SlideShare a Scribd company logo
1 of 9
Download to read offline
計算材料学 
Computational Materials Science 
東京工業大学大学院総合理工学研究科2014 年度冬学期 
Tokyo Tech Winter Semester, AY2014 
October 17, 2014 
合田義弘 
Y. Gohda 
はじめに/Introduction 
計算機を用いたシミュレーションは実験と相補的な立場にある材料学研究に欠かせないツールで 
ある。本講義の内、合田担当分では第一原理計算を中心に電子状態の数値解析について扱う。第 
一原理計算とは、実験的に決定されたパラメーターを用いず、素電荷e、Planck 定数! 等の基礎 
的な物理定数と計算精度をコントロールする数値解析的パラメーターのみによる非経験的電子状 
態計算の事である。 
この講義ノートは 
http://www.cms.materia.titech.ac.jp/lecture_cms.pdf 
においてダウンロード可能である(要パスワード)。質問は歓迎する。講義中にどんどんしてほし 
い。参考書としては 
押山淳ほか:岩波講座計算科学3 「計算と物質」 
R.M. Martin: Electronic Structure 日本語訳あり 
J.M. ティッセン:「計算物理学」 
J.J. Sakurai: Modern Quantum Mechanics 日本語訳あり 
を勧める。 
第一原理計算を実際に試す事も可能である。Mac あるいはLinux にコードを自分でインストー 
ルしても良いが、“MateriApps LIVE!” のUSB を入手あるいは作成すれば、手持ちのコンピュー 
ターで計算環境が整備済のLinux をUSB ブートする事が出来る。“MateriApps LIVE!” に収録さ 
れているOpenMX コードを勧める。 
東京工業大学の国際化推進に向けた方針に鑑み、以下の講義ノートは原則英語で記述する。 
1
Contents 
1 Born-Oppenheimer approximation and many-electron system 3 
1.1 Summary of basic quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.3 Molecular dynamics and structure optimization. . . . . . . . . . . . . . . . . . . . 6 
1.4 Quantum many-body theory of electrons . . . . . . . . . . . . . . . . . . . . . . . 9 
2 Hartree-Fock approximation and wave-function theory 12 
2.1 Hartree-Fock approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
2.2 Post-Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
2.3 Diffusion Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
3 Density functional theory 21 
3.1 Hohenberg–Kohn theorem and the Kohn-Sham equation . . . . . . . . . . . . . . 21 
3.2 Exchange-correlation functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
3.3 Beyond standard DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
4 Basis sets 28 
4.1 Without basis sets: real-space discretization . . . . . . . . . . . . . . . . . . . . . 28 
4.2 Plane-wave basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
4.3 Pseudo-atomic orbitals as a basis set . . . . . . . . . . . . . . . . . . . . . . . . . 29 
5 Examples 33 
5.1 Diatomic molecules: N2 and O2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
5.2 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
5.3 Microstructure interfaces of magnetic materials . . . . . . . . . . . . . . . . . . . 41 
2
5.2 Graphene 
Brillouin zone of the hexagonal lattice 
lattice vectors: 
a = a 
! 
1 
2 
ex − 
√3 
2 
ey 
" 
, b = a 
! 
1 
2 
ex + 
√3 
2 
ey 
" 
, c = cez . 
reciprocal-lattice vectors: 
Ga = 2π 
b × c 
a · (b × c) 
= 
4π 
√3a2c 
b × c = 
4π 
√3a 
!√3 
2 
ex − 
1 
2 
ey 
" 
, 
Gb = 2π 
c × a 
a · (b × c) 
= 
4π 
√3a2c 
c × a = 
4π 
√3a 
!√3 
2 
ex + 
1 
2 
ey 
" 
, 
Gc = 2π 
a × b 
a · (b × c) 
= 
4π 
√3a2c 
a × b = 
2π 
c 
ez . 
Γ: Center of the Brillouin zone 
K: Middle of an edge joining two rectangular faces→ (Ga + Gb)/3 
M: Center of a rectangular face → Ga/2 
A: Center of a hexagonal face → Gc/2 
H: Corner point → (Ga + Gb)/3 + Gc/2 
L: Middle of an edge joining a hexagonal and a rectangular face → Ga/2 + Gc/2 
