SlideShare a Scribd company logo
1 of 91
Download to read offline
Overview of GSM Cellular Network and Operations Ganesh Srinivasan NTLGSPTN
 
Network and switching subsystem ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Operation subsystem ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Mobile Handset TEMPORARY  DATA  PERMANENT DATA -  Temporary Subscriber Identity  Permanent Subscriber Identity - Current Location  Key/Algorithm for Authentication. - Ciphering Data ,[object Object],[object Object],[object Object],[object Object]
The GSM Radio Interface
The GSM Network Architecture ,[object Object],[object Object],[object Object],[object Object],[object Object]
GSM uses paired radio channels 0 124 0 124 890MHz 915MHz 935MHz 960MHz UPLINK DOWNLINK
Access Mechanism ,[object Object]
Frequency multiplex ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],k 2 k 3 k 4 k 5 k 6 k 1 f t c
Time multiplex ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],k 2 k 3 k 4 k 5 k 6 k 1 f t c
Time and Frequency Multiplex ,[object Object],[object Object],f t c k 2 k 3 k 4 k 5 k 6 k 1
Time and Frequency Multiplex ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],f t c k 2 k 3 k 4 k 5 k 6 k 1
[object Object]
GSM uses paired radio channels 0 124 0 124 890MHz 915MHz 935MHz 960MHz UPLINK DOWNLINK
Code Multiplex ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],k 2 k 3 k 4 k 5 k 6 k 1 f t c
Various Access Method
Cells
Capacity & Spectrum Utilization Solution ,[object Object],[object Object],[object Object],[object Object],[object Object],I wish I could  increase capacity without   adding NEW BTS! What can I do? Network capacity at  required QoS with conventional frequency plan Subscriber  growth Time Out of  Capacity!!!
Representation of Cells Ideal cells Fictitious cells
Cell size and capacity ,[object Object],[object Object],[object Object]
Cell structure ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Capacity of a Cellular System ,[object Object],[object Object],[object Object],[object Object]
The K factor and Frequency Re-Use Distance i j 1 2 3 4 5 6 7 Frequency re-use distance is based on the cluster size K The cluster size is specified in terms of the offset of the center of a cluster from the center of the adjacent cluster K = i 2  + ij + j 2   K   = 2 2  + 2*1 + 1 2 K = 4 + 2 + 1   K = 7 D =   3K * R D = 4.58R   1 2 3 5 6 7 D R
The Frequency Re-Use for K = 4 K = i 2  + ij + j 2   K   = 2 2  + 2*0 + 0 2 K = 4 + 0 + 0   K = 4 D =   3K * R D = 3.46R i D R
The Cell Structure for K = 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 2 1 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Cell Structure for K = 4 1 2 3 4 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 3 2
Cell Structure for K = 12 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12
Increasing cellular system capacity ,[object Object],[object Object],[object Object]
Increasing cellular system capacity ,[object Object],[object Object],[object Object],[object Object],[object Object]
Tri-Sector antenna for a cell
Cell Distribution in a Network Highway Town Suburb Rural
Optimum use of frequency spectrum ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Re-use of the frequency One Cell = 288 traffic channels 72 Cell = 1728 traffic channels 246 Cell = 5904 traffic channels 8 X 36 = 288 8 X (72/12 X 36) = 1728
Concept of TDMA Frames and Channels ,[object Object],f t c
GSM uses paired radio channels 0 124 0 124 890MHz 915MHz 935MHz 960MHz UPLINK DOWNLINK
GSM delays uplink TDMA frames Uplink TDMA Frame  F1 + 45MHz Downlink TDMA F1MHz The start of the uplink TDMA is delayed of three time slots TDMA frame (4.615 ms) Fixed transmit  Delay of three time-slots T1 T2 T3 T5 T6 T7 T4 T8 R T R T R1 R2 R3 R5 R6 R7 R4 R8
GSM - TDMA/FDMA 935-960 MHz 124 channels (200 kHz) downlink 890-915 MHz 124 channels (200 kHz) uplink frequency time GSM TDMA frame GSM time-slot (normal burst) guard space guard space 1 2 3 4 5 6 7 8 higher GSM frame structures 4.615 ms 546.5 µs 577 µs tail user data Training S S user data tail 3 bits 57 bits 26 bits 57 bits 1 1 3
LOGICAL CHANNELS TRAFFIC SIGNALLING FULL RATE Bm  22.8 Kb/S HALF RATE Lm  11.4 Kb/S BROADCAST COMMON CONTROL  DEDICATED CONTROL FCCH SCH BCCH PCH RACH AGCH SDCCH SACCH FACCH FCCH  -- FREQUENCY CORRECTION CHANNEL SCH  --  SYNCHRONISATION CHANNEL BCCH  -- BROADCAST CONTROL CHANNEL PCH  -- PAGING CHANNEL RACH  -- RANDOM ACCESS  CHANNEL AGCH  -- ACCESS GRANTED  CHANNEL SDCCH -- STAND ALONE DEDICATED CONTROL CHANNEL SACCH -- SLOW ASSOCIATED CONTROL CHANNEL FACCH -- FAST ASSOCIATED CONTROL CHANNEL DOWN LINK ONLY UPLINK ONLY BOTH UP & DOWNLINKS
Broadcast Channel - BCH ,[object Object],[object Object],[object Object]
Common Control Channel - CCH ,[object Object],[object Object],[object Object]
Dedicated Control Channel - DCCH ,[object Object]
Dedicated Control Channel - DCCH ,[object Object],[object Object]
DEFINITION OF TIME SLOT - 156.25 BITS 15/26ms = 0.577ms TAIL BIT ENCRYPTION BIT GUARD PERIOD TRAINING  BITS MIXED BITS SYNCHRONISATION  BITS FIXED BITS FLAG BITS 3 57 1 26 1 57 3 8.25 NORMAL BURST  - NB 3 142 3 8.25 FREQUENCY CORRECTION  BURST - FB 3 3 8.25 39 64 39 SYNCHRONISATION  BURST - SB 3 6 41 36 68.25 ACCESS BURST - AB
