SlideShare a Scribd company logo
1 of 17
Projectile Motion Created by: Derek Zokoe ED 205 06 Click picture to enter
Index 1. About me 2. Concept Map 3. What is Projectile Motion? 4. Why is PM important? 5. Projectile motion Problem 6. Resources
About the Author My name is Derek Zokoe. I was born in Jenison Michigan. I am currently attending Grand Valley State University. I plan to graduate with a Major in physics and a Minor in Mathematics. I will also have a teaching degree. Feel free to email me. [email_address] Exit
Concept Map Exit
Exit What is Projectile Motion? In a normal sense projectile motion is just what the name says; the motion of a projectile. In a physics sense projectile motion is the study of how an object moves. You can study how water moves in the ocean, how an airplane flies in the sky, or even how a bullet flies out of the gun.
Exit Why is Projectile Motion Important? You may ask why is projectile motion important. There are many practical  uses of projectile motion. Most of the real life examples are very complex. You can shoot a rocket to the moon, or study the path of a quarterbacks football throw. Not everyone needs to be an expert at projectile motion, but it is good for everyone to have a basic knowledge of how a motion will fly. Everyone knows that if an object is throw up into the air that it will come back down eventually. Well how long will it take? This is something that we can figure out quite easily using projectile motion.
Exit Projectile Motion Problem Suppose a student wants to figure out how far away an ball would land if launched off the table at an angle of 30 degrees from the horizon. The table is exactly 1 meter off the ground. The student first decides to shoot the ball straight up and tests to find how high the ball goes and how long it takes the ball to get there. He calculates that the ball travels at 10 m/s right when the ball is launched from the gun. Watch  the video  and then Calculate the following (use 10 m/ss for gravity) The x and y components of the initial velocity The velocity of the ball in the y direction when it is .75 above the initial height How high above the ground the ball is when it reaches its maximum How high the ball will be if traveling at 6 m/s down How fast the ball is moving just before hitting the ground Shortcut using conservation of energy
Here is a link to a video that was made. It resembles our situation very very closely. In the video the ball is launched at different angles. You do only need to calculate each value for when the ball is being launched at 30 degrees. http://paer.rutgers.edu/PT3/movies/Projectile1.mov Exit Problem
Exit Problem Initial If we use our knowledge of  trigonometry we know that  cos(30) is equal to the Adjacent (V x ) divided by the hypotenuse (V) and also that sin(30) is equal to the opposite (V y ) divided by the hypotenuse (V). If we use this knowledge we can derive the following equations. To calculate the initial velocity in the x direction and in the y direction.
Exit Problem On its way up We were asked to calculate the vertical velocity of ball when the ball is .75 meters above the starting point. Remember that the ball is initially being launched from 1 meter. Here is the work that will be done in solving this problem.
Exit Problem At the Top We are now supposed to find the maximum height that the ball will reach. To do so we will need to remember that the ball will have no vertical velocity when it is at its maximum point. Here is the work for this problem.
Exit Problem Coming down We are now going to be finding the height of the ball when it is traveling at a vertical speed if 6 meters per second down.  Here is the work. NOTE: The initial velocity of the ball is 5 meters per second. What does this mean for the vertical position of the ball relative to the starting height?
Exit Problem At the Bottom We will finally calculate the velocity of the ball when it reaches the bottom. Remember we want the total velocity not just the vertical velocity. We will have to add the vertical velocity vector with the horizontal velocity vector. Here is the work for this problem. Now that we have the new vertical velocity we can calculate the final velocity
Back Proceed Exit Warning: The following pages will ruin your experiences of Projectile Motion
Exit Conservation of Energy Conservation of Energy can be used in every one of these problems, all of which become very easy. Since we know that the only force acting upon the ball after it is launched is gravity we know that energy will be conserved. We need to be very careful when we are calculating the height of the ball because we need to remember that potential energy is calculated from the wherever we decide our origin is. I suggest setting your origin to be the ground. Since there is not any air friction the horizontal speed will not be changing so when calculating the energy we can ignore that. Also remember when we find the final velocity of the ball just before it reaches the ground that we have calculated the velocity in the vertical direction. What is the velocity of the ball in the horizontal direction? The next page will be all of the work using conservation of energy.
Exit Problem
Resources The opening picture: The Video I found using Yahoo video search Airplane All information and equations I learned in my Physics Class at  GVSU Exit http://library.thinkquest.org/TQ0312826/index.php?chapter=3&page=2 http://paer.rutgers.edu/PT3/movies/Projectile1.mov http://www.flickr.com/photos/caribb/80279502/

