SlideShare a Scribd company logo
1 of 82
Chemical Thermodynamics
‫الحرارية‬ ‫الديناميكا‬ ‫كيمياء‬
1Dr. Wael A. El-Helece
Chemical
Thermodynamics
Contents ‫المحتويات‬
1.Some Terminology ‫بعض‬‫المفاهيم‬
2.Heat ‫الحرارة‬
3.Heats of Reaction and Calorimetry ‫الحراري‬ ‫والمسعر‬ ‫التفاعل ت‬ ‫حرارة‬
4.Work ‫الشغل‬
5.The First Law of Thermodynamics ‫للديناميكا‬ ‫الول‬ ‫القانون‬
‫الحرارية‬
6.Heats of Reaction: ∆U and ∆H ‫التفاعل‬ ‫حرارا ت‬
2Dr. Wael A. El-Helece
Chemical
Thermodynamics
Contents ‫المحتويات‬
7.The Indirect Determination of ∆H, Hess’s Law
‫هس‬ ‫وقانون‬ ‫الحرارى‬ ‫المحتوى‬ ‫فى‬ ‫للتغير‬ ‫المباشر‬ ‫غير‬ ‫التعين‬
8.Standard Enthalpies of Formation
‫القياسية‬ ‫التكون‬ ‫حرارا ت‬
9.Fuels as Sources of Energy
‫للطاقة‬ ‫كمصدر‬ ‫الوقود‬ ‫خليا‬
10.Focus on Fats, Carbohydrates, and Energy Storage
‫الطاقة‬ ‫وتخزين‬ ‫والكربوهيدرا ت‬ ‫الدهون‬ ‫على‬ ‫نظرة‬
3Dr. Wael A. El-Helece
Chemical
Thermodynamics
Some Terminology
‫المصطلحات‬ ‫بعض‬
• System
•‫النظام‬
• Surroundings
•‫المحيط‬
4Dr. Wael A. El-Helece
Chemical
Thermodynamics
Terminology
‫المصطلحا ت‬
• Energy, U ‫الطاقة‬
The capacity to do work. ‫شغل‬ ‫بذل‬ ‫على‬ ‫القدرة‬
• Work ‫الشغل‬
Force acting through a distance.‫على‬ ‫المؤثرة‬ ‫القوة‬
‫المساحة‬
• Kinetic Energy ‫الحركة‬ ‫طاقة‬
The energy of motion. ‫الحركة‬ ‫على‬ ‫القدرة‬5Dr. Wael A. El-Helece
Chemical
Thermodynamics
Energy
‫الطاقة‬
• Kinetic Energy ‫الحركة‬ ‫طاقة‬
ek =
1
2
mv2
[ek ] =
kg m2
s2 = J
w = Fd [w ] =
kg m
s2 = Jm
• Work ‫الشغل‬
‫القانو‬
‫ن‬
‫القانو‬
‫ن‬
‫وحدة‬
‫القياس‬
‫وحدة‬
‫القياس‬
6Dr. Wael A. El-Helece
Chemical
Thermodynamics
Energy
‫الطاقة‬
• Potential Energy ‫الوضع‬ ‫طاقة‬
Energy due to condition, position, or
composition. ‫او‬ ‫الموضع‬ ‫او‬ ‫الظرف‬ ‫نتيجة‬ ‫الطاقة‬
‫التركيب‬
Associated with forces of attraction or repulsion
between objects. ‫بين‬ ‫والتنافر‬ ‫الجذب‬ ‫بقى‬ ‫مصحوبة‬ ‫تكون‬
‫الجزيئات‬
• Energy can change from potential to 7Dr. Wael A. El-Helece
Chemical
Thermodynamics
Energy and Temperature
‫الحرارة‬ ‫ودرجة‬ ‫الطاقة‬
• Thermal Energy ‫الحرارية‬ ‫الطاقة‬
Kinetic energy associated with random molecular motion.
‫عشوائيا‬ ‫الجزيئات‬ ‫بحركة‬ ‫مصحوبة‬ ‫حركة‬ ‫طاقة‬
proportional to temperature.
‫الحرارة‬ ‫درجة‬ ‫مع‬ ‫طرديا‬ ‫تتناسب‬
An intensive property. )‫مركزة‬ ‫داخلية‬ ‫)خاصية‬
• Heat and Work ‫والشغل‬ ‫الحرارة‬
q and w.
Energy changes. ‫الطاقة‬ ‫تغيرات‬
8Dr. Wael A. El-Helece
Chemical
Thermodynamics
Heat ‫الحرارة‬
Energy transferred between a system and its surroundings
as a result of a temperature difference.
.‫الحرارة‬ ‫درجا ت‬ ‫فى‬ ‫لفرق‬ ‫كنتيجة‬ ‫محيطه‬ ‫إلى‬ ‫النظام‬ ‫من‬ ‫الطاقة‬ ‫تنتقل‬
• Heat flows from hotter to colder.
.‫البرد‬ ‫إلى‬ ‫السخن‬ ‫من‬ ‫الحرارة‬ ‫تنتقل‬
Temperature may change.
.‫الحرارة‬ ‫درجة‬ ‫تغير‬ ‫المكان‬ ‫فى‬
Phase may change (an isothermal process).
.(‫حراريا‬ ‫)متعادلة‬ ‫تتغير‬ ‫أن‬ ‫ممكن‬ ‫الحالة‬
9Dr. Wael A. El-Helece
Chemical
Thermodynamics
Units of Heat
‫الحرارة‬ ‫قياس‬ ‫وحدات‬
• Calorie (cal) ‫الكالورى‬
The quantity of heat required to change the temperature of one
gram of water by one degree Celsius.
‫الماء‬ ‫من‬ ‫جرام‬ ‫واحد‬ ‫حرارة‬ ‫درجة‬ ‫لرفع‬ ‫اللزمة‬ ‫الحرارة‬ ‫كمية‬
.‫مئوية‬ ‫واحدة‬ ‫درجة‬
• Joule (J) ‫الجول‬
SI unit for heat ‫الدولي‬ ‫النظام‬ ‫فى‬ ‫الحرارة‬ ‫قياس‬ ‫وحدة‬
‫للوحدات‬
1 cal = 4.184 J
10Dr. Wael A. El-Helece
Chemical
Thermodynamics
Chemical Thermodynamics
‫الحرارية‬ ‫الديناميكا‬ ‫كيمياء‬
 Science of interconversion of energy
.‫والطاقة‬ ‫المادة‬ ‫وتداخل‬ ‫الطاقة‬ ‫تحول‬ ‫يتناول‬ ‫الذى‬ ‫العلم‬
 Heat into other forms of energy
.‫الطاقة‬ ‫من‬ ‫أخرى‬ ‫أشكال‬ ‫إلى‬ ‫الحرارة‬
 Amount of heat gained/released from a system
.‫النظام‬ ‫بواسطة‬ ‫والمفقودة‬ ‫المكتسبة‬ ‫الحرارة‬ ‫كمية‬
 Spontaneity of a reaction
.‫النظام‬ ‫تلقائية‬
11Dr. Wael A. El-Helece
Chemical
Thermodynamics
Chemical Thermodynamics
‫الحرارية‬ ‫الديناميكا‬ ‫كيمياء‬
 Gibbs free energy function
.‫الحرة‬ ‫للطاقة‬ ‫جبس‬ ‫دالة‬
 Relationship between Gibbs Free Energy and chemical
equilibrium
.‫الكيميائى‬ ‫والتزان‬ ‫الحرة‬ ‫جبس‬ ‫طاقة‬ ‫بين‬ ‫العلقة‬
12Dr. Wael A. El-Helece
Chemical
Thermodynamics
First Law of Thermodynamics
‫الحرارية‬ ‫للديناميكا‬ ‫الول‬ ‫القانون‬
• energy cannot be created nor destroyed.
•.‫العدم‬ ‫من‬ ‫تستحدث‬ ‫ول‬ ‫تفنى‬ ‫ل‬ ‫الطاقة‬
• Therefore, the total energy of the universe is a
constant.
•.‫ثابته‬ ‫للكون‬ ‫الكلية‬ ‫الطاقة‬ ‫فان‬ ‫وبالتالى‬
• Energy can, however, be converted from one form to
another or transferred from a system to the
surroundings or vice versa.
•‫الى‬ ‫نظام‬ ‫من‬ ‫وتنتقل‬ ‫اخرى‬ ‫الى‬ ‫صورة‬ ‫من‬ ‫تتحول‬ ‫ان‬ ‫يمكن‬ ‫الطاقة‬
.‫والعكس‬ ‫المحيط‬
13Dr. Wael A. El-Helece
Chemical
Thermodynamics
Conservation of Energy
‫الطاقة‬ ‫بقاء‬
• In interactions between a system and its surroundings
the total energy remains constant.
.‫ثابتة‬ ‫الطاقة‬ ‫كمية‬ ‫تظل‬ ‫ومحيطه‬ ‫النظام‬ ‫بين‬ (‫)التداخل‬ ‫التلمس‬ ‫عند‬
• energy is neither created nor destroyed.
.‫تستحدث‬ ‫ول‬ ‫تفنى‬ ‫ل‬ ‫الطاقة‬
qsystem + qsurroundings = 0 qsystem = -qsurroundings
14Dr. Wael A. El-Helece
Chemical
Thermodynamics
Spontaneous Processes
‫التلقائية‬ ‫العمليات‬
• Spontaneous processes proceed
without any outside intervention.
•‫اى‬ ‫دون‬ ‫تحدث‬ ‫التلقائية‬ ‫العمليات‬
.‫خارجى‬ ‫حث‬
• The gas in vessel B will
spontaneously effuse into vessel
A.
•) ‫الوعاء‬ ‫فى‬ ‫الغاز‬B‫إلى‬ ‫تلقائيا‬ ‫ينتقل‬ ‫(سوف‬
) ‫الوعاء‬A.(
15Dr. Wael A. El-Helece
Chemical
Thermodynamics
Spontaneous Processes
‫التلقائية‬ ‫العمليات‬
Processes that are spontaneous
in one direction are non-
spontaneous in the reverse
direction.
‫التجاهين‬ ‫دد‬‫د‬‫دد‬‫اح‬ ‫دىدد‬‫ف‬ ‫دةد‬‫ي‬‫التلقائ‬ ‫العمليات‬
.‫المعاكس‬ ‫التجاه‬ ‫فى‬ ‫لتلقائية‬ ‫تكون‬
16Dr. Wael A. El-Helece
Chemical
Thermodynamics
Spontaneous Processes
‫التلقائية‬ ‫العمليات‬
• Processes that are spontaneous at one temperature
may be nons-pontaneous at other temperatures.
•‫عند‬ ‫لتلقائية‬ ‫تكون‬ ‫ربما‬ ‫حرارة‬ ‫درجة‬ ‫عند‬ ‫التلقائية‬ ‫العمليات‬
.‫أخرى‬ ‫حرارة‬ ‫درجات‬
Ice
‫ثلج‬
Water
‫ماء‬
17Dr. Wael A. El-Helece
Chemical
Thermodynamics
Reversible Processes
‫النعكاسية‬ ‫العمليات‬
In a reversible process the system
changes in such a way that the system
and surroundings can be put back in
their original states by exactly
reversing the process.
‫التى‬ ‫بالطريققة‬ ‫يتغيقر‬ ‫النظام‬ ‫النعكاسقية‬ ‫العمليا ت‬ ‫فقى‬
‫الولية‬ ‫الحالة‬ ‫على‬ ‫والمحيط‬ ‫النظام‬ ‫يتواجد‬ ‫ان‬ ‫يمكن‬
.‫تماما‬ ‫العملية‬ ‫عكس‬ ‫طريق‬ ‫عن‬
18Dr. Wael A. El-Helece
Chemical
Thermodynamics
Irreversible Processes
‫النعكاسية‬ ‫غير‬ ‫العمليات‬
• Irreversible processes cannot be done by exactly
reversing the change to the system.
•‫فى‬ ‫بالضبط‬ ‫تتم‬ ‫أن‬ ‫يمكن‬ ‫ل‬ ‫النعكاسية‬ ‫غير‬ ‫العمليات‬
.‫الحادث‬ ‫التغير‬ ‫يعكس‬ ‫الذى‬ ‫التجاه‬
• Spontaneous processes are irreversible.
•.‫انعكاسية‬ ‫غير‬ ‫التلقائية‬ ‫العمليات‬
19Dr. Wael A. El-Helece
Chemical
Thermodynamics
Spontaneous reactions
‫التلقائية‬ ‫التفاعل ت‬
CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (l) ∆H0
= -890.4 kJ
H+
(aq) + OH-
(aq) H2O (l) ∆H0
= -56.2 kJ
H2O (s) H2O (l) ∆H0
= 6.01 kJ
NH4NO3 (s) NH4
+
(aq) + NO3
-
(aq) ∆H0
= 25 kJH2O
20Dr. Wael A. El-Helece
Chemical
Thermodynamics
The First Law of Thermodynamics
‫الحرارية‬ ‫للديناميكا‬ ‫الول‬ ‫القانون‬
• Internal Energy, U. ‫الداخلية‬ ‫الطاقة‬
Total energy (potential and kinetic) in a system.
‫والحركة‬ ‫الوضع‬ ‫طاقتى‬ ‫مجموع‬
Translational kinetic energy. ‫انتقالية‬ ‫حركة‬ ‫.طاقة‬
Molecular rotation. ‫جزيئي‬ ‫تردد‬
Bond vibration. ‫الرابطة‬ ‫اهتزاز‬
Intermolecular attractions. ‫الجزيئا ت‬ ‫بين‬ ‫تجاذبا ت‬.
Chemical bonds. ‫الكيميائية‬ ‫الروابط‬
Electrons. ‫اللكترونا ت‬ ‫حركة‬
21Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy
‫العشوائية‬ ‫مقياس‬
• Entropy (S) is a term coined by Rudolph Clausius in the
19th century.
‫فى‬ ‫كلسوسيوس‬ ‫رسودسولف‬ ‫بواسطة‬ ‫استخدامه‬ ‫تم‬ (‫)التنترسوبيا‬ ‫العشوائية‬ ‫مفهوم‬
.‫عشر‬ ‫التاسع‬ ‫القرن‬
• Clausius was convinced of the significance of the ratio
of heat delivered and the temperature at which it is
delivered.
‫سودرجة‬ ‫المنتقللة‬ ‫الحرارة‬ ‫كميلة‬ ‫ملن‬ ‫علةقلة‬ ‫بوجود‬ ‫مقتنعلا‬ ‫كان‬ ‫كلسوسليوس‬
.‫التنتقال‬ ‫عندها‬ ‫يحدث‬ ‫التي‬ ‫الحرارة‬q
T
22Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy
‫العشوائية‬ ‫مقياس‬
• Entropy can be thought of as a measure of the
randomness of a system.
‫انه‬ ‫على‬ ‫اعتباره‬ ‫يمكن‬ ‫النتروبى‬‫للعشوائية‬ ‫مقياس‬‫داخل‬
.‫النظام‬
• It is related to the various modes of motion in
molecules.
.‫الجزيئات‬ ‫فى‬ ‫الحركة‬ ‫بأنواع‬ ‫اساسى‬ ‫بشكل‬ ‫مرتبط‬
• Like total energy, E, and enthalpy, H, entropy is a state
function. ‫سوكذا‬ ‫الكلية‬ ‫الطاةقة‬ ‫مثل‬ ‫مثله‬ ‫حالة‬ ‫دالة‬ ‫التنترسوبى‬‫المحتوى‬
‫الحراري‬
• Therefore, 23Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy
‫العشوائية‬ ‫مقياس‬
For a process occurring at constant temperature (an
isothermal process), the change in entropy is equal to
the heat that would be transferred if the process were
reversible divided by the temperature.
‫المنتقلة‬ ‫الحرارة‬ ‫بكمية‬ ‫لنظام‬ ‫النتروبيا‬ ‫فى‬ ‫التغير‬ ‫يقدر‬
.‫انعكاسية‬ ‫العملية‬ ‫كانت‬ ‫إذا‬ ‫الحرارة‬ ‫درجة‬ ‫على‬ ‫مقسومة‬
∆S =
qrev
T
24Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy (S) = a measure of randomness or disorder
MATTER IS ENERGY.
ENERGY IS INFORMATION.
EVERYTHING IS INFORMATION.
PHYSICS SAYS THAT STRUCTURES...
BUILDINGS, SOCIETIES,
IDEOLOGIES... WILL SEEK THEIR
POINT OF LEAST ENERGY.
THIS MEANS THAT
THINGS FALL.
THEY FALL FROM HEIGHTS OF
ENERGY AND STRUCTURED
INFORMATION INTO
MEANINGLESS, POWERLESS
DISORDER.
THIS IS CALLED
ENTROPY.
Chemical
Thermodynamics
Entropy
‫النتروبيا‬
• To predict spontaneity we need: ‫تنحتاج‬ ‫التلقائية‬ ‫تنعين‬ ‫لكي‬
Change in enthalpy ‫الحراري‬ ‫المحتوى‬ ‫في‬ ‫التغير‬
Entropy ‫العشوائية‬ ‫)مقياس‬ ‫)التنترسوبيا‬
Entropy- a measure of the randomness or disorder
of a system.
‫النظام‬ ‫فى‬ ‫سوالفوضى‬ ‫العشوائية‬ ‫مقياس‬ ‫التنترسوبيا‬
↑ Disorder ‫الفوضى‬ = ↑ Entropy ‫التنترسوبيا‬
26Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy and Disorder ‫سوالعشوائية‬ ‫التنترسوبيا‬
27Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy on the Molecular Scale
‫الجزيئي‬ ‫المستوى‬ ‫على‬ ‫النتروبيا‬
• Ludwig Boltzmann described the concept of entropy on
the molecular level.
.‫الجزيئي‬ ‫المستوى‬ ‫على‬ ‫النتروبيا‬ ‫مفهوم‬ ‫شرح‬ ‫بولتزمان‬
• Temperature is a measure of the average kinetic energy
of the molecules in a sample.
.‫العينة‬ ‫فى‬ ‫للجزيئات‬ ‫الحركة‬ ‫طاةقة‬ ‫لمتوسط‬ ‫مقياس‬ ‫الحرارة‬ ‫درجة‬
28Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy on the Molecular Scale
‫الجزيئي‬ ‫المستوى‬ ‫على‬ ‫النتروبيا‬
• Molecules exhibit several types of motion:
:‫الحركة‬ ‫أنواع‬ ‫من‬ ‫نوع‬ ‫من‬ ‫أكثر‬ ‫على‬ ‫تحتوى‬ ‫الجزيئات‬
 Translational: Movement of the entire molecule from one place to
another. ‫من‬ ‫للجزيئ‬ ‫انتقال‬ ‫يحدث‬ ‫انتقالية‬ ‫حركة‬
‫لخر‬ ‫مكان‬
 Vibrational: Periodic motion of atoms within a molecule.
‫الجزيئ‬ ‫داخل‬ ‫للذرات‬ ‫دورية‬ ‫حركة‬ ‫اهتزازية‬ ‫حركة‬
 Rotational: Rotation of the molecule on about an axis or rotation
about σ bonds. ‫احد‬ ‫حول‬ ‫ككل‬ ‫الجزيئ‬ ‫دوران‬ ‫دورانية‬ ‫حركة‬
‫المحاور‬
29Dr. Wael A. El-Helece
Chemical
Thermodynamics
Microstates and Entropy ‫سوالتنترسوبي‬ ‫الداخلية‬ ‫التغيرات‬
• Boltzmann, 1868 ‫بولتزمان‬
S = k ln W
• k = 1.38 x 10-23
J/K
↑ W = ↑ Entropy
∆ S = Sf – Si
∆ S = k ln Wf
Wi
30Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy on the Molecular Scale