10 
5 
0 
−5 
Energy relative to EF [eV] 
−10 
Γ KM Γ A H L Γ 
Figure 6: Band structure of the normal state 
of a superconductor, MgB2. 
34
Unit cell and atomic structure of graphene 
The computational cell for graphene is hexagonal one. 
(a) (b) 
Figure 7: The unit cell and the atomic struc-ture 
of graphene used for first-principles calcu-lations: 
(a) the side view and (b) the top view. 
Input file of OpenMX to calculate electronic states of graphene 
# 
# OpenMX Inputfile 
# 
# File Name 
# 
System.Name graphene 
DATA.PATH /home/gohda/openmx/DFT_DATA13 
# Definition of Atomic Species 
# 
Species.Number 2 
<Definition.of.Atomic.Species 
C C6.0-s2p2d1 C_PBE13 
E Rn13.0-s2p2d2f1 E 
Definition.of.Atomic.Species> 
# Atoms 
# 
Atoms.Number 3 
Atoms.SpeciesAndCoordinates.Unit FRAC # Ang|AU 
<Atoms.SpeciesAndCoordinates 
1 C 0.33333333333333 0.66666666666667 0.50000000000000 2.0 2.0 
2 C 0.66666666666667 0.33333333333333 0.50000000000000 2.0 2.0 
3 E 0.00000000000000 0.00000000000000 0.50000000000000 0.0 0.0 
Atoms.SpeciesAndCoordinates> 
35
Atoms.UnitVectors.Unit Ang # Ang|AU 
<Atoms.UnitVectors 
1.23000000000000 -2.13042249330972 0.00000000000000 
1.23000000000000 2.13042249330972 0.00000000000000 
0.00000000000000 0.00000000000000 10.00000000000000 
Atoms.UnitVectors> 
# SCF or Electronic System 
# 
scf.XcType GGA-PBE # LDA|LSDA-CA|LSDA-PW|GGA-PBE 
scf.SpinPolarization off # On|Off|NC 
scf.energycutoff 300.0 # default=150 (Ry) 
scf.maxIter 100 # default=40 
scf.EigenvalueSolver band # DC|GDC|Cluster|Band 
scf.Kgrid 11 11 1 # means n1 x n2 x n3 
scf.Mixing.Type rmm-diisk # Simple|Rmm-Diis|Gr-Pulay|Kerker|Rmm-Diisk 
scf.Init.Mixing.Weight 0.30 # default=0.30 
scf.Min.Mixing.Weight 0.001 # default=0.001 
scf.Max.Mixing.Weight 0.700 # default=0.40 
scf.Mixing.History 10 # default=5 
scf.Mixing.StartPulay 5 # default=6 
scf.Mixing.EveryPulay 1 # default=5 
scf.criterion 1.0e-6 # default=1.0e-6 (Hartree) 
scf.lapack.dste dstevx # dstegr|dstedc|dstevx, default=dstevx 
# DOS and PDOS 
# 
Dos.fileout on # on|off, default=off 
Dos.Erange -20.0 10.0 # default = -20 20 
Dos.Kgrid 48 48 1 # default = Kgrid1 Kgrid2 Kgrid3 
# Band dispersion 
# 
Band.dispersion on # on|off, default=off 
Band.Nkpath 4 
<Band.kpath 
200 0.0 0.0 0.0 0.33333333333333 0.33333333333333 0.0 G K 
100 0.33333333333333 0.33333333333333 0.0 0.5 0.0 0.0 K M 
173 0.5 0.0 0.0 0.0 0.0 0.0 M G 
37 0.0 0.0 0.0 0.0 0.0 0.5 G A 
Band.kpath> 
# Others 
# 
scf.restart on 
scf.fixed.grid 0.00000000000000 0.00000000000000 0.00000000000000 
36
Band strucuture and density of states 
You can excecute OpenMX by typing on a UNIX (MacOSX, Linux, etc.) terminal as follows: 
$ openmx INCAR >log 2>&1 & 
5 
(a) (b) 
0 
−10 
Γ K M Γ A 
−5 
Energy relative to EF [eV] 
−15 
−20 
0 
−20 −15 −10 −5 0 5 10 
Energy relative to EF [eV] 
Density of states [arb. unit] 
w EA 
w/o EA 
w EA 
w/o EA 
(c) 
Figure 8: (a) The energy band and (b) the de-sity 
of states for graphene obtained by first-principles 
calculations with enpty-atom basis 
