(Number num) {
cout  num.abs();
}
RealNumber rn;
ComplexNumber cn;
// ...
// RealNumber::abs()
output(rn);
// ComplexNumber::abs()
output(cn);
41
Class/Function Template
• : ( ??)

• 

•
templateclass T Complex {
public:
T real() const { return re; }
T abs() const { sqrt(re*re + im*im); }
private:
T re, im;
};
Complexdouble c; // T double
templateclass T
T abs(const ComplexT c) {
return c.abs();
}
42
• 

• ?

• ) (bubble sort) 

•
subroutine sort(n, a)
dimension a(n)
do i = n, 2, -1
do j = 1, i-1
if (a(j).lt.a(j+1)) then
b = a(j)
a(j) = a(j+1)
a(j+1) = b
endif
enddo
enddo
43
•
( ) 

• common
function less(i,j)
logical less
common /sortdata/n,a(n)
return (a(i).lt.a(j))
subroutine swap(i,j)
common /sortdata/n,a(n)
b = a(i)
a(i) = a(j)
a(j) = b
subroutine sort(n, less, swap)
logical less
do i = n, 2, -1
do j = 1, i-1
if (less(j,j+1)) then
call swap(j,j+1)
endif
enddo
enddo
44
class sort_array {
public:
virtual bool less(int i, int j);
virtual void swap(int i, int j);
};
class sort_a : public sort_array {
public:
bool less(int i, int j) {
return a(i)  a(j);
}
void swap(int i, int j) { ... }
double a[];
};
void sort(int n, sort_array a) {
for (int i = n-1, i  0; --i)
for (int j = 0; j  i; ++j)
if (a.less(j,j+1))
a.swap(j,j+1);
}
• less swap


•
less swap 

• sort
45
• + = ( )+ 

• 

• [Fortran] common 

• [C++] sort_array 

• [ ]
46
Template
templateclass A
void sort(int n, A a) {
for (int i = n-1, i  0; --i)
for (int j = 0; j  i; ++j)
if (a.less(j,j+1))
a.swap(j,j+1);
}
class myarray {
public:
bool less(int i, int j) {
return a(i)  a(j);
}
void swap(int i, int j) { ... }
double a[];
};
myarray a;
//…
sort(n, a);
• sort 

• less swap
sort 

•
47
• + 

• ( )

• 

• ( ) 

• ( ) 

•
vs
48
• class (int) (bool) 

• 

•


•
Template Metaprograming
templateint I, bool b class myclass { /* ... */ };
templateclass T myclass { /* ... */ };
template myclassdouble { /* ... */ };
49
Static Factorial (N!)
// N
templateint N class Factorial {
public:
enum {
value = N * FactorialN-1::value
};
};
// N=1
template class Factorial1 {
public:
enum {
value = 1;
}
};
Factorial5::value; // 120
50
• 

• ( ) 

• Perl Python Ruby 

• Mac OS X Linux 

• Windows  

• 

• 

• 

• ( ) 

• CSV/XML/HDF5 DB CGI
GUI 

•
51
ALPS Python
• Boost.Python 

• C++ Python 

•
Python (pyalps) 

• Python
52
pyalps matplotlib
import pyalps
import pyalps.plot as alpsplot
import matplotlib.pyplot as pyplot
data = pyalps.loadMeasurements(pyalps.getResultFiles(prefix='parm9a'),
'Magnetization Density^2’)
for item in pyalps.flatten(data):
item.props['L'] = int(item.props['L'])
magnetization2 = pyalps.collectXY(data, x='T',
y='Magnetization Density^2', foreach=['L'])
magnetization2.sort(key=lambda item: item.props['L'])
pyplot.figure()
alpsplot.plot(magnetization2)
pyplot.xlabel('Temperture $T$')
pyplot.ylabel('Magnetization Density Squared $m^2$')
pyplot.legend(loc='best')
53

More Related Content

What's hot

Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arraysKeigo Nitadori
 
Convergence methods for approximated reciprocal and reciprocal-square-root
Convergence methods for approximated reciprocal and reciprocal-square-rootConvergence methods for approximated reciprocal and reciprocal-square-root
Convergence methods for approximated reciprocal and reciprocal-square-rootKeigo Nitadori
 
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習Masahiro Suzuki
 
Variational AutoEncoder
Variational AutoEncoderVariational AutoEncoder
Variational AutoEncoderKazuki Nitta
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)Babu Rao
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comAbu Bakar Soomro
 
確率的推論と行動選択
確率的推論と行動選択確率的推論と行動選択
確率的推論と行動選択Masahiro Suzuki
 
An analysis of the symmetries of Cosmological Billiards
An analysis of the symmetries of Cosmological BilliardsAn analysis of the symmetries of Cosmological Billiards
An analysis of the symmetries of Cosmological BilliardsOrchidea Maria Lecian
 
A block-step version of KS regularization
A block-step version of KS regularizationA block-step version of KS regularization
A block-step version of KS regularizationKeigo Nitadori
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Alexander Litvinenko
 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformKurenai Ryu
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformationbeenishbeenish
 

What's hot (18)

Hermite integrators and Riordan arrays
Hermite integrators and Riordan arraysHermite integrators and Riordan arrays
Hermite integrators and Riordan arrays
 
