SlideShare a Scribd company logo
1 of 89
BURNER
WATER
SOURCE
SOFTENERS
CHEMICAL FEED
FUEL
BLOW DOWN
SEPARATOR
VENT
STACK DEAERATOR
PUMPS
BOILER
ECO-
NOMI-
ZER
VENTEXHAUST GAS
STEAM TO
PROCESS
SOFTENERS
By- Mukesh Jha
Sr.Engineer -Projects,
a2z Powercom Pvt.Ltd.
Boiler-
A ‘Boiler’ means a pressure vessel in which steam is generated
for use external to itself by application of heat which is wholly
or partly under pressure when steam is shut off but does not
include a pressure vessel
(1) With Capacity less than 25 ltrs (such capacity being
measured from the feed check valve to the main steam stop
valve);
(2) With less than 1 kilogram per centimeter square design
gauge pressure & working gauge pressure; or
(3) In which water is heated below one hundred degree
centigrade .
‘Boiler component’ means Steam piping , Feed water
piping, Economizer ,Super heater, any mounting or other fitting
and any other external or internal part of a Boiler which is
subjected to pressure exceeding one kilogram per centimeter
square gauge.
“Steam Pipe "means any pipe through which steam passes if-
(1)The pressure at which the steam passes through such pipe
exceeds 3.5kg/cm^2 above atmospheric pressure, or
(2)Such pipe exceeds 254 mm in internal diameter and pressure
of steam exceeds 1kg/cm^2.above the atmospheric pressure.
and includes in either case any connected fitting of a
steam pipe.
At atmospheric pressure water volume increases
1,600 times
BURNER
WATER
SOURCE
SOFTENERS
CHEMICAL FEED
FUEL
BLOW DOWN
SEPARATOR
VENT
STACK DEAERATOR
PUMPS
BOILER
ECO-
NOMI-
ZER
VENTEXHAUST GAS
STEAM TO
PROCESS
Figure: Schematic overview of a boiler room
Boiler Systems
Flue gas system
Water treatment system
Feed water system
Steam System
Blow down system
Fuel supply system
Air Supply system
Fuels used in Boiler
S.No
Solid Liquid Gaseous AgroWaste
1 Coal HSD NGas Baggase
2 Lignite LDO Bio Gas Pith
3 Charcoal Fur.Oil Rice Husk
4 LSHS Paddy Straw
5 Coconut shell
6 Groundnutshell
MSW/RDF
Types of Boilers
1. Fire Tube Boiler
2. Water Tube Boiler
3. Packaged Boiler
4. Stoker Fired Boiler
5. Pulverized Fuel Boiler
6. Waste Heat Boiler
7. Fluidized Bed (FBC) Boiler
Type of Boilers
(Light Rail Transit Association)
1. Fire Tube Boiler
• Relatively small
steam capacities
(12,000 kg/hour)
• Low to medium
steam pressures
(18 kg/cm2)
• Operates with
oil, gas or solid
fuels
Type of Boilers
2. Water Tube Boiler
(Your Dictionary.com)
• Used for high steam
demand and pressure
requirements
• Capacity range of 4,500
– 120,000 kg/hour
• Combustion efficiency
enhanced by induced
draft provisions
• Lower tolerance for
water quality and needs
water treatment plant
Type of Boilers
(BIB Cochran, 2003)
3. Packaged Boiler
Oil
Burner
To Chimney • Comes in complete
package
• Features
• High heat transfer
• Faster evaporation
• Good convective
heat transfer
• Good combustion
efficiency
• High thermal
efficiency
• Classified based on
number of passes
Type of Boilers
4. Stoke Fired Boilers
a) Spreader stokers
 Uses both suspension and
grate burning
 Coal fed continuously over
burning coal bed
 Coal fines burn in suspension
and larger coal pieces burn on
grate
 Good flexibility to meet
changing load requirements
 Preferred over other type of
stokers in industrial
application
Type of Boilers
4. Stoke Fired Boilers
b) Chain-grate or traveling-
grate stoker
(University of Missouri, 2004)
 Uses both suspension and
grate burning
 Coal fed continuously over
burning coal bed
 Coal fines burn in
suspension and larger coal
pieces burn on grate
 Good flexibility to meet
changing load
requirements
 Preferred over other type
of stokers in industrial
application
Type of Boilers
Tangential firing
5. Pulverized Fuel Boiler
• Pulverized coal powder blown with
combustion air into boiler through
burner nozzles
• Combustion temperature at 1300 -1700
°C
• Benefits: varying coal quality
coal, quick response to load changes
and high pre-heat air temperatures
Coal is pulverized to a fine powder, so that less than 2% is +300
microns, and 70-75% is below 75 microns.
Coal is blown with part of the combustion air into the boiler plant
through a series of burner nozzles.
Advantages
 Its ability to burn all ranks of coal from anthracitic to
lignitic, and it permits combination firing (i.e., can
use coal, oil and gas in same burner). Because of
these advantages, there is widespread use of
pulverized coal furnaces.
Disadvantages
 High power demand for pulverizing
 Requires more maintenance, flyash erosion and
pollution complicate unit operation
Pulverized Fuel Boiler (Contd..)
Type of Boilers
Agriculture and Agri-Food
Canada, 2001
6. Waste Heat Boiler
• Used when waste heat
available at medium/high
temp
• Auxiliary fuel burners
used if steam demand is
more than the waste heat
can generate
• Used in heat recovery
from exhaust gases from
gas turbines and diesel
engines
7.Fluidized Bed (FBC) Boiler
An Overview-
Fluidized bed combustion has emerged as a viable
alternative and has significant advantages over
conventional firing system and offers multiple benefits –
compact boiler design, fuel flexibility, higher combustion
efficiency and reduced emission of noxious pollutants
such as SOx and NOx. The fuels burnt in these boilers
include coal, washery rejects, rice husk, bagasse & other
agricultural wastes. The fluidized bed boilers have a wide
capacity range.
Mechanism of Fluidised Bed Combustion
When an evenly distributed air or gas is passed upward
through a finely divided bed of solid particles such as sand
supported on a fine mesh, the particles are undisturbed at low
velocity. As air velocity is gradually increased, a stage is
reached when the individual particles are suspended in the air
stream – the bed is called “fluidized”.
With further increase in air velocity, there is bubble
formation, vigorous turbulence, rapid mixing and
formation of dense defined bed surface. The bed of solid
particles exhibits the properties of a boiling liquid and
assumes the appearance of a fluid – “bubbling fluidized
bed”.
At higher velocities, bubbles disappear, and particles are
blown out of the bed. Therefore, some amounts of particles
have to be recirculated to maintain a stable system –
“circulating fluidised bed”.
Fluidization depends largely on the particle size and the air
velocity.
If sand particles in a fluidized state is heated to the ignition
temperatures of coal, and coal is injected continuously into
the bed, the coal will burn rapidly and bed attains a uniform
temperature. The fluidized bed combustion (FBC) takes
place at about 840OC to 950OC.
Since this temperature is much below the ash fusion
temperature, melting of ash and associated problems are avoided.
The lower combustion temperature is achieved because of high
coefficient of heat transfer due to rapid mixing in the fluidized bed
and effective extraction of heat from the bed through in-bed heat
transfer tubes and walls of the bed. The gas velocity is maintained
between minimum fluidisation velocity and particle entrainment
velocity. This ensures stable operation of the bed and avoids particle
entrainment in the gas stream.
Combustion process requires the three “T”s that is Time, Temperature and
Turbulence. In FBC, turbulence is promoted by fluidisation. Improved
mixing generates evenly distributed heat at lower temperature. Residence
time is many times greater than conventional grate
firing. Thus an FBC system releases heat more efficiently at lower
temperatures.
Fixing, bubbling
and fast fluidized
beds
As the velocity of a
gas flowing through
a bed of particles
increases, a value is
reaches when the
bed fluidises and
bubbles form as in a
boiling liquid. At
higher velocities the
bubbles disappear;
and the solids are
rapidly blown out of
the bed and must be
recycled to maintain
a stable system.
principle of fluidisation
Since limestone is used as particle bed, control of sulfur dioxide and nitrogen
oxide emissions in the combustion chamber is achieved without any additional
control equipment. This is one of the major advantages over conventional
boilers.
Types of Fluidised Bed Combustion Boilers
There are three basic types of fluidised bed combustion boilers:
1. Atmospheric classic Fluidised Bed Combustion System (AFBC)
2. Pressurised Fluidised Bed Combustion System (PFBC).
3. Circulating (fast) Fluidised Bed Combustion system(CFBC)
AFBC / Bubbling Bed
In AFBC, coal is crushed to a size of 1 – 10 mm depending on the rank of
coal, type of fuel feed and fed into the combustion chamber. The
atmospheric air, which acts as both the fluidization air and combustion
air, is delivered at a pressure and flows through the bed after being
preheated by the exhaust flue gases. The velocity of fluidising air is in the
range of 1.2 to 3.7 m /sec. The rate at which air is blown through the bed
determines the amount of fuel that can be reacted.
Almost all AFBC/ bubbling bed boilers use in-bed evaporator tubes
in the bed of limestone, sand and fuel for extracting the heat from
the bed to maintain the bed temperature. The bed depth is usually 0.9
m to 1.5 m deep and the pressure drop averages about 1 inch of water per
inch of bed depth. Very little material leaves the bubbling bed – only about
2 to 4 kg of solids are recycled per ton of fuel burned.
Bubbling Bed Boilers
In the bubbling bed type boiler, a layer of solid particles
(mostly limestone, sand, ash and calcium sulfate) is
contained on a grid near the bottom of the boiler. This layer
is maintained in a turbulent state as low velocity air is forced
into the bed from a plenum chamber beneath the grid. Fuel
is added to this bed and combustion takes place.
Normally, raw fuel in the bed does not exceed 2% of the total
bed inventory. Velocity of the combustion air is kept at a
minimum, yet high enough to maintain turbulence in the
bed. Velocity is not high enough to carry significant
quantities of solid particles out of the furnace.
This turbulent mixing of air and fuel results in a residence time of up to five
seconds. The combination of turbulent mixing and residence time permits
bubbling bed boilers to operate at a furnace temperature below 1650°F. At
this temperature, the presence of limestone mixed with fuel in the furnace
achieves greater than 90% sulfur removal. Boiler efficiency is the percentage
of total energy in the fuel that is used to produce steam. Combustion
efficiency is the percentage of complete combustion of carbon in the fuel.
Incomplete combustion results in the formation of carbon monoxide (CO)
plus unburned carbon in the solid particles leaving the furnace. In a typical
bubbling bed fluidized boiler, combustion efficiency can be as high as
92%. This is a good figure, but is lower than that achieved by
pulverized coal or cyclone-fired boilers. In addition, some fuels that are
very low in volatile matter cannot be completely burned within the
available residence time in bubbling bed-type boilers.
Features of bubbling bed boiler
Fluidised bed boiler can operate at near atmospheric or elevated
pressure and have these essential features:
• Distribution plate through which air is blown for fluidizing.
• Immersed steam-raising or water heating tubes which extract heat
directly from the bed.
• Tubes above the bed which extract heat from hot combustion gas
before it enters the flue duct.
Bubbling Bed Boiler-1
Bubbling Bed Boiler-2
2. Pressurised Fluidised Bed Combustion
System (PFBC).
Pressurised Fluidised Bed Combustion (PFBC) is a variation of fluid bed
technology that is meant for large-scale coal burning applications. In
PFBC, the bed vessel is operated at pressure up to 16 ata ( 16 kg/cm2).
The off-gas from the fluidized bed combustor drives the gas turbine. The
steam turbine is driven by steam raised in tubes immersed in the fluidized
bed. The condensate from the steam turbine is pre-heated using waste
heat from gas turbine exhaust and is then taken as feed water for steam
generation.
The PFBC system can be used for cogeneration or combined cycle power
generation. By combining the gas and steam turbines in this
way, electricity is generated more efficiently than in conventional system.
The overall conversion efficiency is higher by 5% to 8%. .
