SlideShare a Scribd company logo
1 of 75
Genome-wide association studies Misha Kapushesky Slides: Johan Rung, EBI St. Petersburg Russia 2010
Overview ,[object Object],[object Object],[object Object]
Study coverage ,[object Object],[object Object],[object Object],[object Object],[object Object]
Recombination
Linkage disequilibrium Two markers on the genome are inherited together more often than would be expected by chance This leads to high correlation between nearby markers in its haplotype block
Haplotypes and genotype tagging
Association studies ,[object Object]
Study power 1 2 3 4 1 2 3 4 A B Cases Controls
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Study power
How many SNPs should be tested? Studies of small regions revealed linkage disequilibrium blocks in which common SNPs are highly correlated (usually <10,000–30,000 base pairs in African populations or 30,000–50,000 base pairs in the newer European and Asian populations) (22). This motivated the HapMap Project (www.hapmap.org [12]), which has validated approximately 4 million SNPs, including 2.8 million of the estimated 10 million common SNPs in major world populations, while creating competition among biotechnology companies to develop high-throughput genotyping technologies. Sequencing and genotyping studies showed that sets of 500,000 (European populations) to 1,000,000 (African populations) SNPs could &quot;tag&quot; (serve as proxies for) approximately 80% of common SNPs (23).
Quality controls ,[object Object],[object Object],[object Object],[object Object]
Hardy-Weinberg Equilibrium ,[object Object],[object Object],[object Object],[object Object]
Hardy-Weinberg Equilibrium ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Binary or real-valued phenotypes
Molecular vs disease phenotypes ,[object Object],[object Object],[object Object]
Molecular vs disease phenotypes ,[object Object]
Molecular vs disease phenotypes Molecular phenotypes can give more precise information about disease state
[object Object],[object Object],Association statistics
[object Object],[object Object],Association statistics aa aA AA Sum Cases r 0 r 1 r 2 R Controls s 0 s 1 s 2 S Count n 0 n 1 n 2 N
[object Object],[object Object],Regression
[object Object],[object Object],Population stratification
Genomic control
Eigenstrat
Imputation ,[object Object],[object Object],[object Object]
Imputation Wu et al, Nat. Genet. 41, 991-995, 2009
Montreal GWAS
Type 2 diabetes ,[object Object],[object Object],[object Object]
Type 2 diabetes
Genetics of type 2 diabetes ,[object Object],[object Object],[object Object],[object Object],[object Object]
Montreal GWAS ,[object Object],[object Object]
Multi-stage GWAS ,[object Object],[object Object],[object Object],[object Object]
Multi-stage GWAS
Study design Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Focused Stage 3 - 28 SNPs Danish (N=7,698) 3,334 cases, 4,364 controls Stage 4: population effect study - 1 SNP (rs2943641) Population based study samples French (N=3,351), Finnish (N=5,183), Danish (N=5,824) CASE-CONTROL T2D ASSOCIATION QT ASSOCIATION IN POPULATIONS Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Fasting glucose Normoglycemic individuals Stage 1: French (N=654) Stage 2: rs560887 (N=9,353) Previously published, Science, May 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fasting glucose Normoglycemic individuals Stage 1: French (N=654) Stage 2: rs560887 (N=9,353) Previously published, Science, May 2007 Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fasting glucose Normoglycemic individuals Stage 1: French (N=654) Stage 2: rs560887 (N=9,353) Previously published, Science, May 2007 Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Focused Stage 3 - 28 SNPs Danish (N=7,698) 3,334 cases, 4,364 controls Stage 4: population effect study - 1 SNP (rs2943641) Population based study samples French (N=3,351), Finnish (N=5,183), Danish (N=5,824) Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fasting glucose Normoglycemic individuals Stage 1: French (N=654) Stage 2: rs560887 (N=9,353) Previously published, Science, May 2007 Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls
Stage 1 samples ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Stage 1 SNPs ,[object Object],[object Object]
Stage 1 results
Fast-track validation ,[object Object],[object Object],[object Object],[object Object]
Results SNP Chr Position pMAX Closest  gene rs7903146 10 114748339 1.5 x 10 -34 TCF7L2 rs13266634 8 118253964 6.1 x 10 -8 SLC30A8 rs1111875 10 94452862 3.0 x 10 -6 HHEX rs7923837 10 94471897 7.5 x 10 -6 HHEX rs7480010 11 42203294 1.1 x 10 -4 LOC387761 rs3740878 11 44214378 1.2 x 10 -4 EXT2 rs11037909 11 44212190 1.8 x 10 -4 EXT2 rs1113132 11 44209979 3.3 x 10 -4 EXT2
SLC30A8 Chimienti et al. Biometals 18:313
HHEX KIF11 HHEX IDE D' 0 0.2 0.4 0.6 0.8 1
HHEX controls pancreatic development Habener  Endocrinology 146:1025 Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Bort (2004) Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Foley (2005) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Martinez Barbera (2000)
Stage 2 ,[object Object],[object Object],[object Object],[object Object]
QC Exclusion criterion Samples Call rate < 95% 27 Continental stratification 296 Sex mismatch 64 Related individuals 70 Total 457 Chromosome SNPs Failed HWE Failed MAF Successful TOTAL 16,360 48 43 16,273
EIGENSTRATcorrection filters for MAF, HWE, call rate filters for MAF, HWE, call rate and r 2
Results - stage 1 vs stage 2
Results - taking out known loci
 