Convergence methods for approximated reciprocal and reciprocal-square-root
Convergence methods for approximated reciprocal and reciprocal-square-rootConvergence methods for approximated reciprocal and reciprocal-square-root
Convergence methods for approximated reciprocal and reciprocal-square-root
 
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
 
Ch06 3
Ch06 3Ch06 3
Ch06 3
 
Variational AutoEncoder
Variational AutoEncoderVariational AutoEncoder
Variational AutoEncoder
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
XI half yearly exam 2014 15 with answer
XI half yearly exam 2014 15 with answer XI half yearly exam 2014 15 with answer
XI half yearly exam 2014 15 with answer
 
確率的推論と行動選択
確率的推論と行動選択確率的推論と行動選択
確率的推論と行動選択
 
Discretization
DiscretizationDiscretization
Discretization
 
An analysis of the symmetries of Cosmological Billiards
An analysis of the symmetries of Cosmological BilliardsAn analysis of the symmetries of Cosmological Billiards
An analysis of the symmetries of Cosmological Billiards
 
A block-step version of KS regularization
A block-step version of KS regularizationA block-step version of KS regularization
A block-step version of KS regularization
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transform
 
Isomorphism
IsomorphismIsomorphism
Isomorphism
 
1st Semester Chemistry Cycle (Dec-2015; Jan-2016) Question Papers
1st Semester Chemistry Cycle  (Dec-2015; Jan-2016) Question Papers1st Semester Chemistry Cycle  (Dec-2015; Jan-2016) Question Papers
1st Semester Chemistry Cycle (Dec-2015; Jan-2016) Question Papers
 
Matrix of linear transformation
Matrix of linear transformationMatrix of linear transformation
Matrix of linear transformation
 

Viewers also liked

夏休みに入る前に 知っておきたい LINEを使う5つのコツ
夏休みに入る前に 知っておきたい LINEを使う5つのコツ夏休みに入る前に 知っておきたい LINEを使う5つのコツ
夏休みに入る前に 知っておきたい LINEを使う5つのコツKeisuke Katsuki
 
Goetze_resume_16
Goetze_resume_16Goetze_resume_16
Goetze_resume_16Sara Goetze
 
Lisa Kahler Resume
Lisa Kahler ResumeLisa Kahler Resume
Lisa Kahler ResumeLisa Kahler
 
Ricky_Ng_Resume - 2016
Ricky_Ng_Resume - 2016Ricky_Ng_Resume - 2016
Ricky_Ng_Resume - 2016Ricky Ng
 
Aditya Vad_Resume
Aditya Vad_ResumeAditya Vad_Resume
Aditya Vad_ResumeAditya Vad
 
Racial Construction in America
Racial Construction in AmericaRacial Construction in America
Racial Construction in AmericaAmador Maria
 
Actividades de aplicación
Actividades de aplicaciónActividades de aplicación
Actividades de aplicaciónvil brack
 
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 SeoulNew Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 SeoulAmazon Web Services Korea
 
Introduction to Microsoft on AWS
Introduction to Microsoft on AWS Introduction to Microsoft on AWS
Introduction to Microsoft on AWS Amazon Web Services
 

Viewers also liked (15)

Trabajo final red
Trabajo final redTrabajo final red
Trabajo final red
 
夏休みに入る前に 知っておきたい LINEを使う5つのコツ
夏休みに入る前に 知っておきたい LINEを使う5つのコツ夏休みに入る前に 知っておきたい LINEを使う5つのコツ
夏休みに入る前に 知っておきたい LINEを使う5つのコツ
 
Goetze_resume_16
Goetze_resume_16Goetze_resume_16
Goetze_resume_16
 
Preuniversitario navidad 2011-1
Preuniversitario navidad 2011-1Preuniversitario navidad 2011-1
Preuniversitario navidad 2011-1
 
Lisa Kahler Resume
Lisa Kahler ResumeLisa Kahler Resume
Lisa Kahler Resume
 
Ricky_Ng_Resume - 2016
Ricky_Ng_Resume - 2016Ricky_Ng_Resume - 2016
Ricky_Ng_Resume - 2016
 
Aditya Vad_Resume
Aditya Vad_ResumeAditya Vad_Resume
Aditya Vad_Resume
 
Racial Construction in America
Racial Construction in AmericaRacial Construction in America
Racial Construction in America
 
CMSI神戸ハンズオン Feram講習会
CMSI神戸ハンズオン Feram講習会CMSI神戸ハンズオン Feram講習会
CMSI神戸ハンズオン Feram講習会
 
2015-07-28 @ 材料構造の解析に役立つ計算科学研究会
2015-07-28 @ 材料構造の解析に役立つ計算科学研究会2015-07-28 @ 材料構造の解析に役立つ計算科学研究会
2015-07-28 @ 材料構造の解析に役立つ計算科学研究会
 
Actividades de aplicación
Actividades de aplicaciónActividades de aplicación
Actividades de aplicación
 
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 SeoulNew Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
New Trends of Geospatial Services on AWS Cloud - Channy Yun :: ICGIS 2015 Seoul
 
Introduction to Microsoft on AWS
Introduction to Microsoft on AWS Introduction to Microsoft on AWS
Introduction to Microsoft on AWS
 
