SlideShare a Scribd company logo
1 of 23
Compressible Flow
-- i --
Engineering Software
P.O. Box 2134, Kensington, MD 20891
Phone: (301) 919-9670
E-Mail: info@engineering-4e.com
Web Site: http://www.engineering-4e.com
Compressible Flow
By
Engineering Software
Copyright © 1996
Compressible Flow
-- 1 --
Table of Contents
Nozzle............................................................................................................................................................................2
Analysis .....................................................................................................................................................................2
Assumptions...............................................................................................................................................................5
Governing Equations .................................................................................................................................................6
Input Data ..................................................................................................................................................................6
Results .......................................................................................................................................................................7
Conclusions................................................................................................................................................................8
Diffuser..........................................................................................................................................................................9
Analysis .....................................................................................................................................................................9
Assumptions.............................................................................................................................................................12
Governing Equations ...............................................................................................................................................13
Input Data ................................................................................................................................................................13
Results .....................................................................................................................................................................14
Conclusions..............................................................................................................................................................15
Thrust...........................................................................................................................................................................16
Analysis ...................................................................................................................................................................16
Assumptions.............................................................................................................................................................19
Governing Equations ...............................................................................................................................................20
Input Data ................................................................................................................................................................20
Results .....................................................................................................................................................................21
Conclusions..............................................................................................................................................................22
Compressible Flow
-- 2 --
Nozzle
This section provides an isentropic nozzle analysis when the working fluid is air.
Analysis
In the presented nozzle analysis, only air is considered as the working fluid behaving as a perfect gas --
specific heat has a constant value. Ideal gas state equation is valid -- pv = RT.
Air enters a nozzle at point 1 and it exits the nozzle at point 2. Isentropic expansion is considered with no
entropy change.
Figure 1 presents a nozzle schematic layout.
Compressible Flow
-- 3 --
Figure 1 - Nozzle Schematic Layout
Figure 2 presents a nozzle temperature vs entropy diagram.
Compressible Flow
-- 4 --
Figure 2 - Nozzle Temperature vs Entropy Diagram
Figure 3 presents nozzle performance -- stagnation over static temperature and pressure ratio values are
provided as a function of the Mach Number. Only subsonic nozzle operation is considered. It should be
noted that air enters the nozzle at the stagnation conditions of 1,500 [K] and 10 [atm] of absolute pressure.
Compressible Flow
-- 5 --
Figure 3 - Nozzle Performance vs Mach Number
One can notice that nozzle stagnation over static temperature and pressure ratio values increase with an
increase in the Mach Number.
Assumptions
Working fluid is air. There is no friction and heat transfer. Expansion is isentropic -- there is no entropy
change. Ideal gas state equation is valid -- pv = RT. Air behaves as a perfect gas -- specific heat has a
constant value.
Compressible Flow
-- 6 --
Governing Equations
Tt /T = (1 + M2(ϰ - 1)/2)
pt/p = (1 + M2(ϰ - 1)/2)ϰ/(ϰ-1)
Tt/T = (pt/p)(ϰ-1)/ϰ
v = (2cp(Tt - T))1/2
vs = (ϰRT)1/2
M = v/vs
ϰ = cp/cv
cp - cv = R
pv = RT
Input Data
T1 = 1,500 [K]
p1 = 10 [atm]
R = 0.2867 [kJ/kg*K]