Stage 3 ,[object Object],[object Object]
rs2943641 ,[object Object],[object Object],[object Object],[object Object]
Metabolic traits  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Oral Glucose Tolerance Test
Metabolic traits 1 Metabolic trait Cohort rs2943641 P  add P  dom P  rec C/C C/T T/T Age NFBC 1986 16 16 16 DESIR 47.1 ± 9.8 47.5 ± 9.9 47.6 ± 10.1 INTER99 44.9 ± 7.9 45.4 ± 7.8 45.2 ± 7.6 Sex NFBC 1986 1062/1092 1153/1208 322/346 DESIR 645/728 728/812 216/222 INTER99 776/942 974/1070 307/354 BMI (kg/m 2 ) NFBC 1986 21.3 ± 3.8 21.3 ± 3.7 21.1 ± 3.5 0.24 0.43 0.21 DESIR 24.5 ± 3.7 24.4 ± 3.5 24.4 ± 3.4 0.55 0.63 0.61 INTER99 25.6 ± 3.9 25.4 ± 4.1 25.7 ± 4.2 0.57 0.094 0.24 Fasting plasma glucose (mmol/l) NFBC 1986 5.13 ± 0.41 5.14 ± 0.40 5.13 ± 0.41 0.77 0.62 0.90 DESIR 5.21 ± 0.44 5.20 ± 0.42 5.18 ± 0.43 0.05 0.32 0.07 INTER99 5.31 ± 0.40 5.31 ± 0.41 5.33 ± 0.39 0.66 0.93 0.32 Fasting serum insulin (pmol/l) NFBC 1986 78.7 ± 48.6 76.8 ± 44.5 71.7 ± 32.1 0.001 0.03 0.0009 DESIR 50.6 ± 32.9 48.4 ± 29.7 49.1 ± 29.1 0.05 0.003 0.76 INTER99 38.8 ± 24.7 36.4 ± 21.9 37.6 ± 23.3 0.018 0.0043 0.49
Metabolic traits 2 HOMA-B NFBC 1986 141 ± 95.1 136 ± 80.1 131 ± 91.6 0.006 0.05 0.009 DESIR 109 ± 87.0 103 ± 64.8 108 ± 92.2 0.16 0.006 0.24 INTER99 75.2   ±  65.6 68.3  ±  42.2 71.0  ±  49.9 0.005 0.0011 0.32 HOMA-IR NFBC 1986 2.52 ± 1.63 2.47 ± 1.58 2.29 ± 1.06 0.007 0.07 0.005 DESIR 1.95 ± 1.35 1.86 ± 1.20 1.88 ± 1.17 0.03 0.004 0.95 INTER99 1.54  ±  1.00 1.44  ±  0.89 1.49  ±  0.95 0.026 0.0058 0.59 Insulin 30’ INTER99 300 ± 183 277 ± 172 281 ± 169 0.0019 8.1 x 10 ‑4 0.14 Insulin 120’ 176 ± 138 163 ± 127 162 ± 124 0.0059 0.011 0.057 AUC insulin 22000 ± 13800 20300 ± 12900 20500 ± 12700 6.9 x 10 ‑4 2.2 x 10 ‑4 0.12 Glucose 30’ 8.19 ± 1.53 8.17 ± 1.56 8.22 ± 1.50 0.72 0.34 0.55 Glucose 120’ 5.51 ± 1.11 5.51 ± 1.11 5.47 ± 1.15 0.54 0.99 0.23 AUC glucose 182 ± 101 181 ± 102 180 ± 99.5 0.44 0.48 0.59 AUC insulin / AUC glucose 32.5  ±  17.4 30.1  ±  16.2 30.6  ±  16.1 6.0 x 10 ‑4 1.6 x 10 ‑4 0.13 CIR 1140  ± 4210 1000  ±  1130 1000  ±  1060 0.045 0.066 0.17 ISI 0.151  ±  0.095 0.16  ±  0.098 0.156  ±  0.096 0.026 0.0058 0.59 Disp. Index (CIR * ISI) 180  ±  1610 147  ±  220 143  ±  174 0.73 1.0 0.50
IRS1 locus - rs2943641
IRS1 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
rs2943641 - IRS1 protein association
rs2943641 - IRS1 protein association rs2943641 CC rs2943641 CT rs2943641 TT P Add P Dom P Rec n  (male/female) 74 (35/39) 88 (51/37) 28 (10/18) Age (years) 42.5 ± 17.1 43.5 ± 16.9 43.2 ± 17.6 BMI (kg/m 2 ) 25.0 ± 3.8 24.9 ± 3.9 25.3 ± 4.1 0.3 0.7 0.2 R d  insulin clamp (mg/kg FFM /min) 10.4 ± 3.5 11.0 ± 3.2 11.7 ± 3.7 0.2 0.2 0.4 D i  (x 10 ‑7 ) 1.7 ± 1.1 1.8 ± 1.3 1.8 ± 1.1 0.8 0.8 0.9 IRS-1 protein basal (AU) 296.7 ± 167.7 314.0 ± 155.1 413.1 ± 227.6 0.03 0.3 0.009 IRS-1 protein insulin (AU) 276.6 ± 143.6 280.9 ± 156.4 313.3 ± 147.9 0.3 0.7 0.2 IRS-1-associated PI3K activity basal (AU) 25.0 ± 12.6 26.6 ± 15.4 30.1 ± 17.2 0.3 0.4 0.4 IRS-1-associated PI3K activity insulin (AU) 47.1 ± 29.9 56.6 ± 32.1 72.2 ± 41.3 0.001 0.02 0.002
Conclusions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Paper Rung et al., Nature Genetics, 41, 1110-1115, 2009
Acknowledgements ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Rosalie Frechette Valérie Catudal Philippe Laflamme Stephane Cauchi Christian Dina David Meyre Christine Cavalcanti-Proença Anders Albrechtsen Torben Hansen Knut Borch-Johnsen Torsten Lauritzen Marjo-Riitta J ärvelin Jaana Laitinen Emmanuelle Durand Paul Elliott Samy Hadjadj Michel Marre Alexander Montpetit Charlotta Pisinger Barry Posner Anneli Pouta Marc Prentki Rasmus Ribel-Madsen Aimo Ruokonen Anelli Sandbaek Jean Tichet Martine Vaxillaire Jorgen Wojtaszewski Allan Vaag
GWAS into context ,[object Object]
Complexity ,[object Object]
A B G B E F D A C
Redundancy
Network structure ,[object Object],Log(#edges) Log(# genes) Most genes have few connections Few genes have many connections
Signal propagation ,[object Object],[object Object],[object Object]
Common diseases ,[object Object],[object Object],[object Object]
Common disease / common variant ,[object Object],[object Object],[object Object]
Rare variants ,[object Object],[object Object],[object Object],[object Object]
Polygenic contributions ,[object Object],[object Object],[object Object],[object Object]
Meta-analysis caveats ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Future directions for GWAS ,[object Object],[object Object],[object Object],[object Object],[object Object]
Future directions for GWAS ,[object Object],[object Object],[object Object],[object Object],[object Object]
Future directions for GWAS ,[object Object],[object Object]
Resources ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

