SlideShare a Scribd company logo
1 of 17
Download to read offline
Randomforestで高次元の変数重要度を見る     
Janitza,	S.,	Celik,	E.,	&	Boulesteix,	A.	L.	(2015).		
A	computaAonally	fast	variable	importance	test	for	random	forests	for	high-dimensional	data.	
	
20161127:	Japan.R	LT	@Yahoo!:	TwiTer:	@siero5335
機械学習で重要な課題といえば?     
特徴量の抽出!		
特にデータが高次元の場合、	
どれが重要な特徴量なのかわかりにくい
機械学習で重要な課題といえば?     
特徴量の抽出!		
特にデータが高次元の場合、	
どれが重要な特徴量なのかわかりにくい	
	
特徴量抽出についての参考資料	
	
	
	
	
	
	
	
hTp://www.slideshare.net/Keiku322/r48rtokyor	 hTp://www.slideshare.net/sercantahaahi/feature-
selecAon-with-r-in-jp	
XgboostのGBDT	feature,	FeatureHashing詳細	 RFのジニ係数から特徴選択
機械学習で重要な課題といえば?     
特徴量の抽出!		
特にデータが高次元の場合、	
どれが重要な特徴量なのかわかりにくい	
	
特徴量抽出についての参考資料	
	
	
	
	
	
	
	
	
RFだとGini係数あるいはpermutaAonから出す変数重要度
があるが今回はpermutaAonの変数重要度に基づいた手法	
hTp://www.slideshare.net/Keiku322/r48rtokyor	 hTp://www.slideshare.net/sercantahaahi/feature-
selecAon-with-r-in-jp	
XgboostのGBDT	feature,	FeatureHashing詳細	 RFのジニ係数から特徴選択
変数重要度の分布を計算できれば仮説検定もできるはず	
	Randomforestで高次元の変数重要度を見る     
Janitza,	S.,	Celik,	E.,	&	Boulesteix,	A.	L.	(2015).		
A	computaAonally	fast	variable	importance	test	for	random	forests	for	high-dimensional	data.
どうやって使うの?
hTps://cran.r-project.org/web/packages/vita/index.html	
randomforestとvita	packageを組み合わせて使うのが普通だが、	
ranger内に関数が用意されてて早くて楽なので今回はそっちを使う
どうやって使うの?rangerのすがた
library(ranger)	#	>	version	0.5.0	
library(mlbench)	
	
data(Sonar,	package="mlbench")	
Sonar[,61]	=	as.numeric(Sonar[,61])-1	
Sonar	<-	as.data.frame(Sonar)	
	
testRF	<-	ranger(Class	~	.,	data	=	Sonar,	mtry	=	5,	importance	=				
		"permutaAon")
どうやって使うの?rangerのすがた
library(ranger)	#	>	version	0.5.0	
library(mlbench)	
	
data(Sonar,	package="mlbench")	
Sonar[,61]	=	as.numeric(Sonar[,61])-1	
Sonar	<-	as.data.frame(Sonar)	
	
testRF	<-	ranger(Class	~	.,	data	=	Sonar,	mtry	=	5,	importance	=		
		"permutaAon")	
	
importance_pvalues(testRF,	method	=	"janitza",	conf.level	=	0.95)	
importanceが信頼区間,	
p-value付きででてくる
どうやって使うの?caretのすがた
library(ranger)	
library(caret)	
library(mlbench)	
	
data(Sonar,	package="mlbench")	
	
train.x	=	data.matrix(Sonar[train.ind,	1:60])	
train.y	=	Sonar[train.ind,	61]	
	
tr	=	trainControl(method	=	"repeatedcv”,	number	=	5,	repeats	=	5)	
	
grid	=	expand.grid(mtry	=	1:20)	
	
set.seed(71)	
ranger_fit	=	train(train.x,	train.y,	method	=	"ranger",	
tuneGrid	=	grid,	trControl=tr,	importance	=	"permutaAon")	
	
importance_pvalues(ranger_fit$finalModel,	method	=	"janitza",		
		conf.level	=	0.95)
おおまかなしくみ
VIj:	変数Xjの変数重要度,	0以上であれば判別に寄与してる	
	
