SlideShare a Scribd company logo
1 of 39
Download to read offline
Introduction
Quest for newer materials are never ending especially in the field of
dental science. Various materials have been formulated, tested and
standardized to obtain maximum benefit for good clinical
performance.
One such new material is Mineral Trioxide Aggregate (MTA), which
was introduced by Dr.Mahmoud Torabinejad at Loma Linda University,
California, US and the first literature about the material appeared in
1993.
Mineral Trioxide Aggregate (MTA) was originally formulated to provide
the physical properties, setting requirements and characteristics
necessary for an ideal repair and medicament material.
Studies reveal that MTA exhibits good sealing ability, excellent long
term prognosis, relative ease of manipulation, good biocompatibility
and tissue regeneration.
MTA has been approved by the U.S. Food and Drug Administration
(FDA) in the year 1998. With its numerous exciting clinical applications,
MTA promises to be one of the most versatile materials of this century
in the field of dentistry.
Availability of MTA
Mineral trioxide aggregate (MTA) is a fine hydrophilic powder, available
in single use sachets of 1 gram. Some companies also provide
premeasured water sachets for ease of use.
Composition of MTA
MTA is a mechanical mixture of 3 powder ingredients:
• Portland cement (75%).
• Bismuth oxide (20%).
• Gypsum (5%).
The composition of MTA includes :
• Tricalcium silicate.
• Tricalcium aluminate.
• Tricalcium oxide.
• Silicate oxide.
• Bismuth oxide.
Its composition is said to be similar to Portland cement except for the
absence of bismuth oxide in Portland cement. Bismuth oxide is added
to improve the properties and the radioopacity.
The MTA particles are smaller and uniform in size whereas the particle
size of Portland cement vary in size. Though Bismuth oxide is said to
improve the radio opacity.
MTA is available in two types based on the color known as grey
and white MTA.
White MTAGrey MTA
Ferrous oxide is replaced by
Magnesium oxide, so no tooth
discoloration.
Contains tetracalcium
aluminoferrite (Ferrous oxide)
which is responsible for gray
discoloration. So, it can cause
discoloration of teeth, so that it
not used with anterior teeth.
Smaller particles with narrower
size distribution.
Large particles.
Shorter.Longer setting time.
Less.Greater compressive strength.
Types of MTA
Manipulation and setting reaction of MTA
The MTA paste is obtained by mixing 3 parts of powder with 1 part of
water to obtain putty like consistency (distilled water, local anesthesia,
normal saline). Mixing can be done on paper or on a glass slab using a
plastic or metal spatula. This mix is then placed in the desired location
and condensed lightly with a moistened cotton pellet.
MTA has a pH of 10.2 immediately after mixing and increases to 12.5
after 3 hours of setting which is almost similar to calcium hydroxide.
MTA powder should be stored carefully in closed sealed containers
away from moisture. The mixing time of MTA is crucial. If the mixing of
MTA is prolonged, it results in dehydration of the mix.
Sluyk et al in 1998 reported that the mixing time should be less than 4
minutes.
MTA takes longer time to set compared to any other material. The exact
time taken to set varies between different studies.
According to Torabinejad and colleagues in 1995, the setting time of
grey MTA is about 2 hours and 45 minutes (+5minutes), whereas Islam
et al in 2006 reported 2 hours and 55 minutes for grey MTA and 2 hours
and 20 minutes for white MTA.
Extended setting period of MTA is one of its main drawbacks. It is
suggested by many investigators that the incorporation of accelerators
such as sodium phosphate dibasic (Na2HPO4) and calcium chloride
(CaCl2) may reduce the setting time.
MTA being hydrophilic requires moisture to set, making absolute
dryness contraindicated. Presence of moisture during setting improves
the flexural strength of the set cement.
Hydration of the powder results in a colloidal gel composed of calcium oxide crystals
in an amorphous structure (33% calcium, 49% phosphate, 6% silica, 3% chloride and
2% carbon).
Though moisture is needed for MTA to set, excess moisture results in a mix that is
‘soupy’ and difficult to use.
After mixing, the mix should not be left open on the slab as it undergoes dehydration
and dries into a sandy mixture. It should be used immediately after it is prepared.
MTA may be placed into the desired location using hand instruments (not condensed
with excess pressure). Hand condensation is done with the help of a plugger or
messing gun.
Increase in condensation pressure might reduce the surface hardness. The
explanation was that increasing the condensation pressure probably reduces the
space required for the ingress of water which is required to hydrate the cement.
Applied MTA should be cover by a damp pellet of cotton because for correct setting
moisture is required. Then the tooth should be capped with a hermetic dressing for
1-2 days.
Properties of MTA
• It takes an average of 3-4 hours for the MTA material to completely
solidify. It has been shown that once it is set, it has a compressive
strength equal to IRM and Super EBA but less than amalgam.
• Compressive strength of MTA within 24 hours of mixing was about
40.0 MPa and increases to 67.3 MPa after 21 days.
• In comparison grey MTA exhibited greater compressive strength
than white MTA.
1. Compressive strength:
• MTA has an initial pH of 10.2 that rises to 12.5 three hours after
mixing .
2. PH:
• MTA is less radio opaque than IRM, Super EBA , amalgam or gutta-
percha and has similar radiodensity as Zinc Oxide Eugenol.
• The mean radio opacity of MTA is 7.17 mm of equivalent thickness
of aluminium, which is sufficient to make it easy to visualize
radiographically.
3. Radio-opacity:
4. Solubility:
• Although the set MTA shows no signs of solubility, the solubility
might increase if more water is used during mixing.
• The set MTA when exposed to water releases calcium hydroxide
which might be responsible for its cementogenesis inducing
property.
• MTA expands during setting which may be the reason for its excellent
sealing ability. MTA thickness of about 4mm is sufficient to provide a
good.
• According to Torabinejad et al in 1995 MTA seals very superiorly and no
gaps were found in any of the experimental specimen.
5. Marginal adaptation and sealing ability:
• The MTA cements have antibacterial and fungicidal properties (because of
high pH) in relation to following types:
 Enterococcus faecalis.
 Streptococcus sanguis.
 Staphylococcus epidermis.
 Micrococcus luteus.
 Pseudomonas aeruginosa.
 Escherichia coli.
 Candia albicans.
6. Antibacterial and antifungal property:
• MTA found that it is not mutagenic and is much less cytotoxic
compared to Super EBA and IRM. This supports the superiority of
MTA over formocresol as a pulpotomy medicament.
• Genotoxicity tests of cells after treatment of peripheral lymphocytes
with MTA showed no DNA damage. On direct contact they produce
minimal or no inflammatory reaction in soft tissues and in fact are
capable of inducing tissue regeneration.
• Arens and Torabinejad in 1996 reported osseous repair of furcation
perforations treated with MTA. MTA showed good interaction with
bone-forming cells (cells remained viable and released collagen
even after 72 hours with good adherence).
7. Biocompatibility:
• MTA does not react or interfere with any other restorative material.
Glass Ionomer cements or composite resins, used as permanent
filling material do not affect the setting of MTA when placed over it.
• Possible interactions might occur when MTA cement is combined
with other materials during the endodontic treatment:
 Chlorhexidine (CHX): might cause difficulties for correct setting.
 Sodium hypochlorite (NaOCl): might cause a shorter time of
setting,.
 Saline (NaCl): might cause a longer time of setting,
 Lignocaine: might cause a longer time of setting.
8. Reaction with other dental materials:
9. Tissue regeneration:
• MTA is capable of activation of cementoblasts and production of
cementum. It consistently allows for the overgrowth of cementum
and also facilitates regeneration of the periodontal ligament. MTA
allows bone healing and eliminates clinical symptoms in many cases.
• MTA, just like calcium hydroxide, induces dentin bridge formation.
Many investigators believe that the hard tissue bridge deposited next
to MTA is because of the sealing property, biocompatibility, alkalinity
and other properties associated with this material.
• Holland et al in 1999 found calcite crystals nearest to the opening of
the dentinal tubules close to MTA. They theorized that the tricalcium
oxide in MTA reacts with tissue fluids to form calcium hydroxide,
resulting in hard-tissue formation in a manner similar to that of calcium
hydroxide. But the dentin bridge that is formed with MTA is faster,
with good structural integrity and more complete than with calcium
hydroxide. MTA also proves to be better at stimulating reparative
dentin formation and maintaining the integrity of the pulp.
• MTA consistently demonstrated less inflammation, hyperemia and
necrosis, as well as a thicker dentinal bridge with more frequent
odontoblastic layer formation, than that seen with calcium hydroxide.
10. Mineralization:
Property Ca(OH)2 MTA
Hard tissue formation Not much Root end induction
Calcific bridge Not continuous
slow
Continuous with dentin
fast
Biocompatibility Low High
Degree of inflammation High Low
Sets Not Hard Hard
pH High High
Solubility Partially dissolve Less soluble
Permeability Permeable to fluids Non permeable
Resorption Rate vary with density Non-resorbable
Appical closure Unpredictability Good
MTA versus Ca(OH)2
Clinical applications of MTA
1. Pulp Capping:
• MTA has been proposed as a potential medicament for capping of pulps
