SlideShare a Scribd company logo
1 of 47
Download to read offline
Prediction in Dynamic Graph Sequences




                   Prediction in Dynamic Graph Sequences

                                              Emile Richard

                                        CMLA-ENS Cachan & 1000mercis
                                       Supervisors :
                  Th. Evgeniou (INSEAD) and N. Vayatis (CMLA-ENS Cachan)

                                            January 20, 2012
Prediction in Dynamic Graph Sequences




Table of contents
      Context
         Motivation
         Data Description
      Problem Formulation
         Random Graph Models
         Link Prediction Heuristics
         Framework
      Algorithms
         Two-stage optimization
         Joint Optimization in W and S
         Variants
      Discussion
      References
Prediction in Dynamic Graph Sequences




                                        Context
Prediction in Dynamic Graph Sequences
  Context
     Motivation



From Big Data to Business Decisions



      1000mercis: interactive marketing and advertisement
      (emailing, mobile, viral games)
         1. Send less ads: email is free → overwhelm consumers
         2. Make consumers happy: serendipity
         3. Act sustainably: avoid long-term fatigue
         4. Earn more: up to 5 times!
Prediction in Dynamic Graph Sequences
  Context
     Motivation



Prediction in Relational Databases?
              Recommender systems
                      Links: to select recommendations, offline fine-tuning
                      Sales volumes: prepare or push trends
              Resource allocation Consumers and contributors in UGC[Zhang11], Stock
              management
              Understanding of data through relevant features extraction
                                                                               Returning
                                                12
                                                            Sellers
                                              11.5          Products
                                                            Buyers
                                                11          Commission
                                        Log




                                              10.5

                                                10

                                                9.5

                                                 9
                                                      0          50      100      150        200   250   300
                                                                               Time (week)
                                                          Sellers
                                                          Products
                                                                                  New
                                                12        Buyers
                                                          Commission

                                                10


                                                 8
                                          Log




                                                 6


                                                 4


                                                 2
                                                      0          50      100      150        200   250   300
                                                                               Time (week)
Prediction in Dynamic Graph Sequences
  Context
     Motivation



Similar Problems




              The Netflix prize: 1M$ for a 10% improvement in accuracy
              Amazon: 35% sales generated by recommendation[Linden03]
              CRM optimization: acquisition, cross-selling, churn
              management, prediction of top-selling items etc.
Prediction in Dynamic Graph Sequences
  Context
     Motivation



Other Web Applications
Prediction in Dynamic Graph Sequences
  Context
     Motivation



Similar Problems in Computational Biology1



                 Understanding the underlying mechanisms of biological
                 systems
                 Inference procedures for analysis of effects of biological
                 pathways in cancer progression
                 Study the effect of potential drugs/treatments on gene
                 regulatory networks in cancer cells




            1
                After a discussion with Ali Shohaie
Prediction in Dynamic Graph Sequences
  Context
     Data Description



Case Study


              Data: C-to-C website
              Recommendation newsletters and banners
              Management of promotional assets and pressure on users

                             Domain        users   products   daily sales
                             Music         0.4M    60K        2K
                             Books         1.2M    1.7M       18K
                             Electronic    0.5M    60K        2K
                             Video Games   0.9M    0.2M       9K
Prediction in Dynamic Graph Sequences
  Context
     Data Description



Heterogeneous Domains
                                                                                                                                                                                        Users side
                                                                                                                              1

                                                                                                                             0.8                                                      Video Games




                                                                                                                   Density
                                                                                                                                                                                      Music
                                                                                                                             0.6
                                                                                                                                                                                      Electronic Devices
                                                                                                                             0.4                                                      Books

                                                                                                                             0.2

                                                                                                                              0
                                                                                                                              −8                       −7        −6              −5            −4                      −3            −2                                             −1                     0
                                                                                                                                                                          log(Clustering Coefficient)
                                                                                                                                                                                Products side
                                                                                                                              1

                                                                                                                             0.8                                                 Video Games
                                                                                                                   Density   0.6                                                 Music
                                                                                                                                                                                 Electronic Devices
                                                                                                                             0.4                                                 Books

                                                                                                                             0.2

                                                                                                                              0
                                                                                                                              −8                       −7        −6              −5            −4                      −3            −2                                             −1                     0
                                                                                                                                                                          log(Clustering Coefficient)
                                               user side                                                                                     product side                                                                                                                           user side                                                                                                                                            product side
                 0.9                                                                                  1                                                                                                       0.5                                                                                                                                                                        0.45
                                                                   Video Games                                                                                            Video Games                                                                                                                                                                                                                                                                            Video Games
                 0.8                                               Music                                                                                                  Music                                                                                                                                                                                                           0.4                                                                    Music
                                                                                                                                                                                                                                                                                                                Video Games
                                                                   Electronic                   0.8                                                                       Electronic                          0.4                                                                                                                                                                                                                                                Electronic
                 0.7                                                                                                                                                                                                                                                                                            Music                                                                    0.35
                                                                   Books                                                                                                  Books                                                                                                                                                                                                                                                                                  Books
                                                                                                                                                                                                                                                                                                                Electronic
                 0.6                                                                                                                                                                                                                                                                                                                                                                      0.3
                                                                                                                                                                                                                                                                                                                Books




                                                                                                                                                                                                                                                                                                                                                                              Density
                                                                                                                                                                                                              0.3




                                                                                                                                                                                                    Density
                                                                                                0.6
       Density




                                                                                            Density




                 0.5                                                                                                                                                                                                                                                                                                                                                                     0.25

                 0.4                                                                                                                                                                                                                                                                                                                                                                      0.2
                                                                                                0.4                                                                                                           0.2
                 0.3                                                                                                                                                                                                                                                                                                                                                                     0.15

                 0.2                                                                                                                                                                                          0.1                                                                                                                                                                         0.1
                                                                                                0.2
                 0.1                                                                                                                                                                                                                                                                                                                                                                     0.05

                  0                                                                                   0                                                                                                            0                                                                                                                                                                          0
                       8   9               10             11       12            13                       7        8                     9             10       11          12           13                            7         8                                        9               10               11                12         13                                                        7              8                   9           10         11     12          13
                                                                                                                                                                                                                                                                                      (2)                                                                                                                                                    (2)
                                           log(degree)                                                                                         log(degree)                                                                                                                log(d /degree)                                                                                                                                             log(d /degree)
                                                                     user side                                                                                            product side                                                                                                   Books joint User x Product distribution                                                                      Music joint User x Product distribution
                                         0.5                                                                                             0.45
                                                                                           Video Games                                                                                              Video Games
                                                                                                                                                                                                                                                                    1.0




                                                                                                                                                                                                                                                                                                                                                                            1.0
                                                                                           Music                                             0.4                                                    Music
                                         0.4                                               Electronic                                                                                               Electronic
                                                                                                                                         0.35
                                                                                                                                                                                                                                                                    0.8




                                                                                                                                                                                                                                                                                                                                                                            0.8
                                                                                           Books                                                                                                    Books




                                                                                                                                                                                                                                                                                                                                              Products(Decreasing degree)
                                                                                                                                             0.3
                                                                                                                                                                                                                                      Products(decreasing degree)




                                         0.3
                               Density




                                                                                                                               Density




                                                                                                                                                                                                                                                                    0.6




                                                                                                                                                                                                                                                                                                                                                                            0.6
                                                                                                                                         0.25

                                                                                                                                             0.2
                                                                                                                                                                                                                                                                    0.4




                                                                                                                                                                                                                                                                                                                                                                            0.4
                                         0.2
                                                                                                                                         0.15
                                                                                                                                                                                                                                                                    0.2




                                                                                                                                                                                                                                                                                                                                                                            0.2
                                         0.1                                                                                                 0.1

                                                                                                                                         0.05
                                                                                                                                                                                                                                                                    0.0




                                                                                                                                                                                                                                                                                                                                                                            0.0
                                          0                                                                                                   0
                                               7      8        9         10           11      12              13                                   7        8         9          10           11              12            13                                                0.0         0.2        0.4          0.6             0.8   1.0                                             0.0            0.2        0.4          0.6         0.8        1.0

                                                                         (3)   (2)                                                                                               (3)    (2)
                                                                   log(d /d )                                                                                             log(d /d )                                                                                                             Users (decreasing degree)                                                                                    Users (decreasing degree)
Prediction in Dynamic Graph Sequences
  Problem Formulation




                        Problem Formulation
Prediction in Dynamic Graph Sequences
  Problem Formulation




Dynamic Graphs




              Nodes linked by Edges that appear over time
              Web applications, Economics, Biology, Drug discovery
                      (Social networks users, Friendship)
                      (Users and products, Purchases or clicks)
                      (Websites, Hyperlinks)
                      (Proteins, Interaction)
Prediction in Dynamic Graph Sequences
  Problem Formulation




Prediction at Descriptor (macro) and Edge (micro) Levels




              Network Effect: cause and symptom of the evolution of node
              features e.g. popularity, homophily, centrality, diffusion level
              Simultaneousely predict node features and future links
Prediction in Dynamic Graph Sequences
  Problem Formulation




Complex Networks?