cp = 1.004 [kJ/kg*K]
ϰ = 1.4 [/]
M = 0.39, 0.67 and 1 [/]
Compressible Flow
-- 7 --
Results
Nozzle Performance vs Outlet Mach Number
Nozzle Inlet Stagnation Temperature = 1,500 [K] and Pressure = 10 [atm]
Outlet Mach Number
[/]
Stagnation/Static Temperature Ratio
[/]
Stagnation/Static Pressure Ratio
[/]
0.39 1.03 1.11
0.67 1.09 1.35
1.00 1.19 1.86
Compressible Flow
-- 8 --
Conclusions
Nozzle stagnation over static temperature and pressure ratio values increase with an increase in the Mach
Number.
When you get a chance, please visit the following URL:
http://www.engineering-4e.com
The above URL provides lots of free online and downloadable e-material and e-solutions on energy
conversion.
Compressible Flow
-- 9 --
Diffuser
This section provides an isentropic diffuser analysis when the working fluid is air.
Analysis
In the presented diffuser analysis, only air is considered as the working fluid behaving as a perfect gas --
specific heat has a constant value. Ideal gas state equation is valid -- pv = RT.
Air enters a diffuser at point 1 and it exits the diffuser at point 2. Working fluid inlet velocity gets reduced
to zero resulting in the stagnation temperature and pressure increase. Isentropic process is considered
with no entropy change.
Figure 1 presents a diffuser schematic layout.
Compressible Flow
-- 10 --
Figure 1 - Diffuser Schematic Layout
Figure 2 presents a diffuser temperature vs entropy diagram.
Compressible Flow
-- 11 --
Figure 2 - Diffuser Temperature vs Entropy Diagram
Figure 3 presents diffuser performance -- stagnation over static temperature and pressure ratio values are
provided as a function of the Mach Number. Only subsonic diffuser operation is considered. It should be
noted that the air enters the diffuser at the static conditions of 298 [K] and 1 [atm] of absolute pressure.
Compressible Flow
-- 12 --
Figure 3 - Diffuser Performance vs Mach Number
One can notice that diffuser stagnation over static temperature and pressure ratio values increase with an
increase in the Mach Number.
Assumptions
Working fluid is air. There is no friction and heat transfer. Isentropic process -- there is no entropy
change. Ideal gas state equation is valid -- pv = RT. Air behaves as a perfect gas -- specific heat has a
constant value.
Compressible Flow
-- 13 --
Governing Equations
Tt /T = (1 + M2(ϰ - 1)/2)
pt/p = (1 + M2(ϰ - 1)/2)ϰ/(ϰ-1)
Tt/T = (pt/p)(ϰ-1)/ϰ
Tt = T + v2/(2cp)
vs = (ϰRT)1/2
M = v/vs
ϰ = cp/cv
cp - cv = R
pv = RT
Input Data
T1 = 298 [K]
p1 = 1 [atm]
R = 0.2867 [kJ/kg*K]
cp = 1.004 [kJ/kg*K]
ϰ = 1.4 [/]
M = 0.29, 0.58 and 0.95 [/]
Compressible Flow
-- 14 --
Results
Diffuser Performance vs Inlet Mach Number
Diffuser Inlet Static Temperature = 298 [K] and Pressure = 1 [atm]
Inlet Mach Number
[/]
Stagnation/Static Temperature Ratio
[/]
Stagnation/Static Pressure Ratio
[/]
0.29 1.017 1.06
0.58 1.067 1.25
0.95 1.182 1.80
Compressible Flow
-- 15 --
Conclusions
Diffuser stagnation over static temperature and pressure ratio values increase with an increase in the
Mach Number.
When you get a chance, please visit the following URL:
http://www.engineering-4e.com
The above URL provides lots of free online and downloadable e-material and e-solutions on energy
conversion.
Compressible Flow
-- 16 --
Thrust
This section provides an isentropic thrust analysis when the working fluid is air.
Analysis
In the presented thrust analysis, only air is considered as the working fluid behaving as a perfect gas --
specific heat has a constant value. Ideal gas state equation is valid -- pv = RT.
Air enters a nozzle at point 1 and it exits the nozzle at point 2. Isentropic expansion is considered with no
entropy change.
Figure 1 presents a thrust schematic layout.
Compressible Flow
-- 17 --
Figure 1 - Thrust Schematic Layout
Figure 2 presents a thrust temperature vs entropy diagram.
Compressible Flow
-- 18 --
Figure 2 - Thrust Temperature vs Entropy Diagram
Figure 3 presents thrust performance as a function of the nozzle inlet stagnation temperature and
pressure values for a few fixed values such as: working fluid mass flow rate, nozzle outlet Mach Number
and ambient pressure. Only subsonic nozzle operation is considered.
Compressible Flow
-- 19 --
Figure 3 - Thrust Performance
One can notice that thrust increases with an increase in the inlet stagnation temperature and pressure
values.
Assumptions
Working fluid is air. There is no friction and heat transfer. Expansion is isentropic -- there is no entropy
change. Ideal gas state equation is valid -- pv = RT. Air behaves as a perfect gas -- specific heat has a
constant value.
Compressible Flow
-- 20 --
Governing Equations
Tt /T = (1 + M2(ϰ - 1)/2)
pt/p = (1 + M2(ϰ - 1)/2)ϰ/(ϰ-1)
Tt/T = (pt/p)(ϰ -1)/k
v = (2cp(Tt - T))1/2
vs = (ϰRT)1/2
M = v/vs
ϰ = cp/cv
cp - cv = R
pv = RT
Thrust = vm + (p - pa)A
Input Data
T1 = 900, 1,200 and 1,500 [K]
p1 = 5, 10 and 15 [atm]
R = 0.2867 [kJ/kg*K]
cp = 1.004 [kJ/kg*K]
ϰ = 1.4 [/]
m = 1 [kg/s]
M = 0.85 [/]
pa = 1 [atm]
Compressible Flow
-- 21 --
Results
Thrust Performance vs Nozzle Inlet Stagnation Temperature and Pressure
Outlet Mach Number = 0.85 [/] and Ambient Pressure = 1 [atm]
Working Fluid Mass Flow Rate = 1 [kg/s]
Thrust
[N]
Inlet Stagnation Temperature
[K]
Inlet Stagnation Pressure
[atm]
900 1,200 1,500
5 797.7 922.3 1,031.1
10 873.5 1,009.5 1,128.6
15 898.7 1,038.7 1,161.3
Compressible Flow
-- 22 --
Conclusions
Thrust increases with an increase in the inlet stagnation temperature and pressure values.
When you get a chance, please visit the following URL:
http://www.engineering-4e.com
The above URL provides lots of free online and downloadable e-material and e-solutions on energy
conversion.