with reversible pulpitis because of its excellent tissue compatibility. It is
much superior to the routinely used calcium hydroxide based on the tissue
reaction and the amount and type of dentin bridge formed.
• Calcium hydroxide is associated with tissue necrosis and inflammation
during the initial period of placement but no such inflammation or
necrosis was seen in the pulp tissue adjacent to MTA.
• With MTA, dentin bridge after pulp capping was seen at about 1 week
which steadily increased in length and thickness within 3 months of
capping whereas following pulp capping with calcium hydroxide, the
dentin bridge was less consistent and had numerous tunnel defects.
• Since there is no pulpal necrosis, pulp tissue heals faster with MTA.
Aeinehchi et al in 2003 reported a 0.28 mm thick dentin bridge by 2
months which increased to 0.43 mm by 6 months. The dentin bridge
formed with calcium hydroxide was only 0.15 mm by 6 months.
2. Non vital pulpotomy:
• Formacresol has been routinely used as a pulpotomy agent for deciduous teeth.
But this material has been criticized for its tissue irritating, cytotoxic and
mutagenic effects.
• MTA was tested and found to be an ideal material with low toxic effects,
increased tissue regenerating properties and good clinical results.
• Furthermore, the presence of blood has little impact on the setting or degree of
leakage when a 2-millimeter-thick layer of MTA was placed over the pulp during
pulpotomy.
• Discoloration of teeth was observed in
60% of the deciduous molars treated
with MTA. But this was not of
significance since the tooth was later
restored with a stainless steel crown.
3. Vital pulpotomy (Apexogenesis):
• Apexogenesis is defined as amputation of coronal pulp completely
without inserting any thing into root canal system. This procedure was
used for vital teeth with immature roots.
• Bleeding is controlled with a cotton moistened with Sodium
Hypochlorite (NaOCl).
• MTA is placed over the exposed pulp using a large amalgam carrier.
• The material is padded into place with a moist cotton pellet.
• The moist cotton pellet is placed on the MTA and the material is
allowed to set. The rest of the cavity is filled with temporary filling
material.
• In the next visit the temporary material is removed along with the
cotton pellet and the tooth is restored with a permanent restoration.
• The entire cavity can also be filled with MTA, instead of temporary
material. A wet piece of gauze is placed between the treated tooth and
the opposing tooth for 3-4 hours. This can be done only in compliant
patients.
• After 1 week, about 3-4 mm of the material from the occlusal surface is
removed and final restoration placed over the set MTA.
Steps involved in the placement of a pulp capping, pulpotomy
4. Root-end filling:
• Endodontic surgery followed by root-end filling may at times be
necessary for certain teeth where routine endodontic treatment is not
possible. This procedure involves surgical exposure of the root apex,
root resection and plugging the apical foramen with a suitable material
that provides complete apical seal, is non toxic, non resorbable,
dimensionally stable and radio opaque.
• Many materials have been used as root-end filling agents but the main
disadvantage is their failure to prevent leakage and the lack of
biocompatibility.
• Amalgam, although routinely used as a root-end filling material, proved
to be much inferior when tested with MTA. MTA treated teeth
exhibited significantly less inflammation, more cementum formation
and regeneration of periradicular tissues.
• Flap is raised under local anesthesia. This is followed by ostectomy,
root-end resection and hemorrhage control.
• MTA is placed into the prepared root end cavity with a small carrier
and mildly patted into place with a plugger.
• Since placement of wet cotton over the setting MTA is not possible,
moist environment can be created by inducing mild bleeding from
adjacent tissues and bringing the blood over the MTA.
• The area should not be rinsed after the placement of MTA.
• Flap is then sutured back into place.
Steps involved in root-end filling
5. Apical plug (Apexification of non vital of immature roots):
• Conventional management of an immature non vital permanent tooth
is apexification with calcium hydroxide.
• The purpose of apexification is to obtain an apical barrier so as to
prevent the extrusion of the obturating material.
• But the disadvantage of using calcium hydroxide is the extended time
taken for the completion of the procedure which may range anywhere
between 3 to 54 months.
• The tooth with calcium hydroxide placed for more than 100 days
showed a significant reduction in fracture resistance.
• This problem is solved with the use of MTA. An MTA plug of 4mm
thickness placed at the apical region is adequate to form a barrier,
sealing the canal from the periapical area.
• Access opening is done under local anesthesia and rubber dam.
• The root canal is cleaned with intracanal irrigants.
• Calcium hydroxide paste can be placed in the canal to disinfect for
about 1 week.
• Calcium hydroxide is removed by rinsing. Excess moisture is removed
from the canal.
• Mixed MTA is placed in the cavity using a large amalgam carrier. The
material is pushed towards the apical foramen with a plugger or paper
points.
• The apical plug should be at least mm thick and this should be checked
radiographically.
• If the apical plug could not be placed adequately, the entire material is
rinsed from the canal with sterile water and the procedure repeated.
• A moist cotton pellet is placed in the canal and the tooth is temporarily
restored.
• After 3 hours, the remaining canal is obturated with gutta percha and a
permanent restoration is then placed.
Steps involved in apical plug placement
6. Obturation of the canal:
• Mineral Trioxide Aggregate can be used to obturate the root canal of a
retained primary tooth where the succedaneous permanent tooth is
absent.
• This technique is not recommended for obturation of primary teeth
that are expected to exfoliate since it is anticipated that Mineral
Trioxide Aggregate would be absorbed slowly, if at all.
7. Repair of perforation:
• Repairing requires a material that should be biocompatible, should
withstand moisture without dissolving and should have good sealing
ability.
• MTA was used for treatment of perforation that caused by an
iatrogenic causes or complication of internal resorption.
• Procedure is done under anesthesia and rubber dam.
• After performing access opening, the canals are irrigated with NaOCl.
• Calcium hydroxide can be placed in the canal in between appointments
which will help control hemorrhage.
• Before placing MTA, calcium hydroxide should be completely removed.
• The apical portion of the canal is obturated with sectional cone
technique using gutta percha and root canal sealer.
• MTA is placed into the defect and moist cotton pellet is placed over it.
The access cavity is closed with a temporary restoration.
• The remaining portion of the canal is restored with a permanent filling
material after at least 3-4 hours.
Steps involved in the repair of perforation:
8. Repair of fracture:
• The success rate of horizontal root fracture treatment depending on their
location (cervical, middle, and apical). The root fracture located in the
cervical and middle thirds causes difficulty for treatment because it is
difficult for dental immobilization, leading to injury or even preventing the
consolidation of the fragments.
• For these cases, it is possible to strengthen the tooth with an intra-canal
pin cemented with MTA
• The canal is instrumented, and then an apical plug with MTA is performed.
A metal pin is selected in order to remain adjusted in the canal, which is
filled with MTA, seating the pin inside. Thus, there is reinforcement for the
root, preventing mobility of the coronary segment.
A. Horizontal root fracture:
• Vertical fracture has a very poor prognosis.
• To repair a vertical fracture, remove the root canal filling material from
the treated root(s) and bond the pieces internally with composite
bonded resin.
• After raising a flap, groove the entire vertical fracture to the composite
with a small bur under constant water spray. Place MTA in the groove,
cover it with a resorbable membrane, and suture the soft tissue flap.
• They have also suggested that the tooth can be intentionally extracted
to repair the fracture if the fracture line cannot be assessed by flap
surgery followed by reimplanting it back into the socket.
• To improve the prognosis of these cases, the patients should be
instructed to follow meticulous oral hygiene and the treated tooth
should not be probed for at least 12 wk.
B. Vertical root fracture:
References
• Rao A, Rao A, Shenoy R. Mineral trioxide aggregate-A review. J Clin Pediatr Dent. 2009;
34(1):1-8.
• Srinivasan V, Waterhouse P, Whitworth J. Mineral trioxide aggregate in paediatric
dentistry. International Journal of Paediatric Dentistry. 2009; 19:34-47.
• Macwan C, Deshpande A. Mineral trioxide aggregate (MTA) in dentistry: A review of
literature. Journal of Oral Research and Review. 2014; 6(2):71-74.
• Simon S, Rilliard F, Berdal A, Machtou P. The use of mineral trioxide aggregate in one-visit
apexification treatment: a prospective study. International Endodontic Journal. 2007;
40:186-197.
• Hegde R, Battepat PM. Clinical Applications of Mineral Trioxide Aggregate: report of four
cases. International Journal of Clinical Pediatric Dentistry, January. 2010; 3(1):43-50.
• Castellucci A. The use of mineral trioxide aggregate in clinical and surgical endodontics.
Dent Today. 2003; 22(3):74-81.
• Camilleri J. Mineral Trioxide Aggregate in Dentistry: From preparation to application. 1st
ed. 2014; Springer Heidelberg New York Dordrecht London.
MTA