0  1  2  3  4  5  6  2043  2044  2045  2046  2047 0  1  2  24  25 0  1  2  3  24  25 1 HYPER FRAME = 2048 SUPERFRAMES = 2 715 648 TDMA FRAMES  ( 3 H 28 MIN 53 S  760 MS ) 1 SUPER FRAME = 1326 TDMA FRAMES  ( 6.12 S ) LEFT  (OR)  RIGHT 1 MULTI FRAME = 51 TDMA  FRAMES  (235 .4 ms ) 1 SUPER FRAME = 26  MULTI FRAMES 1 SUPER FRAME = 51  MULTI FRAMES 1 MULTIFRAME = 26  TDMA  FRAMES  ( 120 ms ) TDMA FRAME NO. 0 1 0 1 HIERARCHY OF FRAMES 1  2  3  4  155  156  1 TIME SLOT = 156.25 BITS  ( 0.577 ms) (4.615ms) (4.615 ms) 1 bit =36.9 micro sec TRAFFIC CHANNELS SIGNALLING CHANNELS 0  1  2  3  4  48  49  50 0  1  2  3  4  48  49  50 0  1  2  3  4  5  6  7  0  1  2  3  4  5  6  7  0 0  1  2  3  4  5  6  7  0  1  2  3  4  5  6  7  0
GSM Frame Full rate channel is idle in 25 SACCH is transmitted in frame 12 0 to 11 and 13 to 24 Are used for traffic data Frame duration = 120ms Frame duration = 60/13ms Frame duration = 15/26ms 0  1  2  3  4  5  6  7 3 57 1 26 1 57 3 8.25 0  1  2  12  24  25
[object Object],[object Object],[object Object]
LOGICAL CHANNELS TRAFFIC SIGNALLING FULL RATE Bm  22.8 Kb/S HALF RATE Lm  11.4 Kb/S BROADCAST COMMON CONTROL  DEDICATED CONTROL FCCH SCH BCCH PCH RACH AGCH SDCCH SACCH FACCH FCCH  -- FREQUENCY CORRECTION CHANNEL SCH  --  SYNCHRONISATION CHANNEL BCCH  -- BROADCAST CONTROL CHANNEL PCH  -- PAGING CHANNEL RACH  -- RANDOM ACCESS  CHANNEL AGCH  -- ACCESS GRANTED  CHANNEL SDCCH -- STAND ALONE DEDICATED CONTROL CHANNEL SACCH -- SLOW ASSOCIATED CONTROL CHANNEL FACCH -- FAST ASSOCIATED CONTROL CHANNEL DOWN LINK ONLY UPLINK ONLY BOTH UP & DOWNLINKS
Location update from the mobile Mobile looks for BCCH after switching on RACH send channel request  AGCH receive SDCCH SDCCH authenticate SDCCH switch to cipher mode SDCCH request for location updating SDCCH authenticate response SDCCH cipher mode acknowledge SDCCH allocate TMSI SDCCH acknowledge new TMSI SDCCH switch idle update mode
Call establishment from a mobile Mobile looks for BCCH after switching on RACH send channel request  AGCH receive SDCCH SDCCH do the authentication and TMSI allocation SDCCH require traffic channel assignment SDCCH send call establishment request SDCCH send the setup message and desired number FACCH switch to traffic channel and send ack (steal bits) FACCH receive alert signal ringing sound FACCH acknowledge connect message and use TCH TCH conversation continues FACCH receive connect message
Call establishment to a mobile Mobile looks for BCCH after switching on Receive signaling channel SDCCH on AGCH Receive alert signal and generate ringing on FACCH Receive authentication request on SDCCH Generate Channel Request on RACH Answer paging message on SDCCH Authenticate on SDCCH Receive setup message on SDCCH FACCH acknowledge connect message and switch to TCH Receive connect message on FACCH Receive traffic channel assignment on SDCCH Mobile receives paging message on PCH FACCH switch to traffic channel and send ack (steal bits)
GSM speech coding
Transmit Path   BS Side 8 bit A-Law  to  13 bit Uniform RPE/LTP speech Encoder To Channel Coder 13Kbps 8 K sps MS Side LPF A/D RPE/LTP speech Encoder To Channel Coder 13Kbps 8 K sps, Sampling Rate - 8K Encoding - 13 bit Encoding (104 Kbps) RPE/LTP - Regular Pulse Excitation/Long Term Prediction RPE/LTP converts the 104 Kbps stream to 13 Kbps
GSM Speech Coding ,[object Object],[object Object]
GSM Frame Full rate channel is idle in 25 SACCH is transmitted in frame 12 0 to 11 and 13 to 24 Are used for traffic data Frame duration = 120ms Frame duration = 60/13ms Frame duration = 15/26ms 0  1  2  3  4  5  6  7 3 57 1 26 1 57 3 8.25 0  1  2  12  24  25
GSM Speech Coding ,[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],3 57 bits 26  1 1 57 bits 3 3 57 bits 26  1 1 57 bits 3 3 57 bits 26  1 1 57 bits 3 3 57 bits 26  1 1 57 bits 3 3 57 bits 26  1 1 57 bits 3 3 57 bits 26  1 1 57 bits 3 3 57 bits 26  1 1 57 bits 3 3 57 bits 26  1 1 57 bits 3
GSM Protocol Suite
BTS Radio interface HLR MSC VLR BSC RR MM + CM SS
Link Layer ,[object Object],[object Object],[object Object]
Network Layer ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Application Layer protocols ,[object Object],[object Object],[object Object],[object Object],[object Object]
BSC BTS A-Bis Interface Um Base Station System GSM Functional Architecture and Principal Interfaces HLR AC EIR VLR MSC Q.921 Radio Interface Q.931 Q.921 MAP TCAP CCS7 MTP CCS7 SCCP Mobile Application Part Q931 BSSAP SCCP  CCS7 MTP A Interface
GSM protocol layers for signaling CM MM RR MM LAPD m radio LAPD m radio LAPD PCM RR’  BTSM CM LAPD PCM RR’ BTSM  16/64 kbit/s U m A bis A SS7 PCM SS7 PCM 64 kbit/s / 2.048 Mbit/s MS BTS BSC MSC BSSAP BSSAP
Protocols involved in the radio interface ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
LAPDm on radio interface ,[object Object],[object Object],[object Object]
LAPDm Message structure ADDRESS CONTROL INFORMATION 0-21 OCTETS SAPI N(S) N(R)
 