At elevated pressure, the potential reduction in boiler size is considerable
due to increased amount of combustion in pressurized mode and high
heat flux through in-bed tubes.
PFBC Boiler for Cogeneration
3. Circulating (fast) Fluidised Bed Combustion
system(CFBC)
The need to improve combustion efficiency (which also increases overall
boiler efficiency and reduces operating costs) and the desire to burn a
much wider range of fuels has led to the development and
application of the CFB boiler. Through the years, boiler suppliers have
been increasing the size of these high-efficiency steam generators.
This CFBC technology utilizes the fluidized bed principle in which
crushed (6 –12 mm size) fuel and limestone are injected into the furnace
or combustor. The particles are suspended in a stream of upwardly
flowing air (60-70% of the total air), which enters the bottom of the
furnace through air distribution nozzles. The fluidising velocity in
circulating beds ranges from 3.7 to 9 m/sec. The balance of combustion
air is admitted above the bottom of the furnace as secondary air.
The combustion takes place at 840-900oC, and the fine particles (<450
microns) are elutriated out of the furnace with flue gas velocity of 4-6 m/s.
The particles are then collected by the solids separators and circulated back
into the furnace. Solid recycle is about 50 to 100 kg per kg of fuel burnt.
There are no steam generation tubes immersed in the bed. The circulating
bed is designed to move a lot more solids out of the furnace area and to
achieve most of the heat transfer outside the combustion zone - convection
section, water walls, and at the exit of the riser. Some circulating bed units
even have external heat exchanges.
The particles circulation provides efficient heat transfer to the furnace
walls and longer residence time for carbon and limestone utilization.
Similar to Pulverized Coal (PC) firing, the controlling parameters in the
CFB combustion process are temperature, residence time and turbulence.
For large units, the taller furnace characteristics of CFBC boiler offers
better space utilization, greater fuel particle and sorbent residence time for
efficient combustion and SO2 capture, and easier application of staged
combustion techniques for NOx control than AFBC generators. CFBC
boilers are said to achieve better calcium to sulphur utilization – 1.5 to 1 vs.
3.2 to 1 for the AFBC boilers, although the furnace temperatures are almost
the same.
CFBC boilers are generally claimed to be more economical than AFBC
boilers for industrial application requiring more than 75 – 100 T/hr of
steam
CFBC requires huge mechanical cyclones to capture and recycle the large
amount of bed material, which requires a tall boiler.
A CFBC could be good choice if the following conditions are met.
1. Capacity of boiler is large to medium
2.Sulphur emission and NOx control is important
3.The boiler is required to fire low-grade fuel or fuel with highly
fluctuating fuel quality.
Circulating bed boiler (At a Glance)-
At high fluidizing gas velocities in which a fast recycling bed of fine
material is superimposed on a bubbling bed of larger particles. The
combustion temperature is controlled by rate of recycling of fine
material. Hot fine material is separated from the flue gas by a cyclone and
is partially cooled in a separate low velocity fluidized bed heat
exchanger, where the heat is given up to the steam. The cooler fine
material is then recycled to the dense bed.
Advantages of Fluidised Bed Combustion Boilers
1. High Efficiency
FBC boilers can burn fuel with a combustion efficiency of over 95% irrespective
of ash content. FBC boilers can operate with overall efficiency of 84% (plus or
minus 2%).
2. Reduction in Boiler Size
High heat transfer rate over a small heat transfer area immersed in the bed
result in overall size reduction of the boiler.
3. Fuel Flexibility
FBC boilers can be operated efficiently with a variety of fuels. Even fuels like
flotation slimes, washer rejects, agro waste can be burnt efficiently. These can be
fed either independently or in combination with coal into the same furnace.
4. Ability to Burn Low Grade Fuel
FBC boilers would give the rated output even with inferior quality fuel. The
boilers can fire coals with ash content as high as 62% and having calorific value
as low as 2,500 kcal/kg. Even carbon content of only 1% by weight can sustain
the fluidised bed combustion.
5. Ability to Burn Fines
Coal containing fines below 6 mm can be burnt efficiently in FBC
boiler, which is very difficult to achieve in conventional firing system.
6. Pollution Control
SO2 formation can be greatly minimised by addition of limestone or dolomite
for high sulphur coals. 3% limestone is required for every 1% sulphur in the
coal feed. Low combustion temperature eliminates NOx formation.
7. Low Corrosion and Erosion
The corrosion and erosion effects are less due to lower combustion
temperature, softness of ash and low particle velocity (of the order of 1
m/sec).
8. Easier Ash Removal – No Clinker Formation
Since the temperature of the furnace is in the range of 750 – 900o C in FBC
boilers, even coal of low ash fusion temperature can be burnt without clinker
formation. Ash removal is easier as the ash flows like liquid from the
combustion chamber. Hence less manpower is required for ash handling.
9. Less Excess Air –
Higher CO2 in Flue Gas The CO2 in the flue gases will be of the order of 14 – 15% at
full load. Hence, the FBC boiler can operate at low excess air - only 20 – 25%.
10. Simple Operation, Quick Start-Up
High turbulence of the bed facilitates quick start up and shut down. Full
automation of start up and operation using reliable equipment is possible.
11. Fast Response to Load Fluctuations
Inherent high thermal storage characteristics can easily absorb fluctuation in fuel
feed rates. Response to changing load is comparable to that of oil fired boilers.
12. No Slagging in the Furnace-No Soot Blowing
In FBC boilers, volatilisation of alkali components in ash does not take place and the
ash is non sticky. This means that there is no slagging or soot blowing.
13 Provisions of Automatic Coal and Ash Handling System
Automatic systems for coal and ash handling can be incorporated, making the plant
easy to operate comparable to oil or gas fired installation.
14 Provision of Automatic Ignition System
Control systems using micro-processors and automatic ignition equipment
give excellent control with minimum manual supervision.
15 High Reliability
The absence of moving parts in the combustion zone results in a high
degree of reliability and low maintenance costs.
16 Reduced Maintenance
Routine overhauls are infrequent and high efficiency is maintained for long
periods.
17 Quick Responses to Changing Demand
A fluidized bed combustor can respond to changing heat demands more
easily than stoker fired systems. This makes it very suitable for applications
such as thermal fluid heaters, which require rapid responses.
18 High Efficiency of Power Generation
By operating the fluidized bed at elevated pressure, it can be used to
generate hot pressurized gases to power a gas turbine. This can be
combined with a conventional steam turbine to improve the
efficiency of electricity generation and give a potential fuel savings
of at least 4%.
General Arrangements of FBC Boiler
FBC boilers comprise of following systems:
i) Fuel feeding system
ii) Air Distributor
iii) Bed & In-bed heat transfer surface
iv) Ash handling system
Many of these are common to all types of FBC boilers
1. Fuel Feeding system
For feeding fuel, sorbents like limestone or dolomite, usually two methods
are followed: under bed pneumatic feeding and over-bed feeding.
Under Bed Pneumatic Feeding
If the fuel is coal, it is crushed to 1-6 mm size and pneumatically
transported from feed hopper to the combustor through a feed pipe
piercing the distributor. Based on the capacity of the boiler, the number of
feed points is increased, as it is necessary to distribute the fuel into the
bed uniformly.
Over-Bed Feeding
The crushed coal, 6-10 mm size is conveyed from coal bunker to a spreader by a
screw conveyor. The spreader distributes the coal over the surface of the bed
uniformly. This type of fuel feeding system accepts over size fuel also and
eliminates transport lines, when compared to under-bed feeding system.
2. Air Distributor
The purpose of the distributor is to introduce the fluidizing air evenly through the
bed cross section thereby keeping the solid particles in constant motion, and
preventing the formation of defluidization zones within the bed. The
distributor, which forms the furnace floor, is normally constructed from metal
plate with a number of perforations in a definite geometric pattern. The
perforations may be located in simple nozzles or nozzles with bubble caps, which
serve to prevent solid particles from flowing back into the space below the
distributor.
The distributor plate is protected from high temperature of the furnace by:
i) Refractory Lining
ii) A Static Layer of the Bed Material or
iii) Water Cooled Tubes.
3. Bed & In-Bed Heat Transfer Surface:
a) Bed
The bed material can be sand, ash, crushed refractory or limestone, with an
average size of about 1 mm. Depending on the bed height these are of two types:
shallow bed and deep bed.
At the same fluidizing velocity, the two ends fluidise differently, thus affecting the
heat transfer to an immersed heat transfer surfaces. A shallow bed offers a lower
bed resistance and hence a lower pressure drop and lower fan power consumption.
In the case of deep bed, the pressure drop is more and this increases the effective
gas velocity and also the fan power.
b) In-Bed Heat Transfer Surface
In a fluidized in-bed heat transfer process, it is necessary to transfer heat between
the bed material and an immersed surface, which could be that of a tube
bundle, or a coil. The heat exchanger orientation can be horizontal, vertical or
inclined. From a pressure drop point of view, a horizontal bundle in a shallow bed
is more attractive than a vertical bundle in a deep bed. Also, the heat transfer in
the bed depends on number of parameters like (i) bed pressure (ii) bed
temperature (iii) superficial gas velocity (iv) particle size (v) Heat exchanger
design and (vi) gas distributor plate design.
4. Ash Handling System
a) Bottom ash removal
In the FBC boilers, the bottom ash constitutes roughly 30 - 40 % of the total
ash, the rest being the fly ash. The bed ash is removed by continuous over flow to
maintain bed height and also by intermittent flow from the bottom to remove
over size particles, avoid accumulation and consequent defluidization. While
firing high ash coal such as washery rejects, the bed ash overflow drain quantity is
considerable so special care has to be taken.
b) Fly ash removal
The amount of fly ash to be handled in FBC boiler is relatively very high, when
compared to conventional boilers. This is due to elutriation of particles at high
velocities. Fly ash carried away by the flue gas is removed in number of stages;
firstly in convection section, then from the bottom of air preheater/economizer
and finally a major portion is removed in dust collectors.
The types of dust collectors used are cyclone, bagfilters, electrostatic
precipitators (ESP’s) or some combination of all of these. To increase the
combustion efficiency, recycling of fly ash is practiced in some of the units.
General Features of our Project(3nos)
Installed Capacity : 1 X 15 MW
Proposed Fuels : 85 % of Bagasse / Biomass, 15 % of Coal, Pet
Coke.
Boiler Type : Circulating Fluidized Bed Combustion
(CFBC)
Boiler parameters : Flow – 75 TPH
Pressure – 87 Kg/cm^2
Temperature - 515 ± 5 oC
Turbine Type : Two Nos. of uncontrolled extraction type and
one no. of controlled extraction cum
condensing type
Turbine parameters : Pressure – 84 Kg/cm^2
Temperature - 510 ± 5 oC
Plant load Factor : 0.85
No. of Days of power: 335
plant operation in a year
General Features of our Project(1nos)
Installed Capacity : 1 X 15 MW
Proposed Fuels : 85 % of Bagasse / Biomass, 15 % of Coal, Pet
Coke.
Boiler Type : Circulating Fluidized Bed Combustion
(CFBC)
Boiler parameters : Flow – 100 TPH