Sistema de archivos,
Sistema de archivos,Sistema de archivos,
Sistema de archivos,
 
Corrosion prevention
Corrosion preventionCorrosion prevention
Corrosion prevention
 

Similar to CMSI計算科学技術特論C (2015) ALPS と量子多体問題①

Decrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory AlloysDecrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory Alloyshongcai20072008
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesDaisuke Satow
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
SU(3) fermions in a three-band graphene-like model
SU(3) fermions in a three-band graphene-like modelSU(3) fermions in a three-band graphene-like model
SU(3) fermions in a three-band graphene-like modelAnkurDas60
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...Yong Heui Cho
 
TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...Yong Heui Cho
 
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsHidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsABDERRAHMANE REGGAD
 
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxMATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxandreecapon
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Alexander Litvinenko
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997JOAQUIN REA
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
Analysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksAnalysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksYong Heui Cho
 

Similar to CMSI計算科学技術特論C (2015) ALPS と量子多体問題① (20)

Decrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory AlloysDecrease hysteresis for Shape Memory Alloys
Decrease hysteresis for Shape Memory Alloys
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
 
Non standard
Non standardNon standard
Non standard
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
SU(3) fermions in a three-band graphene-like model
SU(3) fermions in a three-band graphene-like modelSU(3) fermions in a three-band graphene-like model
SU(3) fermions in a three-band graphene-like model
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
Analysis of an E-plane waveguide T-junction with a quarter-wave transformer u...
 
Problem and solution i ph o 31
Problem and solution i ph o 31Problem and solution i ph o 31
Problem and solution i ph o 31
 
TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...
 
3rd Semester CS and IS (2013-June) Question Papers
3rd  Semester CS and IS  (2013-June) Question Papers 3rd  Semester CS and IS  (2013-June) Question Papers
3rd Semester CS and IS (2013-June) Question Papers
 
2013-June: 3rd Semester CSE / ISE Question Papers
2013-June: 3rd  Semester CSE / ISE Question Papers2013-June: 3rd  Semester CSE / ISE Question Papers
2013-June: 3rd Semester CSE / ISE Question Papers
 
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g ElectronsHidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
Hidden Symmetries and Their Consequences in the Hubbard Model of t2g Electrons
 
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docxMATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
MATLAB sessions Laboratory 6MAT 275 Laboratory 6Forced .docx
 
Gn2511881192
Gn2511881192Gn2511881192
Gn2511881192
 
Gn2511881192
Gn2511881192Gn2511881192
Gn2511881192
 
Physics_notes.pdf
Physics_notes.pdfPhysics_notes.pdf
Physics_notes.pdf
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
Analysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksAnalysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocks
 

More from Computational Materials Science Initiative

More from Computational Materials Science Initiative (20)

MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
ALPSチュートリアル
ALPSチュートリアルALPSチュートリアル
ALPSチュートリアル
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
MateriApps: OpenMXを利用した第一原理計算の簡単な実習
MateriApps: OpenMXを利用した第一原理計算の簡単な実習MateriApps: OpenMXを利用した第一原理計算の簡単な実習
MateriApps: OpenMXを利用した第一原理計算の簡単な実習
 
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 

Recently uploaded

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyDrAnita Sharma
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 

Recently uploaded (20)

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
fundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomologyfundamental of entomology all in one topics of entomology
fundamental of entomology all in one topics of entomology
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 