LAPDm on radio interface ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Protocols involved in the A-bis interface ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Presentation of A-bis Interface ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
LAPD message structure FLAG ADRESS CONTROL INFORMATION 0 – 260 OCT FCS FLAG SAPI TEI N(S) N(R)
LAPD ,[object Object],[object Object],[object Object],[object Object]
Presentation of the A-ter interface
BSC TRAU MSC OMC OAM Transcoding LAPD TS1 Speech TS CCS7 TS X.25 TS2 Speech TS CCS7 TS X.25 TS2 PCM LINK PCM LINK
Presentation on the A-ter interface ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Presentation of the A interface
Signaling Protocol Model
Presentation on the A-Interface ,[object Object],[object Object],[object Object],[object Object]
Inter MSC presentation
O A M L A P D BTS MTP2 SCCP MTP3 L A P D O A M R R D T A P B S S M A P BSSAP BSC MTP1 MTP3 MTP2 SCCP MTP2 MTP3 SCCP BSSAP DTAP/ BSSMAP T C A P MM CM M A P NSS R R MM CM MS LAPDm LAPDm RADIO RADIO PCM PCM PCM E1 T1 ISUP/TUP Um Interface A bis Interface A Interface
SCCP Ref=R2 TRX:TEI=T1 Channel ID = N1 SCCP Ref=R1 DTAP DLCI: SAPI=3 DLCI: SAPI=0 Channel=C1 Link: SAPI=3 Link: SAPI=0 PD=CC TI=a TI=b PD=MM PD=RR TI=A MS BSC MSC Channel=C2 Channel ID = N1 Radio Interface Abis Interface A Interface PD: protocol discriminator TI: Transaction Identifier for RIL3-CC protocol DLCI: Data Link connection  Identifier SAPI: Service Access Point  Identifier on the radio Interface TEI: Terminal Equipment  Identifier on the Abis I/F
Bearer Services ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Tele Services ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Performance characteristics of GSM ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Disadvantages of GSM ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Thank You

