Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
•
XO
Y
y = - (x + 2)2
GRAFIK FUNGSI KUADRAT
•
XO
Y
disusun oleh:
Al. Krismanto, M.Sc.
x y Titik
X
Y
–3 9 (–3,9)
–2 4 (–2,4)
–1 1 (–1,1)
0 0 (0,0)
1 1 (1,1)
2 4 (2,4)
3 9 (3,9)
O
(– 3,9)
(– 2,4)
(– 1,1)
(0,0)
...
GRAFIK FUNGSI KUADRAT
Persamaan grafik y = (x–p)2
x y Titik
–3 9 (–3,9)
–2 4 (–2,4)
–1 1 (–1,1)
0 0 (0,0)
1 1 (1,1)
2 4 (2...
Grafik
y = (x – 3)2
Grafik
y = (x – 1)2
Grafik
y = (x – 2)2
Grafik y = (x – p) 2
X
Y
O(0,0)
Perhatikan kembali
grafik y = ...
GRAFIK FUNGSI KUADRAT
Bagaimana cara memperoleh
grafik y = x2
+ 2 dari grafik y = x2
?
Coba perhatikan!
y = f(x); f: x→ f(...
Grafik
y = x2
+ 3
Grafik
y = x2
+ 1
Grafik
y = x2
+ 2
X
Y
O(0,0)
Perhatikan kembali
grafik y = x2
y = x2
Grafik y = x2
+ 1...
Titik baliknya
(3, 2)
Grafik
y = (x – 3)2
+2
Grafik
y = (x – 3)2
X
Y
O(0,0)
Perhatikan kembali
grafik y = x2
y = x2
Berdas...
GRAFIK FUNGSI KUADRAT
Dengan cara bagaimanakah
grafik: y =– x2
diperoleh dari
grafik: y = x2
?
y = f(x); f: x→ f(x) = –x2
...
GRAFIK FUNGSI KUADRAT
Persamaan grafik y = –(x–p)2
x y Titik
0 0 (0,0)
1 –1 (1,–1)
3 –9 (3,–9)
X
Y
O(0,0)
(1, – 1)
(2, – 4...
Grafik
y = – (x – 3)2
+2
Grafik
y = –(x – 3)2
X
Y
O(0,0)
Perhatikan kembali
grafik y = – x2
Berdasar langkah
sebelumnya ma...
LATIHAN
Berikut ini disajikan soal Latihan bentuk
pilihan ganda 5 pilihan A, B, C, D, dan E.
GUNAKAN
POINTER
BUKAN
UNTUK M...
XO
Y
1. Persamaan grafik fungsi
kuadrat di samping adalah ....
B. y = x2
+ 3x + 2
C. y = −(x − 3)2
+ 2
D. y = (x − 3)2
+ 2...
Sayang, masih belum benar.
Kerjakan sekali lagi!
XO
Y
1. Persamaan grafik fungsi
kuadrat di samping adalah ....
B. y = x2
...
XO
Y
Sayang, jawab Anda salah lagi.
Grafik diperoleh dari grafik y = x2
Digeser ke kanan 3 satuan
y = (x − 3)2
Digeser ke ...
XO
Y
2. Persamaan grafik fungsi
kuadrat di samping adalah ....
B. y = − x2
+ 3x − 2
C. y = (x + 2)2
− 3
D. y = (x − 3)2
+ ...
Sayang, masih belum benar.
Kerjakan sekali lagi!
XO
Y
2. Persamaan grafik fungsi
kuadrat di samping adalah ....
B. y = − x...
•
XO
Y
Sayang, jawab Anda salah lagi.
Grafik diperoleh dari grafik y = x2
Digeser ke kiri 2 satuan
y = (x + 2)2
Digeser ke...
XO
Y
3. Persamaan grafik fungsi
kuadrat di samping adalah ....
B. y = −(x − 8)2
+ 2
C. y = −(x + 2)2
+ 8
D. y = (x + 2)2
+...
Sayang, masih belum benar.
Kerjakan sekali lagi!
XO
Y
3. Persamaan grafik fungsi
kuadrat di samping adalah ....
B. y = −(x...
•
XO
Y
Sayang, jawab Anda salah lagi.
Grafik diperoleh dari grafik y = x2
Digeser ke kiri 2 satuan
y = − (x + 2)2
Digeser ...
XO
Y
4. Persamaan grafik fungsi
kuadrat di samping adalah ....
A. y = 0,5x2
+ 4x + 1
B. y = 0,5(x − 4)2
− 1
C. y = −0,5(x ...
Sayang, masih belum benar.
Kerjakan sekali lagi!
XO
Y
4. Persamaan grafik fungsi
kuadrat di samping adalah ....
A. y = 0,5...
XO
Y
Sayang, jawab Anda salah lagi.
2
1Grafik diperoleh dari grafik y = x2
Digeser ke kiri 4 satuan
Perhatikan cara menyel...
XO
Y
5. Persamaan grafik fungsi
kuadrat di samping adalah ....
A. y = 0,5x2
+ x + 8
B. y = 0,5x2
+ 2x + 8
C. y = −x2
+ 4x ...
Sayang, masih belum benar.
Kerjakan sekali lagi!
XO
Y
5. Persamaan grafik fungsi
kuadrat di samping adalah ....
A. y = 0,5...
XO
Y
y = − (x2
− 4x + 4) + 82
1
Sayang, jawab Anda salah lagi.
2
1Grafik diperoleh dari grafik y= − x2
Digeser ke kanan 2 ...
KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
Fungsikuadrat
Fungsikuadrat
Fungsikuadrat
Upcoming SlideShare
Loading in …5
×