More Related Content

What's hot

Mapping and Applications of Linkage Disequilibrium and Association Mapping in...
Mapping and Applications of Linkage Disequilibrium and Association Mapping in...Mapping and Applications of Linkage Disequilibrium and Association Mapping in...
Mapping and Applications of Linkage Disequilibrium and Association Mapping in...FAO
 
Association mapping
Association mapping Association mapping
Association mapping Preeti Kapoor
 
Genomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingGenomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingCIMMYT
 
Accelerating crop genetic gains with genomic selection
Accelerating crop genetic gains with genomic selectionAccelerating crop genetic gains with genomic selection
Accelerating crop genetic gains with genomic selectionViolinaBharali
 
Genomic selection for crop improvement
Genomic selection for crop improvementGenomic selection for crop improvement
Genomic selection for crop improvementnagamani gorantla
 
Genomic selection, prediction models, GEBV values, genomic selection in plant...
Genomic selection, prediction models, GEBV values, genomic selection in plant...Genomic selection, prediction models, GEBV values, genomic selection in plant...
Genomic selection, prediction models, GEBV values, genomic selection in plant...Mahesh Biradar
 
Use of SNP-HapMaps in plant breeding
Use of SNP-HapMaps in plant breeding Use of SNP-HapMaps in plant breeding
Use of SNP-HapMaps in plant breeding Anilkumar C
 
Association mapping, GWAS, Mapping, natural population mapping
Association mapping, GWAS, Mapping, natural population mappingAssociation mapping, GWAS, Mapping, natural population mapping
Association mapping, GWAS, Mapping, natural population mappingMahesh Biradar
 
Role of Pangenomics for crop Improvement
Role of Pangenomics for crop ImprovementRole of Pangenomics for crop Improvement
Role of Pangenomics for crop ImprovementPatelSupriya
 
Allele mining in crop improvement
Allele mining in crop improvementAllele mining in crop improvement
Allele mining in crop improvementGAYATRI KUMAWAT
 
Gene stacking and its materiality in crop improvement
Gene stacking and its materiality in crop improvementGene stacking and its materiality in crop improvement
Gene stacking and its materiality in crop improvementShamlyGupta
 
Using Genomic Selection in Barley to Improve Disease Resistance
Using Genomic Selection in Barley to Improve Disease ResistanceUsing Genomic Selection in Barley to Improve Disease Resistance
Using Genomic Selection in Barley to Improve Disease ResistanceBorlaug Global Rust Initiative
 