functions (red) and without them (black). (c) 
Nearly-free-electron states that cannot be de-scribed 
without the empty atom. 
Comparison with the tight-binding model with the H¨uckel approximation 
In the Huckel ¨approximation, only the |φpz ⟩ state is considered for the frontier orbitals of benzene 
rings. The tight-binding Hamiltonian using the notation of |I⟩ = |φI 
pz ⟩ is 
H = 
# 
I 
εI |I⟩⟨I|− 
# 
<IJ> 
t|I⟩⟨J| = − 
# 
<IJ> 
t|I⟩⟨J| , (23) 
where t is the transfer integral and we define εI = 0. Using the Bloch sum 
φB 
i,k(r) = 
1 
√Nk 
# 
T 
eik·T φpz (r − Ri − T ) (24) 
with the approximation of ⟨I|J⟩ = δIJ (Thus Sij = δij), the matrix elements are 
⟨φB 
i,k|H|φB 
i,k⟩ = 0 , and (25) 
⟨φB 
i,k|H|φB 
j,k⟩ = ⟨φB 
i,k⟩∗ = −t(eik·T0 + eik·T1 + eik·T2) 
j,k|H|φB 
= −t(1 + eik·a + e−ik·b) ≡ −tf . (26) 
37
Thus the transformed Hamiltonian becomes 
H = −t(f|φB1 
⟩⟨φB2 
| + f∗|φB2 
⟩⟨φB1 
|) . (27) 
Diagonalizing H through ε2 − t2|f|2 = 0, we obtain 
ε = ±t|f| 
= ±t 
$ 
(1 + cos k · a + cos k · b)2 + (sink · a − sin k · b)2 
= ±t 
$ 
3 + 2 cos k · a + 2 cos k · b + 2 cos k · (a + b) . (28) 
At the M point (k = Ga/2), 
ε = ±t 
$ 
3 + 2 cos k · a + 2 cos k · b + 2 cos k · (a + b) 
= ±t 
$ 
5 + 4 cosGa/2 · a 
= ±t√5 + 4 cos π 
= ±t . (29) 
As for the Γ–K path, i.e. k = κ(Ga + Gb), 
ε = ±t 
$ 
3 + 2 cos k · a + 2 cos k · b + 2 cos k · (a + b) 
= ±t 
$ 
3 + 2 cos κGa · a + 2 cos κGb · b + 2 cos κ(Ga + Gb) · (a + b) 
= ±t 
$ 
3 + 4 cos (2πκ) + 2 cos(4πκ) (30) 
Γ K 
10 
5 
0 
Energy relative to EF [eV] 
−5 
w EA 
w/o EA 
TB 
Figure 9: Comparison of energy bands ob-tained 
by first-principles calculations and the 
tight-binding model with the H¨uckel approxi-mation. 
The hopping integral was chosen as 
t = 2.7 eV. 
38
Γ K M 
0 0 
0 0 
0 
0 
0 
0 0 
0 
0 
π 0 
π 
π 
0 0 
π π 
0 
0 
π 
π 
π 
π 
π 
π 
B1 
Figure 10: The phase θ = k · T appear in 
the Bloch sum for the A sublattice (i = 1), 
% 
φk(r) = √1 ,Nk 
T eik·T φpz (r − R1 − T ). 
Let us take a closer look of the wave functions: 
At the Γ point: 
H = −3t(|φB1 
⟩⟨φB2 
| + |φB2 
⟩⟨φB1 
|) , ε= ±3t , (31) 
|π⟩ = 
1 
√2 
(|φB1 
⟩ + |φB2 
⟩) , |π∗⟩ = 
1 
√2 
(|φB1 
⟩ − |φB2 
⟩) . (32) 
In general: 
H = −t(f|φB1 
⟩⟨φB2 
| + f∗|φB2 
⟩⟨φB1 
|) , ε= ±t|f| , (33) 
|π⟩ = 
1 
√2 
& 
|φB1 
⟩ + 
f∗ 
|f||φB2 
⟩ 
' 
, |π∗⟩ = 
1 
√2 
& 
|φB1 
⟩ − 
f∗ 
|f||φB2 
⟩ 
' 
. (34) 
At the K point: 
H = 0 , ε= 0 , (35) 
|π⟩ = cπ,1|φB1 
⟩ + cπ,2|φB2 
⟩ , |π∗⟩ = cπ∗,1|φB1 ⟩ + cπ∗,2|φB2 
⟩ . (36) 
Exercise 
For k vectors around the K point, k = 13 
(Ga + Gb) + δkxex + δkyey, derive the effective 
Hamiltonian using the Talor expansion starting from the form 
H = 
⎛ 
⎝ 0 −tf 
−tf ∗ 0 
⎞ 
⎠ . 
Use the Pauli matrices σ: 
σx = 
⎛ 
⎝ 0 1 
1 0 
⎞ 
⎠ , σy 
= 
⎛ 
⎝ 0 −i 
i 0 
⎞ 
⎠ , and σz = 
⎛ 
⎝ 1 0 
0 1 
⎞ 
⎠ . 
39
Answer: 
Exercise 
Calculate i) the eigenenergy and ii) the sign of the linear combination for π orbitals in a butadiene 
molecule CH2CHCHCH2, a virtual fragment of graphene, using the H¨uckel approximation. 
Hint: 2 < √5 < 3 
Answer: 
40