Pressure – 87 Kg/cm^2
Temperature - 515 ± 5 oC
Turbine Type : Two Nos. of uncontrolled extraction type and
one no. of controlled extraction cum
condensing type
Turbine parameters : Pressure – 84 Kg/cm^2
Temperature - 510 ± 5 oC
Plant load Factor : 0.85
No. of Days of power: 335
plant operation in a year
600 MWe
OTU CFB.
Using the
BENSON
Vertical
technology,
Foster
Wheeler
has
developed a
design for a
600 MWe
supercritical
CFB boiler
Future of CFBC Boiler
FOSTER WHEELER AWARDED CONTRACT FOR
WORLD’S LARGEST 100% BIOMASS BOILER
ZUG, SWITZERLAND, April 7, 2010 - Foster Wheeler AG (Nasdaq: FWLT)
announced today that its Global Power Group has been awarded a contract
by GDF SUEZ, one of the leading energy providers in the world, for the
design, supply and erection of a 190 MWe (gross megawatt electric) 100%
biomass-fired circulating fluidized-bed (CFB) boiler island for the Polaniec
Power Station in Poland.
Foster Wheeler has received a full notice to proceed on this contract which
will be executed jointly by its subsidiaries in Finland and Poland. The terms
of the agreement were not disclosed and the contract value will be included
in the company’s bookings for the first quarter of 2010. Construction
completion and start of operation of the new steam generator is scheduled
for fourth-quarter 2012.
Foster Wheeler will design and supply the steam generator and auxiliary
equipment, including biomass yard, and will carry out the civil
works, erection and commissioning of the boiler island. Once complete, this
will be the world’s largest biomass boiler burning wood residues and up to
20% agro biomass.
1. Boiler
2. Boiler blow down
3. Boiler feed water treatment
Performance of a boiler
Performance of a Boiler
1. Boiler performance
• Causes of poor boiler performance
-Poor combustion
-Heat transfer surface fouling
-Poor operation and maintenance
-Deteriorating fuel and water quality
• Heat balance: identify heat losses
• Boiler efficiency: determine
deviation from best efficiency
Performance of a Boiler
Heat Balance
An energy flow diagram describes geographically
how energy is transformed from fuel into useful
energy, heat and losses
Stochiometric
Excess Air
Un burnt
FUEL INPUT STEAM
OUTPUT
Stack Gas
Ash and Un-burnt parts
of Fuel in Ash
Blow
Down
Convection &
Radiation
Performance of a Boiler
Heat Balance
Balancing total energy entering a boiler against
the energy that leaves the boiler in different forms
Heat in Steam
BOILER
Heat loss due to dry flue gas
Heat loss due to steam in fuel gas
Heat loss due to moisture in fuel
Heat loss due to unburnts in residue
Heat loss due to moisture in air
Heat loss due to radiation & other
unaccounted loss
%
%
%
%
2%
%
%
100.0 %
Fuel
Performance of a Boiler
Heat Balance
Goal: improve energy efficiency by reducing avoidable losses
Avoidable losses include:
- Stack gas losses (excess air, stack gas
temperature)
- Losses by unburnt fuel
- Blow down losses
- Condensate losses
- Convection and radiation
Performance of a Boiler
Boiler Efficiency
Thermal efficiency: % of (heat) energy input that is
effectively useful in the generated steam
BOILER EFFICENCY
CALCULATION
1) DIRECT METHOD: 2) INDIRECT METHOD:
The efficiency is the
different between losses
and energy input
The energy gain of the
working fluid (water and steam)
is compared with the energy
content of the boiler fuel.
Performance of a Boiler
hg -the enthalpy of saturated steam in kcal/kg of steam
hf -the enthalpy of feed water in kcal/kg of water
Boiler Efficiency: Direct Method
Boiler efficiency () =
Heat Input
Heat Output
x 100 Q x (hg – hf)
Q x GCV
x 100=
Parameters to be monitored:
- Quantity of steam generated per hour (Q) in kg/hr
- Quantity of fuel used per hour (q) in kg/hr
- The working pressure (in kg/cm2(g)) and superheat temperature
(oC), if any
- The temperature of feed water (oC)
- Type of fuel and gross calorific value of the fuel (GCV) in kcal/kg of
fuel
Performance of a Boiler
Advantages
• Quick evaluation
• Few parameters for computation
• Few monitoring instruments
• Easy to compare evaporation ratios with
benchmark figures
Disadvantages
• No explanation of low efficiency
• Various losses not calculated
Boiler Efficiency: Direct Method
Performance of a Boiler
Efficiency of boiler () = 100 – (i+ii+iii+iv+v+vi+vii)
Boiler Efficiency: Indirect Method
Principle losses:
i) Dry flue gas
ii) Evaporation of water formed due to H2 in fuel
iii) Evaporation of moisture in fuel
iv) Moisture present in combustion air
v) Unburnt fuel in fly ash
vi) Unburnt fuel in bottom ash
vii) Radiation and other unaccounted losses
Performance of a Boiler
Boiler Efficiency: Indirect Method
Required calculation data
• Ultimate analysis of fuel (H2, O2, S, C, moisture
content, ash content)
• % oxygen or CO2 in the flue gas
• Fuel gas temperature in ◦C (Tf)
• Ambient temperature in ◦C (Ta) and humidity of air in
kg/kg of dry air
• GCV of fuel in kcal/kg
• % combustible in ash (in case of solid fuels)
• GCV of ash in kcal/kg (in case of solid fuels)
Performance of a Boiler
Boiler Efficiency: Indirect Method
Advantages
• Complete mass and energy balance for each
individual stream
• Makes it easier to identify options to improve
boiler efficiency
Disadvantages
• Time consuming
• Requires lab facilities for analysis
Performance of a Boiler
• Controls ‘total dissolved solids’ (TDS) in the
water that is boiled
• Blows off water and replaces it with feed water
• Conductivity measured as indication of TDS
levels
• Calculation of quantity blow down required:
2. Boiler Blow Down
Blow down (%) =
Feed water TDS x % Make up water
Maximum Permissible TDS in Boiler water
Performance of a Boiler
Two types of blow down
• Intermittent
• Manually operated valve reduces TDS
• Large short-term increases in feed water
• Substantial heat loss
• Continuous
• Ensures constant TDS and steam purity
• Heat lost can be recovered
• Common in high-pressure boilers
Boiler Blow Down
Performance of a Boiler
Benefits
• Lower pretreatment costs
• Less make-up water consumption
• Reduced maintenance downtime
• Increased boiler life
• Lower consumption of treatment
chemicals
Boiler Blow Down
Performance of a Boiler
• Quality of steam depend on water
treatment to control
• Steam purity
• Deposits
• Corrosion
• Efficient heat transfer only if boiler
water is free from deposit-forming
solids
3. Boiler Feed Water Treatment
Performance of a Boiler
Deposit control
• To avoid efficiency losses and
reduced heat transfer
• Hardness salts of calcium and
magnesium
• Alkaline hardness: removed by boiling
• Non-alkaline: difficult to remove
• Silica forms hard silica scales
Boiler Feed Water Treatment
Performance of a Boiler
Internal water treatment
• Chemicals added to boiler to prevent scale
• Different chemicals for different water types
• Conditions:
• Feed water is low in hardness salts
• Low pressure, high TDS content is tolerated
• Small water quantities treated
• Internal treatment alone not recommended
Boiler Feed Water Treatment
Performance of a Boiler
External water treatment:
• Removal of suspended/dissolved solids and
dissolved gases
• Pre-treatment: sedimentation and settling
• First treatment stage: removal of salts
• Processes
a) Ion exchange
b) Demineralization
c) De-aeration
d) Reverse osmoses
Boiler Feed Water Treatment
Performance of a Boiler
a) Ion-exchange process (softener plant)
• Water passes through bed of natural zeolite of
synthetic resin to remove hardness
• Base exchange: calcium (Ca) and magnesium (Mg)
replaced with sodium (Na) ions
• Does not reduce TDS, blow down quantity and
alkalinity
b) Demineralization
• Complete removal of salts
• Cations in raw water replaced with hydrogen ions
External Water Treatment
Performance of a Boiler
c) De-aeration
• Dissolved corrosive gases (O2, CO2)
expelled by preheating the feed water
• Two types:
• Mechanical de-aeration: used prior to addition
of chemical oxygen scavangers
• Chemical de-aeration: removes trace oxygen
External Water Treatment
Performance of a Boiler
External Water Treatment
Stea
m
Storage
Section
De-aerated
Boiler Feed
Water
Scrubber
Section
(Trays)
Boiler Feed
Water
Vent
Spray
Nozzles
( National Productivity Council)
Mechanical
de-aeration
• O2 and CO2 removed by
heating feed water
• Economical treatment
process
• Vacuum type can reduce
O2 to 0.02 mg/l
• Pressure type can
reduce O2 to 0.005 mg/l
Performance of a Boiler
External Water Treatment
Chemical de-aeration
• Removal of trace oxygen with scavenger
• Sodium sulphite:
• Reacts with oxygen: sodium sulphate
• Increases TDS: increased blow down
• Hydrazine
• Reacts with oxygen: nitrogen + water
• Does not increase TDS: used in high pressure
boilers
Performance of a Boiler
d) Reverse osmosis
• Osmosis
• Solutions of differing concentrations
• Separated by a semi-permeable membrane
• Water moves to the higher concentration
• Reversed osmosis
• Higher concentrated liquid pressurized
• Water moves in reversed direction
External Water Treatment
Performance of a Boiler
d) Reverse osmosis
External water treatment
More
Concentrated
Solution
Fresh Water
Water Flow
Semi Permeable Membrane
Feed Water
Concentrate
Flow
Pressure
Introduction
Type of boilers
Performance of a boiler
Energy efficiency opportunities
1. Stack temperature control
2. Feed water preheating using economizers
3. Combustion air pre-heating
4. Incomplete combustion minimization
5. Excess air control
6. Avoid radiation and convection heat loss
7. Automatic blow down control
8. Reduction of scaling and soot losses
9. Reduction of boiler steam pressure
10. Variable speed control
11. Controlling boiler loading
12. Proper boiler scheduling
13. Boiler replacement
Energy Efficiency Opportunities
1. Stack Temperature Control
• Keep as low as possible
• If >200°C then recover waste heat
Energy Efficiency Opportunities
2. Feed Water Preheating
Economizers
• Potential to recover heat from 200 – 300 oC flue
gases leaving a modern 3-pass shell boiler
3. Combustion Air Preheating
• If combustion air raised by 20°C = 1% improve
thermal efficiency
4. Minimize Incomplete Combustion
• Symptoms:
• Smoke, high CO levels in exit flue gas
• Causes:
• Air shortage, fuel surplus, poor fuel distribution
• Poor mixing of fuel and air
• Oil-fired boiler:
• Improper viscosity, worn tops, cabonization on
dips, deterioration of diffusers or spinner plates
• Coal-fired boiler: non-uniform coal size
Energy Efficiency Opportunities
84
Energy Efficiency Opportunities
5. Excess Air Control
• Excess air required for complete combustion
• Optimum excess air levels varies
• 1% excess air reduction = 0.6% efficiency rise
• Portable or continuous oxygen analyzers
Fuel Kg air req./kg fuel %CO2 in flue gas in practice
Solid Fuels
Bagasse
Coal (bituminous)
Lignite
Paddy Husk
Wood
3.3
10.7
8.5
4.5
5.7
10-12
10-13
9 -13
14-15
11.13
Liquid Fuels
Furnace Oil
LSHS
13.8
14.1
9-14
9-14
Energy Efficiency Opportunities
7. Automatic Blow Down Control
6. Radiation and Convection Heat
Loss Minimization
• Fixed heat loss from boiler shell, regardless of
boiler output
• Repairing insulation can reduce loss
• Sense and respond to boiler water conductivity
and pH
Energy Efficiency Opportunities
9. Reduced Boiler Steam Pressure
8. Scaling and Soot Loss Reduction
• Every 22oC increase in stack temperature = 1%
efficiency loss
• 3 mm of soot = 2.5% fuel increase
• Lower steam pressure
= lower saturated steam temperature
= lower flue gas temperature
• Steam generation pressure dictated by process
Energy Efficiency Opportunities
11. Control Boiler Loading
10. Variable Speed Control for
Fans, Blowers and Pumps
• Suited for fans, blowers, pumps
• Should be considered if boiler loads are
variable
• Maximum boiler efficiency: 65-85% of rated load
• Significant efficiency loss: < 25% of rated load
Energy Efficiency Opportunities
13. Boiler Replacement
12. Proper Boiler Scheduling
• Optimum efficiency: 65-85% of full load
• Few boilers at high loads is more efficient than
large number at low loads
Financially attractive if existing boiler is
• Old and inefficient
• Not capable of firing cheaper substitution fuel
• Over or under-sized for present requirements
• Not designed for ideal loading conditions
Boilers
THANK YOU
FOR YOUR ATTENTION