‫الجزيئى‬ ‫المقياس‬ ‫على‬ ‫التنترسوبيا‬
• Each thermodynamic state has a specific number of
microstates, W, associated with it.
.‫لها‬ ‫مصاحبة‬ ‫الشغل‬ ‫من‬ ‫محدد‬ ‫عدد‬ ‫لها‬ ‫حرارية‬ ‫ديناميكا‬ ‫حالة‬ ‫كل‬
• Entropy is ‫هو‬ ‫النتروبيا‬
S = k lnW
where k is the Boltzmann constant, 1.38 × 10−23
J/K.
) ‫أن‬ ‫حيث‬k. (‫بولتزمان‬ ‫ثابت‬ ‫هو‬
31Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy on the Molecular Scale
‫الجزيئى‬ ‫المقياس‬ ‫على‬ ‫التنترسوبيا‬
• The change in entropy for a process, then, is
‫يكون‬ ‫ما‬ ‫لعملية‬ ‫النتروبيا‬ ‫فى‬ ‫التغير‬
∆S = k lnWfinal − k lnWinitial
Wfinal
Winitial
∆S ∆S = k ln
• Entropy increases with the number of microstates
in the system. ‫للمادة‬ ‫الداخلية‬ ‫العوامل‬ ‫بزيادة‬ ‫التنترسوبى‬ ‫يزداد‬
32Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy on the Molecular Scale
‫الجزيئى‬ ‫المقياس‬ ‫على‬ ‫التنترسوبيا‬
• The number of microstates and, therefore, the entropy
tends to increase with increases in
‫بزيادة‬ ‫تزداد‬ ‫العشوائية‬ ‫سوبالتالي‬ ‫الداخلية‬ ‫العوامل‬ ‫عدد‬
Temperature. ‫الحرارة‬ ‫درجة‬
Volume. ‫الحجم‬
The number of independently moving molecules.
.‫عشوائيا‬ ‫تتحرك‬ ‫التي‬ ‫الجزيئات‬ ‫عدد‬
33Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy and Physical States
‫الجزيئى‬ ‫المقياس‬ ‫على‬ ‫التنترسوبيا‬
• Entropy increases with
the freedom of motion of
molecules.
‫حرية‬ ‫بزيادة‬ ‫تزداد‬ ‫النتروبيا‬
‫للجزيئات‬ ‫الحركة‬
• Therefore, ‫وبالتالى‬
S(g) > S(l) > S(s)
34Dr. Wael A. El-Helece
Chemical
Thermodynamics
Solutions ‫المحاليل‬
Generally, when a
solid is dissolved in a
solvent, entropy
increases.
,‫صلب‬ ‫يذاب‬ ‫عندما‬ ‫عموما‬
. ,‫تزداد‬ ‫النتروبيا‬ ‫مذيب‬ ‫في‬
35Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy Changes
‫التنترسوبيا‬ ‫تغيرات‬
• In general, entropy increases when
,‫عندما‬ ‫يزداد‬ ‫النتروبيا‬ ‫عموما‬
 Gases are formed from liquids
and solids.
.‫والصلب‬ ‫السوائل‬ ‫من‬ ‫الغازات‬ ‫تتكون‬
 Liquids or solutions are formed
from solids.
‫الصلب‬ ‫من‬ ‫تتكون‬ ‫والمحاليل‬ ‫السوائل‬
 The number of gas molecules
increases.
‫تزداد‬ ‫الغاز‬ ‫جزيئات‬ ‫عدد‬
 The number of moles
increases.
.‫المولت‬ ‫عدد‬ ‫تزداد‬
36Dr. Wael A. El-Helece
Chemical
Thermodynamics
Second Law of Thermodynamics
‫الحرارية‬ ‫للديناميكا‬ ‫الثانى‬ ‫القانون‬
The second law of thermodynamics states that:
:‫على‬ ‫الحرارية‬ ‫للديناميكا‬ ‫الثاتني‬ ‫القاتنون‬ ‫ينص‬
The entropy of the universe increases for spontaneous
processes.
.‫التلقائية‬ ‫للعمليات‬ (‫المحيط‬ + ‫)النظام‬ ‫الكون‬ ‫في‬ ‫التنترسوبيا‬ ‫تزداد‬
The entropy of the universe does not change for
reversible processes.
.‫التنعكاسية‬ ‫للعمليات‬ ‫الكون‬ ‫في‬ ‫التنترسوبيا‬ ‫يتأثر‬ ‫ل‬
37Dr. Wael A. El-Helece
Chemical
Thermodynamics
Second Law of Thermodynamics
‫الحرارية‬ ‫للديناميكا‬ ‫الثانى‬ ‫القانون‬
In other words: ‫اخرى‬ ‫بعبارات‬
For reversible processes: ‫التنعكاسية‬ ‫للعمليات‬
∆Suniv = ∆Ssystem + ∆Ssurroundings = 0
For irreversible processes: ‫التنعكاسية‬ ‫غير‬ ‫للعمليات‬
∆Suniv = ∆Ssystem + ∆Ssurroundings > 0
38Dr. Wael A. El-Helece
Chemical
Thermodynamics
Second Law of Thermodynamics
‫الحرارية‬ ‫للديناميكا‬ ‫الثانى‬ ‫القانون‬
These last truths mean that as a result of all
spontaneous processes the entropy of the
universe increases.
‫العمليات‬ ‫لكل‬ ‫ةة‬‫ة‬‫ةة‬‫نتيج‬ ‫ةنة‬‫أ‬ ‫ةىة‬‫ن‬‫تع‬ ‫الخيرة‬ ‫ةقة‬‫ئ‬‫الحقا‬ ‫هذه‬
.‫تزداد‬ ‫الكون‬ ‫عشوائية‬ ‫التلقائية‬
39Dr. Wael A. El-Helece
Chemical
Thermodynamics
Standard Entropies ‫القياسية‬ ‫النتروبيا‬
• These are molar entropy values
of substances in their standard
states.
•‫المواد‬ ‫لبعض‬ ‫النوعية‬ ‫النتروبيا‬ ‫قيم‬ ‫هذه‬
.‫القياسية‬ ‫حالتها‬ ‫فى‬
• Standard entropies tend to
increase with increasing molar
mass.
•‫بزيادة‬ ‫تزداد‬ ‫القياسية‬ ‫ةةة‬‫ي‬‫النوع‬ ‫ةاة‬‫ي‬‫النتروب‬
.‫النوعية‬ ‫الكتلة‬
40Dr. Wael A. El-Helece
Chemical
Thermodynamics
Standard Entropies ‫القياسية‬ ‫النتروبيا‬
Larger and more complex molecules
have greater entropies.
‫النتروبيا‬ ‫قيمة‬ ‫تكون‬ ‫تعقيدا‬ ‫والكثر‬ ‫الكبر‬ ‫الجزيئات‬
.‫كبيرة‬
41Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy Changes ‫النتروبيا‬ ‫تغير‬
Entropy changes for a reaction can be estimated in a manner
analogous to that by which ∆H is estimated:
‫فى‬ ‫التغير‬ ‫تعين‬ ‫يتم‬ ‫للتى‬ ‫مشابهه‬ ‫بطريقة‬ ‫تعينها‬ ‫يمكن‬ ‫لتفاعل‬ ‫التنترسوبيا‬ ‫تغيرات‬
.‫الحراري‬ ‫المحتوى‬
∆S° = Σn∆S°(products) - Σm∆S°(reactants)
where n and m are the coefficients in the
balanced chemical equation.
‫ان‬ ‫حيث‬n‫و‬m‫الكيميائية‬ ‫المعادلة‬ ‫في‬ ‫معاملت‬ 42Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy Changes in Surroundings
‫المحيطات‬ ‫انتروبيا‬ ‫فى‬ ‫التغيرات‬
• Heat that flows into or out of the system changes the
entropy of the surroundings.
•.‫للمحيط‬ ‫النتروبيا‬ ‫تغير‬ ‫النظام‬ ‫عبر‬ ‫او‬ ‫من‬ ‫تنساب‬ ‫التى‬ ‫الحرارة‬
• For an isothermal process:
•:‫حراريا‬ ‫المعزولة‬ ‫للعمليات‬
∆Ssurr = −qsys
T
• At constant pressure, qsys is simply ∆H° for the
system. ‫التغير‬ ‫تبسيطا‬ ‫هى‬ ‫نظام‬ ‫حرارة‬ ‫ثابت‬ ‫ضغط‬ ‫عند‬
‫النثالبى‬ ‫فى‬ 43Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy Change in the Universe
‫الكون‬ ‫انتروبيا‬ ‫فى‬ ‫التغيرات‬
• The universe is composed of the system
and the surroundings.
•.‫والمحيط‬ ‫النظام‬ ‫من‬ ‫يتكون‬ ‫الكون‬
• Therefore, ‫وبالتالي‬
∆Suniverse = ∆Ssystem + ∆Ssurroundings
• For spontaneous processes ‫للعمليات‬
‫التلقائية‬
∆Suniverse > 0 44Dr. Wael A. El-Helece
Chemical
Thermodynamics
Entropy Change in the Universe
‫الكون‬ ‫انتروبيا‬ ‫فى‬ ‫التغيرات‬
• This becomes:
∆Suniverse = ∆Ssystem +
Multiplying both sides by −T,
−T∆Suniverse = ∆Hsystem − T∆Ssystem
−∆Hsystem
T
45Dr. Wael A. El-Helece
Chemical
Thermodynamics
Gibbs Free Energy
‫الحرة‬ ‫للطاقة‬ ‫جبس‬ ‫دالة‬
∀−TΔSuniverse is defined as the Gibbs free energy, ∆G. ‫ةلادالة‬
‫فى‬ ‫مضروبا‬ ‫النظام‬ ‫انتروبيا‬ ‫فى‬ ‫التغير‬ ‫تساوى‬ ‫الحرة‬ ‫للطاقة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬
‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬
∆G = −TΔSuniverse
• When ∆Suniverse is positive, ∆G is negative.
•.‫سالبة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫تكون‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبة‬‫و‬‫م‬ ‫النظام‬ ‫انتروبيا‬ ‫تكون‬ ‫عندما‬
• Therefore, when ∆G is negative, a process is
spontaneous.
•‫تلقائية‬ ‫تكون‬ ‫العملية‬ ,‫سالبة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫تكون‬ ‫عندما‬ ,‫وبالتالي‬46Dr. Wael A. El-Helece
Chemical
Thermodynamics
Dr. Wael A. El-Helece 47
Chemical
Thermodynamics
Gibbs Free Energy
‫الحرة‬‫جبس‬ ‫دالة‬
1. If ΔG is negative, the forward reaction is spontaneous.
.‫تلقائي‬ ‫يكون‬ ‫ةلادى‬‫ر‬‫الط‬ ‫التفاعل‬ ,‫سالبة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫قيمة‬ ‫كانت‬ ‫اذا‬
2. If ΔG is 0, the system is at equilibrium.
.‫التزان‬ ‫عند‬ ‫يكون‬ ‫التفاعل‬ ,‫صفر‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫قيمة‬ ‫كانت‬ ‫اذا‬
3. If ∆G is positive, the reaction is spontaneous in the reverse
direction.
.‫تلقائي‬ ‫يكون‬ ‫العكسي‬ ‫التفاعل‬ ,‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبة‬‫و‬‫م‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫قيمة‬ ‫كانت‬ ‫اذا‬
48Dr. Wael A. El-Helece
Chemical
Thermodynamics
Reaction Quotient ‫التفاعل‬ ‫حاصل‬
the reaction quotient (Q) is equal to the equilibrium constant (k).
.‫التزان‬ ‫ظروف‬ ‫غير‬ ‫فى‬ ‫التزان‬ ‫لثابت‬ ‫مساويا‬ ‫يكون‬ ‫التفاعل‬ ‫حاصل‬
We can write the reaction quotient Q for any half reaction in terms of the
activities of the species:
.‫التفكك‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ‫بدللة‬ ‫تفاعل‬ ‫نصف‬ ‫ل ي‬ ‫التفاعل‬ ‫حاصل‬ ‫كتابة‬ ‫يمكننا‬
Note: electrons do not appear in the reaction quotient.
.‫التفاعل‬ ‫حاصل‬ ‫فى‬ ‫اللكترونات‬ ‫تظهر‬ ‫ل‬ :‫لحظ‬
(a=1 for pure solids and liquids so they do not appear).
= ‫الكفاءة‬1.‫النقية‬ ‫والسوائل‬ ‫الصلبة‬ ‫ةلاد‬‫ا‬‫للمو‬Dr. Elhelece W. A.
Chemical
Thermodynamics
Dr. Elhelece W. A. 50
Calculating the Reaction Quotient, Q ‫التفاعل‬ ‫حاصل‬ ‫حساب‬
Q can be calculated for any set of conditions, not just for equilibrium.
.‫التزان‬ ‫عند‬ ‫فقط‬ ‫ليس‬ ‫ظروف‬ ‫اى‬ ‫عند‬ ‫التفاعل‬ ‫حاصل‬ ‫حساب‬ ‫يمكن‬
Q can be used to determine which direction a reaction will shift to reach equilibrium.
.‫التزان‬ ‫الى‬ ‫التفاعل‬ ‫يزيح‬ ‫ان‬ ‫يمكن‬ ‫اتجاه‬ ‫اى‬ ‫فى‬ ‫يوضح‬ ‫ان‬ ‫يمكن‬ ‫التفاعل‬ ‫حاصل‬
If K > Q, a reaction will proceed forward, converting reactants into products.
‫قيمة‬ ‫كانت‬ ‫اذا‬K‫قيمة‬ ‫من‬ ‫أكبر‬Q.‫نواتج‬ ‫الى‬ ‫المتفاعلت‬ ‫تحويل‬ ,‫ةلادى‬‫ر‬‫الط‬ ‫التجاه‬ ‫فى‬ ‫يسير‬ ‫التفاعل‬
If K < Q, the reaction will proceed in the reverse direction, converting products into
reactants.
‫قيمة‬ ‫كانت‬ ‫اذا‬Q‫قيمة‬ ‫من‬ ‫أكبر‬K.‫متفاعلت‬ ‫الى‬ ‫النواتج‬ ‫تحويل‬ ,‫العكسي‬ ‫التجاه‬ ‫فى‬ ‫يسير‬ ‫التفاعل‬
If Q = K then the system is already at equilibrium.
‫قيمة‬ ‫كانت‬ ‫اذا‬Q‫قيمة‬ ‫تساوى‬K.‫التزان‬ ‫عند‬ ‫يكون‬ ‫التفاعل‬
Reaction Quotient ‫التفاعل‬ ‫حاصل‬
Chemical
Thermodynamics
Dr. Elhelece W. A.
In order to determine Q we need to know:
:‫نعرف‬ ‫ان‬ ‫يجب‬ ‫التفاعل‬ ‫حاصل‬ ‫قيمة‬ ‫لحساب‬
the equation for the reaction, including the physical states,
,‫الفزيائية‬ ‫الحالة‬ ‫متضمنة‬ ‫التفاعل‬ ‫ةلادلة‬‫ا‬‫مع‬
the quantities of each species (molarities and/or pressures),
.(‫الضغوط‬ ‫او‬ ‫)المولرية‬ ‫المختلفة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزاء‬‫ل‬‫ا‬ ‫كميات‬
all measured at the same moment in time.
.‫الزمن‬ ‫من‬ ‫اللحظة‬ ‫نفس‬ ‫عند‬ ‫كلها‬ ‫مقاسة‬
To calculate Q:
‫لحساب‬Q:
1. Write the expression for the reaction quotient.
.‫التفاعل‬ ‫حاصل‬ ‫لحساب‬ (‫)الصيغة‬ ‫القانون‬ ‫اكتب‬
2. Find the molar concentrations or partial pressures of each species involved.
.‫التفاعل‬ ‫فى‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزء‬ ‫لكل‬ ‫الجزيئية‬ ‫الضغوط‬ ‫او‬ ‫المولر ي‬ ‫التركيز‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجد‬‫و‬‫ا‬
3. Substitute values into the expression and solve.
.‫وحل‬ ‫الصيغة‬ ‫فى‬ ‫القيم‬ ‫ةلادخل‬‫ا‬
Reaction Quotient ‫التفاعل‬ ‫حاصل‬
Chemical
Thermodynamics
Dr. Elhelece W. A.
Example: 0.035 moles of SO2
, 0.500 moles of SO2
Cl2
, and 0.080 moles of Cl2
are
combined in an evacuated 5.00 L flask and heated to 100o
C. What is Q before the
reaction begins? Which direction will the reaction proceed in order to establish
equilibrium?
SO2
Cl2
(g) SO2
(g) + Cl2
(g) Kc
= 0.078 at 100o
C
•Write the expression to find the reaction quotient, Q.
Since Kc is given, the amounts must be expressed as moles per
liter (molarity).
The amounts are in moles so a conversion is required.
0.500 mole SO2Cl2/5.00 L = 0.100 M SO2Cl2
0.035 mole SO2/5.00 L = 0.070 M SO2
0.080 mole Cl2/5.00 L = 0.016 M Cl2
Reaction Quotient ‫التفاعل‬ ‫حاصل‬
Chemical
Thermodynamics
Dr. Elhelece W. A. 53
Substitute the values in to the expression and solve for Q.
Compare the answer to the value for the equilibrium constant and predict
the shift.
0.078 (K) > 0.011 (Q)
Since K >Q, the reaction will proceed in the forward direction in order to
increase the concentrations of both SO2 and Cl2 and decrease that of
SO2Cl2 until Q = K.
Reaction Quotient ‫التفاعل‬ ‫حاصل‬
Chemical
Thermodynamics
Standard Free Energy Changes
‫القياسية‬ ‫الحرة‬ ‫الطاقة‬ ‫تغيرات‬
Analogous to standard enthalpies of formation are
standard free energies of formation, ∆Gf°.
.‫القياسية‬ ‫الحرة‬ ‫الطاقة‬ ‫تغيرات‬ ,‫القياسية‬ ‫التكوين‬ ‫طاقات‬ ‫مع‬ ‫متوافق‬
∆G° = Σn∆G°(products) − Σm∆G°(reactants)
f f