CMSI計算科学技術特論C (2015) ALPS と量子多体問題①

  • 1. CMSI C (2015/10/01) ALPS / / NIMS wistaria@phys.s.u-tokyo.ac.jp
  • 2. - ( ) • 1968 • 1996 Ph.D [ ( ) ] • 1996 ( & ) • 2000 (Zürich) • 2002 • 2011 ( ) • 2014 • ( ) NIMS ( ) • • 2
  • 3. CMSI C • • • • • • • • • • 3
  • 4. CMSI C (1/2) • (A) • A-1  • A-2  ( ) • A-3  ( ) ( ) • (B)  • B-1  • B-2  • (C)  • C-1  • C-2  • C-3  ( ) • C-4  • C-5  • C-6  4
  • 5. CMSI C (2/2) • (D)  • D-1  • D-2  • D-3  • D-4  • D-5  • (E)  • E-1  • E-2  • E-3  • E-4  • (F)  5
  • 6. CMSI C • 10 1 10 8 : ALPS ( ) • 10 15 10 22 : OpenMX DFT ( ) • 10 29 : xTAPP DFT (RIST) • 11 5 : ( ) • 11 12 : ( ) • 11 19 : ( ) ( ) • 11 26 12 3 : feram ( ) • 12 10 12 17 : MODYLAS MD ( ) • 1 7 1 21 : ( ) • 1 14 : SMASH ( ) 6
  • 7. ALPS Agenda (1/2) • CMSI C • • ALPS (Applications and Libraries for Physics Simulations) ? • ? • ALPS • ALPS • ALPS • XML / HDF5 • C++ • Python • 9
  • 8. ALPS Agenda (2/2) • ALPS • ALPLS • ( GUI ) • • ( ) • (MateriApps MateriApps LIVE!) • ? 10
  • 9. CMSI C (2015/10/01) ALPS : “ ” ALPS 70, 275-282 (2015)
  • 10. ALPS • • ALPS = C++ • ALPS = : QMC DMRG ED DMFT • ALPS = ALPS = Algorithms and Libraries for Physics Simulations Parameter XML Files Outputs in XML Format Quantum Lattice Model Quantum Monte Carlo Exact Diagonalization DMRG Lattice XML File Model XML File 12
  • 11. (Quantum Lattice Models) • (XXZ ) • Hubbard (fermionic / bosonic) • t-J H = −t ⟨i,j⟩σ (c† iσcjσ + h.c.) + U i ni↑ni↓ H = Jxy 2 ⟨i,j⟩ (S+ i S− j + S− i S+ j ) + Jz ⟨i,j⟩ Sz i Sz j H = −t ⟨i,j⟩σ (c† iσcjσ + h.c.) + J i,j (Si · Sj − ninj/4) 13
  • 12. ? • • • : • • • • • • DMRG DMFT 14
  • 13. QLM • • (Householder ) Lanczos • • Metropolis etc • • etc • DMRG • DMRG ( ) (i)TEBD (i)PEPS MERA etc • • QMC etc 15
  • 14. ALPS • • • • • • • • / • (non-portable ) 16
  • 15. • • • • • • • • · · · 17
  • 16. ALPS • 1994 • PALM++ C++ DMRG • 1997 • looper ( ) • 2001 ~ • SSE • 2001 • ALPS • 2002 • 1 • 2004 • ALPS 1.0 1 • 2015 1.3 18
  • 17. : Spin ladder material Na2Fe2(C2O4)3(H2O)2 • Fe2+ ions in octahedral crystal field 
 effective S=1 spins at low T • Fitting experimental data by QMC results
 for several theoretical models (ladders, 
 dimers, etc) 2.2 Experimental methods The magnetic susceptibilities of a single crystal of SIO were measured at 100 Oe with a superconducting quantum interference device (SQUID) magnetometer (Quantum Design MPMS-XL7). High-field magnetizations in pulsed magnetic fields up to about 53 T were measured utilizing a non-destructive pulse magnet, and the magnetizations were detected by an induction method using a standard pick-up coil system. ESR measurements on a single crystal of SIO in pulsed magnetic fields up to about 53 T were carried out using our a b c C O Fe b c a b c (a) (c) (b) Fig. 1. (Color online) (a) Crystal structure of Na2Fe2(C2O4)3(H2O)2. Hydrogen and sodium atoms are omitted for clarity. Fe2þ ions are connected by oxalate molecules and form two-leg ladders along the a-axis, as shown by red broken lines. (b) Distorted FeO6 octahedra bridged by oxalate ion. (c) Arrangement of the ladders in the bc-plane, and red broken lines corresponding to rungs of the ladders. 0.20 0.15 0.10 0.05 0.00 Susceptibility(emu/mol) Fig. 2. Tempera (C2O4)3(H2O)2 5 4 3 2 1 0 Magnetization(µB/ion) 0 Fig. 3. Magneti and H ? a. J. Phys. Soc. Jpn., Vol. 78, No. 12 5040 1623.6 GHz 1288.1 GHz 977.2 GHz 847.0 GHz 730.5 GHz T=1.3 K H//a 2O4)3(H2O)2 at 1.3 K for strong and weak signals, y z x a 0.20 0.15 0.10 0.05 0.00 Susceptibility(emu/mol) 30252015105 Temperature (K) H// a H⊥ a H = 100 Oe experiment (a) (b) 4 n) H// a 24° y z H. YAMAGUCHI et al. the QMC and the DMRG methods, respectively. For these calculations, we use the following parameter values, gz ¼ 4:7, gx ¼ 2:0, gy ¼ 2:5, ¼ 0:30, and R ¼ 0:1{0:5 for H k a ( ¼ 24 , ’ ¼ 90 ) and H ? a ( ¼ 102 , ’ ¼ 45 ). The principal axis directions and their g-values are deter- mined from the saturation magnetizations and the slopes of the ESR resonance modes in the following isolated dimer model analysis. In these field directions, the two sites of the ladder are magnetically equivalent. In the calculation, we add the temperature-independent Van Vleck paramagnetism to both k and ?. The calculated results do not reproduce the experimental ones well, especially the upturn of k at approximately 5 K. In Fig. 6(b), the Van Vleck para- manetic contributions are subtracted from both Mk and M?. We find a small anomaly at half of the saturation magnet- ization of R ¼ 0:1 calculated for H k a, which can be considered to originate from a 1/2 magnetization plateau. 0.20 0.15 0.10 0.05 Susceptibility(emu/mol) 30252015105 Temperature (K) H= 100 Oe H//a H⊥a experiment calculation (a) (b) 4 n) H//a J. Phys. Soc. Jpn., Vol. 78, No. 12 H. YAMAGUCHI et al. Yamaguchi, Kimura, Honda, Okunishi, Todo, Kindo, Hagiwara (2009) 19