More Related Content

What's hot

Ntpc (national thermal power corporation) sipat boiler haxxo24 i~i
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~iNtpc (national thermal power corporation) sipat boiler haxxo24 i~i
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~ihaxxo24
 
Study and Analysis of Tube Failure in Water Tube boiler
Study and Analysis of Tube Failure in Water Tube boilerStudy and Analysis of Tube Failure in Water Tube boiler
Study and Analysis of Tube Failure in Water Tube boilerArunMalanthara
 
Boiler Drum And Its Internals
Boiler Drum And Its InternalsBoiler Drum And Its Internals
Boiler Drum And Its InternalsAshrant Dass
 
Coal mill pulverizer in thermal power plants
Coal mill pulverizer in thermal power plantsCoal mill pulverizer in thermal power plants
Coal mill pulverizer in thermal power plantsSHIVAJI CHOUDHURY
 
Super Critical Technology-Fundamental Concepts about Super Critical Technolog...
Super Critical Technology-Fundamental Concepts about Super Critical Technolog...Super Critical Technology-Fundamental Concepts about Super Critical Technolog...
Super Critical Technology-Fundamental Concepts about Super Critical Technolog...Raghab Gorain
 
TPS Coal Mills and Fan Performance
TPS Coal Mills and Fan PerformanceTPS Coal Mills and Fan Performance
TPS Coal Mills and Fan PerformanceManohar Tatwawadi
 
Hp/ lp bypass system for steam turbines
Hp/ lp bypass system for steam turbinesHp/ lp bypass system for steam turbines
Hp/ lp bypass system for steam turbinesBoben Anto Chemmannoor
 
A Brief Introduction to Boilers
A Brief Introduction to BoilersA Brief Introduction to Boilers
A Brief Introduction to BoilersSATYAKAM MOHAPATRA
 
Fans in thermal power plants
Fans in thermal power plantsFans in thermal power plants
Fans in thermal power plantsSHIVAJI CHOUDHURY
 
Fireball Formation and Combustion of Coal in a Boiler
Fireball Formation and Combustion of Coal in a BoilerFireball Formation and Combustion of Coal in a Boiler
Fireball Formation and Combustion of Coal in a BoilerZalak Shah
 
Circulating fluidizing bed combustion Boiler presentation
Circulating fluidizing bed combustion Boiler presentation Circulating fluidizing bed combustion Boiler presentation
Circulating fluidizing bed combustion Boiler presentation Sawan Vaja
 
Training material for air preheater
Training material for air preheaterTraining material for air preheater
Training material for air preheaterHOANG VAN DUC
 
Performance calculation for feed water heater
Performance calculation  for feed water heaterPerformance calculation  for feed water heater
Performance calculation for feed water heaterSHIVAJI CHOUDHURY
 
Effect of Coal Quality and Performance of Coal pulverisers / Mills
Effect of Coal Quality and Performance of Coal pulverisers / MillsEffect of Coal Quality and Performance of Coal pulverisers / Mills
Effect of Coal Quality and Performance of Coal pulverisers / MillsManohar Tatwawadi
 

What's hot (20)

Ntpc (national thermal power corporation) sipat boiler haxxo24 i~i
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~iNtpc (national thermal power corporation) sipat boiler haxxo24 i~i
Ntpc (national thermal power corporation) sipat boiler haxxo24 i~i
 
Study and Analysis of Tube Failure in Water Tube boiler
Study and Analysis of Tube Failure in Water Tube boilerStudy and Analysis of Tube Failure in Water Tube boiler
Study and Analysis of Tube Failure in Water Tube boiler
 
Boiler Drum And Its Internals
Boiler Drum And Its InternalsBoiler Drum And Its Internals
Boiler Drum And Its Internals
 
Condenser performance test
Condenser performance testCondenser performance test
Condenser performance test
 
Steam generator part 2
Steam generator part 2Steam generator part 2
Steam generator part 2
 
Boiler light up & loading
Boiler light up & loadingBoiler light up & loading
Boiler light up & loading
 
Boiler -Emergency Handling
 Boiler -Emergency Handling Boiler -Emergency Handling
Boiler -Emergency Handling
 
Coal mill pulverizer in thermal power plants
Coal mill pulverizer in thermal power plantsCoal mill pulverizer in thermal power plants
Coal mill pulverizer in thermal power plants
 
Super Critical Technology-Fundamental Concepts about Super Critical Technolog...
Super Critical Technology-Fundamental Concepts about Super Critical Technolog...Super Critical Technology-Fundamental Concepts about Super Critical Technolog...
Super Critical Technology-Fundamental Concepts about Super Critical Technolog...
 