More Related Content

What's hot

Pulp protection in operative dentistry
Pulp protection in operative dentistry Pulp protection in operative dentistry
Pulp protection in operative dentistry Nivedha Tina
 
EARLY CHILDHOOD CARIES
EARLY CHILDHOOD CARIESEARLY CHILDHOOD CARIES
EARLY CHILDHOOD CARIESNabeela Basha
 
Pit and fissure sealants
Pit and fissure sealantsPit and fissure sealants
Pit and fissure sealantsRamniq Kaur
 
Molar incisor hypomineralization
Molar incisor  hypomineralization Molar incisor  hypomineralization
Molar incisor hypomineralization Aya Adel
 
Prenatal and postnatal growth of mandible
Prenatal and postnatal growth of mandiblePrenatal and postnatal growth of mandible
Prenatal and postnatal growth of mandibleshayonisen2012
 
Bevels and flares in dental restoration
Bevels and flares in dental restorationBevels and flares in dental restoration
Bevels and flares in dental restorationDr. Mayank Nahta
 
Working length determination
Working length determinationWorking length determination
Working length determinationSaeed Bajafar
 
Endodontic surgery
Endodontic surgeryEndodontic surgery
Endodontic surgeryakhil shetty
 
Pin retained amalgam restorations
Pin retained amalgam restorationsPin retained amalgam restorations
Pin retained amalgam restorationsIAU Dent
 
Removable partial denture
Removable partial dentureRemovable partial denture
Removable partial dentureDr. Almas A
 
discoloration of teeth and management
discoloration of teeth and management discoloration of teeth and management
discoloration of teeth and management alka shukla
 

What's hot (20)

Caries activity test
Caries activity testCaries activity test
Caries activity test
 
Space maintainer
Space maintainerSpace maintainer
Space maintainer
 
Pulp protection in operative dentistry
Pulp protection in operative dentistry Pulp protection in operative dentistry
Pulp protection in operative dentistry
 
Cavity preparation
Cavity preparationCavity preparation
Cavity preparation
 
EARLY CHILDHOOD CARIES
EARLY CHILDHOOD CARIESEARLY CHILDHOOD CARIES
EARLY CHILDHOOD CARIES
 
Pit and fissure sealants
Pit and fissure sealantsPit and fissure sealants
Pit and fissure sealants
 
Molar incisor hypomineralization
Molar incisor  hypomineralization Molar incisor  hypomineralization
Molar incisor hypomineralization
 
MTA ( Mineral Trioxide Aggregate )
MTA ( Mineral Trioxide Aggregate )MTA ( Mineral Trioxide Aggregate )
MTA ( Mineral Trioxide Aggregate )
 
07.non carious lesions
07.non carious lesions07.non carious lesions
07.non carious lesions
 
