Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

of

Prognostic models Slide 1 Prognostic models Slide 2 Prognostic models Slide 3 Prognostic models Slide 4 Prognostic models Slide 5 Prognostic models Slide 6 Prognostic models Slide 7 Prognostic models Slide 8 Prognostic models Slide 9 Prognostic models Slide 10 Prognostic models Slide 11 Prognostic models Slide 12 Prognostic models Slide 13 Prognostic models Slide 14 Prognostic models Slide 15 Prognostic models Slide 16 Prognostic models Slide 17 Prognostic models Slide 18 Prognostic models Slide 19 Prognostic models Slide 20 Prognostic models Slide 21 Prognostic models Slide 22 Prognostic models Slide 23 Prognostic models Slide 24 Prognostic models Slide 25 Prognostic models Slide 26 Prognostic models Slide 27 Prognostic models Slide 28 Prognostic models Slide 29 Prognostic models Slide 30 Prognostic models Slide 31 Prognostic models Slide 32 Prognostic models Slide 33 Prognostic models Slide 34 Prognostic models Slide 35 Prognostic models Slide 36 Prognostic models Slide 37 Prognostic models Slide 38 Prognostic models Slide 39 Prognostic models Slide 40 Prognostic models Slide 41 Prognostic models Slide 42 Prognostic models Slide 43 Prognostic models Slide 44 Prognostic models Slide 45 Prognostic models Slide 46 Prognostic models Slide 47 Prognostic models Slide 48 Prognostic models Slide 49
Upcoming SlideShare
Infertility; Causes and Management
Next
Download to read offline and view in fullscreen.

9 Likes

Share

Download to read offline

Prognostic models

Download to read offline

evidence based prognosis is an important part of EBM. It helps counselling your patients