TPS Coal Mills and Fan Performance
TPS Coal Mills and Fan PerformanceTPS Coal Mills and Fan Performance
TPS Coal Mills and Fan Performance
 
Hp/ lp bypass system for steam turbines
Hp/ lp bypass system for steam turbinesHp/ lp bypass system for steam turbines
Hp/ lp bypass system for steam turbines
 
Boiler operation
Boiler operationBoiler operation
Boiler operation
 
A Brief Introduction to Boilers
A Brief Introduction to BoilersA Brief Introduction to Boilers
A Brief Introduction to Boilers
 
Fans in thermal power plants
Fans in thermal power plantsFans in thermal power plants
Fans in thermal power plants
 
Deaerator
DeaeratorDeaerator
Deaerator
 
Fireball Formation and Combustion of Coal in a Boiler
Fireball Formation and Combustion of Coal in a BoilerFireball Formation and Combustion of Coal in a Boiler
Fireball Formation and Combustion of Coal in a Boiler
 
Circulating fluidizing bed combustion Boiler presentation
Circulating fluidizing bed combustion Boiler presentation Circulating fluidizing bed combustion Boiler presentation
Circulating fluidizing bed combustion Boiler presentation
 
Training material for air preheater
Training material for air preheaterTraining material for air preheater
Training material for air preheater
 
Performance calculation for feed water heater
Performance calculation  for feed water heaterPerformance calculation  for feed water heater
Performance calculation for feed water heater
 
Effect of Coal Quality and Performance of Coal pulverisers / Mills
Effect of Coal Quality and Performance of Coal pulverisers / MillsEffect of Coal Quality and Performance of Coal pulverisers / Mills
Effect of Coal Quality and Performance of Coal pulverisers / Mills
 

Viewers also liked

Viewers also liked (7)

Boilers and its types & components
Boilers and its types & componentsBoilers and its types & components
Boilers and its types & components
 
Closed feed water heaters :)
Closed feed water heaters :)Closed feed water heaters :)
Closed feed water heaters :)
 
Steam generator part 1
Steam generator part 1Steam generator part 1
Steam generator part 1
 
Boiler
BoilerBoiler
Boiler
 
Turbine Fundamentals
Turbine FundamentalsTurbine Fundamentals
Turbine Fundamentals
 
Boiler Presentation
Boiler PresentationBoiler Presentation
Boiler Presentation
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plants
 

Similar to Boiler Introduction

THERMAL POWER ENGINEERING
THERMAL POWER ENGINEERINGTHERMAL POWER ENGINEERING
THERMAL POWER ENGINEERINGSajal Tiwari
 
Steam generation presentatiton
Steam generation presentatitonSteam generation presentatiton
Steam generation presentatitonMat Mett
 
Boilers ps mrng sessn
Boilers ps mrng sessnBoilers ps mrng sessn
Boilers ps mrng sessnInes Kkumar
 
Boilers ps mrng sessn
Boilers ps mrng sessnBoilers ps mrng sessn
Boilers ps mrng sessnInes Kkumar
 
Power Plant Instrumentation FBC BOILERS.pptx
Power Plant Instrumentation FBC BOILERS.pptxPower Plant Instrumentation FBC BOILERS.pptx
Power Plant Instrumentation FBC BOILERS.pptxDrAyyarKandasamy
 
Power plant engineering micro project
Power plant engineering micro projectPower plant engineering micro project
Power plant engineering micro projectSumitSutar6
 
different type of boiler & combustion in boilers
different type of boiler & combustion in boilersdifferent type of boiler & combustion in boilers
different type of boiler & combustion in boilersShowhanur Rahman
 
Boilers and its types systems and boilers water treatment
Boilers and its types systems and boilers water treatment Boilers and its types systems and boilers water treatment
Boilers and its types systems and boilers water treatment Salman Jailani
 
Steam Generator or Boilers
Steam Generator or BoilersSteam Generator or Boilers
Steam Generator or BoilersRidwanul Hoque
 
CFB boiler presentation In which you will learn all about CFB boiler
CFB boiler presentation In which you will learn all about CFB boilerCFB boiler presentation In which you will learn all about CFB boiler
CFB boiler presentation In which you will learn all about CFB boilerabdulrahimchohan865
 

Similar to Boiler Introduction (20)

THERMAL POWER ENGINEERING
THERMAL POWER ENGINEERINGTHERMAL POWER ENGINEERING
THERMAL POWER ENGINEERING
 
Steam generation presentatiton
Steam generation presentatitonSteam generation presentatiton
Steam generation presentatiton
 
Boilers ps mrng sessn
Boilers ps mrng sessnBoilers ps mrng sessn
Boilers ps mrng sessn
 
Boilers ps mrng sessn
Boilers ps mrng sessnBoilers ps mrng sessn
Boilers ps mrng sessn
 
Fbc boilers
Fbc boilersFbc boilers
Fbc boilers
 
Pptfbc
PptfbcPptfbc
Pptfbc
 
Power Plant Instrumentation FBC BOILERS.pptx
Power Plant Instrumentation FBC BOILERS.pptxPower Plant Instrumentation FBC BOILERS.pptx
Power Plant Instrumentation FBC BOILERS.pptx
 
Power plant
Power plantPower plant
Power plant
 
Power plant engineering micro project
Power plant engineering micro projectPower plant engineering micro project
Power plant engineering micro project
 
different type of boiler & combustion in boilers
different type of boiler & combustion in boilersdifferent type of boiler & combustion in boilers
different type of boiler & combustion in boilers
 
CFBC boiler operation
CFBC boiler operationCFBC boiler operation
CFBC boiler operation
 
Steam power plant 2
Steam power plant 2Steam power plant 2
Steam power plant 2
 
boiler
boiler boiler
boiler
 
Boilers and its types systems and boilers water treatment
Boilers and its types systems and boilers water treatment Boilers and its types systems and boilers water treatment
Boilers and its types systems and boilers water treatment
 
Cfbc
CfbcCfbc
Cfbc
 
boilers
boilersboilers
boilers
 
Steam Generator or Boilers
Steam Generator or BoilersSteam Generator or Boilers
Steam Generator or Boilers
 
MET 214 Module 7
MET 214 Module 7MET 214 Module 7
MET 214 Module 7
 
MET 214 Module 7
MET 214 Module 7MET 214 Module 7
MET 214 Module 7
 
CFB boiler presentation In which you will learn all about CFB boiler
CFB boiler presentation In which you will learn all about CFB boilerCFB boiler presentation In which you will learn all about CFB boiler
CFB boiler presentation In which you will learn all about CFB boiler
 

Recently uploaded

Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 

Recently uploaded (20)

Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 

Boiler Introduction

  • 1. BURNER WATER SOURCE SOFTENERS CHEMICAL FEED FUEL BLOW DOWN SEPARATOR VENT STACK DEAERATOR PUMPS BOILER ECO- NOMI- ZER VENTEXHAUST GAS STEAM TO PROCESS
  • 2. SOFTENERS By- Mukesh Jha Sr.Engineer -Projects, a2z Powercom Pvt.Ltd.
  • 3. Boiler- A ‘Boiler’ means a pressure vessel in which steam is generated for use external to itself by application of heat which is wholly or partly under pressure when steam is shut off but does not include a pressure vessel (1) With Capacity less than 25 ltrs (such capacity being measured from the feed check valve to the main steam stop valve); (2) With less than 1 kilogram per centimeter square design gauge pressure & working gauge pressure; or (3) In which water is heated below one hundred degree centigrade .
  • 4. ‘Boiler component’ means Steam piping , Feed water piping, Economizer ,Super heater, any mounting or other fitting and any other external or internal part of a Boiler which is subjected to pressure exceeding one kilogram per centimeter square gauge.
  • 5. “Steam Pipe "means any pipe through which steam passes if- (1)The pressure at which the steam passes through such pipe exceeds 3.5kg/cm^2 above atmospheric pressure, or (2)Such pipe exceeds 254 mm in internal diameter and pressure of steam exceeds 1kg/cm^2.above the atmospheric pressure. and includes in either case any connected fitting of a steam pipe.
  • 6. At atmospheric pressure water volume increases 1,600 times BURNER WATER SOURCE SOFTENERS CHEMICAL FEED FUEL BLOW DOWN SEPARATOR VENT STACK DEAERATOR PUMPS BOILER ECO- NOMI- ZER VENTEXHAUST GAS STEAM TO PROCESS Figure: Schematic overview of a boiler room
  • 7. Boiler Systems Flue gas system Water treatment system Feed water system Steam System Blow down system Fuel supply system Air Supply system
  • 8. Fuels used in Boiler S.No Solid Liquid Gaseous AgroWaste 1 Coal HSD NGas Baggase 2 Lignite LDO Bio Gas Pith 3 Charcoal Fur.Oil Rice Husk 4 LSHS Paddy Straw 5 Coconut shell 6 Groundnutshell MSW/RDF
  • 9. Types of Boilers 1. Fire Tube Boiler 2. Water Tube Boiler 3. Packaged Boiler 4. Stoker Fired Boiler 5. Pulverized Fuel Boiler 6. Waste Heat Boiler 7. Fluidized Bed (FBC) Boiler
  • 10. Type of Boilers (Light Rail Transit Association) 1. Fire Tube Boiler • Relatively small steam capacities (12,000 kg/hour) • Low to medium steam pressures (18 kg/cm2) • Operates with oil, gas or solid fuels
  • 11. Type of Boilers 2. Water Tube Boiler (Your Dictionary.com) • Used for high steam demand and pressure requirements • Capacity range of 4,500 – 120,000 kg/hour • Combustion efficiency enhanced by induced draft provisions • Lower tolerance for water quality and needs water treatment plant
  • 12. Type of Boilers (BIB Cochran, 2003) 3. Packaged Boiler Oil Burner To Chimney • Comes in complete package • Features • High heat transfer • Faster evaporation • Good convective heat transfer • Good combustion efficiency • High thermal efficiency • Classified based on number of passes
  • 13. Type of Boilers 4. Stoke Fired Boilers a) Spreader stokers  Uses both suspension and grate burning  Coal fed continuously over burning coal bed  Coal fines burn in suspension and larger coal pieces burn on grate  Good flexibility to meet changing load requirements  Preferred over other type of stokers in industrial application
  • 14. Type of Boilers 4. Stoke Fired Boilers b) Chain-grate or traveling- grate stoker (University of Missouri, 2004)  Uses both suspension and grate burning  Coal fed continuously over burning coal bed  Coal fines burn in suspension and larger coal pieces burn on grate  Good flexibility to meet changing load requirements  Preferred over other type of stokers in industrial application
  • 15. Type of Boilers Tangential firing 5. Pulverized Fuel Boiler • Pulverized coal powder blown with combustion air into boiler through burner nozzles • Combustion temperature at 1300 -1700 °C • Benefits: varying coal quality coal, quick response to load changes and high pre-heat air temperatures Coal is pulverized to a fine powder, so that less than 2% is +300 microns, and 70-75% is below 75 microns. Coal is blown with part of the combustion air into the boiler plant through a series of burner nozzles.
  • 16. Advantages  Its ability to burn all ranks of coal from anthracitic to lignitic, and it permits combination firing (i.e., can use coal, oil and gas in same burner). Because of these advantages, there is widespread use of pulverized coal furnaces. Disadvantages  High power demand for pulverizing  Requires more maintenance, flyash erosion and pollution complicate unit operation Pulverized Fuel Boiler (Contd..)
  • 17. Type of Boilers Agriculture and Agri-Food Canada, 2001 6. Waste Heat Boiler • Used when waste heat available at medium/high temp • Auxiliary fuel burners used if steam demand is more than the waste heat can generate • Used in heat recovery from exhaust gases from gas turbines and diesel engines
  • 18. 7.Fluidized Bed (FBC) Boiler An Overview- Fluidized bed combustion has emerged as a viable alternative and has significant advantages over conventional firing system and offers multiple benefits – compact boiler design, fuel flexibility, higher combustion efficiency and reduced emission of noxious pollutants such as SOx and NOx. The fuels burnt in these boilers include coal, washery rejects, rice husk, bagasse & other agricultural wastes. The fluidized bed boilers have a wide capacity range.
  • 19. Mechanism of Fluidised Bed Combustion When an evenly distributed air or gas is passed upward through a finely divided bed of solid particles such as sand supported on a fine mesh, the particles are undisturbed at low velocity. As air velocity is gradually increased, a stage is reached when the individual particles are suspended in the air stream – the bed is called “fluidized”. With further increase in air velocity, there is bubble formation, vigorous turbulence, rapid mixing and formation of dense defined bed surface. The bed of solid particles exhibits the properties of a boiling liquid and assumes the appearance of a fluid – “bubbling fluidized bed”.
  • 20. At higher velocities, bubbles disappear, and particles are blown out of the bed. Therefore, some amounts of particles have to be recirculated to maintain a stable system – “circulating fluidised bed”. Fluidization depends largely on the particle size and the air velocity. If sand particles in a fluidized state is heated to the ignition temperatures of coal, and coal is injected continuously into the bed, the coal will burn rapidly and bed attains a uniform temperature. The fluidized bed combustion (FBC) takes place at about 840OC to 950OC.
  • 21. Since this temperature is much below the ash fusion temperature, melting of ash and associated problems are avoided. The lower combustion temperature is achieved because of high coefficient of heat transfer due to rapid mixing in the fluidized bed and effective extraction of heat from the bed through in-bed heat transfer tubes and walls of the bed. The gas velocity is maintained between minimum fluidisation velocity and particle entrainment velocity. This ensures stable operation of the bed and avoids particle entrainment in the gas stream. Combustion process requires the three “T”s that is Time, Temperature and Turbulence. In FBC, turbulence is promoted by fluidisation. Improved mixing generates evenly distributed heat at lower temperature. Residence time is many times greater than conventional grate firing. Thus an FBC system releases heat more efficiently at lower temperatures.
  • 22. Fixing, bubbling and fast fluidized beds As the velocity of a gas flowing through a bed of particles increases, a value is reaches when the bed fluidises and bubbles form as in a boiling liquid. At higher velocities the bubbles disappear; and the solids are rapidly blown out of the bed and must be recycled to maintain a stable system. principle of fluidisation
  • 23. Since limestone is used as particle bed, control of sulfur dioxide and nitrogen oxide emissions in the combustion chamber is achieved without any additional control equipment. This is one of the major advantages over conventional boilers. Types of Fluidised Bed Combustion Boilers There are three basic types of fluidised bed combustion boilers: 1. Atmospheric classic Fluidised Bed Combustion System (AFBC) 2. Pressurised Fluidised Bed Combustion System (PFBC). 3. Circulating (fast) Fluidised Bed Combustion system(CFBC)
  • 24. AFBC / Bubbling Bed In AFBC, coal is crushed to a size of 1 – 10 mm depending on the rank of coal, type of fuel feed and fed into the combustion chamber. The atmospheric air, which acts as both the fluidization air and combustion air, is delivered at a pressure and flows through the bed after being preheated by the exhaust flue gases. The velocity of fluidising air is in the range of 1.2 to 3.7 m /sec. The rate at which air is blown through the bed determines the amount of fuel that can be reacted. Almost all AFBC/ bubbling bed boilers use in-bed evaporator tubes in the bed of limestone, sand and fuel for extracting the heat from the bed to maintain the bed temperature. The bed depth is usually 0.9 m to 1.5 m deep and the pressure drop averages about 1 inch of water per inch of bed depth. Very little material leaves the bubbling bed – only about 2 to 4 kg of solids are recycled per ton of fuel burned.
  • 25. Bubbling Bed Boilers In the bubbling bed type boiler, a layer of solid particles (mostly limestone, sand, ash and calcium sulfate) is contained on a grid near the bottom of the boiler. This layer is maintained in a turbulent state as low velocity air is forced into the bed from a plenum chamber beneath the grid. Fuel is added to this bed and combustion takes place. Normally, raw fuel in the bed does not exceed 2% of the total bed inventory. Velocity of the combustion air is kept at a minimum, yet high enough to maintain turbulence in the bed. Velocity is not high enough to carry significant quantities of solid particles out of the furnace.
  • 26. This turbulent mixing of air and fuel results in a residence time of up to five seconds. The combination of turbulent mixing and residence time permits bubbling bed boilers to operate at a furnace temperature below 1650°F. At this temperature, the presence of limestone mixed with fuel in the furnace achieves greater than 90% sulfur removal. Boiler efficiency is the percentage of total energy in the fuel that is used to produce steam. Combustion efficiency is the percentage of complete combustion of carbon in the fuel. Incomplete combustion results in the formation of carbon monoxide (CO) plus unburned carbon in the solid particles leaving the furnace. In a typical bubbling bed fluidized boiler, combustion efficiency can be as high as 92%. This is a good figure, but is lower than that achieved by pulverized coal or cyclone-fired boilers. In addition, some fuels that are very low in volatile matter cannot be completely burned within the available residence time in bubbling bed-type boilers.
  • 27. Features of bubbling bed boiler Fluidised bed boiler can operate at near atmospheric or elevated pressure and have these essential features: • Distribution plate through which air is blown for fluidizing. • Immersed steam-raising or water heating tubes which extract heat directly from the bed. • Tubes above the bed which extract heat from hot combustion gas before it enters the flue duct.
  • 30.
  • 31.
  • 32.
  • 33. 2. Pressurised Fluidised Bed Combustion System (PFBC). Pressurised Fluidised Bed Combustion (PFBC) is a variation of fluid bed technology that is meant for large-scale coal burning applications. In PFBC, the bed vessel is operated at pressure up to 16 ata ( 16 kg/cm2). The off-gas from the fluidized bed combustor drives the gas turbine. The steam turbine is driven by steam raised in tubes immersed in the fluidized bed. The condensate from the steam turbine is pre-heated using waste heat from gas turbine exhaust and is then taken as feed water for steam generation. The PFBC system can be used for cogeneration or combined cycle power generation. By combining the gas and steam turbines in this way, electricity is generated more efficiently than in conventional system. The overall conversion efficiency is higher by 5% to 8%. . At elevated pressure, the potential reduction in boiler size is considerable due to increased amount of combustion in pressurized mode and high heat flux through in-bed tubes.
