Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Dérivation et Intégration numériques

2,281 views

Published on

Introduction des méthodes de base de dérivation et d'intégration numériques. Ce cours fait partie du module d'analyse numérique donné en Parcours MIP à la FST de Settat, Université Hassan 1er.

Published in: Education
  • DOWNLOAD THIS BOOKS INTO AVAILABLE FORMAT (2019 Update) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { https://soo.gd/irt2 } ......................................................................................................................... Download Full EPUB Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download Full doc Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download PDF EBOOK here { https://soo.gd/irt2 } ......................................................................................................................... Download EPUB Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download doc Ebook here { https://soo.gd/irt2 } ......................................................................................................................... ......................................................................................................................... ................................................................................................................................... eBook is an electronic version of a traditional print book THIS can be read by using a personal computer or by using an eBook reader. (An eBook reader can be a software application for use on a computer such as Microsoft's free Reader application, or a book-sized computer THIS is used solely as a reading device such as Nuvomedia's Rocket eBook.) Users can purchase an eBook on diskette or CD, but the most popular method of getting an eBook is to purchase a downloadable file of the eBook (or other reading material) from a Web site (such as Barnes and Noble) to be read from the user's computer or reading device. Generally, an eBook can be downloaded in five minutes or less ......................................................................................................................... .............. Browse by Genre Available eBooks .............................................................................................................................. Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, ......................................................................................................................... ......................................................................................................................... .....BEST SELLER FOR EBOOK RECOMMEND............................................................. ......................................................................................................................... Blowout: Corrupted Democracy, Rogue State Russia, and the Richest, Most Destructive Industry on Earth,-- The Ride of a Lifetime: Lessons Learned from 15 Years as CEO of the Walt Disney Company,-- Call Sign Chaos: Learning to Lead,-- StrengthsFinder 2.0,-- Stillness Is the Key,-- She Said: Breaking the Sexual Harassment Story THIS Helped Ignite a Movement,-- Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones,-- Everything Is Figureoutable,-- What It Takes: Lessons in the Pursuit of Excellence,-- Rich Dad Poor Dad: What the Rich Teach Their Kids About Money THIS the Poor and Middle Class Do Not!,-- The Total Money Makeover: Classic Edition: A Proven Plan for Financial Fitness,-- Shut Up and Listen!: Hard Business Truths THIS Will Help You Succeed, ......................................................................................................................... .........................................................................................................................
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Dérivation et Intégration numériques

  1. 1. Analyse numérique Jaouad DABOUNOU Département de Mathématiques et Informatique Dérivation et Intégration numériques Année universitaire2014/2015 Université Hassan Premier Faculté des Sciences et Techniques Settat
  2. 2. Dérivation et Intégration numériques - Soit f une fonction définie et dérivable sur [a , b] - Soit x]a , b[, la dérivée de f en x est donnée par : - Soit f une fonction définie et continue sur [a , b] - L’intégrale de f sur [a , b] est donnée par : Le calcul analytique des dérivées ou des intégrales est souvent difficile ou couteux. h xfhxf xf h )()( lim)(' 0           1 0 )(lim)( n in b a n ab iaf n ab dxxf Dérivation et Intégration numériques
  3. 3. Dérivation numérique Formule de différences progressives Soit x]a , b[ et h > 0 tel que x+h ]a , b[, on a : x x+h (x , f(x)) (x+h , f(x+h)) Pente de f en x à l’ordre 1 près x y h xfhxf xf )()( )('   avec )(" 2 )( cf h xe  c] x , x+h[, On a ici une approximation d'ordre 1 de f '(x) Pente de f en x
  4. 4. Dérivation numérique Formule de différences centrales Soit x]a , b[ et h > 0 tel que x-h ]a , b[ et x+h ]a , b[, on a : h hxfhxf xf 2 )()( )('   avec ),( !3 )( )3( 2 cf h xe  c] x-h , x+h[, On a ici une approximation d'ordre 1 de f '(x) x x+h (x+h , f(x+h)) Pente de f en x à l’ordre 2 près x y x-h (x-h , f(x-h)) Pente de f en x
  5. 5. Intégration numérique Soit f une fonction définie et continue sur [a , b]. L’intégrale de f sur [a , b] est donnée par : On approche f sur [a , b] par un polynôme P, ensuite, on considère que :
  6. 6. Intégration numérique Estimation de l’erreur d’intégration On approche f par P, le polynôme d’interpolation de f en x0, x1,… , xn. L’erreur d’interpolation est donnée par En plus, on a Donc
  7. 7. 7 Méthode des rectangles Polynôme d’interpolation : P0(x) = f(a). On a [a , b]
  8. 8. 8 Méthode des trapèzes Polynôme d’interpolation en x0=a et x1=b: P1(x) = f[a] + (x – a) f[a,b]. On a [a , b]
  9. 9. 9 Méthode de Simpson P2(x) Polynôme d’interpolation en x0=a, x1=m= et x2=b. On a [a , b]
  10. 10. 10 Intégration numérique Exemple d'application Soit f(x) = 2(x –1) + cos(x) esin(x) Une primitive de f est donnée par : F(x) = x2 - 2x + esin(x)
  11. 11. 11 Intégration numérique Exemple d'application On a Tableau de l'intégrale obtenue pour chacune des méthodes présentées La méthode de Simpson donne le meilleur résultat Méthode Intégrale Rectangles 1,2534 Trapèzes 1,1101 Simpson 1,1646
  12. 12. 12 Subdivision de l'intervalle d'intégration Subdivision de [a , b] en des sous-intervalles d'intégration. Ainsi, pour deux sous-intervalles [a , m] et sur [m , b] avec La méthode des rectangles donne [a , b] On voit que l’erreur est divisée par 2.
  13. 13. 13 Subdivision de l'intervalle d'intégration Exemple: On reprend la fonction : f(x) = 2(x –1) + cos(x) esin(x) Tableau des résultats avec et sans subdivision de [1 , 2]. On rappelle que la solution analytique est On voit que la précision est améliorée par la subdivision de l'intervalle pour chacune des méthodes utilisées est divisée par 2. Méthode Intégration sur [1 , 2] Intégration sur [1 , 1.5] et [1.5 , 2] Rectangles 1,2534 1,2226 Trapèzes 1,1101 1,1510 Simpson 1,1646 1,16288

×