Association mapping for improvement of agronomic traits in rice
Association mapping  for improvement of agronomic traits in riceAssociation mapping  for improvement of agronomic traits in rice
Association mapping for improvement of agronomic traits in riceSopan Zuge
 
Association mapping
Association mappingAssociation mapping
Association mappingNivethitha T
 
Presentation on Foreground and Background Selection using Marker Assisted Sel...
Presentation on Foreground and Background Selection using Marker Assisted Sel...Presentation on Foreground and Background Selection using Marker Assisted Sel...
Presentation on Foreground and Background Selection using Marker Assisted Sel...Dr. Kaushik Kumar Panigrahi
 

What's hot (20)

Association mapping
Association mappingAssociation mapping
Association mapping
 
Genome wide association mapping
Genome wide association mappingGenome wide association mapping
Genome wide association mapping
 
Mapping and Applications of Linkage Disequilibrium and Association Mapping in...
Mapping and Applications of Linkage Disequilibrium and Association Mapping in...Mapping and Applications of Linkage Disequilibrium and Association Mapping in...
Mapping and Applications of Linkage Disequilibrium and Association Mapping in...
 
Association mapping
Association mapping Association mapping
Association mapping
 
Genotyping in Breeding programs
Genotyping in Breeding programsGenotyping in Breeding programs
Genotyping in Breeding programs
 
Genomic Selection & Precision Phenotyping
Genomic Selection & Precision PhenotypingGenomic Selection & Precision Phenotyping
Genomic Selection & Precision Phenotyping
 
Accelerating crop genetic gains with genomic selection
Accelerating crop genetic gains with genomic selectionAccelerating crop genetic gains with genomic selection
Accelerating crop genetic gains with genomic selection
 
Genomic selection for crop improvement
Genomic selection for crop improvementGenomic selection for crop improvement
Genomic selection for crop improvement
 
Genomic selection, prediction models, GEBV values, genomic selection in plant...
Genomic selection, prediction models, GEBV values, genomic selection in plant...Genomic selection, prediction models, GEBV values, genomic selection in plant...
Genomic selection, prediction models, GEBV values, genomic selection in plant...
 
Use of SNP-HapMaps in plant breeding
Use of SNP-HapMaps in plant breeding Use of SNP-HapMaps in plant breeding
Use of SNP-HapMaps in plant breeding
 
Association mapping, GWAS, Mapping, natural population mapping
Association mapping, GWAS, Mapping, natural population mappingAssociation mapping, GWAS, Mapping, natural population mapping
Association mapping, GWAS, Mapping, natural population mapping
 
Role of Pangenomics for crop Improvement
Role of Pangenomics for crop ImprovementRole of Pangenomics for crop Improvement
Role of Pangenomics for crop Improvement
 
Association mapping
Association mappingAssociation mapping
Association mapping
 
Allele mining in crop improvement
Allele mining in crop improvementAllele mining in crop improvement
Allele mining in crop improvement
 
GWAS
GWASGWAS
GWAS
 
Gene stacking and its materiality in crop improvement
Gene stacking and its materiality in crop improvementGene stacking and its materiality in crop improvement
Gene stacking and its materiality in crop improvement
 
Using Genomic Selection in Barley to Improve Disease Resistance
Using Genomic Selection in Barley to Improve Disease ResistanceUsing Genomic Selection in Barley to Improve Disease Resistance
Using Genomic Selection in Barley to Improve Disease Resistance
 
Association mapping for improvement of agronomic traits in rice
Association mapping  for improvement of agronomic traits in riceAssociation mapping  for improvement of agronomic traits in rice
Association mapping for improvement of agronomic traits in rice
 
Association mapping
Association mappingAssociation mapping
Association mapping
 
Presentation on Foreground and Background Selection using Marker Assisted Sel...
Presentation on Foreground and Background Selection using Marker Assisted Sel...Presentation on Foreground and Background Selection using Marker Assisted Sel...
Presentation on Foreground and Background Selection using Marker Assisted Sel...
 

Similar to GWAS-TITLE

Bioinformatics in dermato-oncology
Bioinformatics in dermato-oncologyBioinformatics in dermato-oncology
Bioinformatics in dermato-oncologyJoaquin Dopazo
 
180509 kathiresan mgh cardiology grand rounds to slideshare
180509 kathiresan mgh cardiology grand rounds to slideshare180509 kathiresan mgh cardiology grand rounds to slideshare
180509 kathiresan mgh cardiology grand rounds to slideshareSekarKathiresan
 
Pharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
Pharmacogenomic Prediction of Antracycline-induced CardiotoxicityPharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
Pharmacogenomic Prediction of Antracycline-induced CardiotoxicityGolden Helix
 
Pharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
Pharmacogenomic Prediction of Antracycline-induced CardiotoxicityPharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
Pharmacogenomic Prediction of Antracycline-induced CardiotoxicityGolden Helix Inc
 
Open Source Pharma /Genomics and clinical practice / Prof Hosur
Open Source Pharma /Genomics and clinical practice / Prof Hosur Open Source Pharma /Genomics and clinical practice / Prof Hosur
Open Source Pharma /Genomics and clinical practice / Prof Hosur opensourcepharmafound
 