More Related Content

What's hot

Chapter 4 Powerpoint
Chapter 4 PowerpointChapter 4 Powerpoint
Chapter 4 PowerpointMrreynon
 
Electricity and magnetism
Electricity and magnetismElectricity and magnetism
Electricity and magnetismRodtips
 
Reflection and Mirrors
Reflection and MirrorsReflection and Mirrors
Reflection and Mirrorsitutor
 
Momentum
MomentumMomentum
Momentumitutor
 
Lecture 8.1- Ionic vs. Covalent
Lecture 8.1- Ionic vs. CovalentLecture 8.1- Ionic vs. Covalent
Lecture 8.1- Ionic vs. CovalentMary Beth Smith
 
Gravity Gravitation Gravitasi 1
Gravity  Gravitation Gravitasi 1Gravity  Gravitation Gravitasi 1
Gravity Gravitation Gravitasi 1Rifda Latifa
 
Describing motion
Describing motionDescribing motion
Describing motionphy201516
 
PPT on refraction and lenses by pg
PPT on refraction and lenses by pgPPT on refraction and lenses by pg
PPT on refraction and lenses by pgPritam Ghanghas
 
B conservative and non conservative forces
B conservative and non conservative forcesB conservative and non conservative forces
B conservative and non conservative forcesdukies_2000
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensionsmstf mstf
 

What's hot (20)

Chapter 4 Powerpoint
Chapter 4 PowerpointChapter 4 Powerpoint
Chapter 4 Powerpoint
 
Electricity and magnetism
Electricity and magnetismElectricity and magnetism
Electricity and magnetism
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Mechanical energy
Mechanical energyMechanical energy
Mechanical energy
 
Reflection and Mirrors
Reflection and MirrorsReflection and Mirrors
Reflection and Mirrors
 
Heat and thermodynamics
Heat and thermodynamicsHeat and thermodynamics
Heat and thermodynamics
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Momentum
MomentumMomentum
Momentum
 
Lecture 8.1- Ionic vs. Covalent
Lecture 8.1- Ionic vs. CovalentLecture 8.1- Ionic vs. Covalent
Lecture 8.1- Ionic vs. Covalent
 
Gravity Gravitation Gravitasi 1
Gravity  Gravitation Gravitasi 1Gravity  Gravitation Gravitasi 1
Gravity Gravitation Gravitasi 1
 
Electric Charge
Electric ChargeElectric Charge
Electric Charge
 
Describing motion
Describing motionDescribing motion
Describing motion
 
PPT on refraction and lenses by pg
PPT on refraction and lenses by pgPPT on refraction and lenses by pg
PPT on refraction and lenses by pg
 
Applications of EM Waves
Applications of EM WavesApplications of EM Waves
Applications of EM Waves
 
waves
waveswaves
waves
 
B conservative and non conservative forces
B conservative and non conservative forcesB conservative and non conservative forces
B conservative and non conservative forces
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensions
 
Introduction To Physics
Introduction To PhysicsIntroduction To Physics
Introduction To Physics
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Kinetic energy
Kinetic energyKinetic energy
Kinetic energy
 

Similar to Physics Ppt

Gravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programmeGravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programmerafigabdurahmanli2
 
Horizontally Launched Projectiles
Horizontally Launched ProjectilesHorizontally Launched Projectiles
Horizontally Launched ProjectilesJan Parker
 
Horizontally Launched Projectiles
Horizontally Launched ProjectilesHorizontally Launched Projectiles
Horizontally Launched ProjectilesJan Parker
 
Projectile motion ch 5 reg
Projectile motion ch 5 regProjectile motion ch 5 reg
Projectile motion ch 5 regZBTHS
 
Honors methods of motion
Honors methods of motionHonors methods of motion
Honors methods of motionstephm32
 
Law of Inertia and Running Starts
Law of Inertia and Running StartsLaw of Inertia and Running Starts
Law of Inertia and Running StartsJan Parker
 
Projectile Motion Part 1
Projectile Motion Part 1Projectile Motion Part 1
Projectile Motion Part 1Jan Parker
 
Lecture14motion2 d
Lecture14motion2 dLecture14motion2 d
Lecture14motion2 dAlex Klein
 