(Xjを使うより、Xjの独立したコピーであるXj*を使ったほうが
誤分類率が高い)	
通常であれば下記のように、OOBから変数重要度を求める
おおまかなしくみ
Hold-outなら2個,	CVならk個のモデルをつくり、	
それぞれのモデルにおける変数重要度を求めることもできる	
	
	
	
	
Slを使って算出	
Holdout	 K-fold	CV	
(目的変数がカテゴリの場合)
おおまかなしくみ
Hold-outなら2個,	CVならk個のモデルをつくり、	
それぞれのモデルにおける変数重要度を求めることもできる	
	
	
	
	
Slを使って算出	
Holdout	 K-fold	CV	
(目的変数がカテゴリの場合)	
今回はこっちを使う	 Vita	packageだと	
kも指定できる
おおまかなしくみ
1.  元データをランダムに半分こ	
2.  下記の感じでF^
0を算出する	
3.  p-valueを より算出	
例:	変数重要度が負のやつ全て	
例:	変数重要度が0のやつ全て	
例:	変数重要度が負のモノすべて
に-1を掛けた値	
:	empirical	cumulaAve	distribuAon	funcAon	
馴染み深いp-valueが出てくるので	
カットオフラインがわかりやすい
どうでもいいこと
著者はメディカルインフォマティクス畑の人	
D論が出てるので熱心な方は以下参照(今年の?	
hTps://edoc.ub.uni-muenchen.de/19671/1/Janitza_Silke.pdf
Enjoy	feature	selecAon	!
どうやって使うの?vitaのすがた
hTps://cran.r-project.org/web/packages/vita/index.html	
randomforestとvita	packageを組み合わせて使うのが普通だが、	
ranger内に関数が用意されてて早くて楽なので今回はそっちを使う	
Vita	packageの場合の使い方	
cv_vi	=	CVPVI(X,y,k	=	2,mtry	=	3,	
		ntree	=	1000,ncores	=	4)	
cv_p	=	NTA(cv_vi$cv_varim)		
summary(cv_p,pless	=	0.1)	
cl.rf	=	randomForest(X,y,mtry	=	3,ntree	=				
		500,	importance	=	TRUE)	
pvi_p	=	NTA(importance(cl.rf,	type=1,		
		scale=FALSE))	
summary(pvi_p)	
または

More Related Content

What's hot

機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)Kota Matsui
 
PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説弘毅 露崎
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明Satoshi Hara
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定Akira Masuda
 
変数同士の関連_MIC
変数同士の関連_MIC変数同士の関連_MIC
変数同士の関連_MICShushi Namba
 
SHAP値の考え方を理解する(木構造編)
SHAP値の考え方を理解する(木構造編)SHAP値の考え方を理解する(木構造編)
SHAP値の考え方を理解する(木構造編)Kazuyuki Wakasugi
 
コサインクラスタリング
コサインクラスタリングコサインクラスタリング
コサインクラスタリングosamu morimoto
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化gree_tech
 
条件付き確率場の推論と学習
条件付き確率場の推論と学習条件付き確率場の推論と学習
条件付き確率場の推論と学習Masaki Saito
 
データサイエンス概論第一 5 時系列データの解析
データサイエンス概論第一 5 時系列データの解析データサイエンス概論第一 5 時系列データの解析
データサイエンス概論第一 5 時系列データの解析Seiichi Uchida
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法Hidetoshi Matsui
 
はじめよう多変量解析~主成分分析編~
はじめよう多変量解析~主成分分析編~はじめよう多変量解析~主成分分析編~
はじめよう多変量解析~主成分分析編~宏喜 佐野
 
画像処理AIを用いた異常検知
画像処理AIを用いた異常検知画像処理AIを用いた異常検知
画像処理AIを用いた異常検知Hideo Terada
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性Satoshi Hara
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!TransformerArithmer Inc.
 