More Related Content

What's hot

What's hot (20)

3 g call flow
3 g call flow3 g call flow
3 g call flow
 
LTE Planning
LTE PlanningLTE Planning
LTE Planning
 
Irat handover basics
Irat handover basicsIrat handover basics
Irat handover basics
 
Simplified Call Flow Signaling: 2G/3G Voice Call
Simplified Call Flow Signaling: 2G/3G Voice CallSimplified Call Flow Signaling: 2G/3G Voice Call
Simplified Call Flow Signaling: 2G/3G Voice Call
 
LTE Air Interface
LTE Air InterfaceLTE Air Interface
LTE Air Interface
 
GSM Location area update
GSM Location area updateGSM Location area update
GSM Location area update
 
Lte signaling
Lte signalingLte signaling
Lte signaling
 
Umts Kpi
Umts KpiUmts Kpi
Umts Kpi
 
UMTS/WCDMA Call Flows for Handovers
UMTS/WCDMA Call Flows for HandoversUMTS/WCDMA Call Flows for Handovers
UMTS/WCDMA Call Flows for Handovers
 
3 g call flow
3 g call flow3 g call flow
3 g call flow
 
Vo lte(eran8.1 03)
Vo lte(eran8.1 03)Vo lte(eran8.1 03)
Vo lte(eran8.1 03)
 
Summary 2G y 3G
Summary 2G y 3GSummary 2G y 3G
Summary 2G y 3G
 
Huawei parameter strategy v1.4 1st dec
Huawei parameter strategy v1.4  1st decHuawei parameter strategy v1.4  1st dec
Huawei parameter strategy v1.4 1st dec
 
Kpi 2g troubleshootin
Kpi 2g troubleshootinKpi 2g troubleshootin
Kpi 2g troubleshootin
 
Call flow
Call flowCall flow
Call flow
 
Cs fall back
Cs fall backCs fall back
Cs fall back
 
Systesm information layer 3 messages
Systesm information layer 3 messagesSystesm information layer 3 messages
Systesm information layer 3 messages
 
Lte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTELte default and dedicated bearer / VoLTE
Lte default and dedicated bearer / VoLTE
 
Nokia gsm-kpi-analysis-based-on-daily-monitoring-basis-presentation
Nokia gsm-kpi-analysis-based-on-daily-monitoring-basis-presentationNokia gsm-kpi-analysis-based-on-daily-monitoring-basis-presentation
Nokia gsm-kpi-analysis-based-on-daily-monitoring-basis-presentation
 
GSM CALL FLOW
GSM CALL FLOWGSM CALL FLOW
GSM CALL FLOW
 

Viewers also liked

Introduction to GSM - an Overview of Global System for Mobile Communication
Introduction to GSM - an Overview of Global System for Mobile CommunicationIntroduction to GSM - an Overview of Global System for Mobile Communication
Introduction to GSM - an Overview of Global System for Mobile Communicationiptvmagazine
 
GSM, Cell Planning & Frequency Reuse
GSM, Cell Planning & Frequency ReuseGSM, Cell Planning & Frequency Reuse
GSM, Cell Planning & Frequency Reusesanjida2222
 
Gsm.....ppt
Gsm.....pptGsm.....ppt
Gsm.....pptbalu008
 
Cell tower, BTS & antennas
Cell tower, BTS & antennasCell tower, BTS & antennas
Cell tower, BTS & antennasnimay1
 
Presentation on 1G/2G/3G/4G/5G/Cellular & Wireless Technologies
Presentation on 1G/2G/3G/4G/5G/Cellular & Wireless TechnologiesPresentation on 1G/2G/3G/4G/5G/Cellular & Wireless Technologies
Presentation on 1G/2G/3G/4G/5G/Cellular & Wireless TechnologiesKaushal Kaith
 
RFP Learning Management System - Evaluation Process and Criteria
RFP Learning Management System - Evaluation Process and CriteriaRFP Learning Management System - Evaluation Process and Criteria
RFP Learning Management System - Evaluation Process and CriteriaChristine Salmon
 
Paramétres gsm
Paramétres gsmParamétres gsm
Paramétres gsmDjo Seph
 
4 gsm net architecture by Praveen Kumar Prabhat
4 gsm net architecture by Praveen Kumar Prabhat4 gsm net architecture by Praveen Kumar Prabhat
4 gsm net architecture by Praveen Kumar Prabhatprabhat_praveen
 
Gsm fundamental-uku
Gsm fundamental-ukuGsm fundamental-uku
Gsm fundamental-ukusivakumar D
 

Viewers also liked (20)

Radio network overview
Radio network overviewRadio network overview
Radio network overview
 
Gsm overview
Gsm overviewGsm overview
Gsm overview
 
Full gsm overview (modified)
Full gsm overview  (modified)Full gsm overview  (modified)
Full gsm overview (modified)
 