Prenatal and postnatal growth of mandible
Prenatal and postnatal growth of mandiblePrenatal and postnatal growth of mandible
Prenatal and postnatal growth of mandible
 
Dental home
Dental homeDental home
Dental home
 
Bevels and flares in dental restoration
Bevels and flares in dental restorationBevels and flares in dental restoration
Bevels and flares in dental restoration
 
Working length determination
Working length determinationWorking length determination
Working length determination
 
Acid Etching of Enamel and Bond Strength
Acid Etching of Enamel and Bond StrengthAcid Etching of Enamel and Bond Strength
Acid Etching of Enamel and Bond Strength
 
Obturation technique
Obturation technique Obturation technique
Obturation technique
 
Endodontic surgery
Endodontic surgeryEndodontic surgery
Endodontic surgery
 
Pin retained amalgam restorations
Pin retained amalgam restorationsPin retained amalgam restorations
Pin retained amalgam restorations
 
Removable partial denture
Removable partial dentureRemovable partial denture
Removable partial denture
 
Pulp capping
Pulp capping Pulp capping
Pulp capping
 
discoloration of teeth and management
discoloration of teeth and management discoloration of teeth and management
discoloration of teeth and management
 

Viewers also liked

Biodentine (newer material in dentistry)
Biodentine   (newer material in dentistry)Biodentine   (newer material in dentistry)
Biodentine (newer material in dentistry)jhansi mutyala
 
INTRACANAL MEDICAMENTS IN ENDODONTICS
INTRACANAL MEDICAMENTS IN ENDODONTICSINTRACANAL MEDICAMENTS IN ENDODONTICS
INTRACANAL MEDICAMENTS IN ENDODONTICSSk Aziz Ikbal
 
Intracanal Medicaments in Endodontics - Summarized
Intracanal Medicaments in Endodontics - SummarizedIntracanal Medicaments in Endodontics - Summarized
Intracanal Medicaments in Endodontics - SummarizedIraqi Dental Academy
 
Corticosteroids in dentistry
Corticosteroids in dentistryCorticosteroids in dentistry
Corticosteroids in dentistryDrUshaVyasBohra
 
Intra canal medicaments
Intra canal medicamentsIntra canal medicaments
Intra canal medicamentsParth Thakkar
 
Intracanal medicaments /certified fixed orthodontic courses by Indian dental...
Intracanal medicaments  /certified fixed orthodontic courses by Indian dental...Intracanal medicaments  /certified fixed orthodontic courses by Indian dental...
Intracanal medicaments /certified fixed orthodontic courses by Indian dental...Indian dental academy
 
Antibiotic in endodontic
Antibiotic in endodonticAntibiotic in endodontic
Antibiotic in endodonticms khatib
 

Viewers also liked (8)

Biodentine (newer material in dentistry)
Biodentine   (newer material in dentistry)Biodentine   (newer material in dentistry)
Biodentine (newer material in dentistry)
 
INTRACANAL MEDICAMENTS IN ENDODONTICS
INTRACANAL MEDICAMENTS IN ENDODONTICSINTRACANAL MEDICAMENTS IN ENDODONTICS
INTRACANAL MEDICAMENTS IN ENDODONTICS
 
Intracanal medicaments
Intracanal medicaments Intracanal medicaments
Intracanal medicaments
 
Intracanal Medicaments in Endodontics - Summarized
Intracanal Medicaments in Endodontics - SummarizedIntracanal Medicaments in Endodontics - Summarized
Intracanal Medicaments in Endodontics - Summarized
 
Corticosteroids in dentistry
Corticosteroids in dentistryCorticosteroids in dentistry
Corticosteroids in dentistry
 
Intra canal medicaments
Intra canal medicamentsIntra canal medicaments
Intra canal medicaments
 
Intracanal medicaments /certified fixed orthodontic courses by Indian dental...
Intracanal medicaments  /certified fixed orthodontic courses by Indian dental...Intracanal medicaments  /certified fixed orthodontic courses by Indian dental...
Intracanal medicaments /certified fixed orthodontic courses by Indian dental...
 
Antibiotic in endodontic
Antibiotic in endodonticAntibiotic in endodontic
Antibiotic in endodontic
 

Similar to MTA

Mineral trioxide aggregate
Mineral trioxide aggregateMineral trioxide aggregate
Mineral trioxide aggregateChetan Basnet
 
Apexification apexogenesis MTA mineral trioxide aggregate powerpoint prese...
Apexification  apexogenesis  MTA  mineral trioxide aggregate powerpoint prese...Apexification  apexogenesis  MTA  mineral trioxide aggregate powerpoint prese...
Apexification apexogenesis MTA mineral trioxide aggregate powerpoint prese...Ahmed Mostafa Hussein Mohammed
 
mineral trioxide aggregate.shadan
mineral trioxide aggregate.shadanmineral trioxide aggregate.shadan
mineral trioxide aggregate.shadanshadanAltayar
 
Mineral trioxide aggregate/ orthodontic courses by indian dental academy
Mineral trioxide aggregate/ orthodontic courses by indian dental academyMineral trioxide aggregate/ orthodontic courses by indian dental academy
Mineral trioxide aggregate/ orthodontic courses by indian dental academyIndian dental academy
 
Apexification apeogenesis word2007 MTA mineral trioxide aggregate
Apexification apeogenesis word2007 MTA mineral trioxide aggregateApexification apeogenesis word2007 MTA mineral trioxide aggregate
Apexification apeogenesis word2007 MTA mineral trioxide aggregateAhmed Mostafa Hussein Mohammed
 
CLINICAL APPLICATIONS OF MTA
CLINICAL APPLICATIONS OF MTACLINICAL APPLICATIONS OF MTA
CLINICAL APPLICATIONS OF MTAJAMES RAJAN
 
Mineral trioxide (3)
Mineral   trioxide (3)Mineral   trioxide (3)
Mineral trioxide (3)Vidya Sagar
 
MTA & Biodentine
MTA & BiodentineMTA & Biodentine
MTA & BiodentineMarwaMazin3
 
MTA and Biodentin
MTA and Biodentin MTA and Biodentin
MTA and Biodentin DR POOJA
 
Root repair materials
Root repair materialsRoot repair materials
Root repair materialsRakesh Nair
 
MTA USE IN PEDIATRIC DENTISTRY: LITERATURE REVIEW
MTA USE IN PEDIATRIC DENTISTRY: LITERATURE REVIEWMTA USE IN PEDIATRIC DENTISTRY: LITERATURE REVIEW
MTA USE IN PEDIATRIC DENTISTRY: LITERATURE REVIEWRachael Gupta
 
Bioceramic in dentistry ( Endodontics)
Bioceramic in dentistry ( Endodontics)Bioceramic in dentistry ( Endodontics)
Bioceramic in dentistry ( Endodontics)Nakul Patidar
 

Similar to MTA (20)