More Related Content

What's hot

J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10
Malaysia
 
J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1
Malaysia
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineers
Yuri Melliza
 
Qpedia apr07 understanding_heat_transfer_coefficient
Qpedia apr07 understanding_heat_transfer_coefficientQpedia apr07 understanding_heat_transfer_coefficient
Qpedia apr07 understanding_heat_transfer_coefficient
Teguh Apriy
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
Yuri Melliza
 
J2006 termodinamik 1 unit5
J2006 termodinamik 1 unit5J2006 termodinamik 1 unit5
J2006 termodinamik 1 unit5
Malaysia
 
J2006 termodinamik 1 unit4
J2006 termodinamik 1 unit4J2006 termodinamik 1 unit4
J2006 termodinamik 1 unit4
Malaysia
 

What's hot (20)

Ae 53 2 marks
Ae 53 2 marksAe 53 2 marks
Ae 53 2 marks
 
Density of liquid refrigerants
Density of liquid refrigerantsDensity of liquid refrigerants
Density of liquid refrigerants
 
EES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transferEES Functions and Procedures for Natural convection heat transfer
EES Functions and Procedures for Natural convection heat transfer
 
Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)Applied thermodynamics by mc conkey (ed 5, ch-12)
Applied thermodynamics by mc conkey (ed 5, ch-12)
 
Boiling and Condensation heat transfer -- EES Functions and Procedures
Boiling and Condensation heat transfer -- EES Functions and ProceduresBoiling and Condensation heat transfer -- EES Functions and Procedures
Boiling and Condensation heat transfer -- EES Functions and Procedures
 
cengel-thermodynamics 2
cengel-thermodynamics 2cengel-thermodynamics 2
cengel-thermodynamics 2
 
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
SPLIT SECOND ANALYSIS COVERING HIGH PRESSURE GAS FLOW DYNAMICS AT PIPE OUTLET...
 
J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10J2006 termodinamik 1 unit10
J2006 termodinamik 1 unit10
 
Unit1 principle concepts of fluid mechanics
Unit1   principle concepts of fluid mechanicsUnit1   principle concepts of fluid mechanics
Unit1 principle concepts of fluid mechanics
 
Derive the relationship between the effectiveness and the number of transfer ...
Derive the relationship between the effectiveness and the number of transfer ...Derive the relationship between the effectiveness and the number of transfer ...
Derive the relationship between the effectiveness and the number of transfer ...
 