  • 34. PFBC Boiler for Cogeneration
  • 35. 3. Circulating (fast) Fluidised Bed Combustion system(CFBC) The need to improve combustion efficiency (which also increases overall boiler efficiency and reduces operating costs) and the desire to burn a much wider range of fuels has led to the development and application of the CFB boiler. Through the years, boiler suppliers have been increasing the size of these high-efficiency steam generators. This CFBC technology utilizes the fluidized bed principle in which crushed (6 –12 mm size) fuel and limestone are injected into the furnace or combustor. The particles are suspended in a stream of upwardly flowing air (60-70% of the total air), which enters the bottom of the furnace through air distribution nozzles. The fluidising velocity in circulating beds ranges from 3.7 to 9 m/sec. The balance of combustion air is admitted above the bottom of the furnace as secondary air.
  • 36. The combustion takes place at 840-900oC, and the fine particles (<450 microns) are elutriated out of the furnace with flue gas velocity of 4-6 m/s. The particles are then collected by the solids separators and circulated back into the furnace. Solid recycle is about 50 to 100 kg per kg of fuel burnt. There are no steam generation tubes immersed in the bed. The circulating bed is designed to move a lot more solids out of the furnace area and to achieve most of the heat transfer outside the combustion zone - convection section, water walls, and at the exit of the riser. Some circulating bed units even have external heat exchanges. The particles circulation provides efficient heat transfer to the furnace walls and longer residence time for carbon and limestone utilization. Similar to Pulverized Coal (PC) firing, the controlling parameters in the CFB combustion process are temperature, residence time and turbulence.
  • 37. For large units, the taller furnace characteristics of CFBC boiler offers better space utilization, greater fuel particle and sorbent residence time for efficient combustion and SO2 capture, and easier application of staged combustion techniques for NOx control than AFBC generators. CFBC boilers are said to achieve better calcium to sulphur utilization – 1.5 to 1 vs. 3.2 to 1 for the AFBC boilers, although the furnace temperatures are almost the same. CFBC boilers are generally claimed to be more economical than AFBC boilers for industrial application requiring more than 75 – 100 T/hr of steam CFBC requires huge mechanical cyclones to capture and recycle the large amount of bed material, which requires a tall boiler. A CFBC could be good choice if the following conditions are met. 1. Capacity of boiler is large to medium 2.Sulphur emission and NOx control is important 3.The boiler is required to fire low-grade fuel or fuel with highly fluctuating fuel quality.
  • 38.
  • 39.
  • 40. Circulating bed boiler (At a Glance)- At high fluidizing gas velocities in which a fast recycling bed of fine material is superimposed on a bubbling bed of larger particles. The combustion temperature is controlled by rate of recycling of fine material. Hot fine material is separated from the flue gas by a cyclone and is partially cooled in a separate low velocity fluidized bed heat exchanger, where the heat is given up to the steam. The cooler fine material is then recycled to the dense bed.
  • 41. Advantages of Fluidised Bed Combustion Boilers 1. High Efficiency FBC boilers can burn fuel with a combustion efficiency of over 95% irrespective of ash content. FBC boilers can operate with overall efficiency of 84% (plus or minus 2%). 2. Reduction in Boiler Size High heat transfer rate over a small heat transfer area immersed in the bed result in overall size reduction of the boiler. 3. Fuel Flexibility FBC boilers can be operated efficiently with a variety of fuels. Even fuels like flotation slimes, washer rejects, agro waste can be burnt efficiently. These can be fed either independently or in combination with coal into the same furnace. 4. Ability to Burn Low Grade Fuel FBC boilers would give the rated output even with inferior quality fuel. The boilers can fire coals with ash content as high as 62% and having calorific value as low as 2,500 kcal/kg. Even carbon content of only 1% by weight can sustain the fluidised bed combustion.
  • 42. 5. Ability to Burn Fines Coal containing fines below 6 mm can be burnt efficiently in FBC boiler, which is very difficult to achieve in conventional firing system. 6. Pollution Control SO2 formation can be greatly minimised by addition of limestone or dolomite for high sulphur coals. 3% limestone is required for every 1% sulphur in the coal feed. Low combustion temperature eliminates NOx formation. 7. Low Corrosion and Erosion The corrosion and erosion effects are less due to lower combustion temperature, softness of ash and low particle velocity (of the order of 1 m/sec). 8. Easier Ash Removal – No Clinker Formation Since the temperature of the furnace is in the range of 750 – 900o C in FBC boilers, even coal of low ash fusion temperature can be burnt without clinker formation. Ash removal is easier as the ash flows like liquid from the combustion chamber. Hence less manpower is required for ash handling.
  • 43. 9. Less Excess Air – Higher CO2 in Flue Gas The CO2 in the flue gases will be of the order of 14 – 15% at full load. Hence, the FBC boiler can operate at low excess air - only 20 – 25%. 10. Simple Operation, Quick Start-Up High turbulence of the bed facilitates quick start up and shut down. Full automation of start up and operation using reliable equipment is possible. 11. Fast Response to Load Fluctuations Inherent high thermal storage characteristics can easily absorb fluctuation in fuel feed rates. Response to changing load is comparable to that of oil fired boilers. 12. No Slagging in the Furnace-No Soot Blowing In FBC boilers, volatilisation of alkali components in ash does not take place and the ash is non sticky. This means that there is no slagging or soot blowing. 13 Provisions of Automatic Coal and Ash Handling System Automatic systems for coal and ash handling can be incorporated, making the plant easy to operate comparable to oil or gas fired installation.
  • 44. 14 Provision of Automatic Ignition System Control systems using micro-processors and automatic ignition equipment give excellent control with minimum manual supervision. 15 High Reliability The absence of moving parts in the combustion zone results in a high degree of reliability and low maintenance costs. 16 Reduced Maintenance Routine overhauls are infrequent and high efficiency is maintained for long periods. 17 Quick Responses to Changing Demand A fluidized bed combustor can respond to changing heat demands more easily than stoker fired systems. This makes it very suitable for applications such as thermal fluid heaters, which require rapid responses. 18 High Efficiency of Power Generation By operating the fluidized bed at elevated pressure, it can be used to generate hot pressurized gases to power a gas turbine. This can be combined with a conventional steam turbine to improve the efficiency of electricity generation and give a potential fuel savings of at least 4%.
  • 45.
  • 46.
  • 47. General Arrangements of FBC Boiler FBC boilers comprise of following systems: i) Fuel feeding system ii) Air Distributor iii) Bed & In-bed heat transfer surface iv) Ash handling system Many of these are common to all types of FBC boilers 1. Fuel Feeding system For feeding fuel, sorbents like limestone or dolomite, usually two methods are followed: under bed pneumatic feeding and over-bed feeding. Under Bed Pneumatic Feeding If the fuel is coal, it is crushed to 1-6 mm size and pneumatically transported from feed hopper to the combustor through a feed pipe piercing the distributor. Based on the capacity of the boiler, the number of feed points is increased, as it is necessary to distribute the fuel into the bed uniformly.
  • 48. Over-Bed Feeding The crushed coal, 6-10 mm size is conveyed from coal bunker to a spreader by a screw conveyor. The spreader distributes the coal over the surface of the bed uniformly. This type of fuel feeding system accepts over size fuel also and eliminates transport lines, when compared to under-bed feeding system. 2. Air Distributor The purpose of the distributor is to introduce the fluidizing air evenly through the bed cross section thereby keeping the solid particles in constant motion, and preventing the formation of defluidization zones within the bed. The distributor, which forms the furnace floor, is normally constructed from metal plate with a number of perforations in a definite geometric pattern. The perforations may be located in simple nozzles or nozzles with bubble caps, which serve to prevent solid particles from flowing back into the space below the distributor. The distributor plate is protected from high temperature of the furnace by: i) Refractory Lining ii) A Static Layer of the Bed Material or iii) Water Cooled Tubes.
  • 49. 3. Bed & In-Bed Heat Transfer Surface: a) Bed The bed material can be sand, ash, crushed refractory or limestone, with an average size of about 1 mm. Depending on the bed height these are of two types: shallow bed and deep bed. At the same fluidizing velocity, the two ends fluidise differently, thus affecting the heat transfer to an immersed heat transfer surfaces. A shallow bed offers a lower bed resistance and hence a lower pressure drop and lower fan power consumption. In the case of deep bed, the pressure drop is more and this increases the effective gas velocity and also the fan power. b) In-Bed Heat Transfer Surface In a fluidized in-bed heat transfer process, it is necessary to transfer heat between the bed material and an immersed surface, which could be that of a tube bundle, or a coil. The heat exchanger orientation can be horizontal, vertical or inclined. From a pressure drop point of view, a horizontal bundle in a shallow bed is more attractive than a vertical bundle in a deep bed. Also, the heat transfer in the bed depends on number of parameters like (i) bed pressure (ii) bed temperature (iii) superficial gas velocity (iv) particle size (v) Heat exchanger design and (vi) gas distributor plate design.
  • 50. 4. Ash Handling System a) Bottom ash removal In the FBC boilers, the bottom ash constitutes roughly 30 - 40 % of the total ash, the rest being the fly ash. The bed ash is removed by continuous over flow to maintain bed height and also by intermittent flow from the bottom to remove over size particles, avoid accumulation and consequent defluidization. While firing high ash coal such as washery rejects, the bed ash overflow drain quantity is considerable so special care has to be taken. b) Fly ash removal The amount of fly ash to be handled in FBC boiler is relatively very high, when compared to conventional boilers. This is due to elutriation of particles at high velocities. Fly ash carried away by the flue gas is removed in number of stages; firstly in convection section, then from the bottom of air preheater/economizer and finally a major portion is removed in dust collectors. The types of dust collectors used are cyclone, bagfilters, electrostatic precipitators (ESP’s) or some combination of all of these. To increase the combustion efficiency, recycling of fly ash is practiced in some of the units.
  • 51. General Features of our Project(3nos) Installed Capacity : 1 X 15 MW Proposed Fuels : 85 % of Bagasse / Biomass, 15 % of Coal, Pet Coke. Boiler Type : Circulating Fluidized Bed Combustion (CFBC) Boiler parameters : Flow – 75 TPH Pressure – 87 Kg/cm^2 Temperature - 515 ± 5 oC Turbine Type : Two Nos. of uncontrolled extraction type and one no. of controlled extraction cum condensing type Turbine parameters : Pressure – 84 Kg/cm^2 Temperature - 510 ± 5 oC Plant load Factor : 0.85 No. of Days of power: 335 plant operation in a year
  • 52. General Features of our Project(1nos) Installed Capacity : 1 X 15 MW Proposed Fuels : 85 % of Bagasse / Biomass, 15 % of Coal, Pet Coke. Boiler Type : Circulating Fluidized Bed Combustion (CFBC) Boiler parameters : Flow – 100 TPH Pressure – 87 Kg/cm^2 Temperature - 515 ± 5 oC Turbine Type : Two Nos. of uncontrolled extraction type and one no. of controlled extraction cum condensing type Turbine parameters : Pressure – 84 Kg/cm^2 Temperature - 510 ± 5 oC Plant load Factor : 0.85 No. of Days of power: 335 plant operation in a year