More Related Content

What's hot

機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編Daiyu Hatakeyama
 
第4回 配信講義 計算科学技術特論A (2021)
第4回 配信講義 計算科学技術特論A (2021)第4回 配信講義 計算科学技術特論A (2021)
第4回 配信講義 計算科学技術特論A (2021)RCCSRENKEI
 
Superpixel Sampling Networks
Superpixel Sampling NetworksSuperpixel Sampling Networks
Superpixel Sampling Networksyukihiro domae
 
Deep Learningを用いた経路予測の研究動向
Deep Learningを用いた経路予測の研究動向Deep Learningを用いた経路予測の研究動向
Deep Learningを用いた経路予測の研究動向HiroakiMinoura
 
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...Deep Learning JP
 
Recurrent Neural Net의 이론과 설명
Recurrent Neural Net의 이론과 설명Recurrent Neural Net의 이론과 설명
Recurrent Neural Net의 이론과 설명홍배 김
 
プログラミング言語のマスコットとか紹介
プログラミング言語のマスコットとか紹介プログラミング言語のマスコットとか紹介
プログラミング言語のマスコットとか紹介Takaaki Hirano
 
大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題
大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題
大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題Yuki Oyama
 
深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴Yuya Unno
 
レイトレ空間構造入門
レイトレ空間構造入門レイトレ空間構造入門
レイトレ空間構造入門Toru Matsuoka
 
PRML 6.1章 カーネル法と双対表現
PRML 6.1章 カーネル法と双対表現PRML 6.1章 カーネル法と双対表現
PRML 6.1章 カーネル法と双対表現hagino 3000
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーnlab_utokyo
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Shohei Taniguchi
 
El text.life science6.tsuneda191106
El text.life science6.tsuneda191106El text.life science6.tsuneda191106
El text.life science6.tsuneda191106RCCSRENKEI
 

What's hot (20)

機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
 
第4回 配信講義 計算科学技術特論A (2021)
第4回 配信講義 計算科学技術特論A (2021)第4回 配信講義 計算科学技術特論A (2021)
第4回 配信講義 計算科学技術特論A (2021)
 
Superpixel Sampling Networks
Superpixel Sampling NetworksSuperpixel Sampling Networks
Superpixel Sampling Networks
 
Deep Learningを用いた経路予測の研究動向
Deep Learningを用いた経路予測の研究動向Deep Learningを用いた経路予測の研究動向
Deep Learningを用いた経路予測の研究動向
 
PRML 6.4-6.5
PRML 6.4-6.5PRML 6.4-6.5
PRML 6.4-6.5
 
Juliaで並列計算
Juliaで並列計算Juliaで並列計算
Juliaで並列計算
 
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
[DL輪読会]VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Envir...
 
Recurrent Neural Net의 이론과 설명
Recurrent Neural Net의 이론과 설명Recurrent Neural Net의 이론과 설명
Recurrent Neural Net의 이론과 설명
 
プログラミング言語のマスコットとか紹介
プログラミング言語のマスコットとか紹介プログラミング言語のマスコットとか紹介
プログラミング言語のマスコットとか紹介
 
Prml07
Prml07Prml07
Prml07
 
大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題
大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題
大山雄己 - 時空間制約と経路相関を考慮した歩行者の活動配分問題
 
深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴深層学習フレームワークChainerの特徴
深層学習フレームワークChainerの特徴
 
レイトレ空間構造入門
レイトレ空間構造入門レイトレ空間構造入門
レイトレ空間構造入門
 
PRML 6.1章 カーネル法と双対表現
PRML 6.1章 カーネル法と双対表現PRML 6.1章 カーネル法と双対表現
PRML 6.1章 カーネル法と双対表現
 
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までーDeep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
Deep Learningによる画像認識革命 ー歴史・最新理論から実践応用までー
 
PRML chapter7
PRML chapter7PRML chapter7
PRML chapter7
 
Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)Control as Inference (強化学習とベイズ統計)
Control as Inference (強化学習とベイズ統計)
 