J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1J2006 Thermodinamik Unit 1
J2006 Thermodinamik Unit 1
 
A.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pbA.thermo Mc conkey ch12 solution-pb
A.thermo Mc conkey ch12 solution-pb
 
Effectiveness for Counterflow heat exchanger
Effectiveness for Counterflow heat exchangerEffectiveness for Counterflow heat exchanger
Effectiveness for Counterflow heat exchanger
 
Hydraulics for engineers
Hydraulics for engineersHydraulics for engineers
Hydraulics for engineers
 
Oblique shock and expansion waves
Oblique shock and expansion wavesOblique shock and expansion waves
Oblique shock and expansion waves
 
Qpedia apr07 understanding_heat_transfer_coefficient
Qpedia apr07 understanding_heat_transfer_coefficientQpedia apr07 understanding_heat_transfer_coefficient
Qpedia apr07 understanding_heat_transfer_coefficient
 
GDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qbGDJP - Unit 3, 4, 5 qb
GDJP - Unit 3, 4, 5 qb
 
Thermodynamics (2013 new edition) copy
Thermodynamics (2013 new edition)   copyThermodynamics (2013 new edition)   copy
Thermodynamics (2013 new edition) copy
 
J2006 termodinamik 1 unit5
J2006 termodinamik 1 unit5J2006 termodinamik 1 unit5
J2006 termodinamik 1 unit5
 
J2006 termodinamik 1 unit4
J2006 termodinamik 1 unit4J2006 termodinamik 1 unit4
J2006 termodinamik 1 unit4
 

Viewers also liked

Modern compressible flow by J.D.Anderson
Modern compressible flow by J.D.AndersonModern compressible flow by J.D.Anderson
Modern compressible flow by J.D.Anderson
Aghilesh V
 
Gas dynamics relations
Gas dynamics relationsGas dynamics relations
Gas dynamics relations
Uma Maheshwar
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flow
navala
 

Viewers also liked (13)

Modern compressible flow by J.D.Anderson
Modern compressible flow by J.D.AndersonModern compressible flow by J.D.Anderson
Modern compressible flow by J.D.Anderson
 
Nozzle and compressible flow
Nozzle and compressible flow Nozzle and compressible flow
Nozzle and compressible flow
 
FLUID MECHANICS
FLUID MECHANICSFLUID MECHANICS
FLUID MECHANICS
 
Gas dynamics relations
Gas dynamics relationsGas dynamics relations
Gas dynamics relations
 
Presentation 4
Presentation 4Presentation 4
Presentation 4
 
Fluid mechanics for chermical engineering students
Fluid mechanics  for chermical  engineering studentsFluid mechanics  for chermical  engineering students
Fluid mechanics for chermical engineering students
 
Performance Evaluation and System Design with Simulation Modeling
Performance Evaluation and System Design with Simulation ModelingPerformance Evaluation and System Design with Simulation Modeling
Performance Evaluation and System Design with Simulation Modeling
 
Mathematical modeling and parameter estimation for water quality management s...
Mathematical modeling and parameter estimation for water quality management s...Mathematical modeling and parameter estimation for water quality management s...
Mathematical modeling and parameter estimation for water quality management s...
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flow
 
Pipeline hydraulic calculation
Pipeline hydraulic calculationPipeline hydraulic calculation
Pipeline hydraulic calculation
 
Behavior of Gases
Behavior of GasesBehavior of Gases
Behavior of Gases
 
Physics of shock waves
Physics of shock wavesPhysics of shock waves
Physics of shock waves
 
shock wave
shock waveshock wave
shock wave
 

Similar to Compressible Flow

fanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdffanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdf
BlentBulut5
 

Similar to Compressible Flow (20)

Power Cycles
Power CyclesPower Cycles
Power Cycles
 
Gas turbine 1
Gas turbine  1Gas turbine  1
Gas turbine 1
 
Gas power-09
Gas power-09Gas power-09
Gas power-09
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
Power Cycle Components/Processes
Power Cycle Components/ProcessesPower Cycle Components/Processes
Power Cycle Components/Processes
 
ProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdfProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdf
 
Gas turbine 2 - regeneration and intercooling
Gas turbine   2 - regeneration and intercoolingGas turbine   2 - regeneration and intercooling
Gas turbine 2 - regeneration and intercooling
 
Pr 1
Pr 1Pr 1
Pr 1
 
fanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdffanmodule-230428052900-38a217b0.pdf
fanmodule-230428052900-38a217b0.pdf
 