헬스케어 빅데이터로 무엇을 할 수 있는가?
헬스케어 빅데이터로 무엇을 할 수 있는가?헬스케어 빅데이터로 무엇을 할 수 있는가?
헬스케어 빅데이터로 무엇을 할 수 있는가? Hyung Jin Choi
 
Digging into thousands of variants to find disease genes in Mendelian and com...
Digging into thousands of variants to find disease genes in Mendelian and com...Digging into thousands of variants to find disease genes in Mendelian and com...
Digging into thousands of variants to find disease genes in Mendelian and com...Joaquin Dopazo
 
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...Sherman Jia
 
The emerging picture of host genetic control of susceptibility and outcome in...
The emerging picture of host genetic control of susceptibility and outcome in...The emerging picture of host genetic control of susceptibility and outcome in...
The emerging picture of host genetic control of susceptibility and outcome in...Meningitis Research Foundation
 
OncoRep: A n-of-1 reporting tool to support genome-guided treatment for breas...
OncoRep: A n-of-1 reporting tool to support genome-guided treatment for breas...OncoRep: A n-of-1 reporting tool to support genome-guided treatment for breas...
OncoRep: A n-of-1 reporting tool to support genome-guided treatment for breas...Tobias Meißner
 
Neurogenetics in Argentina diagnostic yield in a personalized (1)
Neurogenetics in Argentina diagnostic yield in a personalized (1)Neurogenetics in Argentina diagnostic yield in a personalized (1)
Neurogenetics in Argentina diagnostic yield in a personalized (1)Dolores Gonzalez Moron, MD
 
Novel approach to diagnosis of mycobacterial and bacterial
Novel approach to diagnosis of mycobacterial and bacterialNovel approach to diagnosis of mycobacterial and bacterial
Novel approach to diagnosis of mycobacterial and bacterialNeurologyKota
 
Genome Wide Association Studies in Psychiatry
Genome Wide Association Studies in PsychiatryGenome Wide Association Studies in Psychiatry
Genome Wide Association Studies in PsychiatryDr.Guru S Gowda
 
의료 빅데이터와 인공지능의 현재와 미래
의료 빅데이터와 인공지능의 현재와 미래의료 빅데이터와 인공지능의 현재와 미래
의료 빅데이터와 인공지능의 현재와 미래Hyung Jin Choi
 
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practice
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practiceAug2013 Heidi Rehm integrating large scale sequencing into clinical practice
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practiceGenomeInABottle
 
Molecular techniques for pathology research - MDX .pdf
Molecular techniques for pathology research - MDX .pdfMolecular techniques for pathology research - MDX .pdf
Molecular techniques for pathology research - MDX .pdfsabyabby
 
MS Genetics Presentation_Julia_Feb 2014Invesot
MS Genetics Presentation_Julia_Feb 2014InvesotMS Genetics Presentation_Julia_Feb 2014Invesot
MS Genetics Presentation_Julia_Feb 2014InvesotDr. Julia Rothman
 

Similar to GWAS-TITLE (20)

Bioinformatics in dermato-oncology
Bioinformatics in dermato-oncologyBioinformatics in dermato-oncology
Bioinformatics in dermato-oncology
 
180509 kathiresan mgh cardiology grand rounds to slideshare
180509 kathiresan mgh cardiology grand rounds to slideshare180509 kathiresan mgh cardiology grand rounds to slideshare
180509 kathiresan mgh cardiology grand rounds to slideshare
 
Pharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
Pharmacogenomic Prediction of Antracycline-induced CardiotoxicityPharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
Pharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
 
Pharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
Pharmacogenomic Prediction of Antracycline-induced CardiotoxicityPharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
Pharmacogenomic Prediction of Antracycline-induced Cardiotoxicity
 
Open Source Pharma /Genomics and clinical practice / Prof Hosur
Open Source Pharma /Genomics and clinical practice / Prof Hosur Open Source Pharma /Genomics and clinical practice / Prof Hosur
Open Source Pharma /Genomics and clinical practice / Prof Hosur
 
헬스케어 빅데이터로 무엇을 할 수 있는가?
헬스케어 빅데이터로 무엇을 할 수 있는가?헬스케어 빅데이터로 무엇을 할 수 있는가?
헬스케어 빅데이터로 무엇을 할 수 있는가?
 
Digging into thousands of variants to find disease genes in Mendelian and com...
Digging into thousands of variants to find disease genes in Mendelian and com...Digging into thousands of variants to find disease genes in Mendelian and com...
Digging into thousands of variants to find disease genes in Mendelian and com...
 
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
Genome sequencing uncovers MS phenocopies in primary progressive multiple scl...
 
The emerging picture of host genetic control of susceptibility and outcome in...
The emerging picture of host genetic control of susceptibility and outcome in...The emerging picture of host genetic control of susceptibility and outcome in...
The emerging picture of host genetic control of susceptibility and outcome in...
 