Related Audiobooks

Free with a 30 day trial from Scribd

See all

Prognostic models

  1. 1. Prognostic models in Infertility
  2. 2. Basic fertility work up referral gyn History Physical examination Cycle evaluation Ovulation Semen analysis ? PCT Tubal p atency : CAT HSG DLS FSH, E2 AFC
  3. 3. Causes of infertility <ul><li>Azoospermia </li></ul><ul><li>Anovulation </li></ul><ul><li>Double sided tubal occlusion </li></ul><ul><li>Sexual dysfunction </li></ul>
  4. 4. Causes of subfertility <ul><li>Unexplained subfertility </li></ul><ul><li>One-sided tubal pathology </li></ul><ul><li>Cervical factor subfertility </li></ul><ul><li>Endometriosis </li></ul><ul><li>Decreased semen quality </li></ul><ul><li>Decreased intercourse frequency </li></ul>
  5. 5. Evers JL, Lancet 2002 Infertility or subfertility?
  6. 6. Clinical problem <ul><li>Distinction between couples who need treatment and couples who are likely to conceive spontaneously </li></ul>
  7. 7. Clinical Problem II <ul><li>You scheduled a couple to do ICSI and the woman asked you : What is my chance to get a baby after doing ICSI??? </li></ul>
  8. 8. <ul><li>Gynaecologists differ widely in estimating pregnancy chances of subfertile couples </li></ul>Van der Steeg et al.,HR, 2006
  9. 9. Why Models!! <ul><li>Prediction models are intended to help gynaecologists in patient communication and decision making about treatment </li></ul>
  10. 10. How to Choose: Expectant management or intervention <ul><li>Prediction models for Chance to concieve naturally (home conception) (treatment independent pregnancy) </li></ul><ul><li>Prediction models for pregnancy after IVF </li></ul><ul><li>Prediction models for pregnancy after IUI </li></ul>
  11. 11. Hunault et al. HR 2004 Prediction models for spontaneous pregnancy Eimers Collins Snick Hunault Female age + + - + Duration subfertility + + + + F.A. man Urethritis vg. man + - - - - - - - prim/ sec subfertility + + - + Anovulation - - + - Tubal pathology - + + - Semen-analysis + + - + Endometriosis - + - - PCT Referral status + - + +/- +
  12. 12. Calculation Prognosis P = 1-0,0166 EXP(-0,053* age -0,152* duration -0,447* prim/sec +0.0035* prog.mot -0,949* PCT -0,321* referral )
  13. 13. External validation <ul><li> </li></ul><ul><li>the agreement between predicted probabilities and the outcome event rates </li></ul><ul><ul><ul><ul><ul><li>Calibration </li></ul></ul></ul></ul></ul>
  14. 14. Calibration Synthesis model 10 groups of N~260 Van der Steeg HR 2007
  15. 15. http:// www.amc.nl/prognosticmodel http:// www.amc.nl/prognosticmodel
  16. 16. Clinical consequences <ul><li>Couples with prognosis <30% = IVF </li></ul><ul><li>Couples with prognosis > 40% = expectant management </li></ul><ul><li>Couples with prognosis 30-40% = IUI </li></ul>
  17. 17. Expectant management or intervention <ul><li>Prediction models for Chance to concieve naturally (home conception) (treatment independent pregnancy) </li></ul><ul><li>Prediction models for pregnancy after IVF </li></ul><ul><li>Prediction models for pregnancy after IUI </li></ul>
  18. 18. Protocols for IVF GnRH Antagonist Protocols GnRH Agonist Protocols 225 IU per day (150 IU Europe) Individualized Dosing of FSH/HMG 250  g per day antagonist Individualized Dosing of FSH/HMG GnRHa 1.0 mg per day up to 21 days 0.5 mg per day of GnRHa 225 IU per day (150 IU Europe) Day 6 of FSH/HMG Day of hCG Day 1 of FSH/HMG Day 6 of FSH/HMG Day of hCG 7 – 8 days after estimated ovulation Down regulation Day 2 or 3 of menses Day 1 FSH/HMG
  19. 19. Which day!!! <ul><li>Day of start of cycle </li></ul><ul><li>Day of start of stimulation </li></ul><ul><li>Day of OPU </li></ul><ul><li>Day of ET </li></ul><ul><li>the time of embryo transfer will be more accurate </li></ul><ul><li>but limited since the couple has already gone through the whole process of IVF. </li></ul>
  20. 20. Ideal model <ul><li>the probability of live birth in an IVF cycle prior to start of ovarian stimulation. </li></ul>
  21. 21. Day of start: Baseline factors <ul><li>female age, </li></ul><ul><li>duration of infertility, </li></ul><ul><li>primary cause of infertility, </li></ul><ul><li>duration of GnRH agonist use, </li></ul><ul><li>Hormonal level </li></ul><ul><li>the number of previous IVF cycle </li></ul>
  22. 22. <ul><li>The age of the woman is still considered to be the most important predictor of IVF success (Broekmans and Klinkert, 2004). </li></ul>
  23. 23. <ul><li>increasing duration of infertility has also been shown to be negative impact , even after adjustment for age, whereas previous pregnancy increases the likelihood of success (Collins et al., 1995; Templeton et al, 1996). </li></ul>