Hurricane Hugo 1989
Hurricane Hugo 1989Hurricane Hugo 1989
Hurricane Hugo 1989
 
chapter2.pdf
chapter2.pdfchapter2.pdf
chapter2.pdf
 
El text.life science6.tsuneda191106
El text.life science6.tsuneda191106El text.life science6.tsuneda191106
El text.life science6.tsuneda191106
 

Similar to 計算材料学

Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDChristos Kallidonis
 
Optimal L-shaped matrix reordering, aka graph's core-periphery
Optimal L-shaped matrix reordering, aka graph's core-peripheryOptimal L-shaped matrix reordering, aka graph's core-periphery
Optimal L-shaped matrix reordering, aka graph's core-peripheryFrancesco Tudisco
 
ACME2016-extendedAbstract
ACME2016-extendedAbstractACME2016-extendedAbstract
ACME2016-extendedAbstractZhaowei Liu
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Shizuoka Inst. Science and Tech.
 
Solutions modern particlephysics
Solutions modern particlephysicsSolutions modern particlephysics
Solutions modern particlephysicsitachikaleido
 
Generalized Nonlinear Models in R
Generalized Nonlinear Models in RGeneralized Nonlinear Models in R
Generalized Nonlinear Models in Rhtstatistics
 
A Parallel Branch And Bound Algorithm For The Quadratic Assignment Problem
A Parallel Branch And Bound Algorithm For The Quadratic Assignment ProblemA Parallel Branch And Bound Algorithm For The Quadratic Assignment Problem
A Parallel Branch And Bound Algorithm For The Quadratic Assignment ProblemMary Calkins
 
Coherence incoherence patterns in a ring of non-locally coupled phase oscilla...
Coherence incoherence patterns in a ring of non-locally coupled phase oscilla...Coherence incoherence patterns in a ring of non-locally coupled phase oscilla...
Coherence incoherence patterns in a ring of non-locally coupled phase oscilla...Ola Carmen
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDChristos Kallidonis
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionAlexander Litvinenko
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDChristos Kallidonis
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Alexander Litvinenko
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsMatt Moores
 

Similar to 計算材料学 (20)

Subquad multi ff
Subquad multi ffSubquad multi ff
Subquad multi ff
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCD
 
Optimal L-shaped matrix reordering, aka graph's core-periphery
Optimal L-shaped matrix reordering, aka graph's core-peripheryOptimal L-shaped matrix reordering, aka graph's core-periphery
Optimal L-shaped matrix reordering, aka graph's core-periphery
 
ACME2016-extendedAbstract
ACME2016-extendedAbstractACME2016-extendedAbstract
ACME2016-extendedAbstract
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
 
Solutions modern particlephysics
Solutions modern particlephysicsSolutions modern particlephysics
Solutions modern particlephysics
 
14 34-46
14 34-4614 34-46
14 34-46
 
Generalized Nonlinear Models in R
Generalized Nonlinear Models in RGeneralized Nonlinear Models in R
Generalized Nonlinear Models in R
 
A Parallel Branch And Bound Algorithm For The Quadratic Assignment Problem
A Parallel Branch And Bound Algorithm For The Quadratic Assignment ProblemA Parallel Branch And Bound Algorithm For The Quadratic Assignment Problem
A Parallel Branch And Bound Algorithm For The Quadratic Assignment Problem
 
Coherence incoherence patterns in a ring of non-locally coupled phase oscilla...
Coherence incoherence patterns in a ring of non-locally coupled phase oscilla...Coherence incoherence patterns in a ring of non-locally coupled phase oscilla...
Coherence incoherence patterns in a ring of non-locally coupled phase oscilla...
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCD
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Slides
SlidesSlides
Slides
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
Hyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCDHyperon and charm baryons masses from twisted mass Lattice QCD
Hyperon and charm baryons masses from twisted mass Lattice QCD
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
 
PhD work on Graphene Transistor
PhD work on Graphene TransistorPhD work on Graphene Transistor
PhD work on Graphene Transistor
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
 

More from Computational Materials Science Initiative

More from Computational Materials Science Initiative (20)

MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE! の設定
MateriApps LIVE! の設定MateriApps LIVE! の設定
MateriApps LIVE! の設定
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
ALPSチュートリアル
ALPSチュートリアルALPSチュートリアル
ALPSチュートリアル
 
How to setup MateriApps LIVE!
How to setup MateriApps LIVE!How to setup MateriApps LIVE!
How to setup MateriApps LIVE!
 