Gsm basics
Gsm basicsGsm basics
Gsm basics
 
gsm
 gsm gsm
gsm
 
Gsm air interface
Gsm air interface Gsm air interface
Gsm air interface
 
Introduction to GSM - an Overview of Global System for Mobile Communication
Introduction to GSM - an Overview of Global System for Mobile CommunicationIntroduction to GSM - an Overview of Global System for Mobile Communication
Introduction to GSM - an Overview of Global System for Mobile Communication
 
GSM, Cell Planning & Frequency Reuse
GSM, Cell Planning & Frequency ReuseGSM, Cell Planning & Frequency Reuse
GSM, Cell Planning & Frequency Reuse
 
GSM Air Interface
GSM Air Interface GSM Air Interface
GSM Air Interface
 
Gsm.....ppt
Gsm.....pptGsm.....ppt
Gsm.....ppt
 
Gsm architecture
Gsm architectureGsm architecture
Gsm architecture
 
Cell tower, BTS & antennas
Cell tower, BTS & antennasCell tower, BTS & antennas
Cell tower, BTS & antennas
 
Presentation on 1G/2G/3G/4G/5G/Cellular & Wireless Technologies
Presentation on 1G/2G/3G/4G/5G/Cellular & Wireless TechnologiesPresentation on 1G/2G/3G/4G/5G/Cellular & Wireless Technologies
Presentation on 1G/2G/3G/4G/5G/Cellular & Wireless Technologies
 
RFP Learning Management System - Evaluation Process and Criteria
RFP Learning Management System - Evaluation Process and CriteriaRFP Learning Management System - Evaluation Process and Criteria
RFP Learning Management System - Evaluation Process and Criteria
 
Paramétres gsm
Paramétres gsmParamétres gsm
Paramétres gsm
 
Gsm basics
Gsm basicsGsm basics
Gsm basics
 
4 gsm net architecture by Praveen Kumar Prabhat
4 gsm net architecture by Praveen Kumar Prabhat4 gsm net architecture by Praveen Kumar Prabhat
4 gsm net architecture by Praveen Kumar Prabhat
 
Gsm and edge
Gsm and edgeGsm and edge
Gsm and edge
 
N
NN
N
 
Gsm fundamental-uku
Gsm fundamental-ukuGsm fundamental-uku
Gsm fundamental-uku
 

Similar to Overview Of Gsm Cellular Network & Operations

Similar to Overview Of Gsm Cellular Network & Operations (20)

Gsm (3)
Gsm (3)Gsm (3)
Gsm (3)
 
Gsm global system for mobile, bsnl training , india, telecommunication,
Gsm global system for mobile, bsnl training , india, telecommunication,Gsm global system for mobile, bsnl training , india, telecommunication,
Gsm global system for mobile, bsnl training , india, telecommunication,
 
438lecture1
438lecture1438lecture1
438lecture1
 
lec.2 Multiple Access.pptx
lec.2 Multiple Access.pptxlec.2 Multiple Access.pptx
lec.2 Multiple Access.pptx
 
lec.2 Multiple Access.pptx
lec.2 Multiple Access.pptxlec.2 Multiple Access.pptx
lec.2 Multiple Access.pptx
 
Gsm By Aziz
Gsm By AzizGsm By Aziz
Gsm By Aziz
 
GSM Air Interface
GSM Air InterfaceGSM Air Interface
GSM Air Interface
 
Telecom Interview
Telecom InterviewTelecom Interview
Telecom Interview
 
Fullgsm overviewmodified-111004024904-phpapp01
Fullgsm overviewmodified-111004024904-phpapp01Fullgsm overviewmodified-111004024904-phpapp01
Fullgsm overviewmodified-111004024904-phpapp01
 
Ea 452 chap9
Ea 452 chap9Ea 452 chap9
Ea 452 chap9
 
Gsm physical and-logical_channels
Gsm physical and-logical_channelsGsm physical and-logical_channels
Gsm physical and-logical_channels
 
Ericsson GSM RAN Capacity
Ericsson GSM RAN CapacityEricsson GSM RAN Capacity
Ericsson GSM RAN Capacity
 
Gsm rf interview q&a
Gsm rf interview q&aGsm rf interview q&a
Gsm rf interview q&a
 
Cdma system
Cdma systemCdma system
Cdma system
 
Report
ReportReport
Report
 
MULTIMEDIA COMMUNICATION & NETWORKS
MULTIMEDIA COMMUNICATION & NETWORKSMULTIMEDIA COMMUNICATION & NETWORKS
MULTIMEDIA COMMUNICATION & NETWORKS
 
Cellular concept new-S.S.Singh.pptx
Cellular concept new-S.S.Singh.pptxCellular concept new-S.S.Singh.pptx
Cellular concept new-S.S.Singh.pptx
 
Unit II -Mobile telecommunication systems
Unit II -Mobile telecommunication systemsUnit II -Mobile telecommunication systems
Unit II -Mobile telecommunication systems
 
04_20.pptx
04_20.pptx04_20.pptx
04_20.pptx
 
CDMA- INTRO BASICS
CDMA- INTRO BASICSCDMA- INTRO BASICS
CDMA- INTRO BASICS
 

More from Deepak Sharma

Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)Deepak Sharma
 
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01Deepak Sharma
 
Rev 090006 100324020704 Phpapp02
Rev 090006 100324020704 Phpapp02Rev 090006 100324020704 Phpapp02
Rev 090006 100324020704 Phpapp02Deepak Sharma
 
Ltetutorial 100126072043 Phpapp01 (1)
Ltetutorial 100126072043 Phpapp01 (1)Ltetutorial 100126072043 Phpapp01 (1)
Ltetutorial 100126072043 Phpapp01 (1)Deepak Sharma
 
Evolutontolteanoverviewjune2010 100615104336 Phpapp02
Evolutontolteanoverviewjune2010 100615104336 Phpapp02Evolutontolteanoverviewjune2010 100615104336 Phpapp02
Evolutontolteanoverviewjune2010 100615104336 Phpapp02Deepak Sharma
 
01 3gpplte Saeoverviewsep06 100613084751 Phpapp02
01 3gpplte Saeoverviewsep06 100613084751 Phpapp0201 3gpplte Saeoverviewsep06 100613084751 Phpapp02
01 3gpplte Saeoverviewsep06 100613084751 Phpapp02Deepak Sharma
 