Fungsikuadrat

268 views

Published on

warta ilmu === pak say sing ganteng

Published in: Education
  • Login to see the comments

  • Be the first to like this

Fungsikuadrat

  1. 1. • XO Y y = - (x + 2)2
  2. 2. GRAFIK FUNGSI KUADRAT • XO Y disusun oleh: Al. Krismanto, M.Sc.
  3. 3. x y Titik X Y –3 9 (–3,9) –2 4 (–2,4) –1 1 (–1,1) 0 0 (0,0) 1 1 (1,1) 2 4 (2,4) 3 9 (3,9) O (– 3,9) (– 2,4) (– 1,1) (0,0) (1, 1) (2, 4) (3, 9) y = x2 Grafiknya sebagai berikut (klik untuk terus) KLIK untuk terus1. y = f(x); f: x→ f(x) = x2, {x|–3<x<3} y = f(x); f: x→ f(x) = ax2 + bx + c KLIK untuk terus KLIK untuk terus Dari puncak: x bergeser +1, y bertambah 1, x bergeser + 2, y bertambah 4 Susunlah tabel pasangan (x, y) untuk – 3 < x < 3, dengan x dan y bilangan bulat, kemudian tentukan letak titiknya yang bersesuaian pada bidang koordinat KLIK untuk terus Persamaan grafik: y = x2 , {x|– 3<x<3}
  4. 4. GRAFIK FUNGSI KUADRAT Persamaan grafik y = (x–p)2 x y Titik –3 9 (–3,9) –2 4 (–2,4) –1 1 (–1,1) 0 0 (0,0) 1 1 (1,1) 2 4 (2,4) 3 9 (3,9) X Y O (– 1,1) (0,0) (1, 1) (2, 4) (3, 9) y = x2 x y Titik –2 9 (–2,9) –1 4 (–1,4) 0 1 (0, 1) 1 0 (1, 0) 2 1 (2,1) 3 4 (3,4) 4 9 (4,9) y=(x–1)2 Perhatikan, bandingkan (– 3,9) (– 2,4) (0,1) (1,0) (2, 1) (3, 4) (4, 9)(– 2,9) (– 1,4) Bagaimana cara memperoleh grafik y = (x–1)2 dari grafik y = x2 ? Coba perhatikan! (klik untuk terus) Grafiknya sebagai berikut (klik untuk terus)
  5. 5. Grafik y = (x – 3)2 Grafik y = (x – 1)2 Grafik y = (x – 2)2 Grafik y = (x – p) 2 X Y O(0,0) Perhatikan kembali grafik y = x2 y = x2 Grafik yang persamaan- nya y = (x – 1)2 diperoleh dari grafik y = x2 digeser 1 satuan ke kanan. Grafik yang persamaan- nya y = (x – 2)2 diperoleh dari grafik y = x2 digeser 2 satuan ke kanan. Grafik yang persamaan- nya y = (x – 3)2 diperoleh dari grafik y = x2 digeser 3 satuan ke kanan. Secara umum: Grafik y = (x–p)2 diperoleh dengan menggeser grafik y = x2 sebesar p satuan ke kanan. Grafik yang persamaan- nya y = (x + 3)2 diperoleh dari grafik y = x2 digeser – 3 satuan ke kanan atau 3 ke kiri. Grafik y = (x + 3)2