OncoRep: A n-of-1 reporting tool to support genome-guided treatment for breas...
OncoRep: A n-of-1 reporting tool to support genome-guided treatment for breas...OncoRep: A n-of-1 reporting tool to support genome-guided treatment for breas...
OncoRep: A n-of-1 reporting tool to support genome-guided treatment for breas...
 
Neurogenetics in Argentina diagnostic yield in a personalized (1)
Neurogenetics in Argentina diagnostic yield in a personalized (1)Neurogenetics in Argentina diagnostic yield in a personalized (1)
Neurogenetics in Argentina diagnostic yield in a personalized (1)
 
En hépatologie Rodolphe Sobesky.pdf
En hépatologie Rodolphe Sobesky.pdfEn hépatologie Rodolphe Sobesky.pdf
En hépatologie Rodolphe Sobesky.pdf
 
Novel approach to diagnosis of mycobacterial and bacterial
Novel approach to diagnosis of mycobacterial and bacterialNovel approach to diagnosis of mycobacterial and bacterial
Novel approach to diagnosis of mycobacterial and bacterial
 
Genome Wide Association Studies in Psychiatry
Genome Wide Association Studies in PsychiatryGenome Wide Association Studies in Psychiatry
Genome Wide Association Studies in Psychiatry
 
의료 빅데이터와 인공지능의 현재와 미래
의료 빅데이터와 인공지능의 현재와 미래의료 빅데이터와 인공지능의 현재와 미래
의료 빅데이터와 인공지능의 현재와 미래
 
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practice
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practiceAug2013 Heidi Rehm integrating large scale sequencing into clinical practice
Aug2013 Heidi Rehm integrating large scale sequencing into clinical practice
 
Stevens Johnson syndrome and laboratory diagnostic tools
Stevens Johnson syndrome and laboratory diagnostic toolsStevens Johnson syndrome and laboratory diagnostic tools
Stevens Johnson syndrome and laboratory diagnostic tools
 
Molecular techniques for pathology research - MDX .pdf
Molecular techniques for pathology research - MDX .pdfMolecular techniques for pathology research - MDX .pdf
Molecular techniques for pathology research - MDX .pdf
 
MS Genetics Presentation_Julia_Feb 2014Invesot
MS Genetics Presentation_Julia_Feb 2014InvesotMS Genetics Presentation_Julia_Feb 2014Invesot
MS Genetics Presentation_Julia_Feb 2014Invesot
 
GWAS Study.pdf
GWAS Study.pdfGWAS Study.pdf
GWAS Study.pdf
 

More from Computer Science Club

20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugsComputer Science Club
 
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugsComputer Science Club
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugsComputer Science Club
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12Computer Science Club
 
20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11Computer Science Club
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10Computer Science Club
 
20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09Computer Science Club
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02Computer Science Club
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01Computer Science Club
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04Computer Science Club
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01Computer Science Club
 

More from Computer Science Club (20)

20141223 kuznetsov distributed
20141223 kuznetsov distributed20141223 kuznetsov distributed
20141223 kuznetsov distributed
 
Computer Vision
Computer VisionComputer Vision
Computer Vision
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs20140531 serebryany lecture02_find_scary_cpp_bugs
20140531 serebryany lecture02_find_scary_cpp_bugs
 
20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs20140531 serebryany lecture01_fantastic_cpp_bugs
20140531 serebryany lecture01_fantastic_cpp_bugs
 
20140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture1220140511 parallel programming_kalishenko_lecture12
20140511 parallel programming_kalishenko_lecture12
 
20140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture1120140427 parallel programming_zlobin_lecture11
20140427 parallel programming_zlobin_lecture11
 
20140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture1020140420 parallel programming_kalishenko_lecture10
20140420 parallel programming_kalishenko_lecture10
 
20140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture0920140413 parallel programming_kalishenko_lecture09
20140413 parallel programming_kalishenko_lecture09
 
20140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture0220140329 graph drawing_dainiak_lecture02
20140329 graph drawing_dainiak_lecture02
 
20140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture0120140329 graph drawing_dainiak_lecture01
20140329 graph drawing_dainiak_lecture01
 
20140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-0420140310 parallel programming_kalishenko_lecture03-04
20140310 parallel programming_kalishenko_lecture03-04
 
20140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-0320140223-SuffixTrees-lecture01-03
20140223-SuffixTrees-lecture01-03
 
20140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture0120140216 parallel programming_kalishenko_lecture01
20140216 parallel programming_kalishenko_lecture01
 
20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich20131106 h10 lecture6_matiyasevich
20131106 h10 lecture6_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich20131027 h10 lecture5_matiyasevich
20131027 h10 lecture5_matiyasevich
 
20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich20131013 h10 lecture4_matiyasevich
20131013 h10 lecture4_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 
20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich20131006 h10 lecture3_matiyasevich
20131006 h10 lecture3_matiyasevich
 