              Degrees of freedom ∼ n2 , n: # nodes
              Latent factors r          n , r : # latent factors
              Intrinsic dimensionality reduced to ∼ rn             n2
              Kepler’s Laws of networks
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Random Graph Models



Random Graph Models
              Erdos-Renyi[Bollobas01]: nodes connected with uniform
              probability. No prediction chance
              Preferential Attachment[Albert02]: reproduces power-law
              degree distributions. Rich-get-Richer
              Block-Models[Nowicki01]: k blocks or clusters form the
              structure of the graph. Community Structure
              Latent Factor Model[Hoff02, Krivitsky10] node latent factors
              zi , zj , pair-wise covariate descriptors xi,j

                                P(Y |X , Z , θ) =         P(Yi,j |Xi,j , Zi , Zj , θ)
                                                    i=j

                   log odd(yi,j = 1|xi,j , zi , zj , α, β) ∝ α − βxi,j + zi − zj        2

              Parameter Estimation
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Random Graph Models



Exponential Random Graph Families[Wasserman96]



              Graph z: realization of a random variable Z
              Pθ (Z = z) = e θ          ω(z)−Ψ(θ)

              θ ∈ RQ vector of parameters,
              ω sufficient statistics on the graph z : ω(z) ∈ RQ
              Ψ a normalization factor
              Parameter Estimation by Maximizing Log-likelihood
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Link Prediction Heuristics



Nearest Neighbors and Walks

      Hypothesis: a graph G is partially observed, we aim to find the
      hidden edges[Kleinberg07]
          Friends of my friends are likely to be my friends.
                       A ∈ {0, 1}n×n the social adjacency matrix
                                   n
                       (A2 )i,j = k=1 Ai,k Ak,j = #paths of length 2 from i to j

                                        = #common friends of i and j

              Random Walks
                       Take W = D −1 A where D is the diagonal matrix of degrees
                               ∞
                       Katz = k=1 β k W k = (In − βW )−1 − In
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Link Prediction Heuristics



Bipartite Graphs of Marketplaces
                                                      p1
                                        u1
                                                      p2
                                        u2
                                                      p3
                                        u3
                                                      p4
                                        u4
                                                      p5




              Who bought this also bought that.
                       M ∈ {0, 1}#users×#products : transactions
                       (MM M)i,j : number of times product j was purchased by
                       users having purchased the same products as a given user i
                                                                        0    M
              Random Walks Apply the unipartite formula to
                                                                       M     0
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Link Prediction Heuristics



Low-Rank
      A = Udiag(σi )V SVD
      Define X ∗ = i σi (X )
      and Dτ (A) = Udiag max(σi − τ, 0)V : the Shrinkage operator
          Rank r matrix closest to A is Udiag(σ1 , · · · , σr , 0, · · · 0)V
                         1
          Fact : argminX 2 X − A 2 + τ X ∗ = Dτ (A)
                                   F
                                                                              block−wise adjacency
                                                                 0



                                                                10



                                                                20



                                                                30



                                                                40



                                                                50



                                                                60
                                                                     0   10   20      30       40    50   60
                                                                                   nz = 1400




              Matrix Completion[Srebro05, Candes08, Koltchinskii11]
              estimates A by minimizing
                                1
                                  ω(A) − ω(X ) 2 + τ X
                                                2          ∗
                                2
              for a linear mapping ω : R n×n → RQ
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Link Prediction Heuristics



Link Prediction: Statistical and Spectral Properties
           Statistics on number of triangles and length of paths in the
           graph are stable
           Spectral functions[Kunegis09] of the adjacency and stochastic
           matrices killing low eigenvalues
      If A = Udiag(σi )V is the SVD, Udiag(f (σi )i )V is called
      spectral function.
                                                                                Spectral Functions
                                                1


                                               0.9

                                                                      2
                                               0.8                   σ
                                                                     ∝ (1−β σ)−1−1
                                               0.7                   max(σ − τ, 0)

                                               0.6
                                        f(σ)




                                               0.5


                                               0.4


                                               0.3


                                               0.2


                                               0.1


                                                0
                                                     0   0.1   0.2        0.3    0.4   0.5    0.6    0.7   0.8   0.9   1
                                                                                        σ
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Link Prediction Heuristics



Leading Insight



      Link Prediction heuristics implicitly suggest
         1. Graph sequence fits to some slowly varying feature map
         2. Spectrum of graphs is regular

      Define a regularization formulation of the problem in order to
      leverage the trade-offs and select the best features.
      Obstacle to matrix completion: ω(A) is to be predicted.
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Framework



Notations



              Time steps t ∈ {1, 2, ..., T }
              Adjacency matrices At ∈ {0, 1}n×n graph sequence
              Feature map ω : Rn×n → RQ linear
                      ω linear (degree, clusters)
                      Q     n2
              Prediction of AT +1 : score matrix S ∈ Rn×n
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Framework



Assumptions


         1. Stationarity of successive feature vectors

                           ∃f : RQ → RQ , ∀t, ω(At+1 ) = f (ω(At )) +   t



         2. Simplicity of S
                      S low rank[Srebro05],
                      Penalize the trace norm S   ∗
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Framework



Quantities to control

         1. Features predictor
                                          T −1
                              J1 (f ) =          (ω(At+1 ), f (ω(At )) + κ f   H
                                          t=1

         2. Predicted features matching the predicted graph features
            (coupling term)

                                        J2 (f , S) = (ω(S), f (ω(AT ))
         3. Penalty on S

                                                 J3 (S) = τ S   ∗
Prediction in Dynamic Graph Sequences
  Problem Formulation
     Framework



Convex Optimization Problem

      Let
                                              
                         ω(A1 )           ω(A2 )
                            .
                            .                .
                                             .       (T −1)×Q
                   X =           ,Y =         ∈R
                                              
                            .                .
                        ω(AT −1 )         ω(AT )

      We take linear predictors, f (ω) = ω W and define the convex
      objective
                                   .
                               L = J1 + J2 + J3


            1                    2       κ     2       1                   2
        =     XW − Y             F   +     W   F   +     ω(AT ) W − ω(S)   2   +τ S   ∗
            2                            2             2
Prediction in Dynamic Graph Sequences
  Algorithms




                                        Algorithms
Prediction in Dynamic Graph Sequences
  Algorithms




Optimization Strategies



      Goal : minimize L(S, W )
         1. Two-stage optimization
         2. Joint optimization in W and S
         3. Variant 1: graph regularization
         4. Variant 2: sparsity constraint
Prediction in Dynamic Graph Sequences
  Algorithms
     Two-stage optimization



Two-stage Optimization [Richard10]
                       .
               Solve W = argminW ∈RQ×Q J1 (W ) (regression)
               Minimize J2 (W , S) + J3 (S)
               Optimal algorithms due to Nesterov
                                            √
                -optimal solution after O(1/ ) iterations instead of
               O(1/ 2 ) [Goldfarb09]

        (r ,noise)alg.       Proposed        Static          P. A.           Katz
        (5,0.000)             0.671±0.008     0.648 ± 0.008   0.627 ± 0.015   0.616 ± 0.015
        (5,0.250)             0.675 ± 0.009   0.642 ± 0.007   0.602 ± 0.016   0.592 ± 0.016
        (5,0.750)             0.519 ± 0.007   0.525 ± 0.005   0.497 ± 0.007   0.491 ± 0.007
        (500,0.000)           0.592 ± 0.008   0.587 ± 0.007   0.671 ± 0.010   0.667 ± 0.009
        (500,0.250)           0.607 ± 0.011   0.588 ± 0.009   0.649 ± 0.009   0.643 ± 0.009
        (500,0.750)           0.601 ± 0.010   0.583 ± 0.007   0.645 ± 0.017   0.641 ± 0.017
Prediction in Dynamic Graph Sequences
  Algorithms
     Two-stage optimization