  6. 6. GRAFIK FUNGSI KUADRAT Bagaimana cara memperoleh grafik y = x2 + 2 dari grafik y = x2 ? Coba perhatikan! y = f(x); f: x→ f(x) = x2 + q x y Titik X Y –3 9 (–3,9) –2 4 (–2,4) –1 1 (–1,1) 0 0 (0,0) 1 1 (1,1) 2 4 (2,4) 3 9 (3,9) O (– 2,4) (– 1,1) (0,0) (1, 1) (2, 4) (3, 9) y = x2 x y Titik –3 11 (–3,11) –2 6 (–2,6) –1 3 (–1,3) 0 2 (0,2) 1 3 (1,3) 2 6 (2,6) 3 11 (3,11) y = x2 +2 (– 3,11) (– 2, 6) (– 1, 3) (0,2) (1, 3) (2, 6) (3, 11) (– 3,9)
  7. 7. Grafik y = x2 + 3 Grafik y = x2 + 1 Grafik y = x2 + 2 X Y O(0,0) Perhatikan kembali grafik y = x2 y = x2 Grafik y = x2 + 1 dapat diperoleh dari grafik y = x2 dengan menggeser 1 satuan ke atas Grafik y = x2 + q Telah diperoleh: Grafik y = x2 + 2 dapat diperoleh dari grafik y = x2 dengan menggeser 2 satuan ke atas Grafik y = x2 + 3 dapat diperoleh dari grafik y = x2 dengan menggeser 3 satuan ke atas Dari langkah di atas: Grafik y = x2 + q dapat diperoleh dari grafik y = x2 dengan menggeser q satuan ke atas (q positif: ke atas q negatif: ke bawah) Grafik y = x2 – 2 Grafik y = x2 – 2 dapat diperoleh dari grafik y = x2 dengan menggeser – 2 satuan ke atas atau menggeser 2 satuan ke bawah
  8. 8. Titik baliknya (3, 2) Grafik y = (x – 3)2 +2 Grafik y = (x – 3)2 X Y O(0,0) Perhatikan kembali grafik y = x2 y = x2 Berdasar langkah sebelumnya maka untuk memperoleh grafiknya dari grafik y = x2 : Geserlah grafik y = x2 ke kanan sejauh p = 3 satuan dan ke atas sejauh q = 2 satuan Grafik y = a(x – p) 2 + q Grafik y = (x–3)2 +2
  9. 9. GRAFIK FUNGSI KUADRAT Dengan cara bagaimanakah grafik: y =– x2 diperoleh dari grafik: y = x2 ? y = f(x); f: x→ f(x) = –x2 x y Titik –3 9 (–3,9) –2 4 (–2,4) –1 1 (–1,1) 0 0 (0,0) 1 1 (1,1) 2 4 (2,4) 3 9 (3,9) y = x2 (– 3, –9) X Y O (– 3,9) (– 2,4) (– 1,1) (0,0) (1, 1) (2, 4) (3, 9) (– 2, –4) (– 1,1) (1, –1) (2, –4) (3, –9) x y Titik –3 –9 (–3,–9) –2 –4 (–2,–4) –1 –1 (–1,–1) 0 0 (0,0) 1 –1 (1, –1) 2 –4 (2, –4) 3 –9 (3, –9) y = – x2
  10. 10. GRAFIK FUNGSI KUADRAT Persamaan grafik y = –(x–p)2 x y Titik 0 0 (0,0) 1 –1 (1,–1) 3 –9 (3,–9) X Y O(0,0) (1, – 1) (2, – 4) (3, -9) y = – x2 x y Titik –2 –9 (–2,–9) –1 –4 (–1,–4) 0 –1 (0,–1) 1 0 (1, 0) 2 –1 (2,–1) 3 –4 (3,–4) 4 – 9 (4, –9) y= –(x–1)2 Perhatikan, bandingkan (2, – 1)(– 1,1) (– 3,9) (– 2,–4) (0, – 1) (1,0) (3, – 4) (4, – 9)(– 2, – 9) (– 1,– 4) Bagaimana cara memperoleh grafik y = – (x–1)2 dari grafik y = x2 ? Coba perhatikan! (klik untuk terus) Grafiknya sebagai berikut (klik untuk terus) 2 –4 (2,–4) –3 –9 (–3,–9) –2 –4 (–2,–4) –1 –1 (–1,–1)