MateriApps LIVE!の設定
MateriApps LIVE!の設定MateriApps LIVE!の設定
MateriApps LIVE!の設定
 
MateriApps: OpenMXを利用した第一原理計算の簡単な実習
MateriApps: OpenMXを利用した第一原理計算の簡単な実習MateriApps: OpenMXを利用した第一原理計算の簡単な実習
MateriApps: OpenMXを利用した第一原理計算の簡単な実習
 
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
CMSI計算科学技術特論C (2015) ALPS と量子多体問題②
 
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
 

Recently uploaded

GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINsankalpkumarsahoo174
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSSLeenakshiTyagi
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 

Recently uploaded (20)

GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATINChromatin Structure | EUCHROMATIN | HETEROCHROMATIN
Chromatin Structure | EUCHROMATIN | HETEROCHROMATIN
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
DIFFERENCE IN BACK CROSS AND TEST CROSS
DIFFERENCE IN  BACK CROSS AND TEST CROSSDIFFERENCE IN  BACK CROSS AND TEST CROSS
DIFFERENCE IN BACK CROSS AND TEST CROSS
 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 

計算材料学

  • 1. 計算材料学 Computational Materials Science 東京工業大学大学院総合理工学研究科2014 年度冬学期 Tokyo Tech Winter Semester, AY2014 October 17, 2014 合田義弘 Y. Gohda はじめに/Introduction 計算機を用いたシミュレーションは実験と相補的な立場にある材料学研究に欠かせないツールで ある。本講義の内、合田担当分では第一原理計算を中心に電子状態の数値解析について扱う。第 一原理計算とは、実験的に決定されたパラメーターを用いず、素電荷e、Planck 定数! 等の基礎 的な物理定数と計算精度をコントロールする数値解析的パラメーターのみによる非経験的電子状 態計算の事である。 この講義ノートは http://www.cms.materia.titech.ac.jp/lecture_cms.pdf においてダウンロード可能である(要パスワード)。質問は歓迎する。講義中にどんどんしてほし い。参考書としては 押山淳ほか:岩波講座計算科学3 「計算と物質」 R.M. Martin: Electronic Structure 日本語訳あり J.M. ティッセン:「計算物理学」 J.J. Sakurai: Modern Quantum Mechanics 日本語訳あり を勧める。 第一原理計算を実際に試す事も可能である。Mac あるいはLinux にコードを自分でインストー ルしても良いが、“MateriApps LIVE!” のUSB を入手あるいは作成すれば、手持ちのコンピュー ターで計算環境が整備済のLinux をUSB ブートする事が出来る。“MateriApps LIVE!” に収録さ れているOpenMX コードを勧める。 東京工業大学の国際化推進に向けた方針に鑑み、以下の講義ノートは原則英語で記述する。 1
  • 2. Contents 1 Born-Oppenheimer approximation and many-electron system 3 1.1 Summary of basic quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Molecular dynamics and structure optimization. . . . . . . . . . . . . . . . . . . . 6 1.4 Quantum many-body theory of electrons . . . . . . . . . . . . . . . . . . . . . . . 9 2 Hartree-Fock approximation and wave-function theory 12 2.1 Hartree-Fock approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Post-Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Diffusion Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Density functional theory 21 3.1 Hohenberg–Kohn theorem and the Kohn-Sham equation . . . . . . . . . . . . . . 21 3.2 Exchange-correlation functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Beyond standard DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Basis sets 28 4.1 Without basis sets: real-space discretization . . . . . . . . . . . . . . . . . . . . . 28 4.2 Plane-wave basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Pseudo-atomic orbitals as a basis set . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Examples 33 5.1 Diatomic molecules: N2 and O2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Microstructure interfaces of magnetic materials . . . . . . . . . . . . . . . . . . . 41 2