where n and m are the stoichiometric coefficients.
‫أن‬ ‫حيث‬n‫و‬m.‫التركيبية‬ ‫النسب‬ ‫عوامل‬
54Dr. Wael A. El-Helece
Chemical
Thermodynamics
Free Energy Changes
‫الحرة‬ ‫الطاقة‬ ‫تغيرات‬
At temperatures other than 25°C,
•‫غير‬ ‫حرارة‬ ‫درجات‬ ‫عند‬25,‫مئوية‬ ‫درجة‬
∆G° = ∆H° − T∆S°
How does ∆G° change with temperature?
‫درجة‬ ‫مع‬ ‫لنظام‬ ‫القياسية‬ ‫الحرة‬ ‫الطاقة‬ ‫تتغير‬ ‫أن‬ ‫يمكن‬ ‫كيف‬
‫الحرارة؟‬55Dr. Wael A. El-Helece
Chemical
Thermodynamics
Free Energy and Temperature
‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬‫و‬ ‫الحرة‬ ‫الطاقة‬
• There are two parts to the free energy equation:
:‫الحرة‬ ‫الطاقة‬ ‫ةلادلة‬‫ا‬‫لمع‬ ‫نصفين‬ ‫هناك‬
∆H°— the enthalpy term ‫التكوين‬ ‫حرارات‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزء‬
T∆S° — the entropy term ‫العشوائية‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزء‬
• The temperature dependence of free energy, then
comes from the entropy term.
•‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزء‬ ‫من‬ ‫تتأتى‬ ‫وبالتالي‬ ,‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ‫على‬ ‫ةلادها‬‫ا‬‫واعتم‬ ‫الحرة‬ ‫الطاقة‬
.‫العشوائية‬
56Dr. Wael A. El-Helece
Chemical
Thermodynamics
Free Energy and Temperature
‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬‫و‬ ‫الحرة‬ ‫الطاقة‬
57Dr. Wael A. El-Helece
Chemical
Thermodynamics
Free Energy and Equilibrium
‫والتزان‬ ‫الحرة‬ ‫الطاقة‬
Under any conditions, standard or nonstandard, the
free energy change can be found this way:
‫يمكن‬ ‫الحرة‬ ‫الطاقة‬ ‫فى‬ ‫التغير‬ ,‫قياسية‬ ‫غير‬ ‫أو‬ ‫قياسية‬ ‫ظروف‬ ‫أ ي‬ ‫تحت‬
:‫العلقة‬ ‫من‬ ‫يحسب‬ ‫أن‬
∆G = ∆G° + RT lnQ
(Under standard conditions, all concentrations are 1 M, so Q = 1 and lnQ
= 0; the last term drops out.)
‫التركيزات‬ ‫كل‬ ,‫القياسية‬ ‫الظروف‬ ‫فى‬1‫التفاعل‬ ‫حاصل‬ ‫وكذا‬ ‫مولر‬Q 1‫الخير‬ ‫الجزء‬ ‫وبالتالي‬
.‫يتليشي‬ ‫ةلادلة‬‫ا‬‫المع‬ ‫فى‬
58Dr. Wael A. El-Helece
Chemical
Thermodynamics
Free Energy and Equilibrium
‫والتزان‬ ‫الحرة‬ ‫الطاقة‬
• At equilibrium, Q = K, and ∆G = 0. ‫التزان‬ ‫عند‬
• The equation becomes ‫تصبح‬ ‫ةلادلة‬‫ا‬‫المع‬
0 = ∆G° + RT lnK
• Rearranging, this becomes ‫تصبح‬ ‫الترتيب‬ ‫ةلادة‬‫ا‬‫بإع‬
∆G° = −RT lnK
or, K = e−∆G°/RT
59Dr. Wael A. El-Helece
Chemical
Thermodynamics
In any spontaneous process, the entropy of the universe increases.
.‫ةلاد‬‫ا‬‫ةلاد‬‫ز‬‫ت‬ ‫للكون‬ ‫النتروبيا‬ ,‫تلقائية‬ ‫عملية‬ ‫ل ي‬
ΔSuniverse > 0
Another version of the 2nd
Law: ‫الثاني‬ ‫للقانون‬ ‫آخر‬ ‫يشكل‬
Energy spontaneously spreads out if it has no outside resistance.
.‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجية‬‫ر‬‫خا‬ ‫مقاومة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجد‬‫و‬‫ي‬ ‫لم‬ ‫اذا‬ ‫النظام‬ ‫خارج‬ ‫تنتشر‬ ‫تلقائيا‬ ‫الطاقة‬
Entropy measures the spontaneous dispersal of energy as a function
of temperature ‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ‫فى‬ ‫كدالة‬ ‫التلقائئي‬ ‫الطاقة‬ ‫انتشار‬ ‫يقيس‬ ‫النتروبيا‬
How much energy is spread out? ‫النظام‬ ‫خارج‬ ‫الطاقة‬ ‫انتشار‬ ‫مقدار‬ ‫ما‬
How widely spread out it becomes? ‫النظام‬ ‫خارج‬ ‫الطاقة‬ ‫انتشار‬ ‫مدى‬ ‫ما‬
Entropy change = “energy dispersed”/T ‫يساوى‬ ‫النتروبيا‬ ‫فى‬ ‫التغير‬
‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ‫على‬ ‫مقسوما‬ ‫الطاقة‬ ‫.انتشار‬
Second Law of Thermodynamics
‫الحرارية‬ ‫للديناميكا‬ ‫الثاني‬ ‫القانون‬
occurs without outside intervention
‫خارجي‬ ‫تأثير‬ ‫دون‬ ‫تحدث‬
↓
Chemical
Thermodynamics
Entropy of the Universe
‫الكون‬ ‫فى‬ ‫العشوائية‬
ΔSuniverse = ΔSsystem + ΔSsurroundings
Positional disorder
‫موضعي‬ ‫انتظام‬ ‫ل‬
Energetic disorder
‫الطاقة‬ ‫بسب‬ ‫انتظام‬ ‫ل‬
ΔSuniverse > 0 ⇒ spontaneous process ‫تلقائية‬ ‫عمليات‬
Both ΔSsys and ΔSsurr positive
Both ΔSsys and ΔSsurr negative
ΔSsys negative, ΔSsurr positive
ΔSsys positive, ΔSsurr negative
spontaneous process.
nonspontaneous process.
depends
depends
Chemical
Thermodynamics
Entropy of the Surroundings
(Energetic Disorder)
System
Heat Entropy
Surroundings
System
Heat Entropy
Surroundings
T
ΔH
ΔS
sys
surr −=
Low T ⇒ large entropy change (surroundings)
High T ⇒ small entropy change (surroundings)
ΔHsys < 0
ΔHsys > 0
ΔSsurr > 0
ΔSsurr < 0
Chemical
Thermodynamics
Positional Disorder and Probability
‫والحتمالت‬ ‫موضعى‬ ‫انتظام‬ ‫ل‬
Probability of 1 particle in left bulb = ½
" 2 particles both in left bulb = (½)(½) = ¼
" 3 particles all in left bulb = (½)(½)(½) = 1/8
" 4 " all " = (½)(½)(½)(½) = 1/16
" 10 " all " = (½)10
= 1/1024
" 20 " all " = (½)20
= 1/1048576
" a mole of " all " = (½)6.02×10
23
The arrangement with the greatest entropy is the one
Chemical
Thermodynamics
Ssolid < Sliquid << Sgas
Entropy of the System: Positional Disorder
Ordered
states
Disordered
states
Low probability
(few ways)
High probability
(many ways)
Low S
High S
Ssystem ∝ Positional disorder
S increases with increasing # of possible positions
Ludwig Boltzmann
Chemical
Thermodynamics
Entropy Curve
Solid GasLiquid
S
(qrev/T)
(J/K)
Temperature (K)
0
0
← fusion
← vaporization
S° (absolute entropy) can be calculated for any substance
Chemical
Thermodynamics
Entropy Increases with...
• Melting (fusion) Sliquid > Ssolid
ΔHfusion/Tfusion = ΔSfusion
• Vaporization Sgas > Sliquid
ΔHvaporization/Tvaporization = ΔSvaporization
• Increasing ngas in a reaction
• Heating ST2 > ST1 if T2 > T1
• Dissolving (usually) Ssolution > (Ssolvent + Ssolute)
• Molecular complexity more bonds, more entropy
• Atomic complexity more e-
, protons, neutrons
Chemical
Thermodynamics
Characteristics of Entropy
‫العشوائية‬ ‫مقياس‬ ‫خصائص‬
• S is a state function ‫حالة‬ ‫دالة‬ ‫التنتروبيا‬
• S is extensive (more stuff, more entropy) ‫مركزة‬ ‫غير‬ ‫خاصية‬
• At 0 K, S = 0 (we can know absolute entropy) ‫عند‬ ‫المطلقة‬ ‫التنتروبيا‬
‫المطلقة‬ ‫الحرارة‬ ‫درجة‬
• S > 0 for elements and compounds in their standard states
‫القياسية‬ ‫حالهتها‬ ‫فى‬ ‫والمركبات‬ ‫للعناصر‬ ‫الصفر‬ ‫من‬ ‫اكبر‬ ‫التنتروبيا‬
• ΔS°rxn = ΣnS°products - ΣnS°reactants
• Raise T → increase S ‫التنتروبيا‬ ‫هتزداد‬ ‫الحرارة‬ ‫درجة‬ ‫بارهتفاع‬
• Increase ngas → increase S ‫العشوائية‬ ‫هتزداد‬ ‫المولت‬ ‫عدد‬ ‫بزيادة‬
• More complex systems ⇒ larger S ‫قيمة‬ ‫اكبر‬ ‫عشوائي‬ ‫هتعقيدا‬ ‫اكثر‬ ‫تنظام‬
Chemical
Thermodynamics
by Mike Roller
Chemical
Thermodynamics
Entropy (S) Review• ΔSuniverse > 0 for spontaneous processes
• ΔSuniverse = ΔSsystem + ΔSsurroundings
↑
positional
↑
energetic
• We can know the absolute entropy value for a substance
• S° values for elements & compounds in their standard
states are tabulated (Appendix C, p. 1019)
• For any chemical reaction, we can calculate ΔS°rxn:
• ΔS°rxn = ΣS°(products) - ΣS°(reactants)
Chemical
Thermodynamics
ΔSuniverse and Chemical Reactions
ΔSuniverse = ΔSsystem + ΔSsurroundings
For a system of reactants and products,
ΔSuniverse = ΔSrxn – ΔHrxn/T
• If ΔSuniverse > 0, the reaction is spontaneous
• If ΔSuniverse < 0, the reaction is not spontaneous
– The reverse reaction is spontaneous
• If ΔSuniverse = 0, the reaction is at equilibrium
– Neither the forward nor the reverse reaction is favored
Chemical
Thermodynamics
C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(g)
Compound
C6H12O6(s)
O2(g)
CO2(g)
H2O(g)
ΔH°f (kJ/mol)
-1275
0
-393.5
-242
S° (J/mol K)
212
205
214
189
ΔSuniverse = ΔSrxn – ΔHrxn/T
ΔS°rxn = ΣS°(products) - ΣS°(reactants)
= [6 S°(CO2(g)) + 6 S°(H2O(g))] – [S°(C6H12O6(s)) + 6 S°(O2(g))]
= [6(214) + 6(189)] – [(212) + 6(205)] J/K
ΔS°rxn = 976 J/K
ΔH°rxn = ΣΔH°f (products) - ΣΔH°f(reactants)
= [6 ΔH°f(CO2(g)) + 6 ΔH°f(H2O(g))] – [ΔH°f(C6H12O6(s)) + 6 ΔH°f(O2(g))]
= [6(-393.5) + 6(-242)] – [(-1275) + 6(0)] kJ
Chemical
Thermodynamics
C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(g)
Compound
C6H12O6(s)
O2(g)
CO2(g)
H2O(g)
ΔH°f (kJ/mol)
-1275
0
-393.5
-242
S° (J/mol K)
212
205
214
189
ΔSuniverse = ΔSrxn – ΔHrxn/T
ΔS°rxn = 976 J/K (per mole of glucose)
ΔH°rxn = -2538 kJ (per mole of glucose)
At 298 K,
ΔS°universe = 0.976 kJ/K – (-2538 kJ/298 K)
ΔS°universe = 9.5 kJ/K
Chemical
Thermodynamics
–ΔG means +ΔSuniv
A process (at constant T, P) is
spontaneous if free energy decreases
Gibbs Free Energy
(G)
Josiah Gibbs
G = H – TS
At constant temperature,
ΔG = ΔH – TΔS
(system’s point of view)
ΔG = ΔH – TΔS
Divide both sides by –T
-ΔG/T = -ΔH/T + ΔS
ΔSuniverse = ΔS – ΔH/T
Chemical
Thermodynamics
ΔG and Chemical Reactions
ΔG = ΔH – TΔS
• If ΔG < 0, the reaction is spontaneous
• If ΔG > 0, the reaction is not spontaneous
– The reverse reaction is spontaneous
• If ΔG = 0, the reaction is at equilibrium
– Neither the forward nor the reverse reaction is favored
• ΔG is an extensive state function
Chemical
Thermodynamics
Ba(OH)2(s) + 2NH4Cl(s) → BaCl2(s) + 2NH3(g) + 2 H2O(l)
ΔH°rxn = 50.0 kJ (per mole Ba(OH)2)
ΔS°rxn = 328 J/K (per mole Ba(OH)2)
ΔG = ΔH - TΔS
ΔG°= 50.0 kJ – 298 K(0.328 kJ/K)
ΔG° = – 47.7 kJ Spontaneous
At what T does the reaction stop being spontaneous?
The T where ΔG = 0.
ΔG = 0 = 50.0 kJ – T(0.328 J/K)
50.0 kJ = T(0.328 J/K)
T = 152 K ←not spontaneous below 152 K
Chemical
Thermodynamics
Effect of ΔH and ΔS on
Spontaneity
ΔH
–
+
–
+
ΔS
+
+
–
–
Spontaneous?
Spontaneous at all temps
Spontaneous at high temps
• Reverse reaction spontaneous at low temps
Spontaneous at low temps
• Reverse reaction spontaneous at high temp
Not spontaneous at any temp
ΔG = ΔH – TΔS
ΔG negative ⇔ spontaneous reaction
Chemical
Thermodynamics
1. ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants)
• ΔG°f = free energy change when forming 1 mole of
compound from elements in their standard states
2. ΔG° = ΔH° - TΔS°
3. ΔG° can be calculated by combining ΔG°
values for several reactions
• Just like with ΔH° and Hess’s Law
Ways to Calculate ΔG°rxn
Chemical
Thermodynamics
2H2(g) + O2(g) → 2 H2O(g)
1. ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants)
ΔG°f(O2(g)) = 0
ΔG°f(H2(g)) = 0
ΔG°f(H2O(g)) = -229 kJ/mol
ΔG° = (2(-229 kJ) – 2(0) – 0) kJ = -458 kJ
2. ΔG° = ΔH° - TΔS°
ΔH° = -484 kJ
ΔS° = -89 J/K
ΔG° = -484 kJ – 298 K(-0.089 kJ/K) = -457 kJ
Chemical
Thermodynamics
2H2(g) + O2(g) → 2 H2O(g)
3. ΔG° = combination of ΔG° from other reactions
(like Hess’s Law)
2H2O(l) → 2H2(g) + O2(g) ΔG°1 = 475 kJ
H2O(l) → H2O(g) ΔG°2 = 8 kJ
ΔG° = - ΔG°1 + 2(ΔG°2)
ΔG° = -475 kJ + 16 kJ = -459 kJ
Method 1: -458 kJ
Method 2: -457 kJ
Method 3: -459 kJ
Chemical
Thermodynamics
What is Free Energy, Really?
• NOT just “another form of energy”
• Free Energy is the energy available to do useful work
• If ΔG is negative, the system can do work (wmax = ΔG)
• If ΔG is positive, then ΔG is the work required to
make the process happen
 Example: Photosynthesis
 6 CO2 + 6 H2O → C6H12O6 + 6 O2
 ΔG = 2870 kJ/mol of glucose at 25°C
 2870 kJ of work is required to photosynthesize 1 mole of
glucose
Chemical
Thermodynamics
Third Law of Thermodynamics
‫الحرارية‬ ‫للديناميكا‬ ‫الثالث‬ ‫القاتنون‬
The entropy of a pure crystalline substance at
absolute zero is 0.
‫المطلق‬ ‫الصفر‬ ‫حرارة‬ ‫درجة‬ ‫عند‬ ‫متبلورة‬ ‫نقية‬ ‫لمادة‬ ‫النتروبيا‬
.‫صفر‬
81Dr. Wael A. El-Helece
Chemical
Thermodynamics
The Third Law:
The entropy of a perfect crystal at
0 K is zero.
‫درجة‬ ‫عند‬ ‫مثالية‬ ‫بلورة‬ ‫فى‬ ‫العشوائية‬
.‫صفر‬ ‫المطلق‬ ‫الصفر‬
Everything in its place ‫مكانه‬ ‫فى‬ ‫شئ‬ ‫كل‬
No molecular motion ‫فى‬ ‫حركة‬ ‫توجد‬ ‫ل‬
‫الجزيئات‬
Third Law of Thermodynamics
‫الحرارية‬ ‫للديناميكا‬ ‫الثالث‬ ‫القاتنون‬