Split and Alternately Minimize
                                    .
               Splitting: Lη (S, S) = τ S ∗ + h(S, ν), subject to S = S
               Alternately minimize in S and S :
                                                                           1
                      mG (S) = argminS τ S     ∗   +   h(S), S − S +      2µ    S −S   2
                                                                                       F
                                                                                1
                      mH (S) = argminS h(S, ν) +       τ S   ∗, S   −S +       2µ   S −S   2
                                                                                           F


      Algorithm 1 Link Discovery Algorithm
           Parameters: τ, ν, η
           Initialization: W0 = Z1 = AT , α1 = 0
          for k = 1, 2, . . . do
             Sk ← mG (Zk ) and Sk ← mH (Sk )
                    1
             Wk ← (Sk + Sk )
                    2
                      1                2
             αk+1 ← (1 + 1 + 4αk )
                      2
                                 1
             Zk+1 ← Wk +            αk (Sk − Wk−1 ) − (Wk − Wk−1 )
                               αk+1
          end for
Prediction in Dynamic Graph Sequences
  Algorithms
     Joint Optimization in W and S



Minimization of L by proximal gradient descent
      L(S, W ) = g (S, W ) + Γ(S, W )
                    .
          g (S, W ) = 1 XW − Y 2 + 1 ω(AT ) W − ω(S)
                       2           F   2
                                                                      2
                                                                      2   :
          smoothly differentiable fit-term
                    .
          Γ(S, W ) = κ W 2 + τ S ∗ : convex penalty
                      2      F
               Explicit proximal

                              .                          1         2 1           2
               proxθΓ (S, W ) = argmin(Z ,V ) θΓ(Z , V )+ S−Z      F+     W −V   F
                                                         2            2
                                        = (Dθτ (S), W /(1 + θκ))

               (Sk+1 , Wk+1 ) = proxθk Γ (Sk , Wk ) − θk gradg (Sk , Wk )

               FISTA[Beck09] for optimal convergence rate
Prediction in Dynamic Graph Sequences
  Algorithms
     Variants



Variant 1: Graph Regularization Constraint

                Want i ∼S j ⇒ f (i) ∼H f (j)
                Control the laplacian-like[Chen10] inner product
                J4 (f , S) =        i,j   Si,j f (i) − f (j)      2
                                                                  H   = S,   f (i) − f (j)   2
                                                                                             H
                                                                                                 i,j
                                          i∼j      f (i) ∼f (j)
                Other possibility: J4 (f , S) = S, Gram(f )
                Lgraph   regularization     = L + λJ4
                Issue: non-convex regularizers
                Algorithms:
                  1. Gradient descent with hyper-parameters that keep the
                     objective inside the convexity domain
                  2. Projected gradient descent inside the convexity domain
Prediction in Dynamic Graph Sequences
  Algorithms
     Variants



Gradient Descent Convergence Area
Prediction in Dynamic Graph Sequences
  Algorithms
     Variants



Empirical Results

                 Data                      Marketing                          Synthetic

                 Method  Error         ∆Sales      ∆Graph           ∆Sales           ∆Graph

                 Our solution            0.62        0.28       0.13 ± .002         0.21± .003
                 Rank-free prediction    0.64        0.31       0.19 ± .008         0.24 ± .01
                 AR                      0.80          -        0.66 ± .007              -
                 ARIMA                   0.78          -        0.17 ± .02               -
                 VAR                     1.02          -        0.42 ± .09               -
                 MC with shrinkage         -         0.38            -              0.22 ± .003


                                                     ω(AT +1 )−f (ω(AT )) 2
                Sales Prediction metric: ∆Sales =         ω(AT +1 ) 2
                                                                               to be minimized
                                                        AT +1 −S F
                Graph Completion metric: ∆Graph =        AT +1 F
                                                                      to be minimized
Prediction in Dynamic Graph Sequences
  Algorithms
     Variants



Convexity Domain

                                                                                                                                                           2                       2
                                                  J4                                                                                              κ |f| + ν|S−AT|                                                                                               λ J4 + κ |f|2 + ν|S−AT|2


                                                                                                                                                                                                                                                 30




                                                                                                                                                                                                                                 sw2 + s2 + w2
              16
                                                                                                                             14
              14                                                                                                                                                                                                                                 25
                                                                                                                             12




                                                                                                                   s2 + w2
              12

              10                                                                                                             10                                                                                                                  20
        2
         sw




               8                                                                                                              8
                                                                                                                                                                                                                                                 15
               6                                                                                                              6
               4                                                                                                                                                                                                                                 10
                                                                                                                              4
                                                                                                                                                                                                                         2
               2                                                                                       2
                                                                                                                              2                                                                                    1.5
                                                                                                                                                                                                                                                  5
               0                                                                                 1.5
                                                                                                                                                                                                               1                                                                                                2
               4                                                                             1                                0
                   3.5                                                                                                                                                                                   0.5
                                                                                       0.5                                    4                                                                                                                   0                                                         1
                         3                                                                                                        3.5                                                                0                                            4
                             2.5                                                   0                                                    3                                                                                                             3.5
                                                                                                                                            2.5                                               −0.5                                                          3                                           0
                                   2                                        −0.5
                                                                                                                                                   2                                                                                                            2.5
                                       1.5                             −1                                                                                                                −1                                                                           2
                                             1                                                                                                         1.5                                                                                                                1.5                      −1
                                                                −1.5                                                                                           1                  −1.5                                                                                          1
                                                 0.5




                                                                                                               +                                                                                                             =
                                                                                                                                                                   0.5                                                                                                              0.5
                                                           −2                                                                                                                −2                                                                                                               −2

                                       s
                                                       0
                                                                                   w                                                                   s
                                                                                                                                                                         0
                                                                                                                                                                                                     w                                                                    s
                                                                                                                                                                                                                                                                                          0

                                                                                                                                                                                                                                                                                                        w




                         J4 not jointly-convex in (S, f )
                         λJ4 + κ W                                                                         2   + ν S − AT                                          2         convex inside
                                                                                                           F                                                       F
                                                                                                                                                                                                                                                                  √
                                                                                                                n×n                                                                                                                                                        νκ
                                                            E=                                             S ∈ R+ , W ∈ Rn×d                                                                                                 W   2
                                                                                                                                                                                                                                 F                    ≤
                                                                                                                                                                                                                                                                          2λ
Prediction in Dynamic Graph Sequences
  Algorithms
     Variants



Empirical Results

                                                          Performance (ν)
                                    1.4
                                                    HYBRID (Regression)
                                    1.2             HYBRID (Graph Completion)
                                                    Rank Free Regression
                                     1              Rank Free Graph Completion
                                                    Regression Only
                  relative errors




                                                    Graph Only
                                    0.8


                                    0.6


                                    0.4


                                    0.2


                                     0
                                     −8   −6   −4    −2       0            2     4   6   8   10
                                                                  log(ν)
Prediction in Dynamic Graph Sequences
  Algorithms
     Variants



Variant 2: Sparsity Constraint

                                .
                Lsparse (S, W ) = L(S, W ) + γ S            1,1   (lasso)
                Split S onto S and S and add an equality constraint
                Synthetic data n = 100, Q = 15, T = 200
                10 runs for cross validation 10 runs for test
                AUC on S reported


        Nearest Neighbors               Static Low Rank   Lsparse           L
        0.9767 ± 0.0076                 0.9751 ± 0.0362   0.9812 ± 0.0008   0.9778 ± 0.0071
Prediction in Dynamic Graph Sequences
  Discussion




                                        Discussion
Prediction in Dynamic Graph Sequences
  Discussion




Synthetic Data Generation
      Let ∀k ∈ {1, · · · , r }
                                                         −(t−µi,k )2
                                  (i,k)        1            2σ 2
                                 Ut        =√        e        i,k      +   i,k
                                              2πσi,k

      quantify the taste of user i for feature k at t, and
        (i,k)
      Vt the weight of feature k for item i and take
                               (i,j)
                            At          = 1{U (i) (t) > θ}1{V (j) (t) > θ}

      At is
         1. Sparse
         2. Rank at most r
         3. Its latent factors evolve slowly provided σ’s are not too small.
Prediction in Dynamic Graph Sequences
  Discussion




Scalability


               Dτ (A) is dense, even for sparse A
                                                    1                    2         2
               Fact[Srebro05] : S           ∗   =   2   minUV   =S   U   F   + V   F
               Instead of fixing τ , fix r and take U, V ∈ Rn×r
               Define
                                                              .
                                                J (U, V , W ) =
                               2                                     2 κ         2 λ        2        2
                XW −Y          F+       ω(AT ) W −ω(UV )             2+      W   F+ (   U   F+   V   F)
                                                         2       2
               Parallel Stochastic Gradient Algorithms [Recht11]
Prediction in Dynamic Graph Sequences
  Discussion