Lte Advancedtechnologyintroduction 100401143915 Phpapp01
Lte Advancedtechnologyintroduction 100401143915 Phpapp01Lte Advancedtechnologyintroduction 100401143915 Phpapp01
Lte Advancedtechnologyintroduction 100401143915 Phpapp01Deepak Sharma
 
Understanding.Umts.Radio.Network.Modelling.Planning.And.Automated.Optimisation
Understanding.Umts.Radio.Network.Modelling.Planning.And.Automated.OptimisationUnderstanding.Umts.Radio.Network.Modelling.Planning.And.Automated.Optimisation
Understanding.Umts.Radio.Network.Modelling.Planning.And.Automated.OptimisationDeepak Sharma
 
Umts.Performance.Measurement
Umts.Performance.MeasurementUmts.Performance.Measurement
Umts.Performance.MeasurementDeepak Sharma
 
Wiley The.Umts.Network.And.Radio.Access.Technology.Air.Interface.Techniques.F...
Wiley The.Umts.Network.And.Radio.Access.Technology.Air.Interface.Techniques.F...Wiley The.Umts.Network.And.Radio.Access.Technology.Air.Interface.Techniques.F...
Wiley The.Umts.Network.And.Radio.Access.Technology.Air.Interface.Techniques.F...Deepak Sharma
 
Hsdpa.Hsupa.For.Umts
Hsdpa.Hsupa.For.UmtsHsdpa.Hsupa.For.Umts
Hsdpa.Hsupa.For.UmtsDeepak Sharma
 

More from Deepak Sharma (20)

Lte White Paper V4
Lte White Paper V4Lte White Paper V4
Lte White Paper V4
 
Coding Scheme
Coding SchemeCoding Scheme
Coding Scheme
 
Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)Ttalteoverview 100923032416 Phpapp01 (1)
Ttalteoverview 100923032416 Phpapp01 (1)
 
Sae Archetecture
Sae ArchetectureSae Archetecture
Sae Archetecture
 
Ros Gra10
Ros Gra10Ros Gra10
Ros Gra10
 
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
Rev 0900023gpplte Advancedintroduction 100324021148 Phpapp01
 
Rev 090006 100324020704 Phpapp02
Rev 090006 100324020704 Phpapp02Rev 090006 100324020704 Phpapp02
Rev 090006 100324020704 Phpapp02
 
Rev 090003 R1
Rev 090003 R1Rev 090003 R1
Rev 090003 R1
 
Ltetutorial 100126072043 Phpapp01 (1)
Ltetutorial 100126072043 Phpapp01 (1)Ltetutorial 100126072043 Phpapp01 (1)
Ltetutorial 100126072043 Phpapp01 (1)
 
Evolutontolteanoverviewjune2010 100615104336 Phpapp02
Evolutontolteanoverviewjune2010 100615104336 Phpapp02Evolutontolteanoverviewjune2010 100615104336 Phpapp02
Evolutontolteanoverviewjune2010 100615104336 Phpapp02
 
01 3gpplte Saeoverviewsep06 100613084751 Phpapp02
01 3gpplte Saeoverviewsep06 100613084751 Phpapp0201 3gpplte Saeoverviewsep06 100613084751 Phpapp02
01 3gpplte Saeoverviewsep06 100613084751 Phpapp02
 
3GPP
3GPP3GPP
3GPP
 
Coding Scheme
Coding SchemeCoding Scheme
Coding Scheme
 
Lte Advancedtechnologyintroduction 100401143915 Phpapp01
Lte Advancedtechnologyintroduction 100401143915 Phpapp01Lte Advancedtechnologyintroduction 100401143915 Phpapp01
Lte Advancedtechnologyintroduction 100401143915 Phpapp01
 
Understanding.Umts.Radio.Network.Modelling.Planning.And.Automated.Optimisation
Understanding.Umts.Radio.Network.Modelling.Planning.And.Automated.OptimisationUnderstanding.Umts.Radio.Network.Modelling.Planning.And.Automated.Optimisation
Understanding.Umts.Radio.Network.Modelling.Planning.And.Automated.Optimisation
 
Umts.Performance.Measurement
Umts.Performance.MeasurementUmts.Performance.Measurement
Umts.Performance.Measurement
 
Wiley The.Umts.Network.And.Radio.Access.Technology.Air.Interface.Techniques.F...
Wiley The.Umts.Network.And.Radio.Access.Technology.Air.Interface.Techniques.F...Wiley The.Umts.Network.And.Radio.Access.Technology.Air.Interface.Techniques.F...
Wiley The.Umts.Network.And.Radio.Access.Technology.Air.Interface.Techniques.F...
 
Hsdpa.Hsupa.For.Umts
Hsdpa.Hsupa.For.UmtsHsdpa.Hsupa.For.Umts
Hsdpa.Hsupa.For.Umts
 