More Related Content

What's hot (20)

ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermodynamics Assignment Help
Thermodynamics Assignment HelpThermodynamics Assignment Help
Thermodynamics Assignment Help
 
Entropy.ppt
Entropy.pptEntropy.ppt
Entropy.ppt
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 
Lecture 19 entropy
Lecture 19   entropyLecture 19   entropy
Lecture 19 entropy
 
Laws of thermodynamics
Laws of thermodynamicsLaws of thermodynamics
Laws of thermodynamics
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Entropy : statistical approach
Entropy : statistical approachEntropy : statistical approach
Entropy : statistical approach
 
Entropy
EntropyEntropy
Entropy
 
Thermodynamic notes 2
Thermodynamic notes 2Thermodynamic notes 2
Thermodynamic notes 2
 
Entropy change during thermodynamic process
Entropy change during thermodynamic processEntropy change during thermodynamic process
Entropy change during thermodynamic process
 
Thermodynamics note chapter:6 Entropy
Thermodynamics note chapter:6 EntropyThermodynamics note chapter:6 Entropy
Thermodynamics note chapter:6 Entropy
 
Chemical Thermodynamics
Chemical Thermodynamics Chemical Thermodynamics
Chemical Thermodynamics
 
Presentation draft
Presentation draftPresentation draft
Presentation draft
 
Thermodynamic I
Thermodynamic IThermodynamic I
Thermodynamic I
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy V
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy VChem 2 - Third Law of Thermodynamics and Standard Molar Entropy V
Chem 2 - Third Law of Thermodynamics and Standard Molar Entropy V
 
As rate
As rateAs rate
As rate
 

Viewers also liked

بور بوينت الديناميكا الحراريه1
بور بوينت الديناميكا الحراريه1بور بوينت الديناميكا الحراريه1
بور بوينت الديناميكا الحراريه1ahmh
 
ملخص الديناميكا الحراريه
ملخص الديناميكا الحراريهملخص الديناميكا الحراريه
ملخص الديناميكا الحراريهahmh
 
ثرموداينمك
ثرموداينمكثرموداينمك
ثرموداينمكSalah Khaleel
 
Dr.wael elhelece electrochemistry 331chem
Dr.wael elhelece electrochemistry 331chemDr.wael elhelece electrochemistry 331chem
Dr.wael elhelece electrochemistry 331chemWael Elhelece
 
الكيماء الكهربائية
الكيماء الكهربائيةالكيماء الكهربائية
الكيماء الكهربائيةalord111
 
بور بوينت الديناميكا الحراريه
بور بوينت الديناميكا الحراريهبور بوينت الديناميكا الحراريه
بور بوينت الديناميكا الحراريهahmh
 
Dr.elhelece chemistry kinetics 330chem
Dr.elhelece chemistry kinetics 330chemDr.elhelece chemistry kinetics 330chem
Dr.elhelece chemistry kinetics 330chemWael Elhelece
 
To disband the unit sixth science
To disband the unit sixth scienceTo disband the unit sixth science
To disband the unit sixth scienceMalek Shouman
 
اختبار كفايات كيمياء للمعلمين
اختبار كفايات كيمياء للمعلميناختبار كفايات كيمياء للمعلمين
اختبار كفايات كيمياء للمعلمينMohammad Alfatayri
 
الطبيعة المادية للضوء
الطبيعة المادية للضوءالطبيعة المادية للضوء
الطبيعة المادية للضوءamelrara
 
16th chapter electrolysis
16th chapter electrolysis16th chapter electrolysis
16th chapter electrolysisMehdi Ouaziz
 
الأشعة تحت الحمراء0000
الأشعة تحت الحمراء0000الأشعة تحت الحمراء0000
الأشعة تحت الحمراء0000Mona Hamada
 
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديريالاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديريOnline
 
جميع ملخصات الكيمياء السادس العلمي 2015
جميع ملخصات الكيمياء السادس العلمي 2015جميع ملخصات الكيمياء السادس العلمي 2015
جميع ملخصات الكيمياء السادس العلمي 2015Online
 
المعادن والصخوور
المعادن والصخوورالمعادن والصخوور
المعادن والصخوور9876541230
 
atomic absorption spectroscopy and mass spectroscopy
atomic absorption spectroscopy and mass spectroscopyatomic absorption spectroscopy and mass spectroscopy
atomic absorption spectroscopy and mass spectroscopyvanitha gopal
 

Viewers also liked (20)

بور بوينت الديناميكا الحراريه1
بور بوينت الديناميكا الحراريه1بور بوينت الديناميكا الحراريه1
بور بوينت الديناميكا الحراريه1
 
ملخص الديناميكا الحراريه
ملخص الديناميكا الحراريهملخص الديناميكا الحراريه
ملخص الديناميكا الحراريه
 
دورة كارنو
دورة كارنودورة كارنو
دورة كارنو
 
ثرموداينمك
ثرموداينمكثرموداينمك
ثرموداينمك
 
Dr.wael elhelece electrochemistry 331chem
Dr.wael elhelece electrochemistry 331chemDr.wael elhelece electrochemistry 331chem
Dr.wael elhelece electrochemistry 331chem
 
الكيماء الكهربائية
الكيماء الكهربائيةالكيماء الكهربائية
الكيماء الكهربائية
 
دورة كارنو
دورة كارنودورة كارنو
دورة كارنو
 
بور بوينت الديناميكا الحراريه
بور بوينت الديناميكا الحراريهبور بوينت الديناميكا الحراريه
بور بوينت الديناميكا الحراريه
 
Dr.elhelece chemistry kinetics 330chem
Dr.elhelece chemistry kinetics 330chemDr.elhelece chemistry kinetics 330chem
Dr.elhelece chemistry kinetics 330chem
 
To disband the unit sixth science
To disband the unit sixth scienceTo disband the unit sixth science
To disband the unit sixth science
 
اختبار كفايات كيمياء للمعلمين
اختبار كفايات كيمياء للمعلميناختبار كفايات كيمياء للمعلمين
اختبار كفايات كيمياء للمعلمين
 
الطبيعة المادية للضوء
الطبيعة المادية للضوءالطبيعة المادية للضوء
الطبيعة المادية للضوء
 
16th chapter electrolysis
16th chapter electrolysis16th chapter electrolysis
16th chapter electrolysis
 
الأشعة تحت الحمراء0000
الأشعة تحت الحمراء0000الأشعة تحت الحمراء0000
الأشعة تحت الحمراء0000
 