Store Recommendation Lists




               Each feature leads to a specific list of recommendation
               Store top-k lists
               Learn optimal combinations / aggregations
      ... work in progress
Prediction in Dynamic Graph Sequences
  Discussion




Conclusion



               Introduction of a regularization approach formulation for link
               prediction in graph sequences
               Several variants detailed and empirically tested
               Perspective for scalable algorithms
               Perspective for theoretical analysis and understanding of the
               problem
Prediction in Dynamic Graph Sequences
  Discussion




Thanks




      Mercis !
Prediction in Dynamic Graph Sequences
  References




               Reka Albert and Albert-Laszlo Barab`si.
                                                   a
               Statistical mechanics of complex networks.
               Reviews of Modern Physics, 74:4797, 2002.
               A. Beck and M. Teboulle.
               A fast iterative shrinkage-thresholding algorithm for linear
               inverse problems.
               SIAM Journal of Imaging Sciences, 2(1):183–202, 2009.
               B. Bollobas.
               Random graphs, vol. 73 of Cambridge Studies in Advanced
               Mathematics. 2nd ed.
               Cambridge University Press, Cambridge, 2001.
               Emmanuel J. Cand`s and Terence Tao.
                                  e
               A singular value thresholding algorithm for matrix completion.
               SIAM Journal on Optimization, 20(4):1956–1982, 2008.
Prediction in Dynamic Graph Sequences
  References




               Xi Chen, Seyoung Kim, Qihang Lin, Jaime G. Carbonell, and
               Eric P. Xing.
               Graph-structured multi-task regression and an efficient
               optimization method for general fused lasso.
               arXiv, 2010.
               Donald Goldfarb and Shiqlan Ma.
               Fast alternating linearization methods for minimizing the sum
               of two convex functions.
               Technical Report, Department of IEOR, Columbia University,
               2009.
               P. D. Hoff, A. E. Raftery, and M. S. Handcock.
               Latent space approaches to social network analysis.
               Journal of the Royal Statistical Society, 97, 2002.
               David Liben-Nowell and Jon Kleinberg.
               The link-prediction problem for social networks.
Prediction in Dynamic Graph Sequences
  References



               Journal of the American Society for Information Science and
               Technology, 58(7):1019–1031, 2007.
               Vladimir Koltchinskii, Karim Lounici, and Alexandre Tsybakov.

               Nuclear norm penalization and optimal rates for noisy matrix
               completion.
               Annals of Statistics, 2011.
               P. N. Krivitsky and M. S. Handcock.
               A Separable Model for Dynamic Networks.
               ArXiv e-prints, November 2010.
               J´rˆme Kunegis and Andreas Lommatzsch.
                eo
               Learning spectral graph transformations for link prediction.
               In Proceedings of the 26th Annual International Conference on
               Machine Learning, ICML ’09, pages 561–568, New York, NY,
               USA, 2009. ACM.
Prediction in Dynamic Graph Sequences
  References




               G. Linden, B Smith, and J. York.
               Amazon.com recommendations : Item-to-item collaborative
               filtering.
               IEEE Internet Computing, 2003.
               K. Nowicki and T. Snijders.
               Estimation and prediction for stochastic blockstructures.
               Journal of the American Statistical Association, 96:1077–
               1087, 2001.
               Benjamin Recht and Christopher Re.
               Parallel stochastic gradient algorithms for large-scale matrix
               completion.
               Submitted for publication, 2011.
               Emile Richard, Nicolas Baskiotis, Theodoros Evgeniou, and
               Nicolas Vayatis.
               Link discovery using graph feature tracking.
Prediction in Dynamic Graph Sequences
  References



               Proceedings of Neural Information Processing Systems (NIPS),
               2010.
               Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakkola.
               Maximum-margin matrix factorization.
               In Lawrence K. Saul, Yair Weiss, and L´on Bottou, editors, in
                                                     e
               Proceedings of Neural Information Processing Systems 17,
               pages 1329–1336. MIT Press, Cambridge, MA, 2005.
               Stanley Wasserman and Philippa Pattison.
               Logit models and logistic regressions for social networks: I. an
               introduction to markov graphs and p ∗ .
               Psychometrika, 61(3):401–425, September 1996.
               K. Zhang, Th. Evgeniou, V. Padmanabhan, and E. Richard.
               Content contributor management and network effects in a ugc
               environment.
               Marketing Science, 2011.

More Related Content

Viewers also liked

Paris2012 session2
Paris2012 session2Paris2012 session2
Paris2012 session2Cdiscount
 
Scm indicateurs prospectifs_2012_11_06
Scm indicateurs prospectifs_2012_11_06Scm indicateurs prospectifs_2012_11_06
Scm indicateurs prospectifs_2012_11_06Cdiscount
 
Scm prix blé_2012_11_06
Scm prix blé_2012_11_06Scm prix blé_2012_11_06
Scm prix blé_2012_11_06Cdiscount
 
Robust sequentiel learning
Robust sequentiel learningRobust sequentiel learning
Robust sequentiel learningCdiscount
 
Paris2012 session3b
Paris2012 session3bParis2012 session3b
Paris2012 session3bCdiscount
 
Prediction of Quantiles by Statistical Learning and Application to GDP Foreca...
Prediction of Quantiles by Statistical Learning and Application to GDP Foreca...Prediction of Quantiles by Statistical Learning and Application to GDP Foreca...
Prediction of Quantiles by Statistical Learning and Application to GDP Foreca...Cdiscount
 
Paris2012 session1
Paris2012 session1Paris2012 session1
Paris2012 session1Cdiscount
 
Paris2012 session4
Paris2012 session4Paris2012 session4
Paris2012 session4Cdiscount
 
State Space Model
State Space ModelState Space Model
State Space ModelCdiscount
 
Prévisions trafic aérien
Prévisions trafic aérienPrévisions trafic aérien
Prévisions trafic aérienCdiscount
 
Présentation G.Biau Random Forests
Présentation G.Biau Random ForestsPrésentation G.Biau Random Forests
Présentation G.Biau Random ForestsCdiscount
 

Viewers also liked (12)

Paris2012 session2
Paris2012 session2Paris2012 session2
Paris2012 session2
 
Scm indicateurs prospectifs_2012_11_06
Scm indicateurs prospectifs_2012_11_06Scm indicateurs prospectifs_2012_11_06
Scm indicateurs prospectifs_2012_11_06
 
Scm prix blé_2012_11_06
Scm prix blé_2012_11_06Scm prix blé_2012_11_06
Scm prix blé_2012_11_06
 
Robust sequentiel learning
Robust sequentiel learningRobust sequentiel learning
Robust sequentiel learning
 
Paris2012 session3b
Paris2012 session3bParis2012 session3b
Paris2012 session3b
 
Prediction of Quantiles by Statistical Learning and Application to GDP Foreca...
Prediction of Quantiles by Statistical Learning and Application to GDP Foreca...Prediction of Quantiles by Statistical Learning and Application to GDP Foreca...
Prediction of Quantiles by Statistical Learning and Application to GDP Foreca...
 
Scm risques
Scm risquesScm risques
Scm risques
 
Paris2012 session1
Paris2012 session1Paris2012 session1
Paris2012 session1
 
Paris2012 session4
Paris2012 session4Paris2012 session4
Paris2012 session4
 
State Space Model
State Space ModelState Space Model
State Space Model
 
Prévisions trafic aérien
Prévisions trafic aérienPrévisions trafic aérien
Prévisions trafic aérien
 
Présentation G.Biau Random Forests
Présentation G.Biau Random ForestsPrésentation G.Biau Random Forests
Présentation G.Biau Random Forests
 

Similar to Prediction in dynamic Graphs

Kalman Graffi - Monitoring and Management of P2P Systems - 2010
Kalman Graffi - Monitoring and Management of P2P Systems - 2010Kalman Graffi - Monitoring and Management of P2P Systems - 2010
Kalman Graffi - Monitoring and Management of P2P Systems - 2010Kalman Graffi
 
(ATS3-PLAT01) Recent developments in Pipeline Pilot
(ATS3-PLAT01) Recent developments in Pipeline Pilot(ATS3-PLAT01) Recent developments in Pipeline Pilot
(ATS3-PLAT01) Recent developments in Pipeline PilotBIOVIA
 
Monitoring An Enterprise Uc Environment
Monitoring An Enterprise Uc EnvironmentMonitoring An Enterprise Uc Environment
Monitoring An Enterprise Uc EnvironmentLanair
 