Wcdma.For.Umts
Wcdma.For.UmtsWcdma.For.Umts
Wcdma.For.Umts
 
wimax book
wimax bookwimax book
wimax book
 

Overview Of Gsm Cellular Network & Operations

  • 1. Overview of GSM Cellular Network and Operations Ganesh Srinivasan NTLGSPTN
  • 2.  
  • 3.
  • 4.  
  • 5.
  • 6.
  • 7. The GSM Radio Interface
  • 8.
  • 9. GSM uses paired radio channels 0 124 0 124 890MHz 915MHz 935MHz 960MHz UPLINK DOWNLINK
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16. GSM uses paired radio channels 0 124 0 124 890MHz 915MHz 935MHz 960MHz UPLINK DOWNLINK
  • 17.
  • 19. Cells
  • 20.
  • 21. Representation of Cells Ideal cells Fictitious cells
  • 22.
  • 23.
  • 24.
  • 25. The K factor and Frequency Re-Use Distance i j 1 2 3 4 5 6 7 Frequency re-use distance is based on the cluster size K The cluster size is specified in terms of the offset of the center of a cluster from the center of the adjacent cluster K = i 2 + ij + j 2 K = 2 2 + 2*1 + 1 2 K = 4 + 2 + 1 K = 7 D =  3K * R D = 4.58R 1 2 3 5 6 7 D R
  • 26. The Frequency Re-Use for K = 4 K = i 2 + ij + j 2 K = 2 2 + 2*0 + 0 2 K = 4 + 0 + 0 K = 4 D =  3K * R D = 3.46R i D R
  • 27. The Cell Structure for K = 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 2 1 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
  • 28. Cell Structure for K = 4 1 2 3 4 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 3 2
  • 29. Cell Structure for K = 12 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12
  • 30.
  • 31.
  • 33. Cell Distribution in a Network Highway Town Suburb Rural
  • 34.
  • 35.  
  • 36. Re-use of the frequency One Cell = 288 traffic channels 72 Cell = 1728 traffic channels 246 Cell = 5904 traffic channels 8 X 36 = 288 8 X (72/12 X 36) = 1728
  • 37.
  • 38. GSM uses paired radio channels 0 124 0 124 890MHz 915MHz 935MHz 960MHz UPLINK DOWNLINK
  • 39. GSM delays uplink TDMA frames Uplink TDMA Frame F1 + 45MHz Downlink TDMA F1MHz The start of the uplink TDMA is delayed of three time slots TDMA frame (4.615 ms) Fixed transmit Delay of three time-slots T1 T2 T3 T5 T6 T7 T4 T8 R T R T R1 R2 R3 R5 R6 R7 R4 R8
  • 40. GSM - TDMA/FDMA 935-960 MHz 124 channels (200 kHz) downlink 890-915 MHz 124 channels (200 kHz) uplink frequency time GSM TDMA frame GSM time-slot (normal burst) guard space guard space 1 2 3 4 5 6 7 8 higher GSM frame structures 4.615 ms 546.5 µs 577 µs tail user data Training S S user data tail 3 bits 57 bits 26 bits 57 bits 1 1 3
  • 41. LOGICAL CHANNELS TRAFFIC SIGNALLING FULL RATE Bm 22.8 Kb/S HALF RATE Lm 11.4 Kb/S BROADCAST COMMON CONTROL DEDICATED CONTROL FCCH SCH BCCH PCH RACH AGCH SDCCH SACCH FACCH FCCH -- FREQUENCY CORRECTION CHANNEL SCH -- SYNCHRONISATION CHANNEL BCCH -- BROADCAST CONTROL CHANNEL PCH -- PAGING CHANNEL RACH -- RANDOM ACCESS CHANNEL AGCH -- ACCESS GRANTED CHANNEL SDCCH -- STAND ALONE DEDICATED CONTROL CHANNEL SACCH -- SLOW ASSOCIATED CONTROL CHANNEL FACCH -- FAST ASSOCIATED CONTROL CHANNEL DOWN LINK ONLY UPLINK ONLY BOTH UP & DOWNLINKS
  • 42.
  • 43.
  • 44.
  • 45.
  • 46. DEFINITION OF TIME SLOT - 156.25 BITS 15/26ms = 0.577ms TAIL BIT ENCRYPTION BIT GUARD PERIOD TRAINING BITS MIXED BITS SYNCHRONISATION BITS FIXED BITS FLAG BITS 3 57 1 26 1 57 3 8.25 NORMAL BURST - NB 3 142 3 8.25 FREQUENCY CORRECTION BURST - FB 3 3 8.25 39 64 39 SYNCHRONISATION BURST - SB 3 6 41 36 68.25 ACCESS BURST - AB
  • 47. 0 1 2 3 4 5 6 2043 2044 2045 2046 2047 0 1 2 24 25 0 1 2 3 24 25 1 HYPER FRAME = 2048 SUPERFRAMES = 2 715 648 TDMA FRAMES ( 3 H 28 MIN 53 S 760 MS ) 1 SUPER FRAME = 1326 TDMA FRAMES ( 6.12 S ) LEFT (OR) RIGHT 1 MULTI FRAME = 51 TDMA FRAMES (235 .4 ms ) 1 SUPER FRAME = 26 MULTI FRAMES 1 SUPER FRAME = 51 MULTI FRAMES 1 MULTIFRAME = 26 TDMA FRAMES ( 120 ms ) TDMA FRAME NO. 0 1 0 1 HIERARCHY OF FRAMES 1 2 3 4 155 156 1 TIME SLOT = 156.25 BITS ( 0.577 ms) (4.615ms) (4.615 ms) 1 bit =36.9 micro sec TRAFFIC CHANNELS SIGNALLING CHANNELS 0 1 2 3 4 48 49 50 0 1 2 3 4 48 49 50 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0
  • 48. GSM Frame Full rate channel is idle in 25 SACCH is transmitted in frame 12 0 to 11 and 13 to 24 Are used for traffic data Frame duration = 120ms Frame duration = 60/13ms Frame duration = 15/26ms 0 1 2 3 4 5 6 7 3 57 1 26 1 57 3 8.25 0 1 2 12 24 25
  • 49.
  • 50. LOGICAL CHANNELS TRAFFIC SIGNALLING FULL RATE Bm 22.8 Kb/S HALF RATE Lm 11.4 Kb/S BROADCAST COMMON CONTROL DEDICATED CONTROL FCCH SCH BCCH PCH RACH AGCH SDCCH SACCH FACCH FCCH -- FREQUENCY CORRECTION CHANNEL SCH -- SYNCHRONISATION CHANNEL BCCH -- BROADCAST CONTROL CHANNEL PCH -- PAGING CHANNEL RACH -- RANDOM ACCESS CHANNEL AGCH -- ACCESS GRANTED CHANNEL SDCCH -- STAND ALONE DEDICATED CONTROL CHANNEL SACCH -- SLOW ASSOCIATED CONTROL CHANNEL FACCH -- FAST ASSOCIATED CONTROL CHANNEL DOWN LINK ONLY UPLINK ONLY BOTH UP & DOWNLINKS
  • 51. Location update from the mobile Mobile looks for BCCH after switching on RACH send channel request AGCH receive SDCCH SDCCH authenticate SDCCH switch to cipher mode SDCCH request for location updating SDCCH authenticate response SDCCH cipher mode acknowledge SDCCH allocate TMSI SDCCH acknowledge new TMSI SDCCH switch idle update mode
  • 52. Call establishment from a mobile Mobile looks for BCCH after switching on RACH send channel request AGCH receive SDCCH SDCCH do the authentication and TMSI allocation SDCCH require traffic channel assignment SDCCH send call establishment request SDCCH send the setup message and desired number FACCH switch to traffic channel and send ack (steal bits) FACCH receive alert signal ringing sound FACCH acknowledge connect message and use TCH TCH conversation continues FACCH receive connect message
  • 53. Call establishment to a mobile Mobile looks for BCCH after switching on Receive signaling channel SDCCH on AGCH Receive alert signal and generate ringing on FACCH Receive authentication request on SDCCH Generate Channel Request on RACH Answer paging message on SDCCH Authenticate on SDCCH Receive setup message on SDCCH FACCH acknowledge connect message and switch to TCH Receive connect message on FACCH Receive traffic channel assignment on SDCCH Mobile receives paging message on PCH FACCH switch to traffic channel and send ack (steal bits)
  • 55. Transmit Path BS Side 8 bit A-Law to 13 bit Uniform RPE/LTP speech Encoder To Channel Coder 13Kbps 8 K sps MS Side LPF A/D RPE/LTP speech Encoder To Channel Coder 13Kbps 8 K sps, Sampling Rate - 8K Encoding - 13 bit Encoding (104 Kbps) RPE/LTP - Regular Pulse Excitation/Long Term Prediction RPE/LTP converts the 104 Kbps stream to 13 Kbps
  • 56.
  • 57. GSM Frame Full rate channel is idle in 25 SACCH is transmitted in frame 12 0 to 11 and 13 to 24 Are used for traffic data Frame duration = 120ms Frame duration = 60/13ms Frame duration = 15/26ms 0 1 2 3 4 5 6 7 3 57 1 26 1 57 3 8.25 0 1 2 12 24 25
  • 58.
  • 59.
  • 60.
  • 62. BTS Radio interface HLR MSC VLR BSC RR MM + CM SS
  • 63.
  • 64.
  • 65.
  • 66. BSC BTS A-Bis Interface Um Base Station System GSM Functional Architecture and Principal Interfaces HLR AC EIR VLR MSC Q.921 Radio Interface Q.931 Q.921 MAP TCAP CCS7 MTP CCS7 SCCP Mobile Application Part Q931 BSSAP SCCP CCS7 MTP A Interface
  • 67. GSM protocol layers for signaling CM MM RR MM LAPD m radio LAPD m radio LAPD PCM RR’ BTSM CM LAPD PCM RR’ BTSM 16/64 kbit/s U m A bis A SS7 PCM SS7 PCM 64 kbit/s / 2.048 Mbit/s MS BTS BSC MSC BSSAP BSSAP
  • 68.
  • 69.  
  • 70.
  • 71. LAPDm Message structure ADDRESS CONTROL INFORMATION 0-21 OCTETS SAPI N(S) N(R)
  • 72.  
  • 73.
  • 74.
  • 75.
  • 76. LAPD message structure FLAG ADRESS CONTROL INFORMATION 0 – 260 OCT FCS FLAG SAPI TEI N(S) N(R)
  • 77.
  • 78. Presentation of the A-ter interface
  • 79. BSC TRAU MSC OMC OAM Transcoding LAPD TS1 Speech TS CCS7 TS X.25 TS2 Speech TS CCS7 TS X.25 TS2 PCM LINK PCM LINK
  • 80.
  • 81. Presentation of the A interface
  • 83.
  • 85. O A M L A P D BTS MTP2 SCCP MTP3 L A P D O A M R R D T A P B S S M A P BSSAP BSC MTP1 MTP3 MTP2 SCCP MTP2 MTP3 SCCP BSSAP DTAP/ BSSMAP T C A P MM CM M A P NSS R R MM CM MS LAPDm LAPDm RADIO RADIO PCM PCM PCM E1 T1 ISUP/TUP Um Interface A bis Interface A Interface
  • 86. SCCP Ref=R2 TRX:TEI=T1 Channel ID = N1 SCCP Ref=R1 DTAP DLCI: SAPI=3 DLCI: SAPI=0 Channel=C1 Link: SAPI=3 Link: SAPI=0 PD=CC TI=a TI=b PD=MM PD=RR TI=A MS BSC MSC Channel=C2 Channel ID = N1 Radio Interface Abis Interface A Interface PD: protocol discriminator TI: Transaction Identifier for RIL3-CC protocol DLCI: Data Link connection Identifier SAPI: Service Access Point Identifier on the radio Interface TEI: Terminal Equipment Identifier on the Abis I/F
  • 87.
  • 88.
  • 89.
  • 90.