  • 18. : Orbital ordering in eg orbital systems • Mott insulators with partially filled d-shells • Non-trivial interplay of charge, spin, and 
 orbital degrees of freedom • Effective Hamiltonian for orbital degrees of freedom (120o model) |x2 y2 i |3z2 r2 i H120 = X i, =x,y 1 4 h JzTz i Tz i+ + 3JxTx i Tx i+ ± p 3Jmix(Tz i Tx i+ + Tx i Tz i+ ) i X i JzTz i Tz i+z 0 0.5 1 1.5 2 orbitongap! 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Jx / Jz 0 2 4 Jmix/Jz ! ! ! ! ! ! ! # ! ! # Tz polarized Tx polarized (xy planes) van Rynbach, Todo, Trebst (2010) 20
  • 19. : Supersolid in extended Bose-Hubbard model • Interacting soft-core bosons • Supersolid = co-existence of
 diagonal long-range order (=solid) and
 off-diagonal long-range order (=superfluid) • Experimental realization: optical lattice? II. MODEL We analyze the extended Bose-Hubbard Hamiltonian on a bic lattice H = − t͚͗ij͘ ͑ai † aj + aiaj † ͒ + V͚͗ij͘ ninj + 1 2 U͚i ni͑ni − 1͒ − ␮͚i ni, ͑1͒ here ai † and ai are the creation and annihilation operators of boson ͓͑ai,aj † ͔=␦ij͒ and ni=ai † ai. The parameter t denotes e hopping matrix element, U and V are the on-site and arest-neighbor repulsions, respectively, and ␮ is the emical potential. The notation ͗ij͘ means the sum over the arest-neighbor pairs. The system size is N=L3 , where L is e length of the system. The order parameter of the solid te is S␲ = 1 N2 ͚jk eiQ·͑rj−rk͒ ͗njnk͘, ͑2͒ here Q=͑␲,␲,␲͒ is the wave vector that represents the ggered order. As for the order parameter of the superfluid te, we adopt Bose-Einstein condensation fraction B. Mean-field approximation We also analyze the ordering processes by approximation.22 In order to study the solid state, sublattice structure which is characterized by a sta der of the density. Here we adopt mean fields for order and superfluid order at sublattices A and B. T tonian for this MF is given by HMF = HA + HB + C, HA = − zt͑aA † + aA͒␾B + zVnAmB + U 2 nA͑nA − 1͒ HB = − zt͑aB † + aB͒␾A + zVnBmA + U 2 nB͑nB − 1͒ C = 2zt␾A␾B − zVmAmB, where z͑=6͒ is the number of nearest-neighbor si mA and mB are the mean fields corresponding to t tation values of the number operators for A and B AMAMOTO, TODO, AND MIYASHITA PHYSICAL REVIEW B 79, 094 II. MODEL We analyze the extended Bose-Hubbard Hamiltonian on a cubic lattice H = − t͚͗ij͘ ͑ai † aj + aiaj † ͒ + V͚͗ij͘ ninj + 1 2 U͚i ni͑ni − 1͒ − ␮͚i ni, ͑1͒ where ai † and ai are the creation and annihilation operators of a boson ͓͑ai,aj † ͔=␦ij͒ and ni=ai † ai. The parameter t denotes the hopping matrix element, U and V are the on-site and nearest-neighbor repulsions, respectively, and ␮ is the chemical potential. The notation ͗ij͘ means the sum over the nearest-neighbor pairs. The system size is N=L3 , where L is the length of the system. The order parameter of the solid state is S␲ = 1 N2 ͚jk eiQ·͑rj−rk͒ ͗njnk͘, ͑2͒ where Q=͑␲,␲,␲͒ is the wave vector that represents the staggered order. As for the order parameter of the superfluid state, we adopt Bose-Einstein condensation fraction ␳k=0 = 1 N2 ͚jk ͗aj † ak + ak † aj͘ ͑3͒ B. Me We also analyze approximation.22 In o sublattice structure wh der of the density. He order and superfluid o tonian for this MF is H HA = − zt͑aA † + aA͒ HB = − zt͑aB † + aB͒ C = where z͑=6͒ is the nu mA and mB are the m tation values of the n spectively, mA = YAMAMOTO, TODO, AND MIYASHITA P http://www.uibk.ac.at/th-physik/qo successive transitions of superfluid and solid for ͑t/U =0.045,␮/U=0.7͒. As was seen in the SSE simulation, here we find again the suppression of the solid order by the su- perfluid fraction. Namely, S␲ has a cusp at the superfluid transition point. We also depict the phase diagram and com- pare that to that of SSE ͑Fig. 8͒. They show a