Learners Module Quarter 3 and 4 Grade 7
Learners Module Quarter 3 and 4 Grade 7Learners Module Quarter 3 and 4 Grade 7
Learners Module Quarter 3 and 4 Grade 7Rhea Domingo
 
Honors methods of motion-day 7-per4
Honors methods of motion-day 7-per4Honors methods of motion-day 7-per4
Honors methods of motion-day 7-per4stephm32
 
Law of Inertia and Frames of Reference
Law of Inertia and Frames of ReferenceLaw of Inertia and Frames of Reference
Law of Inertia and Frames of ReferenceJan Parker
 
physics1_q1_mod4_motionintwoandthreedimension_v1.pdf
physics1_q1_mod4_motionintwoandthreedimension_v1.pdfphysics1_q1_mod4_motionintwoandthreedimension_v1.pdf
physics1_q1_mod4_motionintwoandthreedimension_v1.pdfAbigaelSantos2
 
Physics - Chapter 2 - One Dimensional Motion
Physics - Chapter 2 - One Dimensional MotionPhysics - Chapter 2 - One Dimensional Motion
Physics - Chapter 2 - One Dimensional MotionJPoilek
 
Vertical Straight Line Motion
Vertical Straight Line Motion Vertical Straight Line Motion
Vertical Straight Line Motion UdayKhanal
 

Similar to Physics Ppt (20)

Physics/Notes 6.1
Physics/Notes 6.1Physics/Notes 6.1
Physics/Notes 6.1
 
Gravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programmeGravity and Freefal Physics IB programme
Gravity and Freefal Physics IB programme
 
Horizontally Launched Projectiles
Horizontally Launched ProjectilesHorizontally Launched Projectiles
Horizontally Launched Projectiles
 
projectile-motion.ppt
projectile-motion.pptprojectile-motion.ppt
projectile-motion.ppt
 
projectile-motion.ppt
projectile-motion.pptprojectile-motion.ppt
projectile-motion.ppt
 
takevbooklet
takevbooklettakevbooklet
takevbooklet
 
Horizontally Launched Projectiles
Horizontally Launched ProjectilesHorizontally Launched Projectiles
Horizontally Launched Projectiles
 
Introduction to Kinematics
Introduction to KinematicsIntroduction to Kinematics
Introduction to Kinematics
 
Projectile motion ch 5 reg
Projectile motion ch 5 regProjectile motion ch 5 reg
Projectile motion ch 5 reg
 
Honors methods of motion
Honors methods of motionHonors methods of motion
Honors methods of motion
 
Law of Inertia and Running Starts
Law of Inertia and Running StartsLaw of Inertia and Running Starts
Law of Inertia and Running Starts
 
Projectile Motion Part 1
Projectile Motion Part 1Projectile Motion Part 1
Projectile Motion Part 1
 
Maths and Physics
Maths and PhysicsMaths and Physics
Maths and Physics
 
Lecture14motion2 d
Lecture14motion2 dLecture14motion2 d
Lecture14motion2 d
 
Learners Module Quarter 3 and 4 Grade 7
Learners Module Quarter 3 and 4 Grade 7Learners Module Quarter 3 and 4 Grade 7
Learners Module Quarter 3 and 4 Grade 7
 
Honors methods of motion-day 7-per4
Honors methods of motion-day 7-per4Honors methods of motion-day 7-per4
Honors methods of motion-day 7-per4
 
Law of Inertia and Frames of Reference
Law of Inertia and Frames of ReferenceLaw of Inertia and Frames of Reference
Law of Inertia and Frames of Reference
 
physics1_q1_mod4_motionintwoandthreedimension_v1.pdf
physics1_q1_mod4_motionintwoandthreedimension_v1.pdfphysics1_q1_mod4_motionintwoandthreedimension_v1.pdf
physics1_q1_mod4_motionintwoandthreedimension_v1.pdf
 
Physics - Chapter 2 - One Dimensional Motion
Physics - Chapter 2 - One Dimensional MotionPhysics - Chapter 2 - One Dimensional Motion
Physics - Chapter 2 - One Dimensional Motion
 
Vertical Straight Line Motion
Vertical Straight Line Motion Vertical Straight Line Motion
Vertical Straight Line Motion
 

Recently uploaded

ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 

Recently uploaded (20)

ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 

Physics Ppt

  • 1. Projectile Motion Created by: Derek Zokoe ED 205 06 Click picture to enter
  • 2. Index 1. About me 2. Concept Map 3. What is Projectile Motion? 4. Why is PM important? 5. Projectile motion Problem 6. Resources
  • 3. About the Author My name is Derek Zokoe. I was born in Jenison Michigan. I am currently attending Grand Valley State University. I plan to graduate with a Major in physics and a Minor in Mathematics. I will also have a teaching degree. Feel free to email me. [email_address] Exit
  • 5. Exit What is Projectile Motion? In a normal sense projectile motion is just what the name says; the motion of a projectile. In a physics sense projectile motion is the study of how an object moves. You can study how water moves in the ocean, how an airplane flies in the sky, or even how a bullet flies out of the gun.
  • 6. Exit Why is Projectile Motion Important? You may ask why is projectile motion important. There are many practical uses of projectile motion. Most of the real life examples are very complex. You can shoot a rocket to the moon, or study the path of a quarterbacks football throw. Not everyone needs to be an expert at projectile motion, but it is good for everyone to have a basic knowledge of how a motion will fly. Everyone knows that if an object is throw up into the air that it will come back down eventually. Well how long will it take? This is something that we can figure out quite easily using projectile motion.
  • 7. Exit Projectile Motion Problem Suppose a student wants to figure out how far away an ball would land if launched off the table at an angle of 30 degrees from the horizon. The table is exactly 1 meter off the ground. The student first decides to shoot the ball straight up and tests to find how high the ball goes and how long it takes the ball to get there. He calculates that the ball travels at 10 m/s right when the ball is launched from the gun. Watch the video and then Calculate the following (use 10 m/ss for gravity) The x and y components of the initial velocity The velocity of the ball in the y direction when it is .75 above the initial height How high above the ground the ball is when it reaches its maximum How high the ball will be if traveling at 6 m/s down How fast the ball is moving just before hitting the ground Shortcut using conservation of energy
  • 8. Here is a link to a video that was made. It resembles our situation very very closely. In the video the ball is launched at different angles. You do only need to calculate each value for when the ball is being launched at 30 degrees. http://paer.rutgers.edu/PT3/movies/Projectile1.mov Exit Problem
  • 9. Exit Problem Initial If we use our knowledge of trigonometry we know that cos(30) is equal to the Adjacent (V x ) divided by the hypotenuse (V) and also that sin(30) is equal to the opposite (V y ) divided by the hypotenuse (V). If we use this knowledge we can derive the following equations. To calculate the initial velocity in the x direction and in the y direction.
  • 10. Exit Problem On its way up We were asked to calculate the vertical velocity of ball when the ball is .75 meters above the starting point. Remember that the ball is initially being launched from 1 meter. Here is the work that will be done in solving this problem.
  • 11. Exit Problem At the Top We are now supposed to find the maximum height that the ball will reach. To do so we will need to remember that the ball will have no vertical velocity when it is at its maximum point. Here is the work for this problem.
  • 12. Exit Problem Coming down We are now going to be finding the height of the ball when it is traveling at a vertical speed if 6 meters per second down. Here is the work. NOTE: The initial velocity of the ball is 5 meters per second. What does this mean for the vertical position of the ball relative to the starting height?
  • 13. Exit Problem At the Bottom We will finally calculate the velocity of the ball when it reaches the bottom. Remember we want the total velocity not just the vertical velocity. We will have to add the vertical velocity vector with the horizontal velocity vector. Here is the work for this problem. Now that we have the new vertical velocity we can calculate the final velocity
  • 14. Back Proceed Exit Warning: The following pages will ruin your experiences of Projectile Motion
  • 15. Exit Conservation of Energy Conservation of Energy can be used in every one of these problems, all of which become very easy. Since we know that the only force acting upon the ball after it is launched is gravity we know that energy will be conserved. We need to be very careful when we are calculating the height of the ball because we need to remember that potential energy is calculated from the wherever we decide our origin is. I suggest setting your origin to be the ground. Since there is not any air friction the horizontal speed will not be changing so when calculating the energy we can ignore that. Also remember when we find the final velocity of the ball just before it reaches the ground that we have calculated the velocity in the vertical direction. What is the velocity of the ball in the horizontal direction? The next page will be all of the work using conservation of energy.
  • 17. Resources The opening picture: The Video I found using Yahoo video search Airplane All information and equations I learned in my Physics Class at GVSU Exit http://library.thinkquest.org/TQ0312826/index.php?chapter=3&page=2 http://paer.rutgers.edu/PT3/movies/Projectile1.mov http://www.flickr.com/photos/caribb/80279502/