FAN MODULE.pdf
FAN MODULE.pdfFAN MODULE.pdf
FAN MODULE.pdf
 
Chapter 7. compressible flow.pptx copy
Chapter 7. compressible flow.pptx   copyChapter 7. compressible flow.pptx   copy
Chapter 7. compressible flow.pptx copy
 
Acutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-IAcutal Cycles and Their Analysis - Unit-I
Acutal Cycles and Their Analysis - Unit-I
 
Itenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9aItenas termodinamika ii bab 9a
Itenas termodinamika ii bab 9a
 
HHO driven CCPP
HHO driven CCPPHHO driven CCPP
HHO driven CCPP
 
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
Thermodynamic Cycles - A Review - Carnot Cycle, Ideal Gas Law, Thermodynamics...
 
Fluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flowFluid Mechanics Chapter 7. Compressible flow
Fluid Mechanics Chapter 7. Compressible flow
 
Intro comp flow.pdf
Intro comp flow.pdfIntro comp flow.pdf
Intro comp flow.pdf
 
02 GTP-14-1384
02 GTP-14-138402 GTP-14-1384
02 GTP-14-1384
 
4.8.compressors
4.8.compressors4.8.compressors
4.8.compressors
 
4.8.compressors
4.8.compressors4.8.compressors
4.8.compressors
 

More from Engineering Software

More from Engineering Software (13)

Power Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis WebinarPower Cycles and Combustion Analysis Webinar
Power Cycles and Combustion Analysis Webinar
 
Energy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long VersionEnergy Conversion Analysis Webinar -- Long Version
Energy Conversion Analysis Webinar -- Long Version
 
Energy Conversion Ideal vs Real Operation Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis WebinarEnergy Conversion Ideal vs Real Operation Analysis Webinar
Energy Conversion Ideal vs Real Operation Analysis Webinar
 
Combustion Analysis Webinar
Combustion Analysis WebinarCombustion Analysis Webinar
Combustion Analysis Webinar
 
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis WebinarPower Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
 
Energy Conversion Analysis Webinar
Energy Conversion Analysis WebinarEnergy Conversion Analysis Webinar
Energy Conversion Analysis Webinar
 
Physical Properties Tables and Plots
Physical Properties Tables and PlotsPhysical Properties Tables and Plots
Physical Properties Tables and Plots
 
Power Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and PlotsPower Cycle Components/Processes Tables and Plots
Power Cycle Components/Processes Tables and Plots
 
Engineering Energy Conversion Assumptions and Equations
Engineering Energy Conversion Assumptions and EquationsEngineering Energy Conversion Assumptions and Equations
Engineering Energy Conversion Assumptions and Equations
 
Physical Properties
Physical PropertiesPhysical Properties
Physical Properties
 
Compressible Flow Tables and Plots
Compressible Flow Tables and PlotsCompressible Flow Tables and Plots
Compressible Flow Tables and Plots
 
Power Cycles Tables and Plots
Power Cycles Tables and PlotsPower Cycles Tables and Plots
Power Cycles Tables and Plots
 
Engineering Simulation
Engineering SimulationEngineering Simulation
Engineering Simulation
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Recently uploaded (20)