Editor's Notes

  1. 270.833 kb/s per carrier GMSK with a time bandwidth product BT =0.3 Slow frequency hoping 217/hops/second. Synchronization compensation for up to 233micro seconds absolute delay Block and convolutional channel coding copuled with interleaving to combat channel perturbations- overall channel rate of 22.8 kb/s Full rate channel 13 kb/s voice coder rate using regular pulse excitation/linear predictive coding RPE/LPC, half rate channel 6.5 kb/s using Vector coder rate using vector sum excited linear predictivie coding VSELP Overall full rate channel bit rate of 22.8 kb/s. Each cell can have from 1 to 16 pairs of carriers.
  2. The system capacity depends on : The total number of radio channels The size of the cell The frequency re-use factor or distance The minimum distance which allows the same frequencies to be re-used will depend on many factors, The number of co-channel cells in the vicinity of the center cell The geography of the terrain, The antenna height The transmitted power within each cell
  3. Due to assumptions 1MHz carrier 5 radio frequencies(radio channels) 5X200 kHz. Each radio frequency carries 8 traffic channels = 40 traffic channels/MHz Without cell splitting, traffic channels = 7.2MHzX40 = 288 traffic channels With 72 cells, 72/12(kfactor = 12) = 6 paterns(all spectrum may be used in a pattern), traffic channels = 6X288 = 1728 traffic channels With 246 cells, 246/12(K factor = 12) we will get 20 sectors + 6 cells, for 20 patterns and 6/12 we get 20X288 + 6/12*288 = 5904 traffic channels. For the same channels spacing and re-use pattern, the number of re-used channels is increased when cell radius are reduced.
  4. The start of the uplink TDMA frame is delayed with respect to downlink by a fixed period of three timeslots. Why ? Staggering TDMA frames allows the same timeslot number to be used in both the down and uplink while avoiding the requirement for mobile to transmit and receive simultaneously. Between T and R the MS is in the IDLE mode, makes measurement of signal strength of neighboring cells.
  5. Because of natural and man-made electromagnetic interference, the encoded speech or data signal transmitted over the radio interface must be protected from errors. GSM uses convolutional encoding and block interleaving to achieve this protection. The exact algorithms used differ for speech and for different data rates. The method used for speech blocks will be described below. Recall that the speech codec produces a 260 bit block for every 20 ms speech sample. From subjective testing, it was found that some bits of this block were more important for perceived speech quality than others. The bits are thus divided into three classes: Class Ia 50 bits - most sensitive to bit errors Class Ib 132 bits - moderately sensitive to bit errors Class II 78 bits - least sensitive to bit errors Class Ia bits have a 3 bit Cyclic Redundancy Code added for error detection. If an error is detected, the frame is judged too damaged to be comprehensible and it is discarded. It is replaced by a slightly attenuated version of the previous correctly received frame. These 53 bits, together with the 132 Class Ib bits and a 4 bit tail sequence (a total of 189 bits), are input into a 1/2 rate convolutional encoder of constraint length 4. Each input bit is encoded as two output bits, based on a combination of the previous 4 input bits. The convolutional encoder thus outputs 378 bits, to which are added the 78 remaining Class II bits, which are unprotected. Thus every 20 ms speech sample is encoded as 456 bits, giving a bit rate of 22.8 kbps. To further protect against the burst errors common to the radio interface, each sample is interleaved. The 456 bits output by the convolutional encoder are divided into 8 blocks of 57 bits, and these blocks are transmitted in eight consecutive time-slot bursts. Since each time-slot burst can carry two 57 bit blocks, each burst carries traffic from two different speech samples. Recall that each time-slot burst is transmitted at a gross bit rate of 270.833 kbps. This digital signal is modulated onto the analog carrier frequency using Gaussian-filtered Minimum Shift Keying (GMSK). GMSK was selected over other modulation schemes as a compromise between spectral efficiency, complexity of the transmitter, and limited spurious emissions. The complexity of the transmitter is related to power consumption, which should be minimized for the mobile station.
  6. Normal burst 148 bits + 8.25 guard bits Frequency correction burst 148 bits + 8.25 guard bits Synchronizing burst 148 bits + 8.25 guard bits Access burst 88 bits +68.25 guard bits used to access a cell for the first time in case of a call set up or handover The data structure within a normal burst consists of 148 bits transmitted at a rate of 270.833 kb/s. Each burst in GSM system modulates one of the carriers assigned to a particular cell using GMSK.
  7. Speech in GSM is digitally coded at a rate of 13 kbps, so-called full-rate speech coding. This is quite efficient compared with the standard ISDN rate of 64 kbps. One of the most important Phase 2 additions will be the introduction of a half-rate speech codec operating at around 7 kbps, effectively doubling the capacity of a network. This 13 kbps digital stream (260 bits every 20 ms) has forward error correction added by a convolutional encoder. The gross bit rate after channel coding is 22.8 kbps (or 456 bits every 20 ms). These 456 bits are divided into 8 57-bit blocks, and the result is interleaved amongst eight successive time slot bursts for protection against bursty transmission errors. Each time slot burst is 156.25 bits and contains two 57-bit blocks, and a 26-bit training sequence used for equalization. A burst is transmitted in 0.577 ms for a total bit rate of 270.8 kbps, and is modulated using Gaussian Minimum Shift Keying (GMSK) onto the 200 kHz carrier frequency. The 26-bit training sequence is of a known pattern that is compared with the received pattern in the hope of being able to reconstruct the rest of the original signal. Forward error control and equalization contribute to the robustness of GSM radio signals against interference and multipath fading. The digital TDMA nature of the signal allows several processes intended to improve transmission quality, increase the mobile's battery life, and improve spectrum efficiency. These include discontinuous transmission, frequency hopping and discontinuous reception when monitoring the paging channel. Another feature used by GSM is power control, which attempts to minimize the radio transmission power of the mobiles and the BTS, and thus minimize the amount of co-channel interference generated.
  8. The full rate TCH uses 24 out of the 26 available in the multiframe The duration of the multiframe is therefore 26X60/13ms = 120ms At the 900 MHz range, radio waves bounce off everything - buildings, hills, cars, airplanes, etc. Thus many reflected signals, each with a different phase, can reach an antenna. Equalization is used to extract the desired signal from the unwanted reflections. It works by finding out how a known transmitted signal is modified by multipath fading, and constructing an inverse filter to extract the rest of the desired signal. This known signal is the 26-bit training sequence transmitted in the middle of every time-slot burst. The actual implementation of the equalizer is not specified in the GSM specifications.
  9. Distinct training sequences will therefore be allocated to channels using the same frequencies in cells which are close enough to interfere with one another.
  10. When a mobile station is first switched on it is necessary to read the BCCH in order to determine its orientation within the network. The mobile must first synchronize in frequency and then in time. The FCCH, SCH and BCCH are all transmitted on the same carrier frequency which has a higher power density than any of the other channels in a cell because steps are taken to ensure that it is transmitted information at all times. The mobile scans around the available frequencies, picks the strongest and then selects the FCCH. Fc+67.7kHz
  11. The full rate TCH uses 24 out of the 26 available in the multiframe The duration of the multiframe is therefore 26X60/13ms = 120ms At the 900 MHz range, radio waves bounce off everything - buildings, hills, cars, airplanes, etc. Thus many reflected signals, each with a different phase, can reach an antenna. Equalization is used to extract the desired signal from the unwanted reflections. It works by finding out how a known transmitted signal is modified by multipath fading, and constructing an inverse filter to extract the rest of the desired signal. This known signal is the 26-bit training sequence transmitted in the middle of every time-slot burst. The actual implementation of the equalizer is not specified in the GSM specifications.
  12. The GSM group studied several speech coding algorithms on the basis of subjective speech quality and complexity (which is related to cost, processing delay, and power consumption once implemented) before arriving at the choice of a Regular Pulse Excited -- Linear Predictive Coder (RPE--LPC) with a Long Term Predictor loop. Basically, information from previous samples, which does not change very quickly, is used to predict the current sample. The coefficients of the linear combination of the previous samples, plus an encoded form of the residual, the difference between the predicted and actual sample, represent the signal. Speech is divided into 20 millisecond samples, each of which is encoded as 260 bits, giving a total bit rate of 13 kbps. This is the so-called Full-Rate speech coding. Recently, an Enhanced Full-Rate (EFR) speech coding algorithm has been implemented by some North American GSM1900 operators. This is said to provide improved speech quality using the existing 13 kbps bit rate.
  13. Mike
  14. The first one of them Msa is the only one where all the levels of detail are given: The mobile station has two calls in progress (TI=a and b on PD=CC, on SAPI=0) And one SMS transaction (TI=A on SAPI=3).