SlideShare a Scribd company logo
1 of 32
Download to read offline
Eigenvalues in a nutshell
Eigenvalues in a nutshell


     Mariquita Flores Garrido



    UDLS, March 16th 2007
Just in case…
• Scalar multiple of a vector
                                           λx
                                                               x
                     x                                                           x
                                       x
                    λx
                                                λx                 λx
         0 ≤ λ ≤1          1≤ λ                 −1 ≤ λ ≤ 0              λ ≤ −1


• Addition of vectors
                                  v1                         v1 + v2




                                                     v2
Linear Transformations

                   Ax = b        Transformation of x by A.

• Rectangular matrices

     A ∈ R m×n ⇒ f : R n a R m
                                            A          x     =   Ax


                                           mxn                   mx1

                                                      nx1
   V. gr.


      ⎛1    4⎞         ⎛5⎞
      ⎜      ⎟   ⎛1⎞   ⎜ ⎟
      ⎜2    5⎟   ⎜ ⎟ = ⎜7⎟
                 ⎜1⎟
      ⎜3    6⎟   ⎝ ⎠   ⎜9⎟
      ⎝      ⎠         ⎝ ⎠
Linear Transformations




• Square Matrices        A ∈ R n×n ⇒ f : R n a R n   (*endomorphism)


  *Stretch/Compression       *Rotation               *Reflection

           ⎛ 2 0⎞             ⎛ cos ϕ     sin ϕ ⎞              ⎛0 1⎞
           ⎜ 0 2⎟
           ⎜    ⎟             ⎜
                              ⎜ − sin ϕ         ⎟              ⎜
                                                               ⎜1 0⎟
           ⎝    ⎠             ⎝           cos ϕ ⎟
                                                ⎠              ⎝
                                                                   ⎟
                                                                   ⎠
Bonnus: Shear




  *Shear in x-direction                *Shear in y-direction

           ⎛1 k ⎞                                 ⎛ 1 0⎞
           ⎜
           ⎜0 1⎟⎟                                 ⎜
                                                  ⎜ k 1⎟
                                                       ⎟
           ⎝    ⎠                                 ⎝    ⎠



   V.gr.        Shear in x-direction



                    y                  ⎛ x⎞                y       ⎛ x + ky ⎞
                                       ⎜ ⎟
                                       ⎜ y⎟                        ⎜
                                                                   ⎜ y ⎟    ⎟
                                       ⎝ ⎠                         ⎝        ⎠




                                              x                x
Basis for a Subspace


 A basis in Rn is a set of n linearly independent vectors.

                   ⎛1⎞                              2e3
                   ⎜ ⎟
                   ⎜1⎟
                   ⎜ 2⎟
                   ⎝ ⎠
                                                    e3


                                                             e2
     ⎛1⎞     ⎛1⎞        ⎛0⎞       ⎛0⎞
     ⎜ ⎟     ⎜ ⎟        ⎜ ⎟       ⎜ ⎟          e1
     ⎜1⎟ = 1 ⎜0⎟    + 1 ⎜1⎟   + 2 ⎜0⎟
     ⎜2⎟     ⎜0⎟        ⎜0⎟       ⎜1⎟
     ⎝ ⎠     ⎝ ⎠        ⎝ ⎠       ⎝ ⎠
Basis for a Subspace




   Any set of n linearly independent vectors can be a basis

                                 V2
                                           Using canonical
                                           basis:
            ⎛ a1 ⎞
            ⎜ ⎟
            ⎜a ⎟
            ⎝ 2⎠       e2                              ⎛ a1 ⎞ ⎛ − 2 ⎞
                                      V1               ⎜ ⎟=⎜ ⎟
                                                       ⎜a ⎟ ⎜ 1 ⎟
                            e1                         ⎝ 2⎠ ⎝ ⎠


                                                                        V2




        Using V1, V2 … ?                                                     V1
                            ⎛ a1 ⎞
                            ⎜ ⎟ = ??
                            ⎜a ⎟
                            ⎝ 2⎠
EIGENVALUES


  •quot;Eigenquot; -    quot;ownquot;, quot;peculiar toquot;, quot;characteristicquot; or quot;individual“; quot;proper
  value“.


  • An invariant subspace under an endomorphism.