  • 3. 5.2 Graphene Brillouin zone of the hexagonal lattice lattice vectors: a = a ! 1 2 ex − √3 2 ey " , b = a ! 1 2 ex + √3 2 ey " , c = cez . reciprocal-lattice vectors: Ga = 2π b × c a · (b × c) = 4π √3a2c b × c = 4π √3a !√3 2 ex − 1 2 ey " , Gb = 2π c × a a · (b × c) = 4π √3a2c c × a = 4π √3a !√3 2 ex + 1 2 ey " , Gc = 2π a × b a · (b × c) = 4π √3a2c a × b = 2π c ez . Γ: Center of the Brillouin zone K: Middle of an edge joining two rectangular faces→ (Ga + Gb)/3 M: Center of a rectangular face → Ga/2 A: Center of a hexagonal face → Gc/2 H: Corner point → (Ga + Gb)/3 + Gc/2 L: Middle of an edge joining a hexagonal and a rectangular face → Ga/2 + Gc/2 10 5 0 −5 Energy relative to EF [eV] −10 Γ KM Γ A H L Γ Figure 6: Band structure of the normal state of a superconductor, MgB2. 34
  • 4. Unit cell and atomic structure of graphene The computational cell for graphene is hexagonal one. (a) (b) Figure 7: The unit cell and the atomic struc-ture of graphene used for first-principles calcu-lations: (a) the side view and (b) the top view. Input file of OpenMX to calculate electronic states of graphene # # OpenMX Inputfile # # File Name # System.Name graphene DATA.PATH /home/gohda/openmx/DFT_DATA13 # Definition of Atomic Species # Species.Number 2 <Definition.of.Atomic.Species C C6.0-s2p2d1 C_PBE13 E Rn13.0-s2p2d2f1 E Definition.of.Atomic.Species> # Atoms # Atoms.Number 3 Atoms.SpeciesAndCoordinates.Unit FRAC # Ang|AU <Atoms.SpeciesAndCoordinates 1 C 0.33333333333333 0.66666666666667 0.50000000000000 2.0 2.0 2 C 0.66666666666667 0.33333333333333 0.50000000000000 2.0 2.0 3 E 0.00000000000000 0.00000000000000 0.50000000000000 0.0 0.0 Atoms.SpeciesAndCoordinates> 35
  • 5. Atoms.UnitVectors.Unit Ang # Ang|AU <Atoms.UnitVectors 1.23000000000000 -2.13042249330972 0.00000000000000 1.23000000000000 2.13042249330972 0.00000000000000 0.00000000000000 0.00000000000000 10.00000000000000 Atoms.UnitVectors> # SCF or Electronic System # scf.XcType GGA-PBE # LDA|LSDA-CA|LSDA-PW|GGA-PBE scf.SpinPolarization off # On|Off|NC scf.energycutoff 300.0 # default=150 (Ry) scf.maxIter 100 # default=40 scf.EigenvalueSolver band # DC|GDC|Cluster|Band scf.Kgrid 11 11 1 # means n1 x n2 x n3 scf.Mixing.Type rmm-diisk # Simple|Rmm-Diis|Gr-Pulay|Kerker|Rmm-Diisk scf.Init.Mixing.Weight 0.30 # default=0.30 scf.Min.Mixing.Weight 0.001 # default=0.001 scf.Max.Mixing.Weight 0.700 # default=0.40 scf.Mixing.History 10 # default=5 scf.Mixing.StartPulay 5 # default=6 scf.Mixing.EveryPulay 1 # default=5 scf.criterion 1.0e-6 # default=1.0e-6 (Hartree) scf.lapack.dste dstevx # dstegr|dstedc|dstevx, default=dstevx # DOS and PDOS # Dos.fileout on # on|off, default=off Dos.Erange -20.0 10.0 # default = -20 20 Dos.Kgrid 48 48 1 # default = Kgrid1 Kgrid2 Kgrid3 # Band dispersion # Band.dispersion on # on|off, default=off Band.Nkpath 4 <Band.kpath 200 0.0 0.0 0.0 0.33333333333333 0.33333333333333 0.0 G K 100 0.33333333333333 0.33333333333333 0.0 0.5 0.0 0.0 K M 173 0.5 0.0 0.0 0.0 0.0 0.0 M G 37 0.0 0.0 0.0 0.0 0.0 0.5 G A Band.kpath> # Others # scf.restart on scf.fixed.grid 0.00000000000000 0.00000000000000 0.00000000000000 36