MTA.pptx
MTA.pptxMTA.pptx
MTA.pptx
 
mineral trioxide overview
mineral trioxide overviewmineral trioxide overview
mineral trioxide overview
 
Mineral trioxide aggregate
Mineral trioxide aggregateMineral trioxide aggregate
Mineral trioxide aggregate
 
Mta - dr sneha
Mta - dr snehaMta - dr sneha
Mta - dr sneha
 
Mta
MtaMta
Mta
 
Apexification apexogenesis MTA mineral trioxide aggregate powerpoint prese...
Apexification  apexogenesis  MTA  mineral trioxide aggregate powerpoint prese...Apexification  apexogenesis  MTA  mineral trioxide aggregate powerpoint prese...
Apexification apexogenesis MTA mineral trioxide aggregate powerpoint prese...
 
mineral trioxide aggregate.shadan
mineral trioxide aggregate.shadanmineral trioxide aggregate.shadan
mineral trioxide aggregate.shadan
 
Mineral trioxide aggregate/ orthodontic courses by indian dental academy
Mineral trioxide aggregate/ orthodontic courses by indian dental academyMineral trioxide aggregate/ orthodontic courses by indian dental academy
Mineral trioxide aggregate/ orthodontic courses by indian dental academy
 
Apexification apeogenesis word2007 MTA mineral trioxide aggregate
Apexification apeogenesis word2007 MTA mineral trioxide aggregateApexification apeogenesis word2007 MTA mineral trioxide aggregate
Apexification apeogenesis word2007 MTA mineral trioxide aggregate
 
CLINICAL APPLICATIONS OF MTA
CLINICAL APPLICATIONS OF MTACLINICAL APPLICATIONS OF MTA
CLINICAL APPLICATIONS OF MTA
 
Mta shadan
Mta shadanMta shadan
Mta shadan
 
Mineral trioxide (3)
Mineral   trioxide (3)Mineral   trioxide (3)
Mineral trioxide (3)
 
MTA & Biodentine
MTA & BiodentineMTA & Biodentine
MTA & Biodentine
 
MTA and Biodentin
MTA and Biodentin MTA and Biodentin
MTA and Biodentin
 
Root repair materials
Root repair materialsRoot repair materials
Root repair materials
 
MTA
MTAMTA
MTA
 
mta
mtamta
mta
 
MTA USE IN PEDIATRIC DENTISTRY: LITERATURE REVIEW
MTA USE IN PEDIATRIC DENTISTRY: LITERATURE REVIEWMTA USE IN PEDIATRIC DENTISTRY: LITERATURE REVIEW
MTA USE IN PEDIATRIC DENTISTRY: LITERATURE REVIEW
 
Bioceramic in dentistry ( Endodontics)
Bioceramic in dentistry ( Endodontics)Bioceramic in dentistry ( Endodontics)
Bioceramic in dentistry ( Endodontics)
 
Mta, calcium hydroxide , biodentin
Mta, calcium hydroxide , biodentinMta, calcium hydroxide , biodentin
Mta, calcium hydroxide , biodentin
 

More from Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University

More from Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University (13)

Reciproc blue
Reciproc blueReciproc blue
Reciproc blue
 
Cleaning & shaping of root canal sytem
Cleaning & shaping of root canal sytemCleaning & shaping of root canal sytem
Cleaning & shaping of root canal sytem
 
HyFlex CM File
HyFlex CM FileHyFlex CM File
HyFlex CM File
 
Single & Multiple visits (Microbiological view)
Single & Multiple visits (Microbiological view)Single & Multiple visits (Microbiological view)
Single & Multiple visits (Microbiological view)
 
Histology and physiology of the pulp
Histology and physiology of the pulpHistology and physiology of the pulp
Histology and physiology of the pulp
 
Design features of rotary root canal instruments
Design features of rotary root canal instrumentsDesign features of rotary root canal instruments
Design features of rotary root canal instruments
 
Reciprocating instruments in endodontics
Reciprocating instruments in endodonticsReciprocating instruments in endodontics
Reciprocating instruments in endodontics
 
Access opening of molar teeth
Access opening of molar teethAccess opening of molar teeth
Access opening of molar teeth
 
WaveOne
WaveOneWaveOne
WaveOne
 
Rotary Universal ProTaper File
Rotary Universal ProTaper FileRotary Universal ProTaper File
Rotary Universal ProTaper File
 
Root Caries
Root CariesRoot Caries
Root Caries
 
Management of dental caries
Management of dental cariesManagement of dental caries
Management of dental caries
 
Biodentine™
Biodentine™Biodentine™
Biodentine™
 

Recently uploaded

Presentació "Real-Life VR Integration for Mild Cognitive Impairment Rehabilit...
Presentació "Real-Life VR Integration for Mild Cognitive Impairment Rehabilit...Presentació "Real-Life VR Integration for Mild Cognitive Impairment Rehabilit...
Presentació "Real-Life VR Integration for Mild Cognitive Impairment Rehabilit...Badalona Serveis Assistencials
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformKweku Zurek
 
COVID-19 (NOVEL CORONA VIRUS DISEASE PANDEMIC ).pptx
COVID-19  (NOVEL CORONA  VIRUS DISEASE PANDEMIC ).pptxCOVID-19  (NOVEL CORONA  VIRUS DISEASE PANDEMIC ).pptx
COVID-19 (NOVEL CORONA VIRUS DISEASE PANDEMIC ).pptxBibekananda shah
 
Glomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxGlomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxDr.Nusrat Tariq
 
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara RajendranMusic Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara RajendranTara Rajendran
 
April 2024 ONCOLOGY CARTOON by DR KANHU CHARAN PATRO
April 2024 ONCOLOGY CARTOON by  DR KANHU CHARAN PATROApril 2024 ONCOLOGY CARTOON by  DR KANHU CHARAN PATRO
April 2024 ONCOLOGY CARTOON by DR KANHU CHARAN PATROKanhu Charan
 
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisVarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisGolden Helix
 
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
PULMONARY EDEMA AND  ITS  MANAGEMENT.pdfPULMONARY EDEMA AND  ITS  MANAGEMENT.pdf
PULMONARY EDEMA AND ITS MANAGEMENT.pdfDolisha Warbi
 
Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Prerana Jadhav
 
Biomechanics- Shoulder Joint!!!!!!!!!!!!
Biomechanics- Shoulder Joint!!!!!!!!!!!!Biomechanics- Shoulder Joint!!!!!!!!!!!!
Biomechanics- Shoulder Joint!!!!!!!!!!!!ibtesaam huma
 
Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.ANJALI
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Mohamed Rizk Khodair
 
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...saminamagar
 
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️saminamagar
 
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfLippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfSreeja Cherukuru
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptxDr.Nusrat Tariq
 
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdfPULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdfDolisha Warbi
 
Introduction to Sports Injuries by- Dr. Anjali Rai
Introduction to Sports Injuries by- Dr. Anjali RaiIntroduction to Sports Injuries by- Dr. Anjali Rai
Introduction to Sports Injuries by- Dr. Anjali RaiGoogle
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAAjennyeacort
 

Recently uploaded (20)

Presentació "Real-Life VR Integration for Mild Cognitive Impairment Rehabilit...
Presentació "Real-Life VR Integration for Mild Cognitive Impairment Rehabilit...Presentació "Real-Life VR Integration for Mild Cognitive Impairment Rehabilit...
Presentació "Real-Life VR Integration for Mild Cognitive Impairment Rehabilit...
 