  • If A is n x n matrix, x ≠ 0 is called an eigenvector of A if
                                     Ax = λx
  and λ is called an eigenvalue of A.
Quiz 1


• Square Matrices (endomorphism)

 *Stretch/Compression   *Rotation              *Reflection

         ⎛ 2 0⎞          ⎛ cos ϕ     sin ϕ ⎞           ⎛0 1⎞
         ⎜ 0 2⎟
         ⎜    ⎟          ⎜
                         ⎜ − sin ϕ         ⎟           ⎜
                                                       ⎜1 0⎟
         ⎝    ⎠          ⎝           cos ϕ ⎟
                                           ⎠           ⎝
                                                           ⎟
                                                           ⎠
Eigen – slang
 • Characteristic polynomial: A degree n polynomial in λ:
                                         det(λI - A) = 0
 Scalars satisfying the eqn, are the eigenvalues of A.
 V.gr.
                              ⎛1 2⎞    1− λ         2
                              ⎜   ⎟⎯
                              ⎜3 4⎟ ⎯→                 = λ2 − 5λ − 2 = 0
                              ⎝   ⎠     3          4−λ

 • Spectrum (of A) : { λ1, λ2 , …, λn}
 • Algebraic multiplicity (of λi): number of roots equal to λi.
 • Eigenspace (of λi): Eigenvectors never come alone!

                  Ax = λx
               k ⋅ Ax = k ⋅ λx
               A(kx) = λ (kx)


 • Geometric multiplicity (of λi): number of lin. independent eigenvectors
 associated with λi.
Eigen – slang


 • Eigen – something: Something that doesn’t change under some
 transformation.

                         d [e x ]
                                  = ex
                           dx
FAQ (yeah, sure)

• How old are the eigenvalues?
They arose before matrix theory, in the context of differential equations.
Bernoulli, Euler, 18th Century.




Hilbert, 20th century.




• Do all matrices have eigenvalues?
Yes. Every n x n matrix has n eigenvalues.
• Why are the eigenvalues important?


       - Physical meaning (v.gr. string, molecular orbitals ).


       - There are other concepts relying on eigenvalues (v.gr. singular values, condition number).


       - They tell almost everything about a matrix.
Properties of a matrix reflected in its eigenvalues:


  1. A singular    ↔        λ = 0.

  2. A and AT have the same λ’s.

  3. A symmetric            Real λ’s..

  4. A skew-symmetric                  Imaginary λ’s..

  5. A symmetric positive definite              λ’s > 0

  6. A full rank    Eigenvectors form a basis for Rn.

  7. A symmetric      Eigenvectors can be chosen orthonormal.

  8. A real    Eigenvalues and eigenvectors come in conjugate pairs.

  9. A symmetric      Number of positive eigenvalues equals the number of
     positive pivots. A diagonal     λi = aii
Properties of a matrix reflected in its eigenvalues:

 10. A and M-1AM have the same λ’s.

 11. A orthogonal         all |λ | = 1

 12. A projector         λ = 1,0

 13. A Markov          λmax = 1

 14. A reflection       λ = -1,1,…,1

 15. A rank one         λ = vTu

 16. A-1      1/λ(A)

 17. A + cI      λ(A) + c

 18. A diagonal        λi = aii

 19. Eigenvectors of AAT           Basis for Col(A)

 20. Eigenvectors of ATA           Basis for Row(A)

  M
What’s the worst thing about eigenvalues?

Find them is painful; they are roots of the characteristic polynomial.



        * How long does it take to calculate the determinant of a
        25 x 25 matrix?


        * How do we find roots of polynomials?
WARNING:


 The following examples have been
simplified to be presented in a short
  talk about eigenvalues. Attendee
        discretion is advised.
Example 1: Face Identification




                  Eigenfaces: face identification technique.


  (There are also eigeneyes, eigennoses, eigenmouths, eigenears,eigenvoices,…)
EIGENFACES




                      Given a set of images, and a
                       “target face”, identify the
                          “owner” of the face.




                                          256 x 256
                                            (test)
        128 images
        (train set)
1. Preprocessing stage: linear transformations, morphing,
    warping,…


2. Representing faces: vectors (Γj) in a very high dimensional
    space.
V.gr.
                Training set: 65536 x 128 matrix
3. Centering data: take the “average” image and define every Φj


                                         Φ j = Ψ − Γj


               1 n
                                             A = [Φ1, Φ2 ,...,Φn ]
            Ψ = ∑ Γj
               n j =1
4. Eigenvectors of AAT are a basis for Col(A) (what’s the size of this matrix?), so
    instead of working with A, I can express every image in another basis.


* 5. PCA: reducing the dimension of the space. To solve the problem, the work is
    done in a smaller subspace, SL, using projections of each image onto SL.


6. It’s possible to get eigenvectors of AAT using eigenvectors of ATA.
                                  65436 x 65436                 128 x 128
Example 2: Sparse Matrix Computations
ITERATIVE METHODS


                                  Âx=b


   • Gauss-Jordan


   • If  is 105 ×105 , Gauss Jordan would take approx. 290 years.


   • Iterative methods: find some “good” matrix A and apply it to some
   initial vector until you get convergence.