qualitatively good agreement, e.g., there is the tetracritical point ͑tc,Tc͒ and the critical temperatures TS␲ and T␳s are suppressed by appearance of the other order as mentioned before. Let us study the competition between the solid and super- fluid orders by analyzing the Ginzburg Landau ͑GL͒ free energy. Since the order parameters m and ␾ take small value in the vicinity of the tetracritical point, the GL free energy is 0 0.05 0.1 0.15 0.2 0.25 0.04 0.045 0.05 0.055 0.06 T/U t/U NL SS NS SF TSπ by SSE Tρs by SSE FIG. 6. The t-T phase diagram for V/U=1/z and ␮/U=0.7 obtained by SSE. The transition temperatures of the solid state TS␲ are plotted by solid circles and those of the superfluid state T␳s are plotted by open circles. The lines connect the data points for the guide to the eyes. SUCCESSIVE PHASE TRANSITIONS AT FINITE… sity ␳Ͻ1/2. Therefore we confirm the existence of the su- persolid phase in the region of ␳Ͻ1/2. V. PHASE TRANSITIONS AT FINITE TEMPERATURES Now, we study the ordered states at finite temperatures. The phase transition between the normal liquid phase and the solid phase is expected to belong to the universality class of the Ising model because the phase transition occurs in the spontaneous symmetry breaking of the order parameter with the symmetry of Z2. On the other hand, the phase transition of superfluid is expected to belong to the XY universality class because the order parameter has the symmetry of U͑1͒. In this section, we study the temperature dependence of these order parameters. A. Stochastic series expansion First, we show the results obtained by SSE. The simula- tions were performed in the grand canonical ensemble using a system sizes N=103 and N=123 . We plot the order parameters of solid, S␲, and that of superfluid, ␳s, as a function of temperature for various values of t. In Fig. 5͑a͒, we show the transition from normal liquid to normal solid for t/U=0.02 in which only S␲ appears con- tinuously. In the same way, the transition from normal liquid to superfluid for t/U=0.08 is depicted in Fig. 5͑b͒. For 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 1/L FIG. 4. The size dependence of the solid and the superfluid order parameters for the parameter set ͑t/U=0.055,␮/U=0.25,V =U/z͒ calculated by SSE. System sizes are from L=8 to L=16. Dashed lines denote linear extrapolations of data points. 0 0 0.1 0.2 0.3 0.4 0 T/U(a) 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Sπ ρs T/U Sπ(L=12) Sπ(L=10) ρs(L=12) ρs(L=10) (b) 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Sπ ρs T/U Sπ(L=12) Sπ(L=10) ρs(L=12) ρs(L=10) (c) FIG. 5. Temperature dependence of order parameters obtained by SSE ͑V=U/z͒. ͑a͒ ͑t/U=0.02,␮/U=0.7͒: normal liquid-normal solid transition. ͑b͒ ͑t/U=0.08,␮/U=0.7͒: normal liquid-superfluid Yamamoto, Todo, Miyashita (2009) 21
  • 20. ALPS • 600 ALPS ( 2015 8 ) • First-order commensurate-incommensurate magnetic phase transition in the coupled FM spin-1/2 two-leg ladders • Critical behavior of the site diluted quantum anisotropic Heisenberg model in two dimensions • Dimerized ground states in spin-S frustrated systems • Practical, Reliable Error Bars in Quantum Tomography • Fulde-Ferrell-Larkin-Ovchinnikov pairing as leading instability on the square lattice • Mott Transition for Strongly-Interacting 1D Bosons in a Shallow Periodic Potential • Pair Correlations in Doped Hubbard Ladders • Theoretical investigation of the behavior of CuSe2O5 compound in high magnetic fields • FLEX+DMFT approach to the d -wave superconducting phase diagram of the two- dimensional Hubbard model • Transport properties for a quantum dot coupled to normal leads with a pseudogap • http://alps.comp-phys.org/mediawiki/index.php/PapersTalks 22
  • 22. ALPS • • XML • • ( ) • ( ) • XML • • ( ): ED CMC QMC DMRG DMFT • ALPS • Python 24