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديريالاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
الاسئلة المضافة لمادة الكيمياء السادس العلمي_الاستاذ صادق قاسم البديري
 
الالكانات
الالكاناتالالكانات
الالكانات
 
الكيمياء 1
الكيمياء 1الكيمياء 1
الكيمياء 1
 
جميع ملخصات الكيمياء السادس العلمي 2015
جميع ملخصات الكيمياء السادس العلمي 2015جميع ملخصات الكيمياء السادس العلمي 2015
جميع ملخصات الكيمياء السادس العلمي 2015
 
المعادن والصخوور
المعادن والصخوورالمعادن والصخوور
المعادن والصخوور
 
atomic absorption spectroscopy and mass spectroscopy
atomic absorption spectroscopy and mass spectroscopyatomic absorption spectroscopy and mass spectroscopy
atomic absorption spectroscopy and mass spectroscopy
 

Similar to Chemical thermodynamics essentials

THERMODYNAMICS
THERMODYNAMICS THERMODYNAMICS
THERMODYNAMICS Zain768828
 
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,chaturvedijay62
 
chemical-thermodynamics-2 (3).pptcscscscscs
chemical-thermodynamics-2 (3).pptcscscscscschemical-thermodynamics-2 (3).pptcscscscscs
chemical-thermodynamics-2 (3).pptcscscscscsAliceRivera13
 
Chem7250p4.ppt
Chem7250p4.pptChem7250p4.ppt
Chem7250p4.pptvaskane
 
Ch. 5 thermochemistry
Ch. 5 thermochemistryCh. 5 thermochemistry
Ch. 5 thermochemistryewalenta
 
Spontaneity-Entropy-and-Free-Energy.ppt
Spontaneity-Entropy-and-Free-Energy.pptSpontaneity-Entropy-and-Free-Energy.ppt
Spontaneity-Entropy-and-Free-Energy.pptKrizellaKateMagdarao
 
Chapter 19 Lecture- Thermodynamics
Chapter 19 Lecture- ThermodynamicsChapter 19 Lecture- Thermodynamics
Chapter 19 Lecture- ThermodynamicsMary Beth Smith
 
Thermodynamics
ThermodynamicsThermodynamics
ThermodynamicsAtul Saini
 
chemical equilibrium and thermodynamics
chemical equilibrium and thermodynamicschemical equilibrium and thermodynamics
chemical equilibrium and thermodynamicsAayashaNegi
 
Thermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxThermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxMosaTeffo
 
THERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptxTHERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptxpunith59
 

Similar to Chemical thermodynamics essentials (20)

THERMODYNAMICS
THERMODYNAMICS THERMODYNAMICS
THERMODYNAMICS
 
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
 
Chem7250p4.ppt
Chem7250p4.pptChem7250p4.ppt
Chem7250p4.ppt
 
Chem7250p4.ppt
Chem7250p4.pptChem7250p4.ppt
Chem7250p4.ppt
 
chemical-thermodynamics-2 (3).pptcscscscscs
chemical-thermodynamics-2 (3).pptcscscscscschemical-thermodynamics-2 (3).pptcscscscscs
chemical-thermodynamics-2 (3).pptcscscscscs
 
Chem7250p4.ppt
Chem7250p4.pptChem7250p4.ppt
Chem7250p4.ppt
 
Ch. 5 thermochemistry
Ch. 5 thermochemistryCh. 5 thermochemistry
Ch. 5 thermochemistry
 
Spontaneity-Entropy-and-Free-Energy.ppt
Spontaneity-Entropy-and-Free-Energy.pptSpontaneity-Entropy-and-Free-Energy.ppt
Spontaneity-Entropy-and-Free-Energy.ppt
 
Jatin bhatia art integration project 22
Jatin bhatia art integration project 22Jatin bhatia art integration project 22
Jatin bhatia art integration project 22
 
Chapter 19 Lecture- Thermodynamics
Chapter 19 Lecture- ThermodynamicsChapter 19 Lecture- Thermodynamics
Chapter 19 Lecture- Thermodynamics
 
Bioenergetics and the role of ATP to drive the beats of life.
Bioenergetics and the role of ATP to drive the beats of life.Bioenergetics and the role of ATP to drive the beats of life.
Bioenergetics and the role of ATP to drive the beats of life.
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
chemical equilibrium and thermodynamics
chemical equilibrium and thermodynamicschemical equilibrium and thermodynamics
chemical equilibrium and thermodynamics
 
Chapter5
Chapter5Chapter5
Chapter5
 
Chapter5.pdf
Chapter5.pdfChapter5.pdf
Chapter5.pdf
 
Thermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptxThermodynamics STUDENT NOTES.pptx
Thermodynamics STUDENT NOTES.pptx
 
entropy.pptx
entropy.pptxentropy.pptx
entropy.pptx
 
THERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptxTHERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptx
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermo-DSY-Unit-3--1.pptx
Thermo-DSY-Unit-3--1.pptxThermo-DSY-Unit-3--1.pptx
Thermo-DSY-Unit-3--1.pptx
 