   • Choosing different A determines different methods (v.gr. Jacobi,
   Gauss-Seidel, Krylov subspace methods, …).
Example 2: ITERATIVE METHODS

• Iteration
                                                        x1 = Ax 0
 A: huge matrix (    106   ×106 )
                                                        x 2 = Ax1 = A(Ax 0 ) = A 2 x 0
x0 : initial guess
                                                        M
                                                        xn = An x0

• If A has full rank, its eigenvectors form a basis for Rm

    An x0 = An (α1v1 + α 2 v2 + L + α m vm )
          = α1 An v1 + α 2 An v2 + L + α m An vm
          = α1λn v1 + α 2 λn v2 + L + α m λn vm
               1           2               m
                                                            λi < 1 ⇒ convergence

                               Convergence, number of iterations, it’s all
                                                  about eigenvalues…
Example 2: ITERATIVE METHODS
Example 3: Dynamical Systems




       ( Eigenvalues don’t have the main role here, but, who are
                      you going to complain to?)
Arnold’s Cat

  • Poincare recurrence theorem:
          “ A system having a finite amount of energy and confined to a
          finite spatial volume will, after a sufficiently long time, return
          to an arbitrarily small neighborhood of its initial state.”


  • Vladimir I. Arnold, Russian mathematician.




                                               ⎛1 1 ⎞
                                               ⎜1 2 ⎟
                                             A=⎜    ⎟
                                               ⎝    ⎠

                                            Each pixel can be assigned to a
                                              unique pair of coordinates
                                              (a two-dimensional vector)
⎛1 1 ⎞ ⎛1 0 ⎞ ⎛ 1 1⎞
A=⎜
  ⎜1 2 ⎟ = ⎜1 1 ⎟ ⋅ ⎜ 0 1⎟
       ⎟ ⎜      ⎟ ⎜      ⎟   (mod 1)
  ⎝    ⎠ ⎝      ⎠ ⎝      ⎠
1    2    3    5




20   31   37   42




46   47   59   63




77   78   79   80
⎛ .52 ⎞
           λ1 = 2.61 → ⎜     ⎟
  ⎛1 1 ⎞               ⎜ .85 ⎟
                       ⎝ ⎠       det( A) = 1
A=⎜
  ⎜1 2 ⎟
       ⎟                                            V1
  ⎝    ⎠              ⎛ −.85⎞
           λ2 = 0.38 → ⎜
                       ⎜    ⎟
                      ⎝ .52 ⎟
                            ⎠                  V2
More Applications




      •Graph theory
      •Differential Equations
      •PageRank
      •Physics
REFERENCES

 •Chen Greif. CPSC 517 Notes, UBC/CS, Spring 2007.


 •Howard Anton and Chris Rorres. Elementary Linear Algebra,
 Applications Version, 9th Ed. John Wiley & Sons, Inc. 2005


 •Humberto Madrid de la Vega. Eigenfaces: Reconocimiento digital de
 facciones mediante SVD. Memorias del XXXVII Congreso SMM, 2005.


 •Wikipedia: Eigenvalue, eigenvector and eigenspace.
 http://en.wikipedia.org/wiki/Eigenvalue

More Related Content

What's hot

ділення десяткових дробів 5 клас
ділення десяткових  дробів 5 класділення десяткових  дробів 5 клас
ділення десяткових дробів 5 класAlVladimir
 
Linear equation in two variables
Linear equation in two variablesLinear equation in two variables
Linear equation in two variablesMERBGOI
 
6.5 determinant x
6.5 determinant x6.5 determinant x
6.5 determinant xmath260
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions ymath266
 
Множини. Підмножини. Числові множини. Раціональні числа.
Множини. Підмножини. Числові множини. Раціональні числа.Множини. Підмножини. Числові множини. Раціональні числа.
Множини. Підмножини. Числові множини. Раціональні числа.sveta7940
 
PDV: [Explicación] Matemáticas N°2 (2012)
PDV: [Explicación] Matemáticas N°2 (2012)PDV: [Explicación] Matemáticas N°2 (2012)
PDV: [Explicación] Matemáticas N°2 (2012)PSU Informator
 
0.3 Factoring Polynomials
0.3 Factoring Polynomials0.3 Factoring Polynomials
0.3 Factoring Polynomialssmiller5
 
Polynomials
PolynomialsPolynomials
Polynomialsnina
 
Matrix multiplication, inverse
Matrix multiplication, inverseMatrix multiplication, inverse
Matrix multiplication, inversePrasanth George
 
Gaussian Elimination
Gaussian EliminationGaussian Elimination
Gaussian EliminationZunAib Ali
 
Числовые промежутки
Числовые промежуткиЧисловые промежутки
Числовые промежуткиИлья Сыч
 
1.1 real number system dfs
1.1 real number system dfs1.1 real number system dfs
1.1 real number system dfsFarhana Shaheen
 
properties of multiplication of integers
properties of multiplication of integersproperties of multiplication of integers
properties of multiplication of integerssufiyafatima
 
Multiplying Polynomials
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomialsnina
 
Polynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesPolynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesAnkur Patel
 