  • 23. ALPS parameter2xml tool application programs Python based evaluation tools Parameter XML File Outputs in HDF5 XML Quantum Monte Carlo Quantum Lattice Model Exact Diagonalization DMRG Lattice XML File square lattice LATTICES LATTICE name=square lattice dimension=2 PARAMETER name=a default=1/ BASISVECTORa 0/VECTORVECTOR0 a/VECTOR/BASIS /LATTICE UNITCELL name=simple2d dimension=2 VERTEX/ EDGE SOURCE vertex=1 offset=0 0/ TARGET vertex=1 offset=0 1/ /EDGE EDGE SOURCE vertex=1 offset=0 0/ TARGET vertex=1 offset=1 0/ /EDGE /UNITCELL LATTICEGRAPH name=square lattice FINITELATTICE LATTICE ref=square lattice/ EXTENT dimension=1 size=L/ EXTENT dimension=2 size=L/ BOUNDARY type=periodic/ /FINITELATTICE UNITCELL ref=simple2d/ /LATTICEGRAPH /LATTICES (0,0) (0,1) (1,0) MODELS BASIS name=spin SITEBASIS name=spin PARAMETER name=local_S default=1/2/ QUANTUMNUMBER name=S min=local_S max=local_S/ QUANTUMNUMBER name=Sz min=-S max=S/ OPERATOR name=Sz matrixelement=Sz/ OPERATOR name=Splus matrixelement=sqrt(S*(S+1)-Sz*(Sz+1)) CHANGE quantumnumber=Sz change=1/ /OPERATOR OPERATOR name=Sminus matrixelement=sqrt(S*(S+1)-Sz*(Sz-1)) CHANGE quantumnumber=Sz change=-1/ /OPERATOR /SITEBASIS /BASIS HAMILTONIAN name=spin PARAMETER name=J default=1/ PARAMETER name=h default=0/ BASIS ref=spin/ SITETERM -h * Sz(i) /SITETERM BONDTERM source=i target=j J * (Sz(i)*Sz(j) + (Splus(i)*Sminus(j)+Sminus(i)*Splus(j)))/2 /BONDTERM /HAMILTONIAN /MODELS Model XML File H = J i,j [ Sz i Sz j + ( S+ i S- j + S- i S+ j )/ 2 - h i Sz i]Σ Σ Plots Parameter File LATTICE = square lattice MODEL = spin L = 16 Jxy = 1 Jz = 2 SWEEPS = 10000 THERMALIZATION = 1000 { T = 0.1 } { T = 0.2 } { T = 0.5 } { T = 1.0 } DMFT 25
  • 24. ALPS generic C++ numerics domain-specific libraries applications tools C / Fortran BLAS LAPACK MPI graph serialization XML/XSLT iterative eigenvalue solverrandom ublas lattice model observables scheduler MC QMC ED DMRG DMFT XML manipulation Python binding GUI Boost library 26
  • 25. • Boost C++ Library • • HDF5 (Hierarchical Data Format) • • MPI (Message Passing Interface) • • BLAS LAPACK • ( ) 27
  • 26. ALPS/alea • • • • alps::RealObservable mag2(Magnetization^2); ... mag2 m * m; // at each MC step std::cout mag2 std::endl; Magnetization^2: 3.142 +/- 0.001; tau = 10.3 alps::RealObsEvaluator binder = mag2 * mag2 / mag4; std::cout binder.mean() ‘ ‘ binder.error() ‘n’; 28
  • 27. ALPS/lattice • • site vertex • bond edge • Boost Graph Library • XML • • • • “hain lattice” “square lattice” “triangular lattice” “honeycomb lattice” “simple cubic lattice” 29
  • 28. XML LATTICE name=chain lattice dimension=1 BASISVECTOR 1 /VECTOR/BASIS /LATTICE UNITCELL name=simple1d dimension=1 vertices=”1” EDGE SOURCE vertex=1 offset=0/TARGET vertex=1 offset=1/ /EDGE /UNITCELL LATTICEGRAPH name = chain lattice FINITELATTICE LATTICE ref=chain lattice/ PARAMETER name=”L”/ EXTENT size =L/ BOUNDARY type=periodic/ /FINITELATTICE UNITCELL ref=simple1d/ /LATTICEGRAPH 30
  • 29. ALPS/model • XML • • • • • ALPS Model HOWTO: http://alps.comp-phys.org/mediawiki/ index.php/ Tutorials:ModelHOWTO/ja • : “spin” “boson Hubbard” “hardcore boson” “fermion Hubbard” “alternative fermion Hubbard” “spinless fermions” “Kondo lattice” “t-J” Jz*Sz(i)*Sz(j)+Jxy/2*(Splus(i)*Sminus(j)+Sminus(i)*Splus(j)) 31
  • 30. XML HAMILTONIAN name=”spin” PARAMETER name=”Jz” default=”J”/ PARAMETER name=”Jxy” default=”J”/ PARAMETER name=”J” default=”1”/ PARAMETER name=”Jz'” default=”J'”/ PARAMETER name=”Jxy'” default=”J'”/ PARAMETER name=”J'” default=”0”/ PARAMETER name=”h” default=”0”/ BASIS ref=”spin”/ SITETERM site=”i” -h * Sz(i) /SITETERM BONDTERM type=”0” source=”i” target=”j” Jz * Sz(i) * Sz(j) + Jxy * (Splus(x)*Sminus(y)+Sminus(x)*Splus(y)) / 2 /BONDTERM BONDTERM type=”1” source=”i” target=”j” Jz' * Sz(i) * Sz(j) + Jxy' * (Splus(x)*Sminus(y)+Sminus(x)*Splus(y)) / 2 /BONDTERM /HAMILTONIAN H = ⟨i,j⟩ [JzSz i Sz j + Jxy 2 (S+ i S− j + S− i S+ j )] − i hSz i 32
  • 31. • XML HDF5 • ( ) • • • C++ • • • C++ Boost • • • MPI + OpenMP • (Python) • • 33
  • 32. XML • XML eXtensible Marckup Landuage • • • • XML : HTML (XHTML) an attribute contents empty element (no contents) opening tag closing tag html h1 align=”center”Header/h1 pA paragraph... And below it an image/p img src=”img.jpg”/ /html 34
  • 33. XML • • • XML • XML ( ) ( : Document Type Definition (DTD) XML Schema) html imgh1 p align=center A paragraph... src=img.jpgHeader html h1 align=”center”Header/h1 pA paragraph... And below it an image/p img src=”img.jpg”/ /html 35
  • 34. XML ? • ? • ? • ? plain text file # parameters 10 0.5 10000 1000 # mean, error -10.451 0.043 PARAMETER name=“L”10/PARAMETER PARAMETER name=“T”0.5/PARAMETER PARAMETER name=“SWEEPS”10000/PARAMETER PARAMETER name=“THERMALIZATION”1000/PARAMETER AVERAGE name=“Energy” MEAN -10.451 /MEAN ERROR 0.043 /ERROR /AVERAGE XML file 36