See the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy PlatformSee the 2,456 pharmacies on the National E-Pharmacy Platform
See the 2,456 pharmacies on the National E-Pharmacy Platform
 
COVID-19 (NOVEL CORONA VIRUS DISEASE PANDEMIC ).pptx
COVID-19  (NOVEL CORONA  VIRUS DISEASE PANDEMIC ).pptxCOVID-19  (NOVEL CORONA  VIRUS DISEASE PANDEMIC ).pptx
COVID-19 (NOVEL CORONA VIRUS DISEASE PANDEMIC ).pptx
 
Glomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxGlomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptx
 
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara RajendranMusic Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
Music Therapy's Impact in Palliative Care| IAPCON2024| Dr. Tara Rajendran
 
April 2024 ONCOLOGY CARTOON by DR KANHU CHARAN PATRO
April 2024 ONCOLOGY CARTOON by  DR KANHU CHARAN PATROApril 2024 ONCOLOGY CARTOON by  DR KANHU CHARAN PATRO
April 2024 ONCOLOGY CARTOON by DR KANHU CHARAN PATRO
 
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic AnalysisVarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
VarSeq 2.6.0: Advancing Pharmacogenomics and Genomic Analysis
 
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
PULMONARY EDEMA AND  ITS  MANAGEMENT.pdfPULMONARY EDEMA AND  ITS  MANAGEMENT.pdf
PULMONARY EDEMA AND ITS MANAGEMENT.pdf
 
Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.Presentation on General Anesthetics pdf.
Presentation on General Anesthetics pdf.
 
Biomechanics- Shoulder Joint!!!!!!!!!!!!
Biomechanics- Shoulder Joint!!!!!!!!!!!!Biomechanics- Shoulder Joint!!!!!!!!!!!!
Biomechanics- Shoulder Joint!!!!!!!!!!!!
 
Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.Statistical modeling in pharmaceutical research and development.
Statistical modeling in pharmaceutical research and development.
 
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in green park  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in green park DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)Primary headache and facial pain. (2024)
Primary headache and facial pain. (2024)
 
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
 
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️call girls in munirka  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
call girls in munirka DELHI 🔝 >༒9540349809 🔝 genuine Escort Service 🔝✔️✔️
 
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdfLippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
Lippincott Microcards_ Microbiology Flash Cards-LWW (2015).pdf
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptx
 
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdfPULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
PULMONARY EMBOLISM AND ITS MANAGEMENTS.pdf
 
Introduction to Sports Injuries by- Dr. Anjali Rai
Introduction to Sports Injuries by- Dr. Anjali RaiIntroduction to Sports Injuries by- Dr. Anjali Rai
Introduction to Sports Injuries by- Dr. Anjali Rai
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA
 