DataLive conference in Geneva 2018 - Bringing AI to the Data
DataLive conference in Geneva 2018 - Bringing AI to the DataDataLive conference in Geneva 2018 - Bringing AI to the Data
DataLive conference in Geneva 2018 - Bringing AI to the DataSasha Lazarevic
 
Cogntive computing ibm workshop Assirm15
Cogntive computing ibm workshop Assirm15Cogntive computing ibm workshop Assirm15
Cogntive computing ibm workshop Assirm15Pietro Leo
 
Dematic Logistics Review #5
Dematic Logistics Review #5Dematic Logistics Review #5
Dematic Logistics Review #5scottcottingham
 
Dematic Logistics Review #5
Dematic Logistics Review #5Dematic Logistics Review #5
Dematic Logistics Review #5hagenbucksw
 
Bending The Curve
Bending The CurveBending The Curve
Bending The Curvefinteligent
 
Real-time analytics with HBase (long version)
Real-time analytics with HBase (long version)Real-time analytics with HBase (long version)
Real-time analytics with HBase (long version)alexbaranau
 
HBaseCon 2012 | Real-time Analytics with HBase - Sematext
HBaseCon 2012 | Real-time Analytics with HBase - SematextHBaseCon 2012 | Real-time Analytics with HBase - Sematext
HBaseCon 2012 | Real-time Analytics with HBase - SematextCloudera, Inc.
 
Building a Predictive Model
Building a Predictive ModelBuilding a Predictive Model
Building a Predictive ModelDKALab
 
Building a Recommendation Engine - An example of a product recommendation engine
Building a Recommendation Engine - An example of a product recommendation engineBuilding a Recommendation Engine - An example of a product recommendation engine
Building a Recommendation Engine - An example of a product recommendation engineNYC Predictive Analytics
 
Rio Info 2009 - Optimizing IT Costs using Virtualization, Green and Cloud Com...
Rio Info 2009 - Optimizing IT Costs using Virtualization, Green and Cloud Com...Rio Info 2009 - Optimizing IT Costs using Virtualization, Green and Cloud Com...
Rio Info 2009 - Optimizing IT Costs using Virtualization, Green and Cloud Com...Rio Info
 
02 sas baf short fsl comm labs itb
02 sas baf short   fsl comm labs itb02 sas baf short   fsl comm labs itb
02 sas baf short fsl comm labs itbFSL ComLabs USDI ITB
 
Rietta Business Intelligence for the MicroISV
Rietta Business Intelligence for the MicroISVRietta Business Intelligence for the MicroISV
Rietta Business Intelligence for the MicroISVFrank Rietta
 
Enabling Fast Data Strategy: What’s new in Denodo Platform 6.0
Enabling Fast Data Strategy: What’s new in Denodo Platform 6.0Enabling Fast Data Strategy: What’s new in Denodo Platform 6.0
Enabling Fast Data Strategy: What’s new in Denodo Platform 6.0Denodo
 
Minitab webinar presentation See the unknown with monte carlo simulation
Minitab webinar presentation See the unknown with monte carlo simulationMinitab webinar presentation See the unknown with monte carlo simulation
Minitab webinar presentation See the unknown with monte carlo simulationMinitab, LLC
 
The Data Lake: Empowering Your Data Science Team
The Data Lake: Empowering Your Data Science TeamThe Data Lake: Empowering Your Data Science Team
The Data Lake: Empowering Your Data Science TeamSenturus
 

Similar to Prediction in dynamic Graphs (20)

Kalman Graffi - Monitoring and Management of P2P Systems - 2010
Kalman Graffi - Monitoring and Management of P2P Systems - 2010Kalman Graffi - Monitoring and Management of P2P Systems - 2010
Kalman Graffi - Monitoring and Management of P2P Systems - 2010
 
(ATS3-PLAT01) Recent developments in Pipeline Pilot
(ATS3-PLAT01) Recent developments in Pipeline Pilot(ATS3-PLAT01) Recent developments in Pipeline Pilot
(ATS3-PLAT01) Recent developments in Pipeline Pilot
 
Monitoring An Enterprise Uc Environment
Monitoring An Enterprise Uc EnvironmentMonitoring An Enterprise Uc Environment
Monitoring An Enterprise Uc Environment
 
DataLive conference in Geneva 2018 - Bringing AI to the Data
DataLive conference in Geneva 2018 - Bringing AI to the DataDataLive conference in Geneva 2018 - Bringing AI to the Data
DataLive conference in Geneva 2018 - Bringing AI to the Data
 
Lte asia 2011 s niri
Lte asia 2011 s niriLte asia 2011 s niri
Lte asia 2011 s niri
 
Cogntive computing ibm workshop Assirm15
Cogntive computing ibm workshop Assirm15Cogntive computing ibm workshop Assirm15
Cogntive computing ibm workshop Assirm15
 
Dematic Logistics Review #5
Dematic Logistics Review #5Dematic Logistics Review #5
Dematic Logistics Review #5
 
Dematic Logistics Review #5
Dematic Logistics Review #5Dematic Logistics Review #5
Dematic Logistics Review #5
 
Bending The Curve
Bending The CurveBending The Curve
Bending The Curve
 
Real-time analytics with HBase (long version)
Real-time analytics with HBase (long version)Real-time analytics with HBase (long version)
Real-time analytics with HBase (long version)
 
HBaseCon 2012 | Real-time Analytics with HBase - Sematext
HBaseCon 2012 | Real-time Analytics with HBase - SematextHBaseCon 2012 | Real-time Analytics with HBase - Sematext
HBaseCon 2012 | Real-time Analytics with HBase - Sematext
 
Building a Predictive Model
Building a Predictive ModelBuilding a Predictive Model
Building a Predictive Model
 
Building a Recommendation Engine - An example of a product recommendation engine
Building a Recommendation Engine - An example of a product recommendation engineBuilding a Recommendation Engine - An example of a product recommendation engine
Building a Recommendation Engine - An example of a product recommendation engine
 
Rio Info 2009 - Optimizing IT Costs using Virtualization, Green and Cloud Com...
Rio Info 2009 - Optimizing IT Costs using Virtualization, Green and Cloud Com...Rio Info 2009 - Optimizing IT Costs using Virtualization, Green and Cloud Com...
Rio Info 2009 - Optimizing IT Costs using Virtualization, Green and Cloud Com...
 
02 sas baf short fsl comm labs itb
02 sas baf short   fsl comm labs itb02 sas baf short   fsl comm labs itb
02 sas baf short fsl comm labs itb
 
Rietta Business Intelligence for the MicroISV
Rietta Business Intelligence for the MicroISVRietta Business Intelligence for the MicroISV
Rietta Business Intelligence for the MicroISV
 
Enabling Fast Data Strategy: What’s new in Denodo Platform 6.0
Enabling Fast Data Strategy: What’s new in Denodo Platform 6.0Enabling Fast Data Strategy: What’s new in Denodo Platform 6.0
Enabling Fast Data Strategy: What’s new in Denodo Platform 6.0
 
Minitab webinar presentation See the unknown with monte carlo simulation
Minitab webinar presentation See the unknown with monte carlo simulationMinitab webinar presentation See the unknown with monte carlo simulation
Minitab webinar presentation See the unknown with monte carlo simulation
 
The Data Lake: Empowering Your Data Science Team
The Data Lake: Empowering Your Data Science TeamThe Data Lake: Empowering Your Data Science Team
The Data Lake: Empowering Your Data Science Team
 
Actian Partner Brochure
Actian Partner BrochureActian Partner Brochure
Actian Partner Brochure
 

More from Cdiscount

Presentation r markdown
Presentation r markdown Presentation r markdown
Presentation r markdown Cdiscount
 
R2DOCX : R + WORD
R2DOCX : R + WORDR2DOCX : R + WORD
R2DOCX : R + WORDCdiscount
 
Fltau r interface
Fltau r interfaceFltau r interface
Fltau r interfaceCdiscount
 
Dataiku r users group v2
Dataiku   r users group v2Dataiku   r users group v2
Dataiku r users group v2Cdiscount
 
Introduction à la cartographie avec R
Introduction à la cartographie avec RIntroduction à la cartographie avec R
Introduction à la cartographie avec RCdiscount
 
Parallel R in snow (english after 2nd slide)
Parallel R in snow (english after 2nd slide)Parallel R in snow (english after 2nd slide)
Parallel R in snow (english after 2nd slide)Cdiscount
 
Premier pas de web scrapping avec R
Premier pas de  web scrapping avec RPremier pas de  web scrapping avec R
Premier pas de web scrapping avec RCdiscount
 