  • 35. • • • XML ( ) # parameters 10 0.5 10000 1000 12 # RNG “lagged fibonacci” # mean, error -10.451 0.043 PARAMETER name=“L”10/PARAMETER PARAMETER name=“T”0.5/PARAMETER PARAMETER name=“SWEEPS”10000/PARAMETER PARAMETER name=“THERMALIZATION”1000/PARAMETER PARAMETER name=”SEED”12/PARAMETER RNG name=”lagged fibonacci”/ AVERAGE name=“Energy” MEAN -10.451 /MEAN ERROR 0.043 /ERROR /AVERAGE 37
  • 36. C (Fortran) vs C++ • C++ C ( ) • • ( ) • (inheritance) (virtual function) • (+ * …) • • etc... 38
  • 37. class Complex { public: Complex(double r, double i) { re=r; im=i; } // double real() const { return re; } // double imag() const { return im; } double abs() const { return sqrt(re*re + im*im); } Complex operator=(const Complex rhs) { re = rhs.re; im = rhs.im; } // Complex operator+(const Complex c) const { return Complex(re + c.re, im + c.im); } // + // ... private: double re, im; // ( ) }; Complex a(1,0), b(0,1); // Complex a,b Complex c = a+b;
 cout c.real() ‘ ‘ c.imag() ‘ ‘ c.abs; // 39
  • 38. • ( ) • • • • • • ( ) ( ) • ( ) • (or ) • 40
  • 39. // class Number { public: virtual double abs(); }; // 1 class RealNumber : public Number { public: double abs() { return val; } double val; }; // 2
 class Complex : public Number { public: double abs() { return c.abs(); } Complex c; }; // 
 void output(Number num) { cout num.abs(); } RealNumber rn; ComplexNumber cn; // ... // RealNumber::abs() output(rn); // ComplexNumber::abs() output(cn); 41
  • 40. Class/Function Template • : ( ??) • • templateclass T Complex { public: T real() const { return re; } T abs() const { sqrt(re*re + im*im); } private: T re, im; }; Complexdouble c; // T double templateclass T T abs(const ComplexT c) { return c.abs(); } 42
  • 41. • • ? • ) (bubble sort) • subroutine sort(n, a) dimension a(n) do i = n, 2, -1 do j = 1, i-1 if (a(j).lt.a(j+1)) then b = a(j) a(j) = a(j+1) a(j+1) = b endif enddo enddo 43
  • 42. • ( ) • common function less(i,j) logical less common /sortdata/n,a(n) return (a(i).lt.a(j)) subroutine swap(i,j) common /sortdata/n,a(n) b = a(i) a(i) = a(j) a(j) = b subroutine sort(n, less, swap) logical less do i = n, 2, -1 do j = 1, i-1 if (less(j,j+1)) then call swap(j,j+1) endif enddo enddo 44
  • 43. class sort_array { public: virtual bool less(int i, int j); virtual void swap(int i, int j); }; class sort_a : public sort_array { public: bool less(int i, int j) { return a(i) a(j); } void swap(int i, int j) { ... } double a[]; }; void sort(int n, sort_array a) { for (int i = n-1, i 0; --i) for (int j = 0; j i; ++j) if (a.less(j,j+1)) a.swap(j,j+1); } • less swap • less swap • sort 45
  • 44. • + = ( )+ • • [Fortran] common • [C++] sort_array • [ ] 46
  • 45. Template templateclass A void sort(int n, A a) { for (int i = n-1, i 0; --i) for (int j = 0; j i; ++j) if (a.less(j,j+1)) a.swap(j,j+1); } class myarray { public: bool less(int i, int j) { return a(i) a(j); } void swap(int i, int j) { ... } double a[]; }; myarray a; //… sort(n, a); • sort • less swap sort • 47
  • 46. • + • ( ) • • ( ) • ( ) • vs 48
  • 47. • class (int) (bool) • • • Template Metaprograming templateint I, bool b class myclass { /* ... */ }; templateclass T myclass { /* ... */ }; template myclassdouble { /* ... */ }; 49
  • 48. Static Factorial (N!) // N templateint N class Factorial { public: enum { value = N * FactorialN-1::value }; }; // N=1 template class Factorial1 { public: enum { value = 1; } }; Factorial5::value; // 120 50
  • 49. • • ( ) • Perl Python Ruby • Mac OS X Linux • Windows • • • • ( ) • CSV/XML/HDF5 DB CGI GUI • 51
  • 50. ALPS Python • Boost.Python • C++ Python • Python (pyalps) • Python 52
  • 51. pyalps matplotlib import pyalps import pyalps.plot as alpsplot import matplotlib.pyplot as pyplot data = pyalps.loadMeasurements(pyalps.getResultFiles(prefix='parm9a'), 'Magnetization Density^2’) for item in pyalps.flatten(data): item.props['L'] = int(item.props['L']) magnetization2 = pyalps.collectXY(data, x='T', y='Magnetization Density^2', foreach=['L']) magnetization2.sort(key=lambda item: item.props['L']) pyplot.figure() alpsplot.plot(magnetization2) pyplot.xlabel('Temperture $T$') pyplot.ylabel('Magnetization Density Squared $m^2$') pyplot.legend(loc='best') 53