Recently uploaded

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 

Recently uploaded (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 

Chemical thermodynamics essentials

  • 2. Chemical Thermodynamics Contents ‫المحتويات‬ 1.Some Terminology ‫بعض‬‫المفاهيم‬ 2.Heat ‫الحرارة‬ 3.Heats of Reaction and Calorimetry ‫الحراري‬ ‫والمسعر‬ ‫التفاعل ت‬ ‫حرارة‬ 4.Work ‫الشغل‬ 5.The First Law of Thermodynamics ‫للديناميكا‬ ‫الول‬ ‫القانون‬ ‫الحرارية‬ 6.Heats of Reaction: ∆U and ∆H ‫التفاعل‬ ‫حرارا ت‬ 2Dr. Wael A. El-Helece
  • 3. Chemical Thermodynamics Contents ‫المحتويات‬ 7.The Indirect Determination of ∆H, Hess’s Law ‫هس‬ ‫وقانون‬ ‫الحرارى‬ ‫المحتوى‬ ‫فى‬ ‫للتغير‬ ‫المباشر‬ ‫غير‬ ‫التعين‬ 8.Standard Enthalpies of Formation ‫القياسية‬ ‫التكون‬ ‫حرارا ت‬ 9.Fuels as Sources of Energy ‫للطاقة‬ ‫كمصدر‬ ‫الوقود‬ ‫خليا‬ 10.Focus on Fats, Carbohydrates, and Energy Storage ‫الطاقة‬ ‫وتخزين‬ ‫والكربوهيدرا ت‬ ‫الدهون‬ ‫على‬ ‫نظرة‬ 3Dr. Wael A. El-Helece
  • 4. Chemical Thermodynamics Some Terminology ‫المصطلحات‬ ‫بعض‬ • System •‫النظام‬ • Surroundings •‫المحيط‬ 4Dr. Wael A. El-Helece
  • 5. Chemical Thermodynamics Terminology ‫المصطلحا ت‬ • Energy, U ‫الطاقة‬ The capacity to do work. ‫شغل‬ ‫بذل‬ ‫على‬ ‫القدرة‬ • Work ‫الشغل‬ Force acting through a distance.‫على‬ ‫المؤثرة‬ ‫القوة‬ ‫المساحة‬ • Kinetic Energy ‫الحركة‬ ‫طاقة‬ The energy of motion. ‫الحركة‬ ‫على‬ ‫القدرة‬5Dr. Wael A. El-Helece
  • 6. Chemical Thermodynamics Energy ‫الطاقة‬ • Kinetic Energy ‫الحركة‬ ‫طاقة‬ ek = 1 2 mv2 [ek ] = kg m2 s2 = J w = Fd [w ] = kg m s2 = Jm • Work ‫الشغل‬ ‫القانو‬ ‫ن‬ ‫القانو‬ ‫ن‬ ‫وحدة‬ ‫القياس‬ ‫وحدة‬ ‫القياس‬ 6Dr. Wael A. El-Helece
  • 7. Chemical Thermodynamics Energy ‫الطاقة‬ • Potential Energy ‫الوضع‬ ‫طاقة‬ Energy due to condition, position, or composition. ‫او‬ ‫الموضع‬ ‫او‬ ‫الظرف‬ ‫نتيجة‬ ‫الطاقة‬ ‫التركيب‬ Associated with forces of attraction or repulsion between objects. ‫بين‬ ‫والتنافر‬ ‫الجذب‬ ‫بقى‬ ‫مصحوبة‬ ‫تكون‬ ‫الجزيئات‬ • Energy can change from potential to 7Dr. Wael A. El-Helece
  • 8. Chemical Thermodynamics Energy and Temperature ‫الحرارة‬ ‫ودرجة‬ ‫الطاقة‬ • Thermal Energy ‫الحرارية‬ ‫الطاقة‬ Kinetic energy associated with random molecular motion. ‫عشوائيا‬ ‫الجزيئات‬ ‫بحركة‬ ‫مصحوبة‬ ‫حركة‬ ‫طاقة‬ proportional to temperature. ‫الحرارة‬ ‫درجة‬ ‫مع‬ ‫طرديا‬ ‫تتناسب‬ An intensive property. )‫مركزة‬ ‫داخلية‬ ‫)خاصية‬ • Heat and Work ‫والشغل‬ ‫الحرارة‬ q and w. Energy changes. ‫الطاقة‬ ‫تغيرات‬ 8Dr. Wael A. El-Helece
  • 9. Chemical Thermodynamics Heat ‫الحرارة‬ Energy transferred between a system and its surroundings as a result of a temperature difference. .‫الحرارة‬ ‫درجا ت‬ ‫فى‬ ‫لفرق‬ ‫كنتيجة‬ ‫محيطه‬ ‫إلى‬ ‫النظام‬ ‫من‬ ‫الطاقة‬ ‫تنتقل‬ • Heat flows from hotter to colder. .‫البرد‬ ‫إلى‬ ‫السخن‬ ‫من‬ ‫الحرارة‬ ‫تنتقل‬ Temperature may change. .‫الحرارة‬ ‫درجة‬ ‫تغير‬ ‫المكان‬ ‫فى‬ Phase may change (an isothermal process). .(‫حراريا‬ ‫)متعادلة‬ ‫تتغير‬ ‫أن‬ ‫ممكن‬ ‫الحالة‬ 9Dr. Wael A. El-Helece
  • 10. Chemical Thermodynamics Units of Heat ‫الحرارة‬ ‫قياس‬ ‫وحدات‬ • Calorie (cal) ‫الكالورى‬ The quantity of heat required to change the temperature of one gram of water by one degree Celsius. ‫الماء‬ ‫من‬ ‫جرام‬ ‫واحد‬ ‫حرارة‬ ‫درجة‬ ‫لرفع‬ ‫اللزمة‬ ‫الحرارة‬ ‫كمية‬ .‫مئوية‬ ‫واحدة‬ ‫درجة‬ • Joule (J) ‫الجول‬ SI unit for heat ‫الدولي‬ ‫النظام‬ ‫فى‬ ‫الحرارة‬ ‫قياس‬ ‫وحدة‬ ‫للوحدات‬ 1 cal = 4.184 J 10Dr. Wael A. El-Helece
  • 11. Chemical Thermodynamics Chemical Thermodynamics ‫الحرارية‬ ‫الديناميكا‬ ‫كيمياء‬  Science of interconversion of energy .‫والطاقة‬ ‫المادة‬ ‫وتداخل‬ ‫الطاقة‬ ‫تحول‬ ‫يتناول‬ ‫الذى‬ ‫العلم‬  Heat into other forms of energy .‫الطاقة‬ ‫من‬ ‫أخرى‬ ‫أشكال‬ ‫إلى‬ ‫الحرارة‬  Amount of heat gained/released from a system .‫النظام‬ ‫بواسطة‬ ‫والمفقودة‬ ‫المكتسبة‬ ‫الحرارة‬ ‫كمية‬  Spontaneity of a reaction .‫النظام‬ ‫تلقائية‬ 11Dr. Wael A. El-Helece
  • 12. Chemical Thermodynamics Chemical Thermodynamics ‫الحرارية‬ ‫الديناميكا‬ ‫كيمياء‬  Gibbs free energy function .‫الحرة‬ ‫للطاقة‬ ‫جبس‬ ‫دالة‬  Relationship between Gibbs Free Energy and chemical equilibrium .‫الكيميائى‬ ‫والتزان‬ ‫الحرة‬ ‫جبس‬ ‫طاقة‬ ‫بين‬ ‫العلقة‬ 12Dr. Wael A. El-Helece
  • 13. Chemical Thermodynamics First Law of Thermodynamics ‫الحرارية‬ ‫للديناميكا‬ ‫الول‬ ‫القانون‬ • energy cannot be created nor destroyed. •.‫العدم‬ ‫من‬ ‫تستحدث‬ ‫ول‬ ‫تفنى‬ ‫ل‬ ‫الطاقة‬ • Therefore, the total energy of the universe is a constant. •.‫ثابته‬ ‫للكون‬ ‫الكلية‬ ‫الطاقة‬ ‫فان‬ ‫وبالتالى‬ • Energy can, however, be converted from one form to another or transferred from a system to the surroundings or vice versa. •‫الى‬ ‫نظام‬ ‫من‬ ‫وتنتقل‬ ‫اخرى‬ ‫الى‬ ‫صورة‬ ‫من‬ ‫تتحول‬ ‫ان‬ ‫يمكن‬ ‫الطاقة‬ .‫والعكس‬ ‫المحيط‬ 13Dr. Wael A. El-Helece
  • 14. Chemical Thermodynamics Conservation of Energy ‫الطاقة‬ ‫بقاء‬ • In interactions between a system and its surroundings the total energy remains constant. .‫ثابتة‬ ‫الطاقة‬ ‫كمية‬ ‫تظل‬ ‫ومحيطه‬ ‫النظام‬ ‫بين‬ (‫)التداخل‬ ‫التلمس‬ ‫عند‬ • energy is neither created nor destroyed. .‫تستحدث‬ ‫ول‬ ‫تفنى‬ ‫ل‬ ‫الطاقة‬ qsystem + qsurroundings = 0 qsystem = -qsurroundings 14Dr. Wael A. El-Helece
  • 15. Chemical Thermodynamics Spontaneous Processes ‫التلقائية‬ ‫العمليات‬ • Spontaneous processes proceed without any outside intervention. •‫اى‬ ‫دون‬ ‫تحدث‬ ‫التلقائية‬ ‫العمليات‬ .‫خارجى‬ ‫حث‬ • The gas in vessel B will spontaneously effuse into vessel A. •) ‫الوعاء‬ ‫فى‬ ‫الغاز‬B‫إلى‬ ‫تلقائيا‬ ‫ينتقل‬ ‫(سوف‬ ) ‫الوعاء‬A.( 15Dr. Wael A. El-Helece
  • 16. Chemical Thermodynamics Spontaneous Processes ‫التلقائية‬ ‫العمليات‬ Processes that are spontaneous in one direction are non- spontaneous in the reverse direction. ‫التجاهين‬ ‫دد‬‫د‬‫دد‬‫اح‬ ‫دىدد‬‫ف‬ ‫دةد‬‫ي‬‫التلقائ‬ ‫العمليات‬ .‫المعاكس‬ ‫التجاه‬ ‫فى‬ ‫لتلقائية‬ ‫تكون‬ 16Dr. Wael A. El-Helece
  • 17. Chemical Thermodynamics Spontaneous Processes ‫التلقائية‬ ‫العمليات‬ • Processes that are spontaneous at one temperature may be nons-pontaneous at other temperatures. •‫عند‬ ‫لتلقائية‬ ‫تكون‬ ‫ربما‬ ‫حرارة‬ ‫درجة‬ ‫عند‬ ‫التلقائية‬ ‫العمليات‬ .‫أخرى‬ ‫حرارة‬ ‫درجات‬ Ice ‫ثلج‬ Water ‫ماء‬ 17Dr. Wael A. El-Helece
  • 18. Chemical Thermodynamics Reversible Processes ‫النعكاسية‬ ‫العمليات‬ In a reversible process the system changes in such a way that the system and surroundings can be put back in their original states by exactly reversing the process. ‫التى‬ ‫بالطريققة‬ ‫يتغيقر‬ ‫النظام‬ ‫النعكاسقية‬ ‫العمليا ت‬ ‫فقى‬ ‫الولية‬ ‫الحالة‬ ‫على‬ ‫والمحيط‬ ‫النظام‬ ‫يتواجد‬ ‫ان‬ ‫يمكن‬ .‫تماما‬ ‫العملية‬ ‫عكس‬ ‫طريق‬ ‫عن‬ 18Dr. Wael A. El-Helece
  • 19. Chemical Thermodynamics Irreversible Processes ‫النعكاسية‬ ‫غير‬ ‫العمليات‬ • Irreversible processes cannot be done by exactly reversing the change to the system. •‫فى‬ ‫بالضبط‬ ‫تتم‬ ‫أن‬ ‫يمكن‬ ‫ل‬ ‫النعكاسية‬ ‫غير‬ ‫العمليات‬ .‫الحادث‬ ‫التغير‬ ‫يعكس‬ ‫الذى‬ ‫التجاه‬ • Spontaneous processes are irreversible. •.‫انعكاسية‬ ‫غير‬ ‫التلقائية‬ ‫العمليات‬ 19Dr. Wael A. El-Helece
  • 20. Chemical Thermodynamics Spontaneous reactions ‫التلقائية‬ ‫التفاعل ت‬ CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (l) ∆H0 = -890.4 kJ H+ (aq) + OH- (aq) H2O (l) ∆H0 = -56.2 kJ H2O (s) H2O (l) ∆H0 = 6.01 kJ NH4NO3 (s) NH4 + (aq) + NO3 - (aq) ∆H0 = 25 kJH2O 20Dr. Wael A. El-Helece
  • 21. Chemical Thermodynamics The First Law of Thermodynamics ‫الحرارية‬ ‫للديناميكا‬ ‫الول‬ ‫القانون‬ • Internal Energy, U. ‫الداخلية‬ ‫الطاقة‬ Total energy (potential and kinetic) in a system. ‫والحركة‬ ‫الوضع‬ ‫طاقتى‬ ‫مجموع‬ Translational kinetic energy. ‫انتقالية‬ ‫حركة‬ ‫.طاقة‬ Molecular rotation. ‫جزيئي‬ ‫تردد‬ Bond vibration. ‫الرابطة‬ ‫اهتزاز‬ Intermolecular attractions. ‫الجزيئا ت‬ ‫بين‬ ‫تجاذبا ت‬. Chemical bonds. ‫الكيميائية‬ ‫الروابط‬ Electrons. ‫اللكترونا ت‬ ‫حركة‬ 21Dr. Wael A. El-Helece
  • 22. Chemical Thermodynamics Entropy ‫العشوائية‬ ‫مقياس‬ • Entropy (S) is a term coined by Rudolph Clausius in the 19th century. ‫فى‬ ‫كلسوسيوس‬ ‫رسودسولف‬ ‫بواسطة‬ ‫استخدامه‬ ‫تم‬ (‫)التنترسوبيا‬ ‫العشوائية‬ ‫مفهوم‬ .‫عشر‬ ‫التاسع‬ ‫القرن‬ • Clausius was convinced of the significance of the ratio of heat delivered and the temperature at which it is delivered. ‫سودرجة‬ ‫المنتقللة‬ ‫الحرارة‬ ‫كميلة‬ ‫ملن‬ ‫علةقلة‬ ‫بوجود‬ ‫مقتنعلا‬ ‫كان‬ ‫كلسوسليوس‬ .‫التنتقال‬ ‫عندها‬ ‫يحدث‬ ‫التي‬ ‫الحرارة‬q T 22Dr. Wael A. El-Helece
  • 23. Chemical Thermodynamics Entropy ‫العشوائية‬ ‫مقياس‬ • Entropy can be thought of as a measure of the randomness of a system. ‫انه‬ ‫على‬ ‫اعتباره‬ ‫يمكن‬ ‫النتروبى‬‫للعشوائية‬ ‫مقياس‬‫داخل‬ .‫النظام‬ • It is related to the various modes of motion in molecules. .‫الجزيئات‬ ‫فى‬ ‫الحركة‬ ‫بأنواع‬ ‫اساسى‬ ‫بشكل‬ ‫مرتبط‬ • Like total energy, E, and enthalpy, H, entropy is a state function. ‫سوكذا‬ ‫الكلية‬ ‫الطاةقة‬ ‫مثل‬ ‫مثله‬ ‫حالة‬ ‫دالة‬ ‫التنترسوبى‬‫المحتوى‬ ‫الحراري‬ • Therefore, 23Dr. Wael A. El-Helece
  • 24. Chemical Thermodynamics Entropy ‫العشوائية‬ ‫مقياس‬ For a process occurring at constant temperature (an isothermal process), the change in entropy is equal to the heat that would be transferred if the process were reversible divided by the temperature. ‫المنتقلة‬ ‫الحرارة‬ ‫بكمية‬ ‫لنظام‬ ‫النتروبيا‬ ‫فى‬ ‫التغير‬ ‫يقدر‬ .‫انعكاسية‬ ‫العملية‬ ‫كانت‬ ‫إذا‬ ‫الحرارة‬ ‫درجة‬ ‫على‬ ‫مقسومة‬ ∆S = qrev T 24Dr. Wael A. El-Helece
  • 25. Chemical Thermodynamics Entropy (S) = a measure of randomness or disorder MATTER IS ENERGY. ENERGY IS INFORMATION. EVERYTHING IS INFORMATION. PHYSICS SAYS THAT STRUCTURES... BUILDINGS, SOCIETIES, IDEOLOGIES... WILL SEEK THEIR POINT OF LEAST ENERGY. THIS MEANS THAT THINGS FALL. THEY FALL FROM HEIGHTS OF ENERGY AND STRUCTURED INFORMATION INTO MEANINGLESS, POWERLESS DISORDER. THIS IS CALLED ENTROPY.
  • 26. Chemical Thermodynamics Entropy ‫النتروبيا‬ • To predict spontaneity we need: ‫تنحتاج‬ ‫التلقائية‬ ‫تنعين‬ ‫لكي‬ Change in enthalpy ‫الحراري‬ ‫المحتوى‬ ‫في‬ ‫التغير‬ Entropy ‫العشوائية‬ ‫)مقياس‬ ‫)التنترسوبيا‬ Entropy- a measure of the randomness or disorder of a system. ‫النظام‬ ‫فى‬ ‫سوالفوضى‬ ‫العشوائية‬ ‫مقياس‬ ‫التنترسوبيا‬ ↑ Disorder ‫الفوضى‬ = ↑ Entropy ‫التنترسوبيا‬ 26Dr. Wael A. El-Helece
  • 27. Chemical Thermodynamics Entropy and Disorder ‫سوالعشوائية‬ ‫التنترسوبيا‬ 27Dr. Wael A. El-Helece
  • 28. Chemical Thermodynamics Entropy on the Molecular Scale ‫الجزيئي‬ ‫المستوى‬ ‫على‬ ‫النتروبيا‬ • Ludwig Boltzmann described the concept of entropy on the molecular level. .‫الجزيئي‬ ‫المستوى‬ ‫على‬ ‫النتروبيا‬ ‫مفهوم‬ ‫شرح‬ ‫بولتزمان‬ • Temperature is a measure of the average kinetic energy of the molecules in a sample. .‫العينة‬ ‫فى‬ ‫للجزيئات‬ ‫الحركة‬ ‫طاةقة‬ ‫لمتوسط‬ ‫مقياس‬ ‫الحرارة‬ ‫درجة‬ 28Dr. Wael A. El-Helece
  • 29. Chemical Thermodynamics Entropy on the Molecular Scale ‫الجزيئي‬ ‫المستوى‬ ‫على‬ ‫النتروبيا‬ • Molecules exhibit several types of motion: :‫الحركة‬ ‫أنواع‬ ‫من‬ ‫نوع‬ ‫من‬ ‫أكثر‬ ‫على‬ ‫تحتوى‬ ‫الجزيئات‬  Translational: Movement of the entire molecule from one place to another. ‫من‬ ‫للجزيئ‬ ‫انتقال‬ ‫يحدث‬ ‫انتقالية‬ ‫حركة‬ ‫لخر‬ ‫مكان‬  Vibrational: Periodic motion of atoms within a molecule. ‫الجزيئ‬ ‫داخل‬ ‫للذرات‬ ‫دورية‬ ‫حركة‬ ‫اهتزازية‬ ‫حركة‬  Rotational: Rotation of the molecule on about an axis or rotation about σ bonds. ‫احد‬ ‫حول‬ ‫ككل‬ ‫الجزيئ‬ ‫دوران‬ ‫دورانية‬ ‫حركة‬ ‫المحاور‬ 29Dr. Wael A. El-Helece
  • 30. Chemical Thermodynamics Microstates and Entropy ‫سوالتنترسوبي‬ ‫الداخلية‬ ‫التغيرات‬ • Boltzmann, 1868 ‫بولتزمان‬ S = k ln W • k = 1.38 x 10-23 J/K ↑ W = ↑ Entropy ∆ S = Sf – Si ∆ S = k ln Wf Wi 30Dr. Wael A. El-Helece