MTA

  • 1.
  • 2. Introduction Quest for newer materials are never ending especially in the field of dental science. Various materials have been formulated, tested and standardized to obtain maximum benefit for good clinical performance. One such new material is Mineral Trioxide Aggregate (MTA), which was introduced by Dr.Mahmoud Torabinejad at Loma Linda University, California, US and the first literature about the material appeared in 1993. Mineral Trioxide Aggregate (MTA) was originally formulated to provide the physical properties, setting requirements and characteristics necessary for an ideal repair and medicament material.
  • 3. Studies reveal that MTA exhibits good sealing ability, excellent long term prognosis, relative ease of manipulation, good biocompatibility and tissue regeneration. MTA has been approved by the U.S. Food and Drug Administration (FDA) in the year 1998. With its numerous exciting clinical applications, MTA promises to be one of the most versatile materials of this century in the field of dentistry.
  • 4. Availability of MTA Mineral trioxide aggregate (MTA) is a fine hydrophilic powder, available in single use sachets of 1 gram. Some companies also provide premeasured water sachets for ease of use.
  • 5. Composition of MTA MTA is a mechanical mixture of 3 powder ingredients: • Portland cement (75%). • Bismuth oxide (20%). • Gypsum (5%). The composition of MTA includes : • Tricalcium silicate. • Tricalcium aluminate. • Tricalcium oxide. • Silicate oxide. • Bismuth oxide.
  • 6. Its composition is said to be similar to Portland cement except for the absence of bismuth oxide in Portland cement. Bismuth oxide is added to improve the properties and the radioopacity. The MTA particles are smaller and uniform in size whereas the particle size of Portland cement vary in size. Though Bismuth oxide is said to improve the radio opacity.
  • 7. MTA is available in two types based on the color known as grey and white MTA. White MTAGrey MTA Ferrous oxide is replaced by Magnesium oxide, so no tooth discoloration. Contains tetracalcium aluminoferrite (Ferrous oxide) which is responsible for gray discoloration. So, it can cause discoloration of teeth, so that it not used with anterior teeth. Smaller particles with narrower size distribution. Large particles. Shorter.Longer setting time. Less.Greater compressive strength. Types of MTA
  • 8. Manipulation and setting reaction of MTA The MTA paste is obtained by mixing 3 parts of powder with 1 part of water to obtain putty like consistency (distilled water, local anesthesia, normal saline). Mixing can be done on paper or on a glass slab using a plastic or metal spatula. This mix is then placed in the desired location and condensed lightly with a moistened cotton pellet. MTA has a pH of 10.2 immediately after mixing and increases to 12.5 after 3 hours of setting which is almost similar to calcium hydroxide. MTA powder should be stored carefully in closed sealed containers away from moisture. The mixing time of MTA is crucial. If the mixing of MTA is prolonged, it results in dehydration of the mix. Sluyk et al in 1998 reported that the mixing time should be less than 4 minutes.
  • 9. MTA takes longer time to set compared to any other material. The exact time taken to set varies between different studies. According to Torabinejad and colleagues in 1995, the setting time of grey MTA is about 2 hours and 45 minutes (+5minutes), whereas Islam et al in 2006 reported 2 hours and 55 minutes for grey MTA and 2 hours and 20 minutes for white MTA. Extended setting period of MTA is one of its main drawbacks. It is suggested by many investigators that the incorporation of accelerators such as sodium phosphate dibasic (Na2HPO4) and calcium chloride (CaCl2) may reduce the setting time. MTA being hydrophilic requires moisture to set, making absolute dryness contraindicated. Presence of moisture during setting improves the flexural strength of the set cement.
  • 10. Hydration of the powder results in a colloidal gel composed of calcium oxide crystals in an amorphous structure (33% calcium, 49% phosphate, 6% silica, 3% chloride and 2% carbon). Though moisture is needed for MTA to set, excess moisture results in a mix that is ‘soupy’ and difficult to use. After mixing, the mix should not be left open on the slab as it undergoes dehydration and dries into a sandy mixture. It should be used immediately after it is prepared. MTA may be placed into the desired location using hand instruments (not condensed with excess pressure). Hand condensation is done with the help of a plugger or messing gun. Increase in condensation pressure might reduce the surface hardness. The explanation was that increasing the condensation pressure probably reduces the space required for the ingress of water which is required to hydrate the cement. Applied MTA should be cover by a damp pellet of cotton because for correct setting moisture is required. Then the tooth should be capped with a hermetic dressing for 1-2 days.
  • 11.
  • 12.
  • 13. Properties of MTA • It takes an average of 3-4 hours for the MTA material to completely solidify. It has been shown that once it is set, it has a compressive strength equal to IRM and Super EBA but less than amalgam. • Compressive strength of MTA within 24 hours of mixing was about 40.0 MPa and increases to 67.3 MPa after 21 days. • In comparison grey MTA exhibited greater compressive strength than white MTA. 1. Compressive strength: • MTA has an initial pH of 10.2 that rises to 12.5 three hours after mixing . 2. PH:
  • 14. • MTA is less radio opaque than IRM, Super EBA , amalgam or gutta- percha and has similar radiodensity as Zinc Oxide Eugenol. • The mean radio opacity of MTA is 7.17 mm of equivalent thickness of aluminium, which is sufficient to make it easy to visualize radiographically. 3. Radio-opacity: 4. Solubility: • Although the set MTA shows no signs of solubility, the solubility might increase if more water is used during mixing. • The set MTA when exposed to water releases calcium hydroxide which might be responsible for its cementogenesis inducing property.
  • 15. • MTA expands during setting which may be the reason for its excellent sealing ability. MTA thickness of about 4mm is sufficient to provide a good. • According to Torabinejad et al in 1995 MTA seals very superiorly and no gaps were found in any of the experimental specimen. 5. Marginal adaptation and sealing ability: • The MTA cements have antibacterial and fungicidal properties (because of high pH) in relation to following types:  Enterococcus faecalis.  Streptococcus sanguis.  Staphylococcus epidermis.  Micrococcus luteus.  Pseudomonas aeruginosa.  Escherichia coli.  Candia albicans. 6. Antibacterial and antifungal property:
  • 16. • MTA found that it is not mutagenic and is much less cytotoxic compared to Super EBA and IRM. This supports the superiority of MTA over formocresol as a pulpotomy medicament. • Genotoxicity tests of cells after treatment of peripheral lymphocytes with MTA showed no DNA damage. On direct contact they produce minimal or no inflammatory reaction in soft tissues and in fact are capable of inducing tissue regeneration. • Arens and Torabinejad in 1996 reported osseous repair of furcation perforations treated with MTA. MTA showed good interaction with bone-forming cells (cells remained viable and released collagen even after 72 hours with good adherence). 7. Biocompatibility:
  • 17. • MTA does not react or interfere with any other restorative material. Glass Ionomer cements or composite resins, used as permanent filling material do not affect the setting of MTA when placed over it. • Possible interactions might occur when MTA cement is combined with other materials during the endodontic treatment:  Chlorhexidine (CHX): might cause difficulties for correct setting.  Sodium hypochlorite (NaOCl): might cause a shorter time of setting,.  Saline (NaCl): might cause a longer time of setting,  Lignocaine: might cause a longer time of setting. 8. Reaction with other dental materials: 9. Tissue regeneration: • MTA is capable of activation of cementoblasts and production of cementum. It consistently allows for the overgrowth of cementum and also facilitates regeneration of the periodontal ligament. MTA allows bone healing and eliminates clinical symptoms in many cases.
  • 18. • MTA, just like calcium hydroxide, induces dentin bridge formation. Many investigators believe that the hard tissue bridge deposited next to MTA is because of the sealing property, biocompatibility, alkalinity and other properties associated with this material. • Holland et al in 1999 found calcite crystals nearest to the opening of the dentinal tubules close to MTA. They theorized that the tricalcium oxide in MTA reacts with tissue fluids to form calcium hydroxide, resulting in hard-tissue formation in a manner similar to that of calcium hydroxide. But the dentin bridge that is formed with MTA is faster, with good structural integrity and more complete than with calcium hydroxide. MTA also proves to be better at stimulating reparative dentin formation and maintaining the integrity of the pulp. • MTA consistently demonstrated less inflammation, hyperemia and necrosis, as well as a thicker dentinal bridge with more frequent odontoblastic layer formation, than that seen with calcium hydroxide. 10. Mineralization:
  • 19. Property Ca(OH)2 MTA Hard tissue formation Not much Root end induction Calcific bridge Not continuous slow Continuous with dentin fast Biocompatibility Low High Degree of inflammation High Low Sets Not Hard Hard pH High High Solubility Partially dissolve Less soluble Permeability Permeable to fluids Non permeable Resorption Rate vary with density Non-resorbable Appical closure Unpredictability Good MTA versus Ca(OH)2