Polynomials ( PDFDrive ).pdf
Polynomials ( PDFDrive ).pdfPolynomials ( PDFDrive ).pdf
Polynomials ( PDFDrive ).pdfMridul Dey
 
4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponentsmath123b
 
Linear equation in one variable for class VIII by G R Ahmed
Linear equation in one variable for class VIII by G R Ahmed Linear equation in one variable for class VIII by G R Ahmed
Linear equation in one variable for class VIII by G R Ahmed MD. G R Ahmed
 

What's hot (20)

ділення десяткових дробів 5 клас
ділення десяткових  дробів 5 класділення десяткових  дробів 5 клас
ділення десяткових дробів 5 клас
 
Linear equation in two variables
Linear equation in two variablesLinear equation in two variables
Linear equation in two variables
 
6.5 determinant x
6.5 determinant x6.5 determinant x
6.5 determinant x
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
Множини. Підмножини. Числові множини. Раціональні числа.
Множини. Підмножини. Числові множини. Раціональні числа.Множини. Підмножини. Числові множини. Раціональні числа.
Множини. Підмножини. Числові множини. Раціональні числа.
 
PDV: [Explicación] Matemáticas N°2 (2012)
PDV: [Explicación] Matemáticas N°2 (2012)PDV: [Explicación] Matemáticas N°2 (2012)
PDV: [Explicación] Matemáticas N°2 (2012)
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
0.3 Factoring Polynomials
0.3 Factoring Polynomials0.3 Factoring Polynomials
0.3 Factoring Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Matrix multiplication, inverse
Matrix multiplication, inverseMatrix multiplication, inverse
Matrix multiplication, inverse
 
Gaussian Elimination
Gaussian EliminationGaussian Elimination
Gaussian Elimination
 
Числовые промежутки
Числовые промежуткиЧисловые промежутки
Числовые промежутки
 
1.1 real number system dfs
1.1 real number system dfs1.1 real number system dfs
1.1 real number system dfs
 
properties of multiplication of integers
properties of multiplication of integersproperties of multiplication of integers
properties of multiplication of integers
 
Multiplying Polynomials
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomials
 
Polynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two VariablesPolynomials And Linear Equation of Two Variables
Polynomials And Linear Equation of Two Variables
 
Polynomials ( PDFDrive ).pdf
Polynomials ( PDFDrive ).pdfPolynomials ( PDFDrive ).pdf
Polynomials ( PDFDrive ).pdf
 
4 5 fractional exponents
4 5 fractional exponents4 5 fractional exponents
4 5 fractional exponents
 
Linear equation in one variable for class VIII by G R Ahmed
Linear equation in one variable for class VIII by G R Ahmed Linear equation in one variable for class VIII by G R Ahmed
Linear equation in one variable for class VIII by G R Ahmed
 
Gauss elimination
Gauss eliminationGauss elimination
Gauss elimination
 

Viewers also liked

Eigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationEigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationChristopher Gratton
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsJaydev Kishnani
 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .pptSelf-employed
 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsMatthew Leingang
 
Eigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matricesEigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matricesIvan Mateev
 
On image intensities, eigenfaces and LDA
On image intensities, eigenfaces and LDAOn image intensities, eigenfaces and LDA
On image intensities, eigenfaces and LDARaghu Palakodety
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...GeeksLab Odessa
 
Nilai Egien Dan Vektor Eigen
Nilai Egien Dan Vektor EigenNilai Egien Dan Vektor Eigen
Nilai Egien Dan Vektor EigenRizky Wulansari
 
Saurashtra university library
Saurashtra university librarySaurashtra university library
Saurashtra university libraryYuvraj Zala
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectorsAmit Singh
 
Eigenvalues and eigenvectors
Eigenvalues and eigenvectorsEigenvalues and eigenvectors
Eigenvalues and eigenvectorsiraq
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3MuhannadSaleh
 
Do you know matrix transformations
Do you know matrix transformationsDo you know matrix transformations
Do you know matrix transformationsTarun Gehlot
 
eigen valuesandeigenvectors
eigen valuesandeigenvectorseigen valuesandeigenvectors
eigen valuesandeigenvectors8laddu8
 
B.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectorsB.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectorsRai University
 
Saurashtra University Library PPT
Saurashtra University Library PPTSaurashtra University Library PPT
Saurashtra University Library PPTYuvraj Zala
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringshubham211
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vectorRutvij Patel
 
Applications of Matrices
Applications of MatricesApplications of Matrices
Applications of Matricessanthosh kumar
 

Viewers also liked (20)

Eigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationEigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to Diagonalisation
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Eigenvalue problems .ppt
Eigenvalue problems .pptEigenvalue problems .ppt
Eigenvalue problems .ppt
 
Lesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And EigenvectorsLesson14: Eigenvalues And Eigenvectors
Lesson14: Eigenvalues And Eigenvectors
 
Eigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matricesEigenvalues and eigenvectors of symmetric matrices
Eigenvalues and eigenvectors of symmetric matrices
 