Incorporer du C dans R, créer son package
Incorporer du C dans R, créer son packageIncorporer du C dans R, créer son package
Incorporer du C dans R, créer son packageCdiscount
 
Comptabilité Nationale avec R
Comptabilité Nationale avec RComptabilité Nationale avec R
Comptabilité Nationale avec RCdiscount
 
Cartographie avec igraph sous R (Partie 2)
Cartographie avec igraph sous R (Partie 2)Cartographie avec igraph sous R (Partie 2)
Cartographie avec igraph sous R (Partie 2)Cdiscount
 
Cartographie avec igraph sous R (Partie 1)
Cartographie avec igraph sous R (Partie 1) Cartographie avec igraph sous R (Partie 1)
Cartographie avec igraph sous R (Partie 1) Cdiscount
 
RStudio is good for you
RStudio is good for youRStudio is good for you
RStudio is good for youCdiscount
 
R fait du la tex
R fait du la texR fait du la tex
R fait du la texCdiscount
 
Première approche de cartographie sous R
Première approche de cartographie sous RPremière approche de cartographie sous R
Première approche de cartographie sous RCdiscount
 

More from Cdiscount (17)

R Devtools
R DevtoolsR Devtools
R Devtools
 
Presentation r markdown
Presentation r markdown Presentation r markdown
Presentation r markdown
 
R2DOCX : R + WORD
R2DOCX : R + WORDR2DOCX : R + WORD
R2DOCX : R + WORD
 
Gur1009
Gur1009Gur1009
Gur1009
 
Fltau r interface
Fltau r interfaceFltau r interface
Fltau r interface
 
Dataiku r users group v2
Dataiku   r users group v2Dataiku   r users group v2
Dataiku r users group v2
 
Introduction à la cartographie avec R
Introduction à la cartographie avec RIntroduction à la cartographie avec R
Introduction à la cartographie avec R
 
HADOOP + R
HADOOP + RHADOOP + R
HADOOP + R
 
Parallel R in snow (english after 2nd slide)
Parallel R in snow (english after 2nd slide)Parallel R in snow (english after 2nd slide)
Parallel R in snow (english after 2nd slide)
 
Premier pas de web scrapping avec R
Premier pas de  web scrapping avec RPremier pas de  web scrapping avec R
Premier pas de web scrapping avec R
 
Incorporer du C dans R, créer son package
Incorporer du C dans R, créer son packageIncorporer du C dans R, créer son package
Incorporer du C dans R, créer son package
 
Comptabilité Nationale avec R
Comptabilité Nationale avec RComptabilité Nationale avec R
Comptabilité Nationale avec R
 
Cartographie avec igraph sous R (Partie 2)
Cartographie avec igraph sous R (Partie 2)Cartographie avec igraph sous R (Partie 2)
Cartographie avec igraph sous R (Partie 2)
 
Cartographie avec igraph sous R (Partie 1)
Cartographie avec igraph sous R (Partie 1) Cartographie avec igraph sous R (Partie 1)
Cartographie avec igraph sous R (Partie 1)
 
RStudio is good for you
RStudio is good for youRStudio is good for you
RStudio is good for you
 
R fait du la tex
R fait du la texR fait du la tex
R fait du la tex
 
Première approche de cartographie sous R
Première approche de cartographie sous RPremière approche de cartographie sous R
Première approche de cartographie sous R
 

Recently uploaded

Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 

Recently uploaded (20)

Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 

Prediction in dynamic Graphs

  • 1. Prediction in Dynamic Graph Sequences Prediction in Dynamic Graph Sequences Emile Richard CMLA-ENS Cachan & 1000mercis Supervisors : Th. Evgeniou (INSEAD) and N. Vayatis (CMLA-ENS Cachan) January 20, 2012
  • 2. Prediction in Dynamic Graph Sequences Table of contents Context Motivation Data Description Problem Formulation Random Graph Models Link Prediction Heuristics Framework Algorithms Two-stage optimization Joint Optimization in W and S Variants Discussion References
  • 3. Prediction in Dynamic Graph Sequences Context
  • 4. Prediction in Dynamic Graph Sequences Context Motivation From Big Data to Business Decisions 1000mercis: interactive marketing and advertisement (emailing, mobile, viral games) 1. Send less ads: email is free → overwhelm consumers 2. Make consumers happy: serendipity 3. Act sustainably: avoid long-term fatigue 4. Earn more: up to 5 times!
  • 5. Prediction in Dynamic Graph Sequences Context Motivation Prediction in Relational Databases? Recommender systems Links: to select recommendations, offline fine-tuning Sales volumes: prepare or push trends Resource allocation Consumers and contributors in UGC[Zhang11], Stock management Understanding of data through relevant features extraction Returning 12 Sellers 11.5 Products Buyers 11 Commission Log 10.5 10 9.5 9 0 50 100 150 200 250 300 Time (week) Sellers Products New 12 Buyers Commission 10 8 Log 6 4 2 0 50 100 150 200 250 300 Time (week)
  • 6. Prediction in Dynamic Graph Sequences Context Motivation Similar Problems The Netflix prize: 1M$ for a 10% improvement in accuracy Amazon: 35% sales generated by recommendation[Linden03] CRM optimization: acquisition, cross-selling, churn management, prediction of top-selling items etc.
  • 7. Prediction in Dynamic Graph Sequences Context Motivation Other Web Applications
  • 8. Prediction in Dynamic Graph Sequences Context Motivation Similar Problems in Computational Biology1 Understanding the underlying mechanisms of biological systems Inference procedures for analysis of effects of biological pathways in cancer progression Study the effect of potential drugs/treatments on gene regulatory networks in cancer cells 1 After a discussion with Ali Shohaie
  • 9. Prediction in Dynamic Graph Sequences Context Data Description Case Study Data: C-to-C website Recommendation newsletters and banners Management of promotional assets and pressure on users Domain users products daily sales Music 0.4M 60K 2K Books 1.2M 1.7M 18K Electronic 0.5M 60K 2K Video Games 0.9M 0.2M 9K
  • 10. Prediction in Dynamic Graph Sequences Context Data Description Heterogeneous Domains Users side 1 0.8 Video Games Density Music 0.6 Electronic Devices 0.4 Books 0.2 0 −8 −7 −6 −5 −4 −3 −2 −1 0 log(Clustering Coefficient) Products side 1 0.8 Video Games Density 0.6 Music Electronic Devices 0.4 Books 0.2 0 −8 −7 −6 −5 −4 −3 −2 −1 0 log(Clustering Coefficient) user side product side user side product side 0.9 1 0.5 0.45 Video Games Video Games Video Games 0.8 Music Music 0.4 Music Video Games Electronic 0.8 Electronic 0.4 Electronic 0.7 Music 0.35 Books Books Books Electronic 0.6 0.3 Books Density 0.3 Density 0.6 Density Density 0.5 0.25 0.4 0.2 0.4 0.2 0.3 0.15 0.2 0.1 0.1 0.2 0.1 0.05 0 0 0 0 8 9 10 11 12 13 7 8 9 10 11 12 13 7 8 9 10 11 12 13 7 8 9 10 11 12 13 (2) (2) log(degree) log(degree) log(d /degree) log(d /degree) user side product side Books joint User x Product distribution Music joint User x Product distribution 0.5 0.45 Video Games Video Games 1.0 1.0 Music 0.4 Music 0.4 Electronic Electronic 0.35 0.8 0.8 Books Books Products(Decreasing degree) 0.3 Products(decreasing degree) 0.3 Density Density 0.6 0.6 0.25 0.2 0.4 0.4 0.2 0.15 0.2 0.2 0.1 0.1 0.05 0.0 0.0 0 0 7 8 9 10 11 12 13 7 8 9 10 11 12 13 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 (3) (2) (3) (2) log(d /d ) log(d /d ) Users (decreasing degree) Users (decreasing degree)
  • 11. Prediction in Dynamic Graph Sequences Problem Formulation Problem Formulation
  • 12. Prediction in Dynamic Graph Sequences Problem Formulation Dynamic Graphs Nodes linked by Edges that appear over time Web applications, Economics, Biology, Drug discovery (Social networks users, Friendship) (Users and products, Purchases or clicks) (Websites, Hyperlinks) (Proteins, Interaction)
  • 13. Prediction in Dynamic Graph Sequences Problem Formulation Prediction at Descriptor (macro) and Edge (micro) Levels Network Effect: cause and symptom of the evolution of node features e.g. popularity, homophily, centrality, diffusion level Simultaneousely predict node features and future links
  • 14. Prediction in Dynamic Graph Sequences Problem Formulation Complex Networks? Degrees of freedom ∼ n2 , n: # nodes Latent factors r n , r : # latent factors Intrinsic dimensionality reduced to ∼ rn n2 Kepler’s Laws of networks
  • 15. Prediction in Dynamic Graph Sequences Problem Formulation Random Graph Models Random Graph Models Erdos-Renyi[Bollobas01]: nodes connected with uniform probability. No prediction chance Preferential Attachment[Albert02]: reproduces power-law degree distributions. Rich-get-Richer Block-Models[Nowicki01]: k blocks or clusters form the structure of the graph. Community Structure Latent Factor Model[Hoff02, Krivitsky10] node latent factors zi , zj , pair-wise covariate descriptors xi,j P(Y |X , Z , θ) = P(Yi,j |Xi,j , Zi , Zj , θ) i=j log odd(yi,j = 1|xi,j , zi , zj , α, β) ∝ α − βxi,j + zi − zj 2 Parameter Estimation
  • 16. Prediction in Dynamic Graph Sequences Problem Formulation Random Graph Models Exponential Random Graph Families[Wasserman96] Graph z: realization of a random variable Z Pθ (Z = z) = e θ ω(z)−Ψ(θ) θ ∈ RQ vector of parameters, ω sufficient statistics on the graph z : ω(z) ∈ RQ Ψ a normalization factor Parameter Estimation by Maximizing Log-likelihood
  • 17. Prediction in Dynamic Graph Sequences Problem Formulation Link Prediction Heuristics Nearest Neighbors and Walks Hypothesis: a graph G is partially observed, we aim to find the hidden edges[Kleinberg07] Friends of my friends are likely to be my friends. A ∈ {0, 1}n×n the social adjacency matrix n (A2 )i,j = k=1 Ai,k Ak,j = #paths of length 2 from i to j = #common friends of i and j Random Walks Take W = D −1 A where D is the diagonal matrix of degrees ∞ Katz = k=1 β k W k = (In − βW )−1 − In
  • 18. Prediction in Dynamic Graph Sequences Problem Formulation Link Prediction Heuristics Bipartite Graphs of Marketplaces p1 u1 p2 u2 p3 u3 p4 u4 p5 Who bought this also bought that. M ∈ {0, 1}#users×#products : transactions (MM M)i,j : number of times product j was purchased by users having purchased the same products as a given user i 0 M Random Walks Apply the unipartite formula to M 0
  • 19. Prediction in Dynamic Graph Sequences Problem Formulation Link Prediction Heuristics Low-Rank A = Udiag(σi )V SVD Define X ∗ = i σi (X ) and Dτ (A) = Udiag max(σi − τ, 0)V : the Shrinkage operator Rank r matrix closest to A is Udiag(σ1 , · · · , σr , 0, · · · 0)V 1 Fact : argminX 2 X − A 2 + τ X ∗ = Dτ (A) F block−wise adjacency 0 10 20 30 40 50 60 0 10 20 30 40 50 60 nz = 1400 Matrix Completion[Srebro05, Candes08, Koltchinskii11] estimates A by minimizing 1 ω(A) − ω(X ) 2 + τ X 2 ∗ 2 for a linear mapping ω : R n×n → RQ
  • 20. Prediction in Dynamic Graph Sequences Problem Formulation Link Prediction Heuristics Link Prediction: Statistical and Spectral Properties Statistics on number of triangles and length of paths in the graph are stable Spectral functions[Kunegis09] of the adjacency and stochastic matrices killing low eigenvalues If A = Udiag(σi )V is the SVD, Udiag(f (σi )i )V is called spectral function. Spectral Functions 1 0.9 2 0.8 σ ∝ (1−β σ)−1−1 0.7 max(σ − τ, 0) 0.6 f(σ) 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 σ
  • 21. Prediction in Dynamic Graph Sequences Problem Formulation Link Prediction Heuristics Leading Insight Link Prediction heuristics implicitly suggest 1. Graph sequence fits to some slowly varying feature map 2. Spectrum of graphs is regular Define a regularization formulation of the problem in order to leverage the trade-offs and select the best features. Obstacle to matrix completion: ω(A) is to be predicted.
  • 22. Prediction in Dynamic Graph Sequences Problem Formulation Framework Notations Time steps t ∈ {1, 2, ..., T } Adjacency matrices At ∈ {0, 1}n×n graph sequence Feature map ω : Rn×n → RQ linear ω linear (degree, clusters) Q n2 Prediction of AT +1 : score matrix S ∈ Rn×n
  • 23. Prediction in Dynamic Graph Sequences Problem Formulation Framework Assumptions 1. Stationarity of successive feature vectors ∃f : RQ → RQ , ∀t, ω(At+1 ) = f (ω(At )) + t 2. Simplicity of S S low rank[Srebro05], Penalize the trace norm S ∗
  • 24. Prediction in Dynamic Graph Sequences Problem Formulation Framework Quantities to control 1. Features predictor T −1 J1 (f ) = (ω(At+1 ), f (ω(At )) + κ f H t=1 2. Predicted features matching the predicted graph features (coupling term) J2 (f , S) = (ω(S), f (ω(AT )) 3. Penalty on S J3 (S) = τ S ∗