  24. 24. <ul><li>couples with different infertility diagnoses will likely have different probabilities of achieving a live birth </li></ul>
  25. 25. Ovarian reserve tests <ul><li>Basal FSH, inhibin B, and anti-Müllerian hormone concentrations, as well as antral follicles count can be used to measure the </li></ul><ul><li>ovarian reserve ( Broekmans et al., 2006; Kwee et al., 2008). </li></ul>
  26. 26. AMH <ul><li>If kits are available, AMH measurement could be the most useful in the prediction of ovarian response in anovulatory women. </li></ul><ul><li>It is done at any day of cycle </li></ul><ul><li>It is too expensive </li></ul><ul><li>Exact normal levels not yet well agreed upon </li></ul>
  27. 27. ? Pregnancy <ul><li>correlation with the degree of response to COH, but identifying poor responders by means of these tests has low prognostic value in relation to the chance of live birth after IVF </li></ul><ul><li>Broekmans et al. (2006) </li></ul>
  28. 28. How to build a model! <ul><li>Multivariate logistic regression analysis for previous prognostic variables to create prediction models of ovarian response and/or ongoing pregnancy has been used to a lesser extent (e.g., Bancsi et al., 2002). </li></ul>
  29. 29. Existing Models <ul><li>Most statistical models for prediction of IVF outcome use both prestimulation parameters and data obtained during the treatment, such as data on embryos </li></ul>
  30. 30. IVF prediction models Prediction models Outcome Discrimination Calibration Templeton (1996) IVF 0.63 good
  31. 32. Calculation <ul><li>The predicted probability ( P ) of achieving a live birth after IVF was calculated using the Templeton the model: </li></ul><ul><li>Where y was defined as y = –2.028 + [0.00551x( age – 16)2] – [0.00028x(age – 16)3] + [i – (0.0690x no. of unsuccessful IVF attempts )] – (0.0711xtubal subfertility) + (0.7587xlive birth after IVF) + (0.2986 x previous pregnancy after IVF which did not result in a live birth) + (0.2277x live birth which was not a result of IVF) + (0.1117x previous pregnancy , not after IVF and which did not result in a live birth). </li></ul>                                         
  32. 33. IVF prediction models Prediction models Outcome Discrimination Calibration Templeton (1996) IVF 0.63 good
  33. 34. Lintsen, A.M.E. et al. Hum. Reprod. 2007
  34. 35. <ul><li>classified for each woman into one of three groups, i.e., </li></ul><ul><li>(i) predictor of good prognosis </li></ul><ul><li>(ii) intermediate prognosis </li></ul><ul><li>(iii) predictor of poor prognosis. </li></ul>
  35. 36. Expectant management or intervention <ul><li>Prediction models for Chance to concieve naturally (home conception) (treatment independent pregnancy) </li></ul><ul><li>Prediction models for pregnancy after IUI </li></ul><ul><li>Prediction models for pregnancy after IVF </li></ul>
  36. 37. Prognostic factors of pregnancy in intrauterine insemination <ul><li>Women with intermediate prognosis </li></ul>
  37. 38. IUI prediction model prediction models Outcome Discrimination Calibration Steures (2004) IUI 0.59 good
  38. 39. PICO Patient woman, 34 years, 2ys 1ry unexplained inf. Intervention IUI Comparison wait Outcome Pregnancy
  39. 42. -- delayed treatment -- early treatment RR: 1, 0 (CI: 0,86-1,2) N= 90 (71%) N= 90 (71%)
  40. 43. Take Home Message <ul><li>Prediction models are now available and ready for use </li></ul><ul><li>Female age is the overwhelming factor affecting prediction models </li></ul><ul><li>The prognosis should be discussed clearly with the patients based on scientific evidence and existing models. </li></ul>
  41. 44. However <ul><li>Patient preferences </li></ul><ul><li>Private vs medical insurance </li></ul><ul><li>Patient values </li></ul>
  42. 45. http:// www.amc.nl/prognosticmodel http:// www.amc.nl/prognosticmodel
  43. 46. Clinical consequences <ul><li>Couples with prognosis <30% = IVF </li></ul><ul><li>Couples with prognosis > 40% = expectant management </li></ul><ul><li>Couples with prognosis 30-40% = IUI </li></ul>
  44. 47. Lintsen, A.M.E. et al. Hum. Reprod. 2007
  45. 48. Basics Clinical Expertise Prediction Model Patient Preferences
  46. 49. <ul><li>THANK You </li></ul>
  • SaraAshraf30

    Nov. 26, 2017
  • ssuser72a733

    Apr. 30, 2017
  • drmaheshtandale

    Nov. 4, 2016
  • AbuosaidAyadAyad

    Mar. 14, 2016
  • MahmoudAlHussini

    Feb. 18, 2016
  • drfarraj

    Jul. 24, 2015
  • drtameressam

    Nov. 4, 2014
  • khfhassan

    May. 16, 2014
  • AhmedFarag11

    May. 15, 2014

evidence based prognosis is an important part of EBM. It helps counselling your patients

Views

Total views

3,008

On Slideshare

0

From embeds

0

Number of embeds

18

Actions

Downloads

56

Shares

0

Comments

0

Likes

9

×