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 

Compressible Flow

  • 1. Compressible Flow -- i -- Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Compressible Flow By Engineering Software Copyright © 1996
  • 2. Compressible Flow -- 1 -- Table of Contents Nozzle............................................................................................................................................................................2 Analysis .....................................................................................................................................................................2 Assumptions...............................................................................................................................................................5 Governing Equations .................................................................................................................................................6 Input Data ..................................................................................................................................................................6 Results .......................................................................................................................................................................7 Conclusions................................................................................................................................................................8 Diffuser..........................................................................................................................................................................9 Analysis .....................................................................................................................................................................9 Assumptions.............................................................................................................................................................12 Governing Equations ...............................................................................................................................................13 Input Data ................................................................................................................................................................13 Results .....................................................................................................................................................................14 Conclusions..............................................................................................................................................................15 Thrust...........................................................................................................................................................................16 Analysis ...................................................................................................................................................................16 Assumptions.............................................................................................................................................................19 Governing Equations ...............................................................................................................................................20 Input Data ................................................................................................................................................................20 Results .....................................................................................................................................................................21 Conclusions..............................................................................................................................................................22
  • 3. Compressible Flow -- 2 -- Nozzle This section provides an isentropic nozzle analysis when the working fluid is air. Analysis In the presented nozzle analysis, only air is considered as the working fluid behaving as a perfect gas -- specific heat has a constant value. Ideal gas state equation is valid -- pv = RT. Air enters a nozzle at point 1 and it exits the nozzle at point 2. Isentropic expansion is considered with no entropy change. Figure 1 presents a nozzle schematic layout.
  • 4. Compressible Flow -- 3 -- Figure 1 - Nozzle Schematic Layout Figure 2 presents a nozzle temperature vs entropy diagram.
  • 5. Compressible Flow -- 4 -- Figure 2 - Nozzle Temperature vs Entropy Diagram Figure 3 presents nozzle performance -- stagnation over static temperature and pressure ratio values are provided as a function of the Mach Number. Only subsonic nozzle operation is considered. It should be noted that air enters the nozzle at the stagnation conditions of 1,500 [K] and 10 [atm] of absolute pressure.
  • 6. Compressible Flow -- 5 -- Figure 3 - Nozzle Performance vs Mach Number One can notice that nozzle stagnation over static temperature and pressure ratio values increase with an increase in the Mach Number. Assumptions Working fluid is air. There is no friction and heat transfer. Expansion is isentropic -- there is no entropy change. Ideal gas state equation is valid -- pv = RT. Air behaves as a perfect gas -- specific heat has a constant value.
  • 7. Compressible Flow -- 6 -- Governing Equations Tt /T = (1 + M2(ϰ - 1)/2) pt/p = (1 + M2(ϰ - 1)/2)ϰ/(ϰ-1) Tt/T = (pt/p)(ϰ-1)/ϰ v = (2cp(Tt - T))1/2 vs = (ϰRT)1/2 M = v/vs ϰ = cp/cv cp - cv = R pv = RT Input Data T1 = 1,500 [K] p1 = 10 [atm] R = 0.2867 [kJ/kg*K] cp = 1.004 [kJ/kg*K] ϰ = 1.4 [/] M = 0.39, 0.67 and 1 [/]