  • 25. Prediction in Dynamic Graph Sequences Problem Formulation Framework Convex Optimization Problem Let     ω(A1 ) ω(A2 ) . . . . (T −1)×Q X = ,Y =  ∈R     . . ω(AT −1 ) ω(AT ) We take linear predictors, f (ω) = ω W and define the convex objective . L = J1 + J2 + J3 1 2 κ 2 1 2 = XW − Y F + W F + ω(AT ) W − ω(S) 2 +τ S ∗ 2 2 2
  • 26. Prediction in Dynamic Graph Sequences Algorithms Algorithms
  • 27. Prediction in Dynamic Graph Sequences Algorithms Optimization Strategies Goal : minimize L(S, W ) 1. Two-stage optimization 2. Joint optimization in W and S 3. Variant 1: graph regularization 4. Variant 2: sparsity constraint
  • 28. Prediction in Dynamic Graph Sequences Algorithms Two-stage optimization Two-stage Optimization [Richard10] . Solve W = argminW ∈RQ×Q J1 (W ) (regression) Minimize J2 (W , S) + J3 (S) Optimal algorithms due to Nesterov √ -optimal solution after O(1/ ) iterations instead of O(1/ 2 ) [Goldfarb09] (r ,noise)alg. Proposed Static P. A. Katz (5,0.000) 0.671±0.008 0.648 ± 0.008 0.627 ± 0.015 0.616 ± 0.015 (5,0.250) 0.675 ± 0.009 0.642 ± 0.007 0.602 ± 0.016 0.592 ± 0.016 (5,0.750) 0.519 ± 0.007 0.525 ± 0.005 0.497 ± 0.007 0.491 ± 0.007 (500,0.000) 0.592 ± 0.008 0.587 ± 0.007 0.671 ± 0.010 0.667 ± 0.009 (500,0.250) 0.607 ± 0.011 0.588 ± 0.009 0.649 ± 0.009 0.643 ± 0.009 (500,0.750) 0.601 ± 0.010 0.583 ± 0.007 0.645 ± 0.017 0.641 ± 0.017
  • 29. Prediction in Dynamic Graph Sequences Algorithms Two-stage optimization Split and Alternately Minimize . Splitting: Lη (S, S) = τ S ∗ + h(S, ν), subject to S = S Alternately minimize in S and S : 1 mG (S) = argminS τ S ∗ + h(S), S − S + 2µ S −S 2 F 1 mH (S) = argminS h(S, ν) + τ S ∗, S −S + 2µ S −S 2 F Algorithm 1 Link Discovery Algorithm Parameters: τ, ν, η Initialization: W0 = Z1 = AT , α1 = 0 for k = 1, 2, . . . do Sk ← mG (Zk ) and Sk ← mH (Sk ) 1 Wk ← (Sk + Sk ) 2 1 2 αk+1 ← (1 + 1 + 4αk ) 2 1 Zk+1 ← Wk + αk (Sk − Wk−1 ) − (Wk − Wk−1 ) αk+1 end for
  • 30. Prediction in Dynamic Graph Sequences Algorithms Joint Optimization in W and S Minimization of L by proximal gradient descent L(S, W ) = g (S, W ) + Γ(S, W ) . g (S, W ) = 1 XW − Y 2 + 1 ω(AT ) W − ω(S) 2 F 2 2 2 : smoothly differentiable fit-term . Γ(S, W ) = κ W 2 + τ S ∗ : convex penalty 2 F Explicit proximal . 1 2 1 2 proxθΓ (S, W ) = argmin(Z ,V ) θΓ(Z , V )+ S−Z F+ W −V F 2 2 = (Dθτ (S), W /(1 + θκ)) (Sk+1 , Wk+1 ) = proxθk Γ (Sk , Wk ) − θk gradg (Sk , Wk ) FISTA[Beck09] for optimal convergence rate
  • 31. Prediction in Dynamic Graph Sequences Algorithms Variants Variant 1: Graph Regularization Constraint Want i ∼S j ⇒ f (i) ∼H f (j) Control the laplacian-like[Chen10] inner product J4 (f , S) = i,j Si,j f (i) − f (j) 2 H = S, f (i) − f (j) 2 H i,j i∼j f (i) ∼f (j) Other possibility: J4 (f , S) = S, Gram(f ) Lgraph regularization = L + λJ4 Issue: non-convex regularizers Algorithms: 1. Gradient descent with hyper-parameters that keep the objective inside the convexity domain 2. Projected gradient descent inside the convexity domain
  • 32. Prediction in Dynamic Graph Sequences Algorithms Variants Gradient Descent Convergence Area
  • 33. Prediction in Dynamic Graph Sequences Algorithms Variants Empirical Results Data Marketing Synthetic Method Error ∆Sales ∆Graph ∆Sales ∆Graph Our solution 0.62 0.28 0.13 ± .002 0.21± .003 Rank-free prediction 0.64 0.31 0.19 ± .008 0.24 ± .01 AR 0.80 - 0.66 ± .007 - ARIMA 0.78 - 0.17 ± .02 - VAR 1.02 - 0.42 ± .09 - MC with shrinkage - 0.38 - 0.22 ± .003 ω(AT +1 )−f (ω(AT )) 2 Sales Prediction metric: ∆Sales = ω(AT +1 ) 2 to be minimized AT +1 −S F Graph Completion metric: ∆Graph = AT +1 F to be minimized
  • 34. Prediction in Dynamic Graph Sequences Algorithms Variants Convexity Domain 2 2 J4 κ |f| + ν|S−AT| λ J4 + κ |f|2 + ν|S−AT|2 30 sw2 + s2 + w2 16 14 14 25 12 s2 + w2 12 10 10 20 2 sw 8 8 15 6 6 4 10 4 2 2 2 2 1.5 5 0 1.5 1 2 4 1 0 3.5 0.5 0.5 4 0 1 3 3.5 0 4 2.5 0 3 3.5 2.5 −0.5 3 0 2 −0.5 2 2.5 1.5 −1 −1 2 1 1.5 1.5 −1 −1.5 1 −1.5 1 0.5 + = 0.5 0.5 −2 −2 −2 s 0 w s 0 w s 0 w J4 not jointly-convex in (S, f ) λJ4 + κ W 2 + ν S − AT 2 convex inside F F √ n×n νκ E= S ∈ R+ , W ∈ Rn×d W 2 F ≤ 2λ
  • 35. Prediction in Dynamic Graph Sequences Algorithms Variants Empirical Results Performance (ν) 1.4 HYBRID (Regression) 1.2 HYBRID (Graph Completion) Rank Free Regression 1 Rank Free Graph Completion Regression Only relative errors Graph Only 0.8 0.6 0.4 0.2 0 −8 −6 −4 −2 0 2 4 6 8 10 log(ν)
  • 36. Prediction in Dynamic Graph Sequences Algorithms Variants Variant 2: Sparsity Constraint . Lsparse (S, W ) = L(S, W ) + γ S 1,1 (lasso) Split S onto S and S and add an equality constraint Synthetic data n = 100, Q = 15, T = 200 10 runs for cross validation 10 runs for test AUC on S reported Nearest Neighbors Static Low Rank Lsparse L 0.9767 ± 0.0076 0.9751 ± 0.0362 0.9812 ± 0.0008 0.9778 ± 0.0071
  • 37. Prediction in Dynamic Graph Sequences Discussion Discussion
  • 38. Prediction in Dynamic Graph Sequences Discussion Synthetic Data Generation Let ∀k ∈ {1, · · · , r } −(t−µi,k )2 (i,k) 1 2σ 2 Ut =√ e i,k + i,k 2πσi,k quantify the taste of user i for feature k at t, and (i,k) Vt the weight of feature k for item i and take (i,j) At = 1{U (i) (t) > θ}1{V (j) (t) > θ} At is 1. Sparse 2. Rank at most r 3. Its latent factors evolve slowly provided σ’s are not too small.
  • 39. Prediction in Dynamic Graph Sequences Discussion Scalability Dτ (A) is dense, even for sparse A 1 2 2 Fact[Srebro05] : S ∗ = 2 minUV =S U F + V F Instead of fixing τ , fix r and take U, V ∈ Rn×r Define . J (U, V , W ) = 2 2 κ 2 λ 2 2 XW −Y F+ ω(AT ) W −ω(UV ) 2+ W F+ ( U F+ V F) 2 2 Parallel Stochastic Gradient Algorithms [Recht11]
  • 40. Prediction in Dynamic Graph Sequences Discussion Store Recommendation Lists Each feature leads to a specific list of recommendation Store top-k lists Learn optimal combinations / aggregations ... work in progress
  • 41. Prediction in Dynamic Graph Sequences Discussion Conclusion Introduction of a regularization approach formulation for link prediction in graph sequences Several variants detailed and empirically tested Perspective for scalable algorithms Perspective for theoretical analysis and understanding of the problem
  • 42. Prediction in Dynamic Graph Sequences Discussion Thanks Mercis !
  • 43. Prediction in Dynamic Graph Sequences References Reka Albert and Albert-Laszlo Barab`si. a Statistical mechanics of complex networks. Reviews of Modern Physics, 74:4797, 2002. A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal of Imaging Sciences, 2(1):183–202, 2009. B. Bollobas. Random graphs, vol. 73 of Cambridge Studies in Advanced Mathematics. 2nd ed. Cambridge University Press, Cambridge, 2001. Emmanuel J. Cand`s and Terence Tao. e A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2008.
  • 44. Prediction in Dynamic Graph Sequences References Xi Chen, Seyoung Kim, Qihang Lin, Jaime G. Carbonell, and Eric P. Xing. Graph-structured multi-task regression and an efficient optimization method for general fused lasso. arXiv, 2010. Donald Goldfarb and Shiqlan Ma. Fast alternating linearization methods for minimizing the sum of two convex functions. Technical Report, Department of IEOR, Columbia University, 2009. P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social network analysis. Journal of the Royal Statistical Society, 97, 2002. David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
  • 45. Prediction in Dynamic Graph Sequences References Journal of the American Society for Information Science and Technology, 58(7):1019–1031, 2007. Vladimir Koltchinskii, Karim Lounici, and Alexandre Tsybakov. Nuclear norm penalization and optimal rates for noisy matrix completion. Annals of Statistics, 2011. P. N. Krivitsky and M. S. Handcock. A Separable Model for Dynamic Networks. ArXiv e-prints, November 2010. J´rˆme Kunegis and Andreas Lommatzsch. eo Learning spectral graph transformations for link prediction. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages 561–568, New York, NY, USA, 2009. ACM.
  • 46. Prediction in Dynamic Graph Sequences References G. Linden, B Smith, and J. York. Amazon.com recommendations : Item-to-item collaborative filtering. IEEE Internet Computing, 2003. K. Nowicki and T. Snijders. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96:1077– 1087, 2001. Benjamin Recht and Christopher Re. Parallel stochastic gradient algorithms for large-scale matrix completion. Submitted for publication, 2011. Emile Richard, Nicolas Baskiotis, Theodoros Evgeniou, and Nicolas Vayatis. Link discovery using graph feature tracking.
  • 47. Prediction in Dynamic Graph Sequences References Proceedings of Neural Information Processing Systems (NIPS), 2010. Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakkola. Maximum-margin matrix factorization. In Lawrence K. Saul, Yair Weiss, and L´on Bottou, editors, in e Proceedings of Neural Information Processing Systems 17, pages 1329–1336. MIT Press, Cambridge, MA, 2005. Stanley Wasserman and Philippa Pattison. Logit models and logistic regressions for social networks: I. an introduction to markov graphs and p ∗ . Psychometrika, 61(3):401–425, September 1996. K. Zhang, Th. Evgeniou, V. Padmanabhan, and E. Richard. Content contributor management and network effects in a ugc environment. Marketing Science, 2011.