深層学習の非常に簡単な説明
深層学習の非常に簡単な説明深層学習の非常に簡単な説明
深層学習の非常に簡単な説明Seiichi Uchida
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門Kawamoto_Kazuhiko
 
時系列問題に対するCNNの有用性検証
時系列問題に対するCNNの有用性検証時系列問題に対するCNNの有用性検証
時系列問題に対するCNNの有用性検証Masaharu Kinoshita
 

What's hot (20)

機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
 
PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
 
変数同士の関連_MIC
変数同士の関連_MIC変数同士の関連_MIC
変数同士の関連_MIC
 
LDA入門
LDA入門LDA入門
LDA入門
 
SHAP値の考え方を理解する(木構造編)
SHAP値の考え方を理解する(木構造編)SHAP値の考え方を理解する(木構造編)
SHAP値の考え方を理解する(木構造編)
 
コサインクラスタリング
コサインクラスタリングコサインクラスタリング
コサインクラスタリング
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
 
条件付き確率場の推論と学習
条件付き確率場の推論と学習条件付き確率場の推論と学習
条件付き確率場の推論と学習
 
MICの解説
MICの解説MICの解説
MICの解説
 
データサイエンス概論第一 5 時系列データの解析
データサイエンス概論第一 5 時系列データの解析データサイエンス概論第一 5 時系列データの解析
データサイエンス概論第一 5 時系列データの解析
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法
 
はじめよう多変量解析~主成分分析編~
はじめよう多変量解析~主成分分析編~はじめよう多変量解析~主成分分析編~
はじめよう多変量解析~主成分分析編~
 
画像処理AIを用いた異常検知
画像処理AIを用いた異常検知画像処理AIを用いた異常検知
画像処理AIを用いた異常検知
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
深層学習の非常に簡単な説明
深層学習の非常に簡単な説明深層学習の非常に簡単な説明
深層学習の非常に簡単な説明
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
 
時系列問題に対するCNNの有用性検証
時系列問題に対するCNNの有用性検証時系列問題に対するCNNの有用性検証
時系列問題に対するCNNの有用性検証
 

Viewers also liked

Random Forest による分類
Random Forest による分類Random Forest による分類
Random Forest による分類Ken'ichi Matsui
 
高速・省メモリにlibsvm形式で ダンプする方法を研究してみた
高速・省メモリにlibsvm形式で ダンプする方法を研究してみた高速・省メモリにlibsvm形式で ダンプする方法を研究してみた
高速・省メモリにlibsvm形式で ダンプする方法を研究してみたKeisuke Hosaka
 
20161127 doradora09 japanr2016_lt
20161127 doradora09 japanr2016_lt20161127 doradora09 japanr2016_lt
20161127 doradora09 japanr2016_ltNobuaki Oshiro
 
統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回Hikaru GOTO
 
木と電話と選挙(causalTree)
木と電話と選挙(causalTree)木と電話と選挙(causalTree)
木と電話と選挙(causalTree)Shota Yasui
 
てかLINEやってる? (Japan.R 2016 LT) #JapanR
てかLINEやってる? (Japan.R 2016 LT) #JapanRてかLINEやってる? (Japan.R 2016 LT) #JapanR
てかLINEやってる? (Japan.R 2016 LT) #JapanRcancolle
 
傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装takehikoihayashi
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心takehikoihayashi
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章Shuyo Nakatani
 
星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章Shuyo Nakatani
 
Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -
Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -
Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -Yohei Sato
 

Viewers also liked (12)

Random Forest による分類
Random Forest による分類Random Forest による分類
Random Forest による分類
 
高速・省メモリにlibsvm形式で ダンプする方法を研究してみた
高速・省メモリにlibsvm形式で ダンプする方法を研究してみた高速・省メモリにlibsvm形式で ダンプする方法を研究してみた
高速・省メモリにlibsvm形式で ダンプする方法を研究してみた
 
20161127 doradora09 japanr2016_lt
20161127 doradora09 japanr2016_lt20161127 doradora09 japanr2016_lt
20161127 doradora09 japanr2016_lt
 
Tidyverseとは
TidyverseとはTidyverseとは
Tidyverseとは
 
統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回統計的因果推論勉強会 第1回
統計的因果推論勉強会 第1回
 
木と電話と選挙(causalTree)
木と電話と選挙(causalTree)木と電話と選挙(causalTree)
木と電話と選挙(causalTree)
 
てかLINEやってる? (Japan.R 2016 LT) #JapanR
てかLINEやってる? (Japan.R 2016 LT) #JapanRてかLINEやってる? (Japan.R 2016 LT) #JapanR
てかLINEやってる? (Japan.R 2016 LT) #JapanR
 
傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装傾向スコア:その概念とRによる実装
傾向スコア:その概念とRによる実装
 
相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心相関と因果について考える:統計的因果推論、その(不)可能性の中心
相関と因果について考える:統計的因果推論、その(不)可能性の中心
 
星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章星野「調査観察データの統計科学」第3章
星野「調査観察データの統計科学」第3章
 
星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章星野「調査観察データの統計科学」第1&2章
星野「調査観察データの統計科学」第1&2章
 
Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -
Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -
Rで学ぶ 傾向スコア解析入門 - 無作為割り当てが出来ない時の因果効果推定 -
 

More from Akifumi Eguchi

PlaidML Kerasでやっていく #TokyoR 73
PlaidML Kerasでやっていく #TokyoR 73PlaidML Kerasでやっていく #TokyoR 73
PlaidML Kerasでやっていく #TokyoR 73Akifumi Eguchi
 
High-order factorization machines with R #tokyor 61
High-order factorization machines with R  #tokyor 61High-order factorization machines with R  #tokyor 61
High-order factorization machines with R #tokyor 61Akifumi Eguchi
 
統計的学習の基礎6章前半 #カステラ本
統計的学習の基礎6章前半 #カステラ本統計的学習の基礎6章前半 #カステラ本
統計的学習の基礎6章前半 #カステラ本Akifumi Eguchi
 
環境化学データ解析入門: 愛媛大講演資料 160728
環境化学データ解析入門: 愛媛大講演資料 160728環境化学データ解析入門: 愛媛大講演資料 160728
環境化学データ解析入門: 愛媛大講演資料 160728Akifumi Eguchi
 
統計的学習の基礎, 副読本紹介: An Introduction to Statistical Learning
統計的学習の基礎, 副読本紹介: An Introduction to Statistical Learning統計的学習の基礎, 副読本紹介: An Introduction to Statistical Learning
統計的学習の基礎, 副読本紹介: An Introduction to Statistical LearningAkifumi Eguchi
 
Mxnetで回帰 #TokyoR 53th
Mxnetで回帰 #TokyoR 53thMxnetで回帰 #TokyoR 53th
Mxnetで回帰 #TokyoR 53thAkifumi Eguchi
 
子どもたちの未来を支える機械学習: 定量的構造活性相関 (QSAR) による有機ハロゲン化合物の母子間移行率予測
子どもたちの未来を支える機械学習: 定量的構造活性相関 (QSAR) による有機ハロゲン化合物の母子間移行率予測子どもたちの未来を支える機械学習: 定量的構造活性相関 (QSAR) による有機ハロゲン化合物の母子間移行率予測
子どもたちの未来を支える機械学習: 定量的構造活性相関 (QSAR) による有機ハロゲン化合物の母子間移行率予測Akifumi Eguchi
 
ぞくパタ最終回: 13章「共クラスタリング」
ぞくパタ最終回: 13章「共クラスタリング」ぞくパタ最終回: 13章「共クラスタリング」
ぞくパタ最終回: 13章「共クラスタリング」Akifumi Eguchi
 
Deep learningもくもくハッカソンまとめup用
Deep learningもくもくハッカソンまとめup用Deep learningもくもくハッカソンまとめup用
Deep learningもくもくハッカソンまとめup用Akifumi Eguchi
 
Tokyo webmining 43 "化学物質汚染のデータ解析・リスク評価についての私見"
Tokyo webmining 43 "化学物質汚染のデータ解析・リスク評価についての私見"Tokyo webmining 43 "化学物質汚染のデータ解析・リスク評価についての私見"
Tokyo webmining 43 "化学物質汚染のデータ解析・リスク評価についての私見"Akifumi Eguchi
 
第2回ぞくパタ
第2回ぞくパタ第2回ぞくパタ
第2回ぞくパタAkifumi Eguchi
 
第一回ぞくパタ
第一回ぞくパタ第一回ぞくパタ
第一回ぞくパタAkifumi Eguchi
 
ぞくパタ はじめに
ぞくパタ はじめにぞくパタ はじめに
ぞくパタ はじめにAkifumi Eguchi
 
みどりぼん9章前半
みどりぼん9章前半みどりぼん9章前半
みどりぼん9章前半Akifumi Eguchi
 
みどりぼん3章前半
みどりぼん3章前半みどりぼん3章前半
みどりぼん3章前半Akifumi Eguchi
 

More from Akifumi Eguchi (19)