  11. 11. Grafik y = – (x – 3)2 +2 Grafik y = –(x – 3)2 X Y O(0,0) Perhatikan kembali grafik y = – x2 Berdasar langkah sebelumnya maka untuk memperoleh grafiknya dari grafik y = x2 : Geserlah grafik y = x2 ke kanan sejauh p = 3 satuan dan ke atas sejauh q = 2 satuan Grafik y = – a(x – p) 2 + q Titik baliknya (3, 2) y = x2 Grafik y =–(x–3)2 +2 33333 22222
  12. 12. LATIHAN Berikut ini disajikan soal Latihan bentuk pilihan ganda 5 pilihan A, B, C, D, dan E. GUNAKAN POINTER BUKAN UNTUK MEMILIH, DAN HARUS TEPAT PADA JAWABAN PILIHAN JIKA ANDA LANGSUNG KLIK, ATAU TIDAK MEMILIH DIANGGAP PILIHAN ANDA SALAH
  13. 13. XO Y 1. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = x2 + 3x + 2 C. y = −(x − 3)2 + 2 D. y = (x − 3)2 + 2 E. y = (x − 2)2 + 3 A. y = − x2 + 2x + 3
  14. 14. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 1. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = x2 + 3x + 2 C. y = −(x − 3)2 + 2 D. y = (x − 3)2 + 2 E. y = (x − 2)2 + 3 A. y = − x2 + 2x + 3
  15. 15. XO Y Sayang, jawab Anda salah lagi. Grafik diperoleh dari grafik y = x2 Digeser ke kanan 3 satuan y = (x − 3)2 Digeser ke atas 2 satuan Perhatikan cara menyelesaikannya D. y = (x − 3)2 + 2 Dari puncak, x bergeser + 1, y bertambah 1, x bergeser + 2, y bertambah 4. Berarti: y = (x − 3)2
  16. 16. XO Y 2. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = − x2 + 3x − 2 C. y = (x + 2)2 − 3 D. y = (x − 3)2 + 2 E. y = −(x + 2)2 + 3 A. y = x2 + 2x − 3
  17. 17. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 2. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = − x2 + 3x − 2 C. y = (x + 2)2 − 3 D. y = (x − 3)2 + 2 E. y = −(x + 2)2 + 3 A. y = x2 + 2x − 3
  18. 18. • XO Y Sayang, jawab Anda salah lagi. Grafik diperoleh dari grafik y = x2 Digeser ke kiri 2 satuan y = (x + 2)2 Digeser ke bawah 3 satuan Perhatikan cara menyelesaikannya y = (x + 2)2 − 3 Dari puncak, x bergeser + 1, y bertambah 1, x bergeser + 2, y bertambah 4. Berarti: y = (x + 2)2
  19. 19. XO Y 3. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = −(x − 8)2 + 2 C. y = −(x + 2)2 + 8 D. y = (x + 2)2 + 8 E. y = (x − 2)2 + 8 A. y = −(x + 8)2 + 2
  20. 20. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 3. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = −(x − 8)2 + 2 C. y = −(x + 2)2 + 8 D. y = (x + 2)2 + 8 E. y = (x − 2)2 + 8 A. y = −(x + 8)2 + 2