  • 31. Chemical Thermodynamics Entropy on the Molecular Scale ‫الجزيئى‬ ‫المقياس‬ ‫على‬ ‫التنترسوبيا‬ • Each thermodynamic state has a specific number of microstates, W, associated with it. .‫لها‬ ‫مصاحبة‬ ‫الشغل‬ ‫من‬ ‫محدد‬ ‫عدد‬ ‫لها‬ ‫حرارية‬ ‫ديناميكا‬ ‫حالة‬ ‫كل‬ • Entropy is ‫هو‬ ‫النتروبيا‬ S = k lnW where k is the Boltzmann constant, 1.38 × 10−23 J/K. ) ‫أن‬ ‫حيث‬k. (‫بولتزمان‬ ‫ثابت‬ ‫هو‬ 31Dr. Wael A. El-Helece
  • 32. Chemical Thermodynamics Entropy on the Molecular Scale ‫الجزيئى‬ ‫المقياس‬ ‫على‬ ‫التنترسوبيا‬ • The change in entropy for a process, then, is ‫يكون‬ ‫ما‬ ‫لعملية‬ ‫النتروبيا‬ ‫فى‬ ‫التغير‬ ∆S = k lnWfinal − k lnWinitial Wfinal Winitial ∆S ∆S = k ln • Entropy increases with the number of microstates in the system. ‫للمادة‬ ‫الداخلية‬ ‫العوامل‬ ‫بزيادة‬ ‫التنترسوبى‬ ‫يزداد‬ 32Dr. Wael A. El-Helece
  • 33. Chemical Thermodynamics Entropy on the Molecular Scale ‫الجزيئى‬ ‫المقياس‬ ‫على‬ ‫التنترسوبيا‬ • The number of microstates and, therefore, the entropy tends to increase with increases in ‫بزيادة‬ ‫تزداد‬ ‫العشوائية‬ ‫سوبالتالي‬ ‫الداخلية‬ ‫العوامل‬ ‫عدد‬ Temperature. ‫الحرارة‬ ‫درجة‬ Volume. ‫الحجم‬ The number of independently moving molecules. .‫عشوائيا‬ ‫تتحرك‬ ‫التي‬ ‫الجزيئات‬ ‫عدد‬ 33Dr. Wael A. El-Helece
  • 34. Chemical Thermodynamics Entropy and Physical States ‫الجزيئى‬ ‫المقياس‬ ‫على‬ ‫التنترسوبيا‬ • Entropy increases with the freedom of motion of molecules. ‫حرية‬ ‫بزيادة‬ ‫تزداد‬ ‫النتروبيا‬ ‫للجزيئات‬ ‫الحركة‬ • Therefore, ‫وبالتالى‬ S(g) > S(l) > S(s) 34Dr. Wael A. El-Helece
  • 35. Chemical Thermodynamics Solutions ‫المحاليل‬ Generally, when a solid is dissolved in a solvent, entropy increases. ,‫صلب‬ ‫يذاب‬ ‫عندما‬ ‫عموما‬ . ,‫تزداد‬ ‫النتروبيا‬ ‫مذيب‬ ‫في‬ 35Dr. Wael A. El-Helece
  • 36. Chemical Thermodynamics Entropy Changes ‫التنترسوبيا‬ ‫تغيرات‬ • In general, entropy increases when ,‫عندما‬ ‫يزداد‬ ‫النتروبيا‬ ‫عموما‬  Gases are formed from liquids and solids. .‫والصلب‬ ‫السوائل‬ ‫من‬ ‫الغازات‬ ‫تتكون‬  Liquids or solutions are formed from solids. ‫الصلب‬ ‫من‬ ‫تتكون‬ ‫والمحاليل‬ ‫السوائل‬  The number of gas molecules increases. ‫تزداد‬ ‫الغاز‬ ‫جزيئات‬ ‫عدد‬  The number of moles increases. .‫المولت‬ ‫عدد‬ ‫تزداد‬ 36Dr. Wael A. El-Helece
  • 37. Chemical Thermodynamics Second Law of Thermodynamics ‫الحرارية‬ ‫للديناميكا‬ ‫الثانى‬ ‫القانون‬ The second law of thermodynamics states that: :‫على‬ ‫الحرارية‬ ‫للديناميكا‬ ‫الثاتني‬ ‫القاتنون‬ ‫ينص‬ The entropy of the universe increases for spontaneous processes. .‫التلقائية‬ ‫للعمليات‬ (‫المحيط‬ + ‫)النظام‬ ‫الكون‬ ‫في‬ ‫التنترسوبيا‬ ‫تزداد‬ The entropy of the universe does not change for reversible processes. .‫التنعكاسية‬ ‫للعمليات‬ ‫الكون‬ ‫في‬ ‫التنترسوبيا‬ ‫يتأثر‬ ‫ل‬ 37Dr. Wael A. El-Helece
  • 38. Chemical Thermodynamics Second Law of Thermodynamics ‫الحرارية‬ ‫للديناميكا‬ ‫الثانى‬ ‫القانون‬ In other words: ‫اخرى‬ ‫بعبارات‬ For reversible processes: ‫التنعكاسية‬ ‫للعمليات‬ ∆Suniv = ∆Ssystem + ∆Ssurroundings = 0 For irreversible processes: ‫التنعكاسية‬ ‫غير‬ ‫للعمليات‬ ∆Suniv = ∆Ssystem + ∆Ssurroundings > 0 38Dr. Wael A. El-Helece
  • 39. Chemical Thermodynamics Second Law of Thermodynamics ‫الحرارية‬ ‫للديناميكا‬ ‫الثانى‬ ‫القانون‬ These last truths mean that as a result of all spontaneous processes the entropy of the universe increases. ‫العمليات‬ ‫لكل‬ ‫ةة‬‫ة‬‫ةة‬‫نتيج‬ ‫ةنة‬‫أ‬ ‫ةىة‬‫ن‬‫تع‬ ‫الخيرة‬ ‫ةقة‬‫ئ‬‫الحقا‬ ‫هذه‬ .‫تزداد‬ ‫الكون‬ ‫عشوائية‬ ‫التلقائية‬ 39Dr. Wael A. El-Helece
  • 40. Chemical Thermodynamics Standard Entropies ‫القياسية‬ ‫النتروبيا‬ • These are molar entropy values of substances in their standard states. •‫المواد‬ ‫لبعض‬ ‫النوعية‬ ‫النتروبيا‬ ‫قيم‬ ‫هذه‬ .‫القياسية‬ ‫حالتها‬ ‫فى‬ • Standard entropies tend to increase with increasing molar mass. •‫بزيادة‬ ‫تزداد‬ ‫القياسية‬ ‫ةةة‬‫ي‬‫النوع‬ ‫ةاة‬‫ي‬‫النتروب‬ .‫النوعية‬ ‫الكتلة‬ 40Dr. Wael A. El-Helece
  • 41. Chemical Thermodynamics Standard Entropies ‫القياسية‬ ‫النتروبيا‬ Larger and more complex molecules have greater entropies. ‫النتروبيا‬ ‫قيمة‬ ‫تكون‬ ‫تعقيدا‬ ‫والكثر‬ ‫الكبر‬ ‫الجزيئات‬ .‫كبيرة‬ 41Dr. Wael A. El-Helece
  • 42. Chemical Thermodynamics Entropy Changes ‫النتروبيا‬ ‫تغير‬ Entropy changes for a reaction can be estimated in a manner analogous to that by which ∆H is estimated: ‫فى‬ ‫التغير‬ ‫تعين‬ ‫يتم‬ ‫للتى‬ ‫مشابهه‬ ‫بطريقة‬ ‫تعينها‬ ‫يمكن‬ ‫لتفاعل‬ ‫التنترسوبيا‬ ‫تغيرات‬ .‫الحراري‬ ‫المحتوى‬ ∆S° = Σn∆S°(products) - Σm∆S°(reactants) where n and m are the coefficients in the balanced chemical equation. ‫ان‬ ‫حيث‬n‫و‬m‫الكيميائية‬ ‫المعادلة‬ ‫في‬ ‫معاملت‬ 42Dr. Wael A. El-Helece
  • 43. Chemical Thermodynamics Entropy Changes in Surroundings ‫المحيطات‬ ‫انتروبيا‬ ‫فى‬ ‫التغيرات‬ • Heat that flows into or out of the system changes the entropy of the surroundings. •.‫للمحيط‬ ‫النتروبيا‬ ‫تغير‬ ‫النظام‬ ‫عبر‬ ‫او‬ ‫من‬ ‫تنساب‬ ‫التى‬ ‫الحرارة‬ • For an isothermal process: •:‫حراريا‬ ‫المعزولة‬ ‫للعمليات‬ ∆Ssurr = −qsys T • At constant pressure, qsys is simply ∆H° for the system. ‫التغير‬ ‫تبسيطا‬ ‫هى‬ ‫نظام‬ ‫حرارة‬ ‫ثابت‬ ‫ضغط‬ ‫عند‬ ‫النثالبى‬ ‫فى‬ 43Dr. Wael A. El-Helece
  • 44. Chemical Thermodynamics Entropy Change in the Universe ‫الكون‬ ‫انتروبيا‬ ‫فى‬ ‫التغيرات‬ • The universe is composed of the system and the surroundings. •.‫والمحيط‬ ‫النظام‬ ‫من‬ ‫يتكون‬ ‫الكون‬ • Therefore, ‫وبالتالي‬ ∆Suniverse = ∆Ssystem + ∆Ssurroundings • For spontaneous processes ‫للعمليات‬ ‫التلقائية‬ ∆Suniverse > 0 44Dr. Wael A. El-Helece
  • 45. Chemical Thermodynamics Entropy Change in the Universe ‫الكون‬ ‫انتروبيا‬ ‫فى‬ ‫التغيرات‬ • This becomes: ∆Suniverse = ∆Ssystem + Multiplying both sides by −T, −T∆Suniverse = ∆Hsystem − T∆Ssystem −∆Hsystem T 45Dr. Wael A. El-Helece
  • 46. Chemical Thermodynamics Gibbs Free Energy ‫الحرة‬ ‫للطاقة‬ ‫جبس‬ ‫دالة‬ ∀−TΔSuniverse is defined as the Gibbs free energy, ∆G. ‫ةلادالة‬ ‫فى‬ ‫مضروبا‬ ‫النظام‬ ‫انتروبيا‬ ‫فى‬ ‫التغير‬ ‫تساوى‬ ‫الحرة‬ ‫للطاقة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ∆G = −TΔSuniverse • When ∆Suniverse is positive, ∆G is negative. •.‫سالبة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫تكون‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبة‬‫و‬‫م‬ ‫النظام‬ ‫انتروبيا‬ ‫تكون‬ ‫عندما‬ • Therefore, when ∆G is negative, a process is spontaneous. •‫تلقائية‬ ‫تكون‬ ‫العملية‬ ,‫سالبة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫تكون‬ ‫عندما‬ ,‫وبالتالي‬46Dr. Wael A. El-Helece
  • 48. Chemical Thermodynamics Gibbs Free Energy ‫الحرة‬‫جبس‬ ‫دالة‬ 1. If ΔG is negative, the forward reaction is spontaneous. .‫تلقائي‬ ‫يكون‬ ‫ةلادى‬‫ر‬‫الط‬ ‫التفاعل‬ ,‫سالبة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫قيمة‬ ‫كانت‬ ‫اذا‬ 2. If ΔG is 0, the system is at equilibrium. .‫التزان‬ ‫عند‬ ‫يكون‬ ‫التفاعل‬ ,‫صفر‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫قيمة‬ ‫كانت‬ ‫اذا‬ 3. If ∆G is positive, the reaction is spontaneous in the reverse direction. .‫تلقائي‬ ‫يكون‬ ‫العكسي‬ ‫التفاعل‬ ,‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبة‬‫و‬‫م‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجبس‬ ‫ةلادالة‬ ‫قيمة‬ ‫كانت‬ ‫اذا‬ 48Dr. Wael A. El-Helece
  • 49. Chemical Thermodynamics Reaction Quotient ‫التفاعل‬ ‫حاصل‬ the reaction quotient (Q) is equal to the equilibrium constant (k). .‫التزان‬ ‫ظروف‬ ‫غير‬ ‫فى‬ ‫التزان‬ ‫لثابت‬ ‫مساويا‬ ‫يكون‬ ‫التفاعل‬ ‫حاصل‬ We can write the reaction quotient Q for any half reaction in terms of the activities of the species: .‫التفكك‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ‫بدللة‬ ‫تفاعل‬ ‫نصف‬ ‫ل ي‬ ‫التفاعل‬ ‫حاصل‬ ‫كتابة‬ ‫يمكننا‬ Note: electrons do not appear in the reaction quotient. .‫التفاعل‬ ‫حاصل‬ ‫فى‬ ‫اللكترونات‬ ‫تظهر‬ ‫ل‬ :‫لحظ‬ (a=1 for pure solids and liquids so they do not appear). = ‫الكفاءة‬1.‫النقية‬ ‫والسوائل‬ ‫الصلبة‬ ‫ةلاد‬‫ا‬‫للمو‬Dr. Elhelece W. A.
  • 50. Chemical Thermodynamics Dr. Elhelece W. A. 50 Calculating the Reaction Quotient, Q ‫التفاعل‬ ‫حاصل‬ ‫حساب‬ Q can be calculated for any set of conditions, not just for equilibrium. .‫التزان‬ ‫عند‬ ‫فقط‬ ‫ليس‬ ‫ظروف‬ ‫اى‬ ‫عند‬ ‫التفاعل‬ ‫حاصل‬ ‫حساب‬ ‫يمكن‬ Q can be used to determine which direction a reaction will shift to reach equilibrium. .‫التزان‬ ‫الى‬ ‫التفاعل‬ ‫يزيح‬ ‫ان‬ ‫يمكن‬ ‫اتجاه‬ ‫اى‬ ‫فى‬ ‫يوضح‬ ‫ان‬ ‫يمكن‬ ‫التفاعل‬ ‫حاصل‬ If K > Q, a reaction will proceed forward, converting reactants into products. ‫قيمة‬ ‫كانت‬ ‫اذا‬K‫قيمة‬ ‫من‬ ‫أكبر‬Q.‫نواتج‬ ‫الى‬ ‫المتفاعلت‬ ‫تحويل‬ ,‫ةلادى‬‫ر‬‫الط‬ ‫التجاه‬ ‫فى‬ ‫يسير‬ ‫التفاعل‬ If K < Q, the reaction will proceed in the reverse direction, converting products into reactants. ‫قيمة‬ ‫كانت‬ ‫اذا‬Q‫قيمة‬ ‫من‬ ‫أكبر‬K.‫متفاعلت‬ ‫الى‬ ‫النواتج‬ ‫تحويل‬ ,‫العكسي‬ ‫التجاه‬ ‫فى‬ ‫يسير‬ ‫التفاعل‬ If Q = K then the system is already at equilibrium. ‫قيمة‬ ‫كانت‬ ‫اذا‬Q‫قيمة‬ ‫تساوى‬K.‫التزان‬ ‫عند‬ ‫يكون‬ ‫التفاعل‬ Reaction Quotient ‫التفاعل‬ ‫حاصل‬
  • 51. Chemical Thermodynamics Dr. Elhelece W. A. In order to determine Q we need to know: :‫نعرف‬ ‫ان‬ ‫يجب‬ ‫التفاعل‬ ‫حاصل‬ ‫قيمة‬ ‫لحساب‬ the equation for the reaction, including the physical states, ,‫الفزيائية‬ ‫الحالة‬ ‫متضمنة‬ ‫التفاعل‬ ‫ةلادلة‬‫ا‬‫مع‬ the quantities of each species (molarities and/or pressures), .(‫الضغوط‬ ‫او‬ ‫)المولرية‬ ‫المختلفة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزاء‬‫ل‬‫ا‬ ‫كميات‬ all measured at the same moment in time. .‫الزمن‬ ‫من‬ ‫اللحظة‬ ‫نفس‬ ‫عند‬ ‫كلها‬ ‫مقاسة‬ To calculate Q: ‫لحساب‬Q: 1. Write the expression for the reaction quotient. .‫التفاعل‬ ‫حاصل‬ ‫لحساب‬ (‫)الصيغة‬ ‫القانون‬ ‫اكتب‬ 2. Find the molar concentrations or partial pressures of each species involved. .‫التفاعل‬ ‫فى‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزء‬ ‫لكل‬ ‫الجزيئية‬ ‫الضغوط‬ ‫او‬ ‫المولر ي‬ ‫التركيز‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجد‬‫و‬‫ا‬ 3. Substitute values into the expression and solve. .‫وحل‬ ‫الصيغة‬ ‫فى‬ ‫القيم‬ ‫ةلادخل‬‫ا‬ Reaction Quotient ‫التفاعل‬ ‫حاصل‬
  • 52. Chemical Thermodynamics Dr. Elhelece W. A. Example: 0.035 moles of SO2 , 0.500 moles of SO2 Cl2 , and 0.080 moles of Cl2 are combined in an evacuated 5.00 L flask and heated to 100o C. What is Q before the reaction begins? Which direction will the reaction proceed in order to establish equilibrium? SO2 Cl2 (g) SO2 (g) + Cl2 (g) Kc = 0.078 at 100o C •Write the expression to find the reaction quotient, Q. Since Kc is given, the amounts must be expressed as moles per liter (molarity). The amounts are in moles so a conversion is required. 0.500 mole SO2Cl2/5.00 L = 0.100 M SO2Cl2 0.035 mole SO2/5.00 L = 0.070 M SO2 0.080 mole Cl2/5.00 L = 0.016 M Cl2 Reaction Quotient ‫التفاعل‬ ‫حاصل‬
  • 53. Chemical Thermodynamics Dr. Elhelece W. A. 53 Substitute the values in to the expression and solve for Q. Compare the answer to the value for the equilibrium constant and predict the shift. 0.078 (K) > 0.011 (Q) Since K >Q, the reaction will proceed in the forward direction in order to increase the concentrations of both SO2 and Cl2 and decrease that of SO2Cl2 until Q = K. Reaction Quotient ‫التفاعل‬ ‫حاصل‬
  • 54. Chemical Thermodynamics Standard Free Energy Changes ‫القياسية‬ ‫الحرة‬ ‫الطاقة‬ ‫تغيرات‬ Analogous to standard enthalpies of formation are standard free energies of formation, ∆Gf°. .‫القياسية‬ ‫الحرة‬ ‫الطاقة‬ ‫تغيرات‬ ,‫القياسية‬ ‫التكوين‬ ‫طاقات‬ ‫مع‬ ‫متوافق‬ ∆G° = Σn∆G°(products) − Σm∆G°(reactants) f f where n and m are the stoichiometric coefficients. ‫أن‬ ‫حيث‬n‫و‬m.‫التركيبية‬ ‫النسب‬ ‫عوامل‬ 54Dr. Wael A. El-Helece
  • 55. Chemical Thermodynamics Free Energy Changes ‫الحرة‬ ‫الطاقة‬ ‫تغيرات‬ At temperatures other than 25°C, •‫غير‬ ‫حرارة‬ ‫درجات‬ ‫عند‬25,‫مئوية‬ ‫درجة‬ ∆G° = ∆H° − T∆S° How does ∆G° change with temperature? ‫درجة‬ ‫مع‬ ‫لنظام‬ ‫القياسية‬ ‫الحرة‬ ‫الطاقة‬ ‫تتغير‬ ‫أن‬ ‫يمكن‬ ‫كيف‬ ‫الحرارة؟‬55Dr. Wael A. El-Helece