On image intensities, eigenfaces and LDA
On image intensities, eigenfaces and LDAOn image intensities, eigenfaces and LDA
On image intensities, eigenfaces and LDA
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
 
Eigen vector
Eigen vectorEigen vector
Eigen vector
 
Nilai Egien Dan Vektor Eigen
Nilai Egien Dan Vektor EigenNilai Egien Dan Vektor Eigen
Nilai Egien Dan Vektor Eigen
 
Saurashtra university library
Saurashtra university librarySaurashtra university library
Saurashtra university library
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
 
Eigenvalues and eigenvectors
Eigenvalues and eigenvectorsEigenvalues and eigenvectors
Eigenvalues and eigenvectors
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
Do you know matrix transformations
Do you know matrix transformationsDo you know matrix transformations
Do you know matrix transformations
 
eigen valuesandeigenvectors
eigen valuesandeigenvectorseigen valuesandeigenvectors
eigen valuesandeigenvectors
 
B.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectorsB.tech semester i-unit-v_eigen values and eigen vectors
B.tech semester i-unit-v_eigen values and eigen vectors
 
Saurashtra University Library PPT
Saurashtra University Library PPTSaurashtra University Library PPT
Saurashtra University Library PPT
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineering
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
 
Applications of Matrices
Applications of MatricesApplications of Matrices
Applications of Matrices
 

Similar to Eigenvalues in a Nutshell

Understand Of Linear Algebra
Understand Of Linear AlgebraUnderstand Of Linear Algebra
Understand Of Linear AlgebraEdward Yoon
 
Protein Folding Prediction
Protein Folding PredictionProtein Folding Prediction
Protein Folding Predictionwarrenyates
 
Introduction about Geometric Algebra
Introduction about Geometric AlgebraIntroduction about Geometric Algebra
Introduction about Geometric AlgebraVitor Pamplona
 
B to \eta(') K branching ratio puzzle and OZI violation contribution
B to \eta(') K branching ratio puzzle and OZI violation contributionB to \eta(') K branching ratio puzzle and OZI violation contribution
B to \eta(') K branching ratio puzzle and OZI violation contributionkleinhsu
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsNigel Simmons
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session SlidesMatthew Leingang
 
12 X1 T07 03 Projectile Motion
12 X1 T07 03 Projectile Motion12 X1 T07 03 Projectile Motion
12 X1 T07 03 Projectile MotionNigel Simmons
 
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティングビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティングDirectus Inc.(ディレクタス)
 
Shortest Path Search in Real Road Networks with pgRouting
Shortest Path Search in Real Road Networks with pgRoutingShortest Path Search in Real Road Networks with pgRouting
Shortest Path Search in Real Road Networks with pgRoutingDaniel Kastl
 

Similar to Eigenvalues in a Nutshell (12)

Understand Of Linear Algebra
Understand Of Linear AlgebraUnderstand Of Linear Algebra
Understand Of Linear Algebra
 
Protein Folding Prediction
Protein Folding PredictionProtein Folding Prediction
Protein Folding Prediction
 
Introduction about Geometric Algebra
Introduction about Geometric AlgebraIntroduction about Geometric Algebra
Introduction about Geometric Algebra
 
Proj Stat
Proj StatProj Stat
Proj Stat
 
B to \eta(') K branching ratio puzzle and OZI violation contribution
B to \eta(') K branching ratio puzzle and OZI violation contributionB to \eta(') K branching ratio puzzle and OZI violation contribution
B to \eta(') K branching ratio puzzle and OZI violation contribution
 
Quantum Logic
Quantum LogicQuantum Logic
Quantum Logic
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphs
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Midterm I Review
Midterm I ReviewMidterm I Review
Midterm I Review
 
12 X1 T07 03 Projectile Motion
12 X1 T07 03 Projectile Motion12 X1 T07 03 Projectile Motion
12 X1 T07 03 Projectile Motion
 
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティングビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
ビッグデータ活用の最前線 最適化でエンゲージメントを高めるソーシャルメディア時代のEメールマーケティング
 
Shortest Path Search in Real Road Networks with pgRouting
Shortest Path Search in Real Road Networks with pgRoutingShortest Path Search in Real Road Networks with pgRouting
Shortest Path Search in Real Road Networks with pgRouting
 

More from guest9006ab

Proportional-Derivative-Integral (PID) Control
Proportional-Derivative-Integral (PID) ControlProportional-Derivative-Integral (PID) Control
Proportional-Derivative-Integral (PID) Controlguest9006ab
 
A Brief History of Cryptography
A Brief History of CryptographyA Brief History of Cryptography
A Brief History of Cryptographyguest9006ab
 
SMART Goals and Feedback (Project Management)
SMART Goals and Feedback (Project Management)SMART Goals and Feedback (Project Management)
SMART Goals and Feedback (Project Management)guest9006ab
 