  • 8. Compressible Flow -- 7 -- Results Nozzle Performance vs Outlet Mach Number Nozzle Inlet Stagnation Temperature = 1,500 [K] and Pressure = 10 [atm] Outlet Mach Number [/] Stagnation/Static Temperature Ratio [/] Stagnation/Static Pressure Ratio [/] 0.39 1.03 1.11 0.67 1.09 1.35 1.00 1.19 1.86
  • 9. Compressible Flow -- 8 -- Conclusions Nozzle stagnation over static temperature and pressure ratio values increase with an increase in the Mach Number. When you get a chance, please visit the following URL: http://www.engineering-4e.com The above URL provides lots of free online and downloadable e-material and e-solutions on energy conversion.
  • 10. Compressible Flow -- 9 -- Diffuser This section provides an isentropic diffuser analysis when the working fluid is air. Analysis In the presented diffuser analysis, only air is considered as the working fluid behaving as a perfect gas -- specific heat has a constant value. Ideal gas state equation is valid -- pv = RT. Air enters a diffuser at point 1 and it exits the diffuser at point 2. Working fluid inlet velocity gets reduced to zero resulting in the stagnation temperature and pressure increase. Isentropic process is considered with no entropy change. Figure 1 presents a diffuser schematic layout.
  • 11. Compressible Flow -- 10 -- Figure 1 - Diffuser Schematic Layout Figure 2 presents a diffuser temperature vs entropy diagram.
  • 12. Compressible Flow -- 11 -- Figure 2 - Diffuser Temperature vs Entropy Diagram Figure 3 presents diffuser performance -- stagnation over static temperature and pressure ratio values are provided as a function of the Mach Number. Only subsonic diffuser operation is considered. It should be noted that the air enters the diffuser at the static conditions of 298 [K] and 1 [atm] of absolute pressure.
  • 13. Compressible Flow -- 12 -- Figure 3 - Diffuser Performance vs Mach Number One can notice that diffuser stagnation over static temperature and pressure ratio values increase with an increase in the Mach Number. Assumptions Working fluid is air. There is no friction and heat transfer. Isentropic process -- there is no entropy change. Ideal gas state equation is valid -- pv = RT. Air behaves as a perfect gas -- specific heat has a constant value.
  • 14. Compressible Flow -- 13 -- Governing Equations Tt /T = (1 + M2(ϰ - 1)/2) pt/p = (1 + M2(ϰ - 1)/2)ϰ/(ϰ-1) Tt/T = (pt/p)(ϰ-1)/ϰ Tt = T + v2/(2cp) vs = (ϰRT)1/2 M = v/vs ϰ = cp/cv cp - cv = R pv = RT Input Data T1 = 298 [K] p1 = 1 [atm] R = 0.2867 [kJ/kg*K] cp = 1.004 [kJ/kg*K] ϰ = 1.4 [/] M = 0.29, 0.58 and 0.95 [/]
  • 15. Compressible Flow -- 14 -- Results Diffuser Performance vs Inlet Mach Number Diffuser Inlet Static Temperature = 298 [K] and Pressure = 1 [atm] Inlet Mach Number [/] Stagnation/Static Temperature Ratio [/] Stagnation/Static Pressure Ratio [/] 0.29 1.017 1.06 0.58 1.067 1.25 0.95 1.182 1.80
  • 16. Compressible Flow -- 15 -- Conclusions Diffuser stagnation over static temperature and pressure ratio values increase with an increase in the Mach Number. When you get a chance, please visit the following URL: http://www.engineering-4e.com The above URL provides lots of free online and downloadable e-material and e-solutions on energy conversion.
  • 17. Compressible Flow -- 16 -- Thrust This section provides an isentropic thrust analysis when the working fluid is air. Analysis In the presented thrust analysis, only air is considered as the working fluid behaving as a perfect gas -- specific heat has a constant value. Ideal gas state equation is valid -- pv = RT. Air enters a nozzle at point 1 and it exits the nozzle at point 2. Isentropic expansion is considered with no entropy change. Figure 1 presents a thrust schematic layout.
  • 18. Compressible Flow -- 17 -- Figure 1 - Thrust Schematic Layout Figure 2 presents a thrust temperature vs entropy diagram.
  • 19. Compressible Flow -- 18 -- Figure 2 - Thrust Temperature vs Entropy Diagram Figure 3 presents thrust performance as a function of the nozzle inlet stagnation temperature and pressure values for a few fixed values such as: working fluid mass flow rate, nozzle outlet Mach Number and ambient pressure. Only subsonic nozzle operation is considered.
  • 20. Compressible Flow -- 19 -- Figure 3 - Thrust Performance One can notice that thrust increases with an increase in the inlet stagnation temperature and pressure values. Assumptions Working fluid is air. There is no friction and heat transfer. Expansion is isentropic -- there is no entropy change. Ideal gas state equation is valid -- pv = RT. Air behaves as a perfect gas -- specific heat has a constant value.
  • 21. Compressible Flow -- 20 -- Governing Equations Tt /T = (1 + M2(ϰ - 1)/2) pt/p = (1 + M2(ϰ - 1)/2)ϰ/(ϰ-1) Tt/T = (pt/p)(ϰ -1)/k v = (2cp(Tt - T))1/2 vs = (ϰRT)1/2 M = v/vs ϰ = cp/cv cp - cv = R pv = RT Thrust = vm + (p - pa)A Input Data T1 = 900, 1,200 and 1,500 [K] p1 = 5, 10 and 15 [atm] R = 0.2867 [kJ/kg*K] cp = 1.004 [kJ/kg*K] ϰ = 1.4 [/] m = 1 [kg/s] M = 0.85 [/] pa = 1 [atm]
  • 22. Compressible Flow -- 21 -- Results Thrust Performance vs Nozzle Inlet Stagnation Temperature and Pressure Outlet Mach Number = 0.85 [/] and Ambient Pressure = 1 [atm] Working Fluid Mass Flow Rate = 1 [kg/s] Thrust [N] Inlet Stagnation Temperature [K] Inlet Stagnation Pressure [atm] 900 1,200 1,500 5 797.7 922.3 1,031.1 10 873.5 1,009.5 1,128.6 15 898.7 1,038.7 1,161.3
  • 23. Compressible Flow -- 22 -- Conclusions Thrust increases with an increase in the inlet stagnation temperature and pressure values. When you get a chance, please visit the following URL: http://www.engineering-4e.com The above URL provides lots of free online and downloadable e-material and e-solutions on energy conversion.