GWAS-TITLE

  • 1. Genome-wide association studies Misha Kapushesky Slides: Johan Rung, EBI St. Petersburg Russia 2010
  • 2.
  • 3.
  • 5. Linkage disequilibrium Two markers on the genome are inherited together more often than would be expected by chance This leads to high correlation between nearby markers in its haplotype block
  • 7.
  • 8. Study power 1 2 3 4 1 2 3 4 A B Cases Controls
  • 9.
  • 10. How many SNPs should be tested? Studies of small regions revealed linkage disequilibrium blocks in which common SNPs are highly correlated (usually <10,000–30,000 base pairs in African populations or 30,000–50,000 base pairs in the newer European and Asian populations) (22). This motivated the HapMap Project (www.hapmap.org [12]), which has validated approximately 4 million SNPs, including 2.8 million of the estimated 10 million common SNPs in major world populations, while creating competition among biotechnology companies to develop high-throughput genotyping technologies. Sequencing and genotyping studies showed that sets of 500,000 (European populations) to 1,000,000 (African populations) SNPs could &quot;tag&quot; (serve as proxies for) approximately 80% of common SNPs (23).
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17. Molecular vs disease phenotypes Molecular phenotypes can give more precise information about disease state
  • 18.
  • 19.
  • 20.
  • 21.
  • 24.
  • 25. Imputation Wu et al, Nat. Genet. 41, 991-995, 2009
  • 27.
  • 29.
  • 30.
  • 31.
  • 33. Study design Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Focused Stage 3 - 28 SNPs Danish (N=7,698) 3,334 cases, 4,364 controls Stage 4: population effect study - 1 SNP (rs2943641) Population based study samples French (N=3,351), Finnish (N=5,183), Danish (N=5,824) CASE-CONTROL T2D ASSOCIATION QT ASSOCIATION IN POPULATIONS Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Fasting glucose Normoglycemic individuals Stage 1: French (N=654) Stage 2: rs560887 (N=9,353) Previously published, Science, May 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fasting glucose Normoglycemic individuals Stage 1: French (N=654) Stage 2: rs560887 (N=9,353) Previously published, Science, May 2007 Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fasting glucose Normoglycemic individuals Stage 1: French (N=654) Stage 2: rs560887 (N=9,353) Previously published, Science, May 2007 Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Focused Stage 3 - 28 SNPs Danish (N=7,698) 3,334 cases, 4,364 controls Stage 4: population effect study - 1 SNP (rs2943641) Population based study samples French (N=3,351), Finnish (N=5,183), Danish (N=5,824) Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls Fasting glucose Normoglycemic individuals Stage 1: French (N=654) Stage 2: rs560887 (N=9,353) Previously published, Science, May 2007 Fast-track confirmation - 57 SNPs French (N=5,511) 2,617 cases, 2,894 controls Previously published, Nature, Feb 2007 Stage 1: Genome-wide scan - 392,365 SNPs French (N=1,376) 679 cases, 697 controls Focused Stage 2 - 16,273 SNPs French (N=4,977) 2,245 cases, 2,732 controls
  • 34.
  • 35.
  • 37.
  • 38. Results SNP Chr Position pMAX Closest gene rs7903146 10 114748339 1.5 x 10 -34 TCF7L2 rs13266634 8 118253964 6.1 x 10 -8 SLC30A8 rs1111875 10 94452862 3.0 x 10 -6 HHEX rs7923837 10 94471897 7.5 x 10 -6 HHEX rs7480010 11 42203294 1.1 x 10 -4 LOC387761 rs3740878 11 44214378 1.2 x 10 -4 EXT2 rs11037909 11 44212190 1.8 x 10 -4 EXT2 rs1113132 11 44209979 3.3 x 10 -4 EXT2
  • 39. SLC30A8 Chimienti et al. Biometals 18:313
  • 40. HHEX KIF11 HHEX IDE D' 0 0.2 0.4 0.6 0.8 1