C Code and the Art of Obfuscation
C Code and the Art of ObfuscationC Code and the Art of Obfuscation
C Code and the Art of Obfuscationguest9006ab
 
Top Super-models of Computer Graphics
Top Super-models of Computer GraphicsTop Super-models of Computer Graphics
Top Super-models of Computer Graphicsguest9006ab
 
Human Nature and its Consequences
Human Nature and its ConsequencesHuman Nature and its Consequences
Human Nature and its Consequencesguest9006ab
 
Slipping the Surly Bonds
Slipping the Surly BondsSlipping the Surly Bonds
Slipping the Surly Bondsguest9006ab
 
Communication with Extraterrestrial Intelligence
Communication with Extraterrestrial IntelligenceCommunication with Extraterrestrial Intelligence
Communication with Extraterrestrial Intelligenceguest9006ab
 
Canada vs. Germany: Une réflection
Canada vs. Germany: Une réflectionCanada vs. Germany: Une réflection
Canada vs. Germany: Une réflectionguest9006ab
 
Signal Compression and JPEG
Signal Compression and JPEGSignal Compression and JPEG
Signal Compression and JPEGguest9006ab
 
Brain-Computer Interfaces
Brain-Computer InterfacesBrain-Computer Interfaces
Brain-Computer Interfacesguest9006ab
 
The ABC's of the Bible
The ABC's of the BibleThe ABC's of the Bible
The ABC's of the Bibleguest9006ab
 

More from guest9006ab (14)

Proportional-Derivative-Integral (PID) Control
Proportional-Derivative-Integral (PID) ControlProportional-Derivative-Integral (PID) Control
Proportional-Derivative-Integral (PID) Control
 
A Brief History of Cryptography
A Brief History of CryptographyA Brief History of Cryptography
A Brief History of Cryptography
 
SMART Goals and Feedback (Project Management)
SMART Goals and Feedback (Project Management)SMART Goals and Feedback (Project Management)
SMART Goals and Feedback (Project Management)
 
C Code and the Art of Obfuscation
C Code and the Art of ObfuscationC Code and the Art of Obfuscation
C Code and the Art of Obfuscation
 
OS Mélange
OS MélangeOS Mélange
OS Mélange
 
Top Super-models of Computer Graphics
Top Super-models of Computer GraphicsTop Super-models of Computer Graphics
Top Super-models of Computer Graphics
 
Human Nature and its Consequences
Human Nature and its ConsequencesHuman Nature and its Consequences
Human Nature and its Consequences
 
Slipping the Surly Bonds
Slipping the Surly BondsSlipping the Surly Bonds
Slipping the Surly Bonds
 
Communication with Extraterrestrial Intelligence
Communication with Extraterrestrial IntelligenceCommunication with Extraterrestrial Intelligence
Communication with Extraterrestrial Intelligence
 
Canada vs. Germany: Une réflection
Canada vs. Germany: Une réflectionCanada vs. Germany: Une réflection
Canada vs. Germany: Une réflection
 
Signal Compression and JPEG
Signal Compression and JPEGSignal Compression and JPEG
Signal Compression and JPEG
 
Clouds
CloudsClouds
Clouds
 
Brain-Computer Interfaces
Brain-Computer InterfacesBrain-Computer Interfaces
Brain-Computer Interfaces
 
The ABC's of the Bible
The ABC's of the BibleThe ABC's of the Bible
The ABC's of the Bible
 

Recently uploaded

Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 

Recently uploaded (20)

Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 

Eigenvalues in a Nutshell

  • 1. Eigenvalues in a nutshell Eigenvalues in a nutshell Mariquita Flores Garrido UDLS, March 16th 2007
  • 2. Just in case… • Scalar multiple of a vector λx x x x x λx λx λx 0 ≤ λ ≤1 1≤ λ −1 ≤ λ ≤ 0 λ ≤ −1 • Addition of vectors v1 v1 + v2 v2
  • 3. Linear Transformations Ax = b Transformation of x by A. • Rectangular matrices A ∈ R m×n ⇒ f : R n a R m A x = Ax mxn mx1 nx1 V. gr. ⎛1 4⎞ ⎛5⎞ ⎜ ⎟ ⎛1⎞ ⎜ ⎟ ⎜2 5⎟ ⎜ ⎟ = ⎜7⎟ ⎜1⎟ ⎜3 6⎟ ⎝ ⎠ ⎜9⎟ ⎝ ⎠ ⎝ ⎠
  • 4. Linear Transformations • Square Matrices A ∈ R n×n ⇒ f : R n a R n (*endomorphism) *Stretch/Compression *Rotation *Reflection ⎛ 2 0⎞ ⎛ cos ϕ sin ϕ ⎞ ⎛0 1⎞ ⎜ 0 2⎟ ⎜ ⎟ ⎜ ⎜ − sin ϕ ⎟ ⎜ ⎜1 0⎟ ⎝ ⎠ ⎝ cos ϕ ⎟ ⎠ ⎝ ⎟ ⎠
  • 5. Bonnus: Shear *Shear in x-direction *Shear in y-direction ⎛1 k ⎞ ⎛ 1 0⎞ ⎜ ⎜0 1⎟⎟ ⎜ ⎜ k 1⎟ ⎟ ⎝ ⎠ ⎝ ⎠ V.gr. Shear in x-direction y ⎛ x⎞ y ⎛ x + ky ⎞ ⎜ ⎟ ⎜ y⎟ ⎜ ⎜ y ⎟ ⎟ ⎝ ⎠ ⎝ ⎠ x x
  • 6. Basis for a Subspace A basis in Rn is a set of n linearly independent vectors. ⎛1⎞ 2e3 ⎜ ⎟ ⎜1⎟ ⎜ 2⎟ ⎝ ⎠ e3 e2 ⎛1⎞ ⎛1⎞ ⎛0⎞ ⎛0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ e1 ⎜1⎟ = 1 ⎜0⎟ + 1 ⎜1⎟ + 2 ⎜0⎟ ⎜2⎟ ⎜0⎟ ⎜0⎟ ⎜1⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  • 7. Basis for a Subspace Any set of n linearly independent vectors can be a basis V2 Using canonical basis: ⎛ a1 ⎞ ⎜ ⎟ ⎜a ⎟ ⎝ 2⎠ e2 ⎛ a1 ⎞ ⎛ − 2 ⎞ V1 ⎜ ⎟=⎜ ⎟ ⎜a ⎟ ⎜ 1 ⎟ e1 ⎝ 2⎠ ⎝ ⎠ V2 Using V1, V2 … ? V1 ⎛ a1 ⎞ ⎜ ⎟ = ?? ⎜a ⎟ ⎝ 2⎠
  • 8. EIGENVALUES •quot;Eigenquot; - quot;ownquot;, quot;peculiar toquot;, quot;characteristicquot; or quot;individual“; quot;proper value“. • An invariant subspace under an endomorphism. • If A is n x n matrix, x ≠ 0 is called an eigenvector of A if Ax = λx and λ is called an eigenvalue of A.
  • 9. Quiz 1 • Square Matrices (endomorphism) *Stretch/Compression *Rotation *Reflection ⎛ 2 0⎞ ⎛ cos ϕ sin ϕ ⎞ ⎛0 1⎞ ⎜ 0 2⎟ ⎜ ⎟ ⎜ ⎜ − sin ϕ ⎟ ⎜ ⎜1 0⎟ ⎝ ⎠ ⎝ cos ϕ ⎟ ⎠ ⎝ ⎟ ⎠
  • 10. Eigen – slang • Characteristic polynomial: A degree n polynomial in λ: det(λI - A) = 0 Scalars satisfying the eqn, are the eigenvalues of A. V.gr. ⎛1 2⎞ 1− λ 2 ⎜ ⎟⎯ ⎜3 4⎟ ⎯→ = λ2 − 5λ − 2 = 0 ⎝ ⎠ 3 4−λ • Spectrum (of A) : { λ1, λ2 , …, λn} • Algebraic multiplicity (of λi): number of roots equal to λi. • Eigenspace (of λi): Eigenvectors never come alone! Ax = λx k ⋅ Ax = k ⋅ λx A(kx) = λ (kx) • Geometric multiplicity (of λi): number of lin. independent eigenvectors associated with λi.
  • 11. Eigen – slang • Eigen – something: Something that doesn’t change under some transformation. d [e x ] = ex dx
  • 12. FAQ (yeah, sure) • How old are the eigenvalues? They arose before matrix theory, in the context of differential equations. Bernoulli, Euler, 18th Century. Hilbert, 20th century. • Do all matrices have eigenvalues? Yes. Every n x n matrix has n eigenvalues.
  • 13. • Why are the eigenvalues important? - Physical meaning (v.gr. string, molecular orbitals ). - There are other concepts relying on eigenvalues (v.gr. singular values, condition number). - They tell almost everything about a matrix.
  • 14. Properties of a matrix reflected in its eigenvalues: 1. A singular ↔ λ = 0. 2. A and AT have the same λ’s. 3. A symmetric Real λ’s.. 4. A skew-symmetric Imaginary λ’s.. 5. A symmetric positive definite λ’s > 0 6. A full rank Eigenvectors form a basis for Rn. 7. A symmetric Eigenvectors can be chosen orthonormal. 8. A real Eigenvalues and eigenvectors come in conjugate pairs. 9. A symmetric Number of positive eigenvalues equals the number of positive pivots. A diagonal λi = aii