  • 53. 600 MWe OTU CFB. Using the BENSON Vertical technology, Foster Wheeler has developed a design for a 600 MWe supercritical CFB boiler Future of CFBC Boiler
  • 54.
  • 55. FOSTER WHEELER AWARDED CONTRACT FOR WORLD’S LARGEST 100% BIOMASS BOILER ZUG, SWITZERLAND, April 7, 2010 - Foster Wheeler AG (Nasdaq: FWLT) announced today that its Global Power Group has been awarded a contract by GDF SUEZ, one of the leading energy providers in the world, for the design, supply and erection of a 190 MWe (gross megawatt electric) 100% biomass-fired circulating fluidized-bed (CFB) boiler island for the Polaniec Power Station in Poland. Foster Wheeler has received a full notice to proceed on this contract which will be executed jointly by its subsidiaries in Finland and Poland. The terms of the agreement were not disclosed and the contract value will be included in the company’s bookings for the first quarter of 2010. Construction completion and start of operation of the new steam generator is scheduled for fourth-quarter 2012. Foster Wheeler will design and supply the steam generator and auxiliary equipment, including biomass yard, and will carry out the civil works, erection and commissioning of the boiler island. Once complete, this will be the world’s largest biomass boiler burning wood residues and up to 20% agro biomass.
  • 56. 1. Boiler 2. Boiler blow down 3. Boiler feed water treatment Performance of a boiler
  • 57. Performance of a Boiler 1. Boiler performance • Causes of poor boiler performance -Poor combustion -Heat transfer surface fouling -Poor operation and maintenance -Deteriorating fuel and water quality • Heat balance: identify heat losses • Boiler efficiency: determine deviation from best efficiency
  • 58. Performance of a Boiler Heat Balance An energy flow diagram describes geographically how energy is transformed from fuel into useful energy, heat and losses Stochiometric Excess Air Un burnt FUEL INPUT STEAM OUTPUT Stack Gas Ash and Un-burnt parts of Fuel in Ash Blow Down Convection & Radiation
  • 59. Performance of a Boiler Heat Balance Balancing total energy entering a boiler against the energy that leaves the boiler in different forms Heat in Steam BOILER Heat loss due to dry flue gas Heat loss due to steam in fuel gas Heat loss due to moisture in fuel Heat loss due to unburnts in residue Heat loss due to moisture in air Heat loss due to radiation & other unaccounted loss % % % % 2% % % 100.0 % Fuel
  • 60. Performance of a Boiler Heat Balance Goal: improve energy efficiency by reducing avoidable losses Avoidable losses include: - Stack gas losses (excess air, stack gas temperature) - Losses by unburnt fuel - Blow down losses - Condensate losses - Convection and radiation
  • 61. Performance of a Boiler Boiler Efficiency Thermal efficiency: % of (heat) energy input that is effectively useful in the generated steam BOILER EFFICENCY CALCULATION 1) DIRECT METHOD: 2) INDIRECT METHOD: The efficiency is the different between losses and energy input The energy gain of the working fluid (water and steam) is compared with the energy content of the boiler fuel.
  • 62. Performance of a Boiler hg -the enthalpy of saturated steam in kcal/kg of steam hf -the enthalpy of feed water in kcal/kg of water Boiler Efficiency: Direct Method Boiler efficiency () = Heat Input Heat Output x 100 Q x (hg – hf) Q x GCV x 100= Parameters to be monitored: - Quantity of steam generated per hour (Q) in kg/hr - Quantity of fuel used per hour (q) in kg/hr - The working pressure (in kg/cm2(g)) and superheat temperature (oC), if any - The temperature of feed water (oC) - Type of fuel and gross calorific value of the fuel (GCV) in kcal/kg of fuel
  • 63. Performance of a Boiler Advantages • Quick evaluation • Few parameters for computation • Few monitoring instruments • Easy to compare evaporation ratios with benchmark figures Disadvantages • No explanation of low efficiency • Various losses not calculated Boiler Efficiency: Direct Method
  • 64. Performance of a Boiler Efficiency of boiler () = 100 – (i+ii+iii+iv+v+vi+vii) Boiler Efficiency: Indirect Method Principle losses: i) Dry flue gas ii) Evaporation of water formed due to H2 in fuel iii) Evaporation of moisture in fuel iv) Moisture present in combustion air v) Unburnt fuel in fly ash vi) Unburnt fuel in bottom ash vii) Radiation and other unaccounted losses
  • 65. Performance of a Boiler Boiler Efficiency: Indirect Method Required calculation data • Ultimate analysis of fuel (H2, O2, S, C, moisture content, ash content) • % oxygen or CO2 in the flue gas • Fuel gas temperature in ◦C (Tf) • Ambient temperature in ◦C (Ta) and humidity of air in kg/kg of dry air • GCV of fuel in kcal/kg • % combustible in ash (in case of solid fuels) • GCV of ash in kcal/kg (in case of solid fuels)
  • 66. Performance of a Boiler Boiler Efficiency: Indirect Method Advantages • Complete mass and energy balance for each individual stream • Makes it easier to identify options to improve boiler efficiency Disadvantages • Time consuming • Requires lab facilities for analysis
  • 67. Performance of a Boiler • Controls ‘total dissolved solids’ (TDS) in the water that is boiled • Blows off water and replaces it with feed water • Conductivity measured as indication of TDS levels • Calculation of quantity blow down required: 2. Boiler Blow Down Blow down (%) = Feed water TDS x % Make up water Maximum Permissible TDS in Boiler water
  • 68. Performance of a Boiler Two types of blow down • Intermittent • Manually operated valve reduces TDS • Large short-term increases in feed water • Substantial heat loss • Continuous • Ensures constant TDS and steam purity • Heat lost can be recovered • Common in high-pressure boilers Boiler Blow Down
  • 69. Performance of a Boiler Benefits • Lower pretreatment costs • Less make-up water consumption • Reduced maintenance downtime • Increased boiler life • Lower consumption of treatment chemicals Boiler Blow Down
  • 70. Performance of a Boiler • Quality of steam depend on water treatment to control • Steam purity • Deposits • Corrosion • Efficient heat transfer only if boiler water is free from deposit-forming solids 3. Boiler Feed Water Treatment
  • 71. Performance of a Boiler Deposit control • To avoid efficiency losses and reduced heat transfer • Hardness salts of calcium and magnesium • Alkaline hardness: removed by boiling • Non-alkaline: difficult to remove • Silica forms hard silica scales Boiler Feed Water Treatment
  • 72. Performance of a Boiler Internal water treatment • Chemicals added to boiler to prevent scale • Different chemicals for different water types • Conditions: • Feed water is low in hardness salts • Low pressure, high TDS content is tolerated • Small water quantities treated • Internal treatment alone not recommended Boiler Feed Water Treatment
  • 73. Performance of a Boiler External water treatment: • Removal of suspended/dissolved solids and dissolved gases • Pre-treatment: sedimentation and settling • First treatment stage: removal of salts • Processes a) Ion exchange b) Demineralization c) De-aeration d) Reverse osmoses Boiler Feed Water Treatment
  • 74. Performance of a Boiler a) Ion-exchange process (softener plant) • Water passes through bed of natural zeolite of synthetic resin to remove hardness • Base exchange: calcium (Ca) and magnesium (Mg) replaced with sodium (Na) ions • Does not reduce TDS, blow down quantity and alkalinity b) Demineralization • Complete removal of salts • Cations in raw water replaced with hydrogen ions External Water Treatment
  • 75. Performance of a Boiler c) De-aeration • Dissolved corrosive gases (O2, CO2) expelled by preheating the feed water • Two types: • Mechanical de-aeration: used prior to addition of chemical oxygen scavangers • Chemical de-aeration: removes trace oxygen External Water Treatment
  • 76. Performance of a Boiler External Water Treatment Stea m Storage Section De-aerated Boiler Feed Water Scrubber Section (Trays) Boiler Feed Water Vent Spray Nozzles ( National Productivity Council) Mechanical de-aeration • O2 and CO2 removed by heating feed water • Economical treatment process • Vacuum type can reduce O2 to 0.02 mg/l • Pressure type can reduce O2 to 0.005 mg/l
  • 77. Performance of a Boiler External Water Treatment Chemical de-aeration • Removal of trace oxygen with scavenger • Sodium sulphite: • Reacts with oxygen: sodium sulphate • Increases TDS: increased blow down • Hydrazine • Reacts with oxygen: nitrogen + water • Does not increase TDS: used in high pressure boilers
  • 78. Performance of a Boiler d) Reverse osmosis • Osmosis • Solutions of differing concentrations • Separated by a semi-permeable membrane • Water moves to the higher concentration • Reversed osmosis • Higher concentrated liquid pressurized • Water moves in reversed direction External Water Treatment
  • 79. Performance of a Boiler d) Reverse osmosis External water treatment More Concentrated Solution Fresh Water Water Flow Semi Permeable Membrane Feed Water Concentrate Flow Pressure
  • 80. Introduction Type of boilers Performance of a boiler Energy efficiency opportunities
  • 81. 1. Stack temperature control 2. Feed water preheating using economizers 3. Combustion air pre-heating 4. Incomplete combustion minimization 5. Excess air control 6. Avoid radiation and convection heat loss 7. Automatic blow down control 8. Reduction of scaling and soot losses 9. Reduction of boiler steam pressure 10. Variable speed control 11. Controlling boiler loading 12. Proper boiler scheduling 13. Boiler replacement Energy Efficiency Opportunities
  • 82. 1. Stack Temperature Control • Keep as low as possible • If >200°C then recover waste heat Energy Efficiency Opportunities 2. Feed Water Preheating Economizers • Potential to recover heat from 200 – 300 oC flue gases leaving a modern 3-pass shell boiler 3. Combustion Air Preheating • If combustion air raised by 20°C = 1% improve thermal efficiency
  • 83. 4. Minimize Incomplete Combustion • Symptoms: • Smoke, high CO levels in exit flue gas • Causes: • Air shortage, fuel surplus, poor fuel distribution • Poor mixing of fuel and air • Oil-fired boiler: • Improper viscosity, worn tops, cabonization on dips, deterioration of diffusers or spinner plates • Coal-fired boiler: non-uniform coal size Energy Efficiency Opportunities
  • 84. 84 Energy Efficiency Opportunities 5. Excess Air Control • Excess air required for complete combustion • Optimum excess air levels varies • 1% excess air reduction = 0.6% efficiency rise • Portable or continuous oxygen analyzers Fuel Kg air req./kg fuel %CO2 in flue gas in practice Solid Fuels Bagasse Coal (bituminous) Lignite Paddy Husk Wood 3.3 10.7 8.5 4.5 5.7 10-12 10-13 9 -13 14-15 11.13 Liquid Fuels Furnace Oil LSHS 13.8 14.1 9-14 9-14
  • 85. Energy Efficiency Opportunities 7. Automatic Blow Down Control 6. Radiation and Convection Heat Loss Minimization • Fixed heat loss from boiler shell, regardless of boiler output • Repairing insulation can reduce loss • Sense and respond to boiler water conductivity and pH
  • 86. Energy Efficiency Opportunities 9. Reduced Boiler Steam Pressure 8. Scaling and Soot Loss Reduction • Every 22oC increase in stack temperature = 1% efficiency loss • 3 mm of soot = 2.5% fuel increase • Lower steam pressure = lower saturated steam temperature = lower flue gas temperature • Steam generation pressure dictated by process
  • 87. Energy Efficiency Opportunities 11. Control Boiler Loading 10. Variable Speed Control for Fans, Blowers and Pumps • Suited for fans, blowers, pumps • Should be considered if boiler loads are variable • Maximum boiler efficiency: 65-85% of rated load • Significant efficiency loss: < 25% of rated load
  • 88. Energy Efficiency Opportunities 13. Boiler Replacement 12. Proper Boiler Scheduling • Optimum efficiency: 65-85% of full load • Few boilers at high loads is more efficient than large number at low loads Financially attractive if existing boiler is • Old and inefficient • Not capable of firing cheaper substitution fuel • Over or under-sized for present requirements • Not designed for ideal loading conditions
  • 89. Boilers THANK YOU FOR YOUR ATTENTION 