  • 56. Chemical Thermodynamics Free Energy and Temperature ‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬‫و‬ ‫الحرة‬ ‫الطاقة‬ • There are two parts to the free energy equation: :‫الحرة‬ ‫الطاقة‬ ‫ةلادلة‬‫ا‬‫لمع‬ ‫نصفين‬ ‫هناك‬ ∆H°— the enthalpy term ‫التكوين‬ ‫حرارات‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزء‬ T∆S° — the entropy term ‫العشوائية‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزء‬ • The temperature dependence of free energy, then comes from the entropy term. •‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجزء‬ ‫من‬ ‫تتأتى‬ ‫وبالتالي‬ ,‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ‫على‬ ‫ةلادها‬‫ا‬‫واعتم‬ ‫الحرة‬ ‫الطاقة‬ .‫العشوائية‬ 56Dr. Wael A. El-Helece
  • 57. Chemical Thermodynamics Free Energy and Temperature ‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬‫و‬ ‫الحرة‬ ‫الطاقة‬ 57Dr. Wael A. El-Helece
  • 58. Chemical Thermodynamics Free Energy and Equilibrium ‫والتزان‬ ‫الحرة‬ ‫الطاقة‬ Under any conditions, standard or nonstandard, the free energy change can be found this way: ‫يمكن‬ ‫الحرة‬ ‫الطاقة‬ ‫فى‬ ‫التغير‬ ,‫قياسية‬ ‫غير‬ ‫أو‬ ‫قياسية‬ ‫ظروف‬ ‫أ ي‬ ‫تحت‬ :‫العلقة‬ ‫من‬ ‫يحسب‬ ‫أن‬ ∆G = ∆G° + RT lnQ (Under standard conditions, all concentrations are 1 M, so Q = 1 and lnQ = 0; the last term drops out.) ‫التركيزات‬ ‫كل‬ ,‫القياسية‬ ‫الظروف‬ ‫فى‬1‫التفاعل‬ ‫حاصل‬ ‫وكذا‬ ‫مولر‬Q 1‫الخير‬ ‫الجزء‬ ‫وبالتالي‬ .‫يتليشي‬ ‫ةلادلة‬‫ا‬‫المع‬ ‫فى‬ 58Dr. Wael A. El-Helece
  • 59. Chemical Thermodynamics Free Energy and Equilibrium ‫والتزان‬ ‫الحرة‬ ‫الطاقة‬ • At equilibrium, Q = K, and ∆G = 0. ‫التزان‬ ‫عند‬ • The equation becomes ‫تصبح‬ ‫ةلادلة‬‫ا‬‫المع‬ 0 = ∆G° + RT lnK • Rearranging, this becomes ‫تصبح‬ ‫الترتيب‬ ‫ةلادة‬‫ا‬‫بإع‬ ∆G° = −RT lnK or, K = e−∆G°/RT 59Dr. Wael A. El-Helece
  • 60. Chemical Thermodynamics In any spontaneous process, the entropy of the universe increases. .‫ةلاد‬‫ا‬‫ةلاد‬‫ز‬‫ت‬ ‫للكون‬ ‫النتروبيا‬ ,‫تلقائية‬ ‫عملية‬ ‫ل ي‬ ΔSuniverse > 0 Another version of the 2nd Law: ‫الثاني‬ ‫للقانون‬ ‫آخر‬ ‫يشكل‬ Energy spontaneously spreads out if it has no outside resistance. .‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجية‬‫ر‬‫خا‬ ‫مقاومة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجد‬‫و‬‫ي‬ ‫لم‬ ‫اذا‬ ‫النظام‬ ‫خارج‬ ‫تنتشر‬ ‫تلقائيا‬ ‫الطاقة‬ Entropy measures the spontaneous dispersal of energy as a function of temperature ‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ‫فى‬ ‫كدالة‬ ‫التلقائئي‬ ‫الطاقة‬ ‫انتشار‬ ‫يقيس‬ ‫النتروبيا‬ How much energy is spread out? ‫النظام‬ ‫خارج‬ ‫الطاقة‬ ‫انتشار‬ ‫مقدار‬ ‫ما‬ How widely spread out it becomes? ‫النظام‬ ‫خارج‬ ‫الطاقة‬ ‫انتشار‬ ‫مدى‬ ‫ما‬ Entropy change = “energy dispersed”/T ‫يساوى‬ ‫النتروبيا‬ ‫فى‬ ‫التغير‬ ‫الحرارة‬ ‫ىف ابورضم ماظنلا ايبورتنا ىف ريغتلا ىواست ةرحلا ةقاطلل سبجة‬‫ر‬‫ةلاد‬ ‫على‬ ‫مقسوما‬ ‫الطاقة‬ ‫.انتشار‬ Second Law of Thermodynamics ‫الحرارية‬ ‫للديناميكا‬ ‫الثاني‬ ‫القانون‬ occurs without outside intervention ‫خارجي‬ ‫تأثير‬ ‫دون‬ ‫تحدث‬ ↓
  • 61. Chemical Thermodynamics Entropy of the Universe ‫الكون‬ ‫فى‬ ‫العشوائية‬ ΔSuniverse = ΔSsystem + ΔSsurroundings Positional disorder ‫موضعي‬ ‫انتظام‬ ‫ل‬ Energetic disorder ‫الطاقة‬ ‫بسب‬ ‫انتظام‬ ‫ل‬ ΔSuniverse > 0 ⇒ spontaneous process ‫تلقائية‬ ‫عمليات‬ Both ΔSsys and ΔSsurr positive Both ΔSsys and ΔSsurr negative ΔSsys negative, ΔSsurr positive ΔSsys positive, ΔSsurr negative spontaneous process. nonspontaneous process. depends depends
  • 62. Chemical Thermodynamics Entropy of the Surroundings (Energetic Disorder) System Heat Entropy Surroundings System Heat Entropy Surroundings T ΔH ΔS sys surr −= Low T ⇒ large entropy change (surroundings) High T ⇒ small entropy change (surroundings) ΔHsys < 0 ΔHsys > 0 ΔSsurr > 0 ΔSsurr < 0
  • 63. Chemical Thermodynamics Positional Disorder and Probability ‫والحتمالت‬ ‫موضعى‬ ‫انتظام‬ ‫ل‬ Probability of 1 particle in left bulb = ½ " 2 particles both in left bulb = (½)(½) = ¼ " 3 particles all in left bulb = (½)(½)(½) = 1/8 " 4 " all " = (½)(½)(½)(½) = 1/16 " 10 " all " = (½)10 = 1/1024 " 20 " all " = (½)20 = 1/1048576 " a mole of " all " = (½)6.02×10 23 The arrangement with the greatest entropy is the one
  • 64. Chemical Thermodynamics Ssolid < Sliquid << Sgas Entropy of the System: Positional Disorder Ordered states Disordered states Low probability (few ways) High probability (many ways) Low S High S Ssystem ∝ Positional disorder S increases with increasing # of possible positions Ludwig Boltzmann
  • 65. Chemical Thermodynamics Entropy Curve Solid GasLiquid S (qrev/T) (J/K) Temperature (K) 0 0 ← fusion ← vaporization S° (absolute entropy) can be calculated for any substance
  • 66. Chemical Thermodynamics Entropy Increases with... • Melting (fusion) Sliquid > Ssolid ΔHfusion/Tfusion = ΔSfusion • Vaporization Sgas > Sliquid ΔHvaporization/Tvaporization = ΔSvaporization • Increasing ngas in a reaction • Heating ST2 > ST1 if T2 > T1 • Dissolving (usually) Ssolution > (Ssolvent + Ssolute) • Molecular complexity more bonds, more entropy • Atomic complexity more e- , protons, neutrons
  • 67. Chemical Thermodynamics Characteristics of Entropy ‫العشوائية‬ ‫مقياس‬ ‫خصائص‬ • S is a state function ‫حالة‬ ‫دالة‬ ‫التنتروبيا‬ • S is extensive (more stuff, more entropy) ‫مركزة‬ ‫غير‬ ‫خاصية‬ • At 0 K, S = 0 (we can know absolute entropy) ‫عند‬ ‫المطلقة‬ ‫التنتروبيا‬ ‫المطلقة‬ ‫الحرارة‬ ‫درجة‬ • S > 0 for elements and compounds in their standard states ‫القياسية‬ ‫حالهتها‬ ‫فى‬ ‫والمركبات‬ ‫للعناصر‬ ‫الصفر‬ ‫من‬ ‫اكبر‬ ‫التنتروبيا‬ • ΔS°rxn = ΣnS°products - ΣnS°reactants • Raise T → increase S ‫التنتروبيا‬ ‫هتزداد‬ ‫الحرارة‬ ‫درجة‬ ‫بارهتفاع‬ • Increase ngas → increase S ‫العشوائية‬ ‫هتزداد‬ ‫المولت‬ ‫عدد‬ ‫بزيادة‬ • More complex systems ⇒ larger S ‫قيمة‬ ‫اكبر‬ ‫عشوائي‬ ‫هتعقيدا‬ ‫اكثر‬ ‫تنظام‬
  • 69. Chemical Thermodynamics Entropy (S) Review• ΔSuniverse > 0 for spontaneous processes • ΔSuniverse = ΔSsystem + ΔSsurroundings ↑ positional ↑ energetic • We can know the absolute entropy value for a substance • S° values for elements & compounds in their standard states are tabulated (Appendix C, p. 1019) • For any chemical reaction, we can calculate ΔS°rxn: • ΔS°rxn = ΣS°(products) - ΣS°(reactants)
  • 70. Chemical Thermodynamics ΔSuniverse and Chemical Reactions ΔSuniverse = ΔSsystem + ΔSsurroundings For a system of reactants and products, ΔSuniverse = ΔSrxn – ΔHrxn/T • If ΔSuniverse > 0, the reaction is spontaneous • If ΔSuniverse < 0, the reaction is not spontaneous – The reverse reaction is spontaneous • If ΔSuniverse = 0, the reaction is at equilibrium – Neither the forward nor the reverse reaction is favored
  • 71. Chemical Thermodynamics C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(g) Compound C6H12O6(s) O2(g) CO2(g) H2O(g) ΔH°f (kJ/mol) -1275 0 -393.5 -242 S° (J/mol K) 212 205 214 189 ΔSuniverse = ΔSrxn – ΔHrxn/T ΔS°rxn = ΣS°(products) - ΣS°(reactants) = [6 S°(CO2(g)) + 6 S°(H2O(g))] – [S°(C6H12O6(s)) + 6 S°(O2(g))] = [6(214) + 6(189)] – [(212) + 6(205)] J/K ΔS°rxn = 976 J/K ΔH°rxn = ΣΔH°f (products) - ΣΔH°f(reactants) = [6 ΔH°f(CO2(g)) + 6 ΔH°f(H2O(g))] – [ΔH°f(C6H12O6(s)) + 6 ΔH°f(O2(g))] = [6(-393.5) + 6(-242)] – [(-1275) + 6(0)] kJ
  • 72. Chemical Thermodynamics C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(g) Compound C6H12O6(s) O2(g) CO2(g) H2O(g) ΔH°f (kJ/mol) -1275 0 -393.5 -242 S° (J/mol K) 212 205 214 189 ΔSuniverse = ΔSrxn – ΔHrxn/T ΔS°rxn = 976 J/K (per mole of glucose) ΔH°rxn = -2538 kJ (per mole of glucose) At 298 K, ΔS°universe = 0.976 kJ/K – (-2538 kJ/298 K) ΔS°universe = 9.5 kJ/K
  • 73. Chemical Thermodynamics –ΔG means +ΔSuniv A process (at constant T, P) is spontaneous if free energy decreases Gibbs Free Energy (G) Josiah Gibbs G = H – TS At constant temperature, ΔG = ΔH – TΔS (system’s point of view) ΔG = ΔH – TΔS Divide both sides by –T -ΔG/T = -ΔH/T + ΔS ΔSuniverse = ΔS – ΔH/T
  • 74. Chemical Thermodynamics ΔG and Chemical Reactions ΔG = ΔH – TΔS • If ΔG < 0, the reaction is spontaneous • If ΔG > 0, the reaction is not spontaneous – The reverse reaction is spontaneous • If ΔG = 0, the reaction is at equilibrium – Neither the forward nor the reverse reaction is favored • ΔG is an extensive state function
  • 75. Chemical Thermodynamics Ba(OH)2(s) + 2NH4Cl(s) → BaCl2(s) + 2NH3(g) + 2 H2O(l) ΔH°rxn = 50.0 kJ (per mole Ba(OH)2) ΔS°rxn = 328 J/K (per mole Ba(OH)2) ΔG = ΔH - TΔS ΔG°= 50.0 kJ – 298 K(0.328 kJ/K) ΔG° = – 47.7 kJ Spontaneous At what T does the reaction stop being spontaneous? The T where ΔG = 0. ΔG = 0 = 50.0 kJ – T(0.328 J/K) 50.0 kJ = T(0.328 J/K) T = 152 K ←not spontaneous below 152 K
  • 76. Chemical Thermodynamics Effect of ΔH and ΔS on Spontaneity ΔH – + – + ΔS + + – – Spontaneous? Spontaneous at all temps Spontaneous at high temps • Reverse reaction spontaneous at low temps Spontaneous at low temps • Reverse reaction spontaneous at high temp Not spontaneous at any temp ΔG = ΔH – TΔS ΔG negative ⇔ spontaneous reaction
  • 77. Chemical Thermodynamics 1. ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants) • ΔG°f = free energy change when forming 1 mole of compound from elements in their standard states 2. ΔG° = ΔH° - TΔS° 3. ΔG° can be calculated by combining ΔG° values for several reactions • Just like with ΔH° and Hess’s Law Ways to Calculate ΔG°rxn
  • 78. Chemical Thermodynamics 2H2(g) + O2(g) → 2 H2O(g) 1. ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants) ΔG°f(O2(g)) = 0 ΔG°f(H2(g)) = 0 ΔG°f(H2O(g)) = -229 kJ/mol ΔG° = (2(-229 kJ) – 2(0) – 0) kJ = -458 kJ 2. ΔG° = ΔH° - TΔS° ΔH° = -484 kJ ΔS° = -89 J/K ΔG° = -484 kJ – 298 K(-0.089 kJ/K) = -457 kJ
  • 79. Chemical Thermodynamics 2H2(g) + O2(g) → 2 H2O(g) 3. ΔG° = combination of ΔG° from other reactions (like Hess’s Law) 2H2O(l) → 2H2(g) + O2(g) ΔG°1 = 475 kJ H2O(l) → H2O(g) ΔG°2 = 8 kJ ΔG° = - ΔG°1 + 2(ΔG°2) ΔG° = -475 kJ + 16 kJ = -459 kJ Method 1: -458 kJ Method 2: -457 kJ Method 3: -459 kJ
  • 80. Chemical Thermodynamics What is Free Energy, Really? • NOT just “another form of energy” • Free Energy is the energy available to do useful work • If ΔG is negative, the system can do work (wmax = ΔG) • If ΔG is positive, then ΔG is the work required to make the process happen  Example: Photosynthesis  6 CO2 + 6 H2O → C6H12O6 + 6 O2  ΔG = 2870 kJ/mol of glucose at 25°C  2870 kJ of work is required to photosynthesize 1 mole of glucose
  • 81. Chemical Thermodynamics Third Law of Thermodynamics ‫الحرارية‬ ‫للديناميكا‬ ‫الثالث‬ ‫القاتنون‬ The entropy of a pure crystalline substance at absolute zero is 0. ‫المطلق‬ ‫الصفر‬ ‫حرارة‬ ‫درجة‬ ‫عند‬ ‫متبلورة‬ ‫نقية‬ ‫لمادة‬ ‫النتروبيا‬ .‫صفر‬ 81Dr. Wael A. El-Helece
  • 82. Chemical Thermodynamics The Third Law: The entropy of a perfect crystal at 0 K is zero. ‫درجة‬ ‫عند‬ ‫مثالية‬ ‫بلورة‬ ‫فى‬ ‫العشوائية‬ .‫صفر‬ ‫المطلق‬ ‫الصفر‬ Everything in its place ‫مكانه‬ ‫فى‬ ‫شئ‬ ‫كل‬ No molecular motion ‫فى‬ ‫حركة‬ ‫توجد‬ ‫ل‬ ‫الجزيئات‬ Third Law of Thermodynamics ‫الحرارية‬ ‫للديناميكا‬ ‫الثالث‬ ‫القاتنون‬

Editor's Notes

  1. Energy is from the Greek “work within”. Moving objects do work when they slow down or are stopped. Kinetic means “motion” in greek.
  2. [w] means UNITS OF WORK, not concentration in this case.
  3. Energy changes continuously from potential to kinetic. Energy is lost to the surroundings.
  4. Heat is transfer of energy. Bodies do NOT contain heat.