  • 21. 1. Pulp Capping: • MTA has been proposed as a potential medicament for capping of pulps with reversible pulpitis because of its excellent tissue compatibility. It is much superior to the routinely used calcium hydroxide based on the tissue reaction and the amount and type of dentin bridge formed. • Calcium hydroxide is associated with tissue necrosis and inflammation during the initial period of placement but no such inflammation or necrosis was seen in the pulp tissue adjacent to MTA. • With MTA, dentin bridge after pulp capping was seen at about 1 week which steadily increased in length and thickness within 3 months of capping whereas following pulp capping with calcium hydroxide, the dentin bridge was less consistent and had numerous tunnel defects. • Since there is no pulpal necrosis, pulp tissue heals faster with MTA. Aeinehchi et al in 2003 reported a 0.28 mm thick dentin bridge by 2 months which increased to 0.43 mm by 6 months. The dentin bridge formed with calcium hydroxide was only 0.15 mm by 6 months.
  • 22.
  • 23. 2. Non vital pulpotomy: • Formacresol has been routinely used as a pulpotomy agent for deciduous teeth. But this material has been criticized for its tissue irritating, cytotoxic and mutagenic effects. • MTA was tested and found to be an ideal material with low toxic effects, increased tissue regenerating properties and good clinical results. • Furthermore, the presence of blood has little impact on the setting or degree of leakage when a 2-millimeter-thick layer of MTA was placed over the pulp during pulpotomy. • Discoloration of teeth was observed in 60% of the deciduous molars treated with MTA. But this was not of significance since the tooth was later restored with a stainless steel crown.
  • 24. 3. Vital pulpotomy (Apexogenesis): • Apexogenesis is defined as amputation of coronal pulp completely without inserting any thing into root canal system. This procedure was used for vital teeth with immature roots.
  • 25. • Bleeding is controlled with a cotton moistened with Sodium Hypochlorite (NaOCl). • MTA is placed over the exposed pulp using a large amalgam carrier. • The material is padded into place with a moist cotton pellet. • The moist cotton pellet is placed on the MTA and the material is allowed to set. The rest of the cavity is filled with temporary filling material. • In the next visit the temporary material is removed along with the cotton pellet and the tooth is restored with a permanent restoration. • The entire cavity can also be filled with MTA, instead of temporary material. A wet piece of gauze is placed between the treated tooth and the opposing tooth for 3-4 hours. This can be done only in compliant patients. • After 1 week, about 3-4 mm of the material from the occlusal surface is removed and final restoration placed over the set MTA. Steps involved in the placement of a pulp capping, pulpotomy
  • 26. 4. Root-end filling: • Endodontic surgery followed by root-end filling may at times be necessary for certain teeth where routine endodontic treatment is not possible. This procedure involves surgical exposure of the root apex, root resection and plugging the apical foramen with a suitable material that provides complete apical seal, is non toxic, non resorbable, dimensionally stable and radio opaque. • Many materials have been used as root-end filling agents but the main disadvantage is their failure to prevent leakage and the lack of biocompatibility. • Amalgam, although routinely used as a root-end filling material, proved to be much inferior when tested with MTA. MTA treated teeth exhibited significantly less inflammation, more cementum formation and regeneration of periradicular tissues.
  • 27. • Flap is raised under local anesthesia. This is followed by ostectomy, root-end resection and hemorrhage control. • MTA is placed into the prepared root end cavity with a small carrier and mildly patted into place with a plugger. • Since placement of wet cotton over the setting MTA is not possible, moist environment can be created by inducing mild bleeding from adjacent tissues and bringing the blood over the MTA. • The area should not be rinsed after the placement of MTA. • Flap is then sutured back into place. Steps involved in root-end filling
  • 28.
  • 29. 5. Apical plug (Apexification of non vital of immature roots): • Conventional management of an immature non vital permanent tooth is apexification with calcium hydroxide. • The purpose of apexification is to obtain an apical barrier so as to prevent the extrusion of the obturating material. • But the disadvantage of using calcium hydroxide is the extended time taken for the completion of the procedure which may range anywhere between 3 to 54 months. • The tooth with calcium hydroxide placed for more than 100 days showed a significant reduction in fracture resistance. • This problem is solved with the use of MTA. An MTA plug of 4mm thickness placed at the apical region is adequate to form a barrier, sealing the canal from the periapical area.
  • 30. • Access opening is done under local anesthesia and rubber dam. • The root canal is cleaned with intracanal irrigants. • Calcium hydroxide paste can be placed in the canal to disinfect for about 1 week. • Calcium hydroxide is removed by rinsing. Excess moisture is removed from the canal. • Mixed MTA is placed in the cavity using a large amalgam carrier. The material is pushed towards the apical foramen with a plugger or paper points. • The apical plug should be at least mm thick and this should be checked radiographically. • If the apical plug could not be placed adequately, the entire material is rinsed from the canal with sterile water and the procedure repeated. • A moist cotton pellet is placed in the canal and the tooth is temporarily restored. • After 3 hours, the remaining canal is obturated with gutta percha and a permanent restoration is then placed. Steps involved in apical plug placement
  • 31.
  • 32. 6. Obturation of the canal: • Mineral Trioxide Aggregate can be used to obturate the root canal of a retained primary tooth where the succedaneous permanent tooth is absent. • This technique is not recommended for obturation of primary teeth that are expected to exfoliate since it is anticipated that Mineral Trioxide Aggregate would be absorbed slowly, if at all. 7. Repair of perforation: • Repairing requires a material that should be biocompatible, should withstand moisture without dissolving and should have good sealing ability. • MTA was used for treatment of perforation that caused by an iatrogenic causes or complication of internal resorption.
  • 33. • Procedure is done under anesthesia and rubber dam. • After performing access opening, the canals are irrigated with NaOCl. • Calcium hydroxide can be placed in the canal in between appointments which will help control hemorrhage. • Before placing MTA, calcium hydroxide should be completely removed. • The apical portion of the canal is obturated with sectional cone technique using gutta percha and root canal sealer. • MTA is placed into the defect and moist cotton pellet is placed over it. The access cavity is closed with a temporary restoration. • The remaining portion of the canal is restored with a permanent filling material after at least 3-4 hours. Steps involved in the repair of perforation:
  • 34.
  • 35. 8. Repair of fracture: • The success rate of horizontal root fracture treatment depending on their location (cervical, middle, and apical). The root fracture located in the cervical and middle thirds causes difficulty for treatment because it is difficult for dental immobilization, leading to injury or even preventing the consolidation of the fragments. • For these cases, it is possible to strengthen the tooth with an intra-canal pin cemented with MTA • The canal is instrumented, and then an apical plug with MTA is performed. A metal pin is selected in order to remain adjusted in the canal, which is filled with MTA, seating the pin inside. Thus, there is reinforcement for the root, preventing mobility of the coronary segment. A. Horizontal root fracture:
  • 36.
  • 37. • Vertical fracture has a very poor prognosis. • To repair a vertical fracture, remove the root canal filling material from the treated root(s) and bond the pieces internally with composite bonded resin. • After raising a flap, groove the entire vertical fracture to the composite with a small bur under constant water spray. Place MTA in the groove, cover it with a resorbable membrane, and suture the soft tissue flap. • They have also suggested that the tooth can be intentionally extracted to repair the fracture if the fracture line cannot be assessed by flap surgery followed by reimplanting it back into the socket. • To improve the prognosis of these cases, the patients should be instructed to follow meticulous oral hygiene and the treated tooth should not be probed for at least 12 wk. B. Vertical root fracture:
  • 38. References • Rao A, Rao A, Shenoy R. Mineral trioxide aggregate-A review. J Clin Pediatr Dent. 2009; 34(1):1-8. • Srinivasan V, Waterhouse P, Whitworth J. Mineral trioxide aggregate in paediatric dentistry. International Journal of Paediatric Dentistry. 2009; 19:34-47. • Macwan C, Deshpande A. Mineral trioxide aggregate (MTA) in dentistry: A review of literature. Journal of Oral Research and Review. 2014; 6(2):71-74. • Simon S, Rilliard F, Berdal A, Machtou P. The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study. International Endodontic Journal. 2007; 40:186-197. • Hegde R, Battepat PM. Clinical Applications of Mineral Trioxide Aggregate: report of four cases. International Journal of Clinical Pediatric Dentistry, January. 2010; 3(1):43-50. • Castellucci A. The use of mineral trioxide aggregate in clinical and surgical endodontics. Dent Today. 2003; 22(3):74-81. • Camilleri J. Mineral Trioxide Aggregate in Dentistry: From preparation to application. 1st ed. 2014; Springer Heidelberg New York Dordrecht London.