  • 6. Band strucuture and density of states You can excecute OpenMX by typing on a UNIX (MacOSX, Linux, etc.) terminal as follows: $ openmx INCAR >log 2>&1 & 5 (a) (b) 0 −10 Γ K M Γ A −5 Energy relative to EF [eV] −15 −20 0 −20 −15 −10 −5 0 5 10 Energy relative to EF [eV] Density of states [arb. unit] w EA w/o EA w EA w/o EA (c) Figure 8: (a) The energy band and (b) the de-sity of states for graphene obtained by first-principles calculations with enpty-atom basis functions (red) and without them (black). (c) Nearly-free-electron states that cannot be de-scribed without the empty atom. Comparison with the tight-binding model with the H¨uckel approximation In the Huckel ¨approximation, only the |φpz ⟩ state is considered for the frontier orbitals of benzene rings. The tight-binding Hamiltonian using the notation of |I⟩ = |φI pz ⟩ is H = # I εI |I⟩⟨I|− # <IJ> t|I⟩⟨J| = − # <IJ> t|I⟩⟨J| , (23) where t is the transfer integral and we define εI = 0. Using the Bloch sum φB i,k(r) = 1 √Nk # T eik·T φpz (r − Ri − T ) (24) with the approximation of ⟨I|J⟩ = δIJ (Thus Sij = δij), the matrix elements are ⟨φB i,k|H|φB i,k⟩ = 0 , and (25) ⟨φB i,k|H|φB j,k⟩ = ⟨φB i,k⟩∗ = −t(eik·T0 + eik·T1 + eik·T2) j,k|H|φB = −t(1 + eik·a + e−ik·b) ≡ −tf . (26) 37
  • 7. Thus the transformed Hamiltonian becomes H = −t(f|φB1 ⟩⟨φB2 | + f∗|φB2 ⟩⟨φB1 |) . (27) Diagonalizing H through ε2 − t2|f|2 = 0, we obtain ε = ±t|f| = ±t $ (1 + cos k · a + cos k · b)2 + (sink · a − sin k · b)2 = ±t $ 3 + 2 cos k · a + 2 cos k · b + 2 cos k · (a + b) . (28) At the M point (k = Ga/2), ε = ±t $ 3 + 2 cos k · a + 2 cos k · b + 2 cos k · (a + b) = ±t $ 5 + 4 cosGa/2 · a = ±t√5 + 4 cos π = ±t . (29) As for the Γ–K path, i.e. k = κ(Ga + Gb), ε = ±t $ 3 + 2 cos k · a + 2 cos k · b + 2 cos k · (a + b) = ±t $ 3 + 2 cos κGa · a + 2 cos κGb · b + 2 cos κ(Ga + Gb) · (a + b) = ±t $ 3 + 4 cos (2πκ) + 2 cos(4πκ) (30) Γ K 10 5 0 Energy relative to EF [eV] −5 w EA w/o EA TB Figure 9: Comparison of energy bands ob-tained by first-principles calculations and the tight-binding model with the H¨uckel approxi-mation. The hopping integral was chosen as t = 2.7 eV. 38
  • 8. Γ K M 0 0 0 0 0 0 0 0 0 0 0 π 0 π π 0 0 π π 0 0 π π π π π π B1 Figure 10: The phase θ = k · T appear in the Bloch sum for the A sublattice (i = 1), % φk(r) = √1 ,Nk T eik·T φpz (r − R1 − T ). Let us take a closer look of the wave functions: At the Γ point: H = −3t(|φB1 ⟩⟨φB2 | + |φB2 ⟩⟨φB1 |) , ε= ±3t , (31) |π⟩ = 1 √2 (|φB1 ⟩ + |φB2 ⟩) , |π∗⟩ = 1 √2 (|φB1 ⟩ − |φB2 ⟩) . (32) In general: H = −t(f|φB1 ⟩⟨φB2 | + f∗|φB2 ⟩⟨φB1 |) , ε= ±t|f| , (33) |π⟩ = 1 √2 & |φB1 ⟩ + f∗ |f||φB2 ⟩ ' , |π∗⟩ = 1 √2 & |φB1 ⟩ − f∗ |f||φB2 ⟩ ' . (34) At the K point: H = 0 , ε= 0 , (35) |π⟩ = cπ,1|φB1 ⟩ + cπ,2|φB2 ⟩ , |π∗⟩ = cπ∗,1|φB1 ⟩ + cπ∗,2|φB2 ⟩ . (36) Exercise For k vectors around the K point, k = 13 (Ga + Gb) + δkxex + δkyey, derive the effective Hamiltonian using the Talor expansion starting from the form H = ⎛ ⎝ 0 −tf −tf ∗ 0 ⎞ ⎠ . Use the Pauli matrices σ: σx = ⎛ ⎝ 0 1 1 0 ⎞ ⎠ , σy = ⎛ ⎝ 0 −i i 0 ⎞ ⎠ , and σz = ⎛ ⎝ 1 0 0 1 ⎞ ⎠ . 39
  • 9. Answer: Exercise Calculate i) the eigenenergy and ii) the sign of the linear combination for π orbitals in a butadiene molecule CH2CHCHCH2, a virtual fragment of graphene, using the H¨uckel approximation. Hint: 2 < √5 < 3 Answer: 40