  • 41. HHEX controls pancreatic development Habener Endocrinology 146:1025 Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Bort (2004) Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Foley (2005) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Martinez Barbera (2000)
  • 42.
  • 43. QC Exclusion criterion Samples Call rate < 95% 27 Continental stratification 296 Sex mismatch 64 Related individuals 70 Total 457 Chromosome SNPs Failed HWE Failed MAF Successful TOTAL 16,360 48 43 16,273
  • 44. EIGENSTRATcorrection filters for MAF, HWE, call rate filters for MAF, HWE, call rate and r 2
  • 45. Results - stage 1 vs stage 2
  • 46. Results - taking out known loci
  • 47.  
  • 48.
  • 49.
  • 50.
  • 52. Metabolic traits 1 Metabolic trait Cohort rs2943641 P add P dom P rec C/C C/T T/T Age NFBC 1986 16 16 16 DESIR 47.1 ± 9.8 47.5 ± 9.9 47.6 ± 10.1 INTER99 44.9 ± 7.9 45.4 ± 7.8 45.2 ± 7.6 Sex NFBC 1986 1062/1092 1153/1208 322/346 DESIR 645/728 728/812 216/222 INTER99 776/942 974/1070 307/354 BMI (kg/m 2 ) NFBC 1986 21.3 ± 3.8 21.3 ± 3.7 21.1 ± 3.5 0.24 0.43 0.21 DESIR 24.5 ± 3.7 24.4 ± 3.5 24.4 ± 3.4 0.55 0.63 0.61 INTER99 25.6 ± 3.9 25.4 ± 4.1 25.7 ± 4.2 0.57 0.094 0.24 Fasting plasma glucose (mmol/l) NFBC 1986 5.13 ± 0.41 5.14 ± 0.40 5.13 ± 0.41 0.77 0.62 0.90 DESIR 5.21 ± 0.44 5.20 ± 0.42 5.18 ± 0.43 0.05 0.32 0.07 INTER99 5.31 ± 0.40 5.31 ± 0.41 5.33 ± 0.39 0.66 0.93 0.32 Fasting serum insulin (pmol/l) NFBC 1986 78.7 ± 48.6 76.8 ± 44.5 71.7 ± 32.1 0.001 0.03 0.0009 DESIR 50.6 ± 32.9 48.4 ± 29.7 49.1 ± 29.1 0.05 0.003 0.76 INTER99 38.8 ± 24.7 36.4 ± 21.9 37.6 ± 23.3 0.018 0.0043 0.49
  • 53. Metabolic traits 2 HOMA-B NFBC 1986 141 ± 95.1 136 ± 80.1 131 ± 91.6 0.006 0.05 0.009 DESIR 109 ± 87.0 103 ± 64.8 108 ± 92.2 0.16 0.006 0.24 INTER99 75.2   ±  65.6 68.3  ±  42.2 71.0  ±  49.9 0.005 0.0011 0.32 HOMA-IR NFBC 1986 2.52 ± 1.63 2.47 ± 1.58 2.29 ± 1.06 0.007 0.07 0.005 DESIR 1.95 ± 1.35 1.86 ± 1.20 1.88 ± 1.17 0.03 0.004 0.95 INTER99 1.54  ±  1.00 1.44  ±  0.89 1.49  ±  0.95 0.026 0.0058 0.59 Insulin 30’ INTER99 300 ± 183 277 ± 172 281 ± 169 0.0019 8.1 x 10 ‑4 0.14 Insulin 120’ 176 ± 138 163 ± 127 162 ± 124 0.0059 0.011 0.057 AUC insulin 22000 ± 13800 20300 ± 12900 20500 ± 12700 6.9 x 10 ‑4 2.2 x 10 ‑4 0.12 Glucose 30’ 8.19 ± 1.53 8.17 ± 1.56 8.22 ± 1.50 0.72 0.34 0.55 Glucose 120’ 5.51 ± 1.11 5.51 ± 1.11 5.47 ± 1.15 0.54 0.99 0.23 AUC glucose 182 ± 101 181 ± 102 180 ± 99.5 0.44 0.48 0.59 AUC insulin / AUC glucose 32.5  ±  17.4 30.1  ±  16.2 30.6  ±  16.1 6.0 x 10 ‑4 1.6 x 10 ‑4 0.13 CIR 1140  ± 4210 1000  ±  1130 1000  ±  1060 0.045 0.066 0.17 ISI 0.151  ±  0.095 0.16  ±  0.098 0.156  ±  0.096 0.026 0.0058 0.59 Disp. Index (CIR * ISI) 180  ±  1610 147  ±  220 143  ±  174 0.73 1.0 0.50
  • 54. IRS1 locus - rs2943641
  • 55.
  • 56. rs2943641 - IRS1 protein association
  • 57. rs2943641 - IRS1 protein association rs2943641 CC rs2943641 CT rs2943641 TT P Add P Dom P Rec n (male/female) 74 (35/39) 88 (51/37) 28 (10/18) Age (years) 42.5 ± 17.1 43.5 ± 16.9 43.2 ± 17.6 BMI (kg/m 2 ) 25.0 ± 3.8 24.9 ± 3.9 25.3 ± 4.1 0.3 0.7 0.2 R d insulin clamp (mg/kg FFM /min) 10.4 ± 3.5 11.0 ± 3.2 11.7 ± 3.7 0.2 0.2 0.4 D i (x 10 ‑7 ) 1.7 ± 1.1 1.8 ± 1.3 1.8 ± 1.1 0.8 0.8 0.9 IRS-1 protein basal (AU) 296.7 ± 167.7 314.0 ± 155.1 413.1 ± 227.6 0.03 0.3 0.009 IRS-1 protein insulin (AU) 276.6 ± 143.6 280.9 ± 156.4 313.3 ± 147.9 0.3 0.7 0.2 IRS-1-associated PI3K activity basal (AU) 25.0 ± 12.6 26.6 ± 15.4 30.1 ± 17.2 0.3 0.4 0.4 IRS-1-associated PI3K activity insulin (AU) 47.1 ± 29.9 56.6 ± 32.1 72.2 ± 41.3 0.001 0.02 0.002
  • 58.
  • 59. Paper Rung et al., Nature Genetics, 41, 1110-1115, 2009
  • 60.
  • 61.
  • 62.
  • 63. A B G B E F D A C
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.