PlaidML Kerasでやっていく #TokyoR 73
PlaidML Kerasでやっていく #TokyoR 73PlaidML Kerasでやっていく #TokyoR 73
PlaidML Kerasでやっていく #TokyoR 73
 
High-order factorization machines with R #tokyor 61
High-order factorization machines with R  #tokyor 61High-order factorization machines with R  #tokyor 61
High-order factorization machines with R #tokyor 61
 
統計的学習の基礎6章前半 #カステラ本
統計的学習の基礎6章前半 #カステラ本統計的学習の基礎6章前半 #カステラ本
統計的学習の基礎6章前半 #カステラ本
 
Dslt祭り2夜
Dslt祭り2夜Dslt祭り2夜
Dslt祭り2夜
 
環境化学データ解析入門: 愛媛大講演資料 160728
環境化学データ解析入門: 愛媛大講演資料 160728環境化学データ解析入門: 愛媛大講演資料 160728
環境化学データ解析入門: 愛媛大講演資料 160728
 
統計的学習の基礎, 副読本紹介: An Introduction to Statistical Learning
統計的学習の基礎, 副読本紹介: An Introduction to Statistical Learning統計的学習の基礎, 副読本紹介: An Introduction to Statistical Learning
統計的学習の基礎, 副読本紹介: An Introduction to Statistical Learning
 
Mxnetで回帰 #TokyoR 53th
Mxnetで回帰 #TokyoR 53thMxnetで回帰 #TokyoR 53th
Mxnetで回帰 #TokyoR 53th
 
子どもたちの未来を支える機械学習: 定量的構造活性相関 (QSAR) による有機ハロゲン化合物の母子間移行率予測
子どもたちの未来を支える機械学習: 定量的構造活性相関 (QSAR) による有機ハロゲン化合物の母子間移行率予測子どもたちの未来を支える機械学習: 定量的構造活性相関 (QSAR) による有機ハロゲン化合物の母子間移行率予測
子どもたちの未来を支える機械学習: 定量的構造活性相関 (QSAR) による有機ハロゲン化合物の母子間移行率予測
 
ぞくパタ最終回: 13章「共クラスタリング」
ぞくパタ最終回: 13章「共クラスタリング」ぞくパタ最終回: 13章「共クラスタリング」
ぞくパタ最終回: 13章「共クラスタリング」
 
Deep learningもくもくハッカソンまとめup用
Deep learningもくもくハッカソンまとめup用Deep learningもくもくハッカソンまとめup用
Deep learningもくもくハッカソンまとめup用
 
Tokyo webmining 43 "化学物質汚染のデータ解析・リスク評価についての私見"
Tokyo webmining 43 "化学物質汚染のデータ解析・リスク評価についての私見"Tokyo webmining 43 "化学物質汚染のデータ解析・リスク評価についての私見"
Tokyo webmining 43 "化学物質汚染のデータ解析・リスク評価についての私見"
 
第2回ぞくパタ
第2回ぞくパタ第2回ぞくパタ
第2回ぞくパタ
 
第一回ぞくパタ
第一回ぞくパタ第一回ぞくパタ
第一回ぞくパタ
 
ぞくパタ はじめに
ぞくパタ はじめにぞくパタ はじめに
ぞくパタ はじめに
 
Tokyo.r #44 lt.pptx
Tokyo.r #44 lt.pptxTokyo.r #44 lt.pptx
Tokyo.r #44 lt.pptx
 
Tokyo r #43
Tokyo r #43Tokyo r #43
Tokyo r #43
 
みどりぼん9章前半
みどりぼん9章前半みどりぼん9章前半
みどりぼん9章前半
 
みどりぼん3章前半
みどりぼん3章前半みどりぼん3章前半
みどりぼん3章前半
 
Tokyo R #39
Tokyo R #39Tokyo R #39
Tokyo R #39
 

Randomforestで高次元の変数重要度を見る #japanr LT