  21. 21. • XO Y Sayang, jawab Anda salah lagi. Grafik diperoleh dari grafik y = x2 Digeser ke kiri 2 satuan y = − (x + 2)2 Digeser ke atas 8 satuan Perhatikan cara menyelesaikannya y = −(x + 2)2 + 8 Dari puncak, x bergeser + 1, y berkurang 1, x bergeser + 2, y berkurang 4. Berarti: y = − (x + 2)2 y = − (x + 2)2 + 8
  22. 22. XO Y 4. Persamaan grafik fungsi kuadrat di samping adalah .... A. y = 0,5x2 + 4x + 1 B. y = 0,5(x − 4)2 − 1 C. y = −0,5(x − 4)2 − 1 D. y = 2(x − 4)2 + 1 E. y = − 2(x − 4)2 − 1
  23. 23. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 4. Persamaan grafik fungsi kuadrat di samping adalah .... A. y = 0,5x2 + 4x + 1 B. y = 0,5(x − 4)2 − 1 C. y = −0,5(x − 4)2 − 1 D. y = 2(x − 4)2 + 1 E. y = − 2(x − 4)2 − 1
  24. 24. XO Y Sayang, jawab Anda salah lagi. 2 1Grafik diperoleh dari grafik y = x2 Digeser ke kiri 4 satuan Perhatikan cara menyelesaikannya Dari puncak, x bergeser + 2, y bertambah 4, x bergeser + 4, y bertambah 8. Berarti: Digeser ke bawah 1 satuan C. y = (x − 4)2 − 12 1 y = (x − 4)2 2 1 y = (x − 4)2 2 1 atau y = 0,5 (x − 4)2 − 1
  25. 25. XO Y 5. Persamaan grafik fungsi kuadrat di samping adalah .... A. y = 0,5x2 + x + 8 B. y = 0,5x2 + 2x + 8 C. y = −x2 + 4x + 12 D. y = −0,5x2 + 2x + 6 E. y = −2x2 − 2x + 6
  26. 26. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 5. Persamaan grafik fungsi kuadrat di samping adalah .... A. y = 0,5x2 + x + 8 B. y = 0,5x2 + 2x + 8 C. y = −x2 + 4x + 12 D. y = −0,5x2 + 2x + 6 E. y = −2x2 − 2x + 6
  27. 27. XO Y y = − (x2 − 4x + 4) + 82 1 Sayang, jawab Anda salah lagi. 2 1Grafik diperoleh dari grafik y= − x2 Digeser ke kanan 2 satuan Perhatikan cara menyelesaikannya Dari puncak, x bergeser + 2, y berkurang 4, x bergeser + 4, y berkurang 8. Berarti: Digeser ke atas 8 satuan y = − (x −2)2 2 1 y = − (x − 2)2 + 82 1 y = − x2 + 2x + 62 1 atau y = −0,5x2 + 2x + 6
  28. 28. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
  29. 29. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
  30. 30. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
  31. 31. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
  32. 32. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA

×