  • 15. Properties of a matrix reflected in its eigenvalues: 10. A and M-1AM have the same λ’s. 11. A orthogonal all |λ | = 1 12. A projector λ = 1,0 13. A Markov λmax = 1 14. A reflection λ = -1,1,…,1 15. A rank one λ = vTu 16. A-1 1/λ(A) 17. A + cI λ(A) + c 18. A diagonal λi = aii 19. Eigenvectors of AAT Basis for Col(A) 20. Eigenvectors of ATA Basis for Row(A) M
  • 16. What’s the worst thing about eigenvalues? Find them is painful; they are roots of the characteristic polynomial. * How long does it take to calculate the determinant of a 25 x 25 matrix? * How do we find roots of polynomials?
  • 17. WARNING: The following examples have been simplified to be presented in a short talk about eigenvalues. Attendee discretion is advised.
  • 18. Example 1: Face Identification Eigenfaces: face identification technique. (There are also eigeneyes, eigennoses, eigenmouths, eigenears,eigenvoices,…)
  • 19. EIGENFACES Given a set of images, and a “target face”, identify the “owner” of the face. 256 x 256 (test) 128 images (train set)
  • 20. 1. Preprocessing stage: linear transformations, morphing, warping,… 2. Representing faces: vectors (Γj) in a very high dimensional space. V.gr. Training set: 65536 x 128 matrix 3. Centering data: take the “average” image and define every Φj Φ j = Ψ − Γj 1 n A = [Φ1, Φ2 ,...,Φn ] Ψ = ∑ Γj n j =1
  • 21. 4. Eigenvectors of AAT are a basis for Col(A) (what’s the size of this matrix?), so instead of working with A, I can express every image in another basis. * 5. PCA: reducing the dimension of the space. To solve the problem, the work is done in a smaller subspace, SL, using projections of each image onto SL. 6. It’s possible to get eigenvectors of AAT using eigenvectors of ATA. 65436 x 65436 128 x 128
  • 22. Example 2: Sparse Matrix Computations
  • 23. ITERATIVE METHODS Âx=b • Gauss-Jordan • If  is 105 ×105 , Gauss Jordan would take approx. 290 years. • Iterative methods: find some “good” matrix A and apply it to some initial vector until you get convergence. • Choosing different A determines different methods (v.gr. Jacobi, Gauss-Seidel, Krylov subspace methods, …).
  • 24. Example 2: ITERATIVE METHODS • Iteration x1 = Ax 0 A: huge matrix ( 106 ×106 ) x 2 = Ax1 = A(Ax 0 ) = A 2 x 0 x0 : initial guess M xn = An x0 • If A has full rank, its eigenvectors form a basis for Rm An x0 = An (α1v1 + α 2 v2 + L + α m vm ) = α1 An v1 + α 2 An v2 + L + α m An vm = α1λn v1 + α 2 λn v2 + L + α m λn vm 1 2 m λi < 1 ⇒ convergence Convergence, number of iterations, it’s all about eigenvalues…
  • 26. Example 3: Dynamical Systems ( Eigenvalues don’t have the main role here, but, who are you going to complain to?)
  • 27. Arnold’s Cat • Poincare recurrence theorem: “ A system having a finite amount of energy and confined to a finite spatial volume will, after a sufficiently long time, return to an arbitrarily small neighborhood of its initial state.” • Vladimir I. Arnold, Russian mathematician. ⎛1 1 ⎞ ⎜1 2 ⎟ A=⎜ ⎟ ⎝ ⎠ Each pixel can be assigned to a unique pair of coordinates (a two-dimensional vector)
  • 28. ⎛1 1 ⎞ ⎛1 0 ⎞ ⎛ 1 1⎞ A=⎜ ⎜1 2 ⎟ = ⎜1 1 ⎟ ⋅ ⎜ 0 1⎟ ⎟ ⎜ ⎟ ⎜ ⎟ (mod 1) ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  • 29. 1 2 3 5 20 31 37 42 46 47 59 63 77 78 79 80
  • 30. ⎛ .52 ⎞ λ1 = 2.61 → ⎜ ⎟ ⎛1 1 ⎞ ⎜ .85 ⎟ ⎝ ⎠ det( A) = 1 A=⎜ ⎜1 2 ⎟ ⎟ V1 ⎝ ⎠ ⎛ −.85⎞ λ2 = 0.38 → ⎜ ⎜ ⎟ ⎝ .52 ⎟ ⎠ V2
  • 31. More Applications •Graph theory •Differential Equations •PageRank •Physics
  • 32. REFERENCES •Chen Greif. CPSC 517 Notes, UBC/CS, Spring 2007. •Howard Anton and Chris Rorres. Elementary Linear Algebra, Applications Version, 9th Ed. John Wiley & Sons, Inc. 2005 •Humberto Madrid de la Vega. Eigenfaces: Reconocimiento digital de facciones mediante SVD. Memorias del XXXVII Congreso SMM, 2005. •Wikipedia: Eigenvalue, eigenvector and eigenspace. http://en.wikipedia.org/wiki/Eigenvalue