SlideShare a Scribd company logo
1 of 95
Download to read offline
Copper-Catalyzed	Reactions	with	
Diborons:	

From	the	Beginning	to	Recent	Results		
Hajime	Ito,	Hokkaido	University,	Japan
Hokkaido	University	in	Sapporo	City
Hokkaido	University
Faculty	Members:	4000
Hokkaido	University
Undergraduate	Students:	12000
Graduate	Students:	6000
Hokkaido	University
Faculty	Members:	4000
Hokkaido	University
Undergraduate	Students:	12000
Graduate	Students:	6000
			Akira	Suzuki

			2010	Nobel	Prize	Winner
Researches	in	Ito’s	Group	
Cu catalysis (2000−)
Si-B/base Chemistry (2012−)
J. Am. Chem. Soc., 2012, 134, 19997; Chem. Sci. 2015, 6, 2943.
Borylation	Reactions
Angew. Chem., Int. Ed. 2015, 54, 8809.
J. Am. Chem. Soc. 2015, 137, 420.
J. Am. Chem. Soc. 2014, 136, 16515.
J. Am. Chem. Soc. 2013, 135, 2635.
Org. Lett. 2012, 14, 890.
Angew. Chem., Int. Ed. 2011, 50, 2778.
J. Am. Chem. Soc. 2010, 132, 11440.
J. Am. Chem. Soc. 2010, 132, 1226 .
J. Am. Chem. Soc. 2010, 132, 5990.
Angew. Chem., Int. Ed. 2010, 122, 570.
Nature Chemistry 2010, 2, 972.
J. Am. Chem. Soc. 2008, 130, 15774.
Angew. Chem., Int. Ed. 2008, 47, 7424.
J. Am. Chem. Soc. 2007, 129, 14856.
J. Am. Chem. Soc. 2005, 127, 16034.
DFT calculation: J. Am. Chem. Soc. 2015, 137, 4090.
EWG
(pin)B B(pin)
Cu cat.
EWG
(pin)B
Ito, Hosomi Tetrahedron Lett. 2000, 40, 7807.
(Ishiyama, Miyaura, Chem. Lett. 2000, 982.)
Chem. Sci., 2015, 6, 2187.
Mechano-Responsive	Material
J. Am. Chem. Soc. 2008, 130, 10044.
Nature Comm. 2013, 4, 2009.
Angew. Chem., Int. Ed. 2013, 52, 12828, VIP.
Chem. Sci., 2015, 6, 1491.
Chem. Sci., 2015, 6, 2187.
Boronic	Acids:	Preparation	and	Applications	in	Organic	Synthesis,	Medicine	and	Materials,	2	nd	revised	ed.;	

Hall,	D.	G.,	Ed.;	Wiley-VCH:	Weinheim,	2011.	
B
R1 R1
H
C
R1 R1
H
HO
R1 R1
H
H2N
R1 R1
H
Versatile	Building	Block
Major	Synthetic	Methods	
・Hydroboration	
・Electrophilic	reactions	of	boron	reagents	
・Pd-catalyzed	reactions	of	B2pin2	(Miyaura’s	procedure)
Organoboron	Compounds
No	practical	nucleophilic	reactions	of	boron	reagents		
Low	electronegativity	of	B	(2.0)	makes	generation	of	B	anion	dif@icult.
・Hydroboration
Hydroboration	is	not	the	perfect	solution.
■	Brown’s	asymmetric	hydroboration	with	stoichiometric	chiral	group		
BH
2 +
H B(ipc)2 H OHoxidation
99% ee
OH
+ 2
H. C. Brown (1961)
・Hydroboration
Hydroboration	is	not	the	perfect	solution.
■	Asymmetric	catalytic	hydroboration	was	limited.
Ph
[Rh(cod)2]BF4 (1 mol %)
(R)-BINAP (1 mol %)
–78°C, 6 h
O
HB
O
+ Ph
B(cat)
91%, 96.2 % ee
Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1989, 111, 3426.!
■	Brown’s	asymmetric	hydroboration	with	stoichiometric	chiral	group		
BH
2 +
H B(ipc)2 H OHoxidation
99% ee
OH
+ 2
H. C. Brown (1961)
・RLi,	RMgX	and	Boron	Electrophiles
RLi	and	RMgBr	still	have	limitations.
M R X B
X
X
−MX
R B
X
X
Highly	basic	conditions,	low	functional	group	compatibility
・RLi,	RMgX	and	Boron	Electrophiles
RLi	and	RMgBr	still	have	limitations.
M R X B
X
X
−MX
R B
X
X
Highly	basic	conditions,	low	functional	group	compatibility	
N
Ph
O N(i-Pr)2
O
(-)-sparteine
s-BuLi
–78°C
Ph
O N(i-Pr)2
OLi
H
N
Ph
O N(i-Pr)2
OB
H
O
O
Et
Et B
O
O
MgBr2
Ph
B
O
O
Et
90%, 96% ee
R Li BX
■	Chiral	Organoboron	(Aggarwal	et	al)
Cu Cl +
NN
O
(DMI)(THF)
O
H Si
CH3
CH3
Copper-Catalyzed	Hydrosilylation
no reaction
Cu Cl +
NN
O
(DMI)(THF)
O
H Si
CH3
CH3
Copper-Catalyzed	Hydrosilylation
no reaction
Cu Cl +
NN
O
(DMI)(THF)
O
H Si
CH3
CH3
Copper-Catalyzed	Hydrosilylation
no reaction
(DMI)nCu H(DMI)nCu
Cl
H
Si
Cu Cl +
NN
O
(DMI)(THF)
O
H Si
CH3
CH3
Copper-Catalyzed	Hydrosilylation
no reaction
(DMI)nCu H(DMI)nCu
Cl
H
Si
Ito, H.; Ishizuka, T.; Arimoto, K.; Miura, K.; Hosomi, A. Tetrahedron Lett. 1997, 38, 8887.
O
H Si+
cat. CuCl
DMI, rt
O
H
92%
H3O+CH3
CH3
Cu Cl +
NN
O
(DMI)(THF)
O
H Si
CH3
CH3
Catalysis
Copper-Catalyzed	Hydrosilylation
Stoichiometric	Reaction
Our	Preliminary	Copper-Catalyzed	Reactions
Our	Preliminary	Copper-Catalyzed	Reactions
■	Hydorsilylaiton	
CuCl / DMI / R3SiH:
Ito, H.; Ishizuka, T.; Arimoto, K.; Miura, K.; Hosomi, A. Tetrahedron Lett. 1997, 38, 8887.
O
H Si+
cat. CuCl
DMI, rt
O
H
92%
H3O+CH3
CH3
Cu
X
Si
H
Cu H
L
L
FCu(PPh3) / R3SiH: Mori, A.; Fujita, A.; Nishihara, Y.; Hiyama, T. Chem. Commun. 1997, 2159.
Our	Preliminary	Copper-Catalyzed	Reactions
■	Silylation	with	disilanes
Si Ph+
cat. CuOTf
PBu3
DMI, rt
H3O+
O
SiPh
O
Si
Ph
Ito, H.; Ishizuka, T.; Tateiwa, J.; Sonoda, M.; Hosomi, A. J. Am. Chem. Soc. 1998, 120, 11196.
Cu
X
Si
Si
Cu Si
L
L
■	Hydorsilylaiton	
CuCl / DMI / R3SiH:
Ito, H.; Ishizuka, T.; Arimoto, K.; Miura, K.; Hosomi, A. Tetrahedron Lett. 1997, 38, 8887.
O
H Si+
cat. CuCl
DMI, rt
O
H
92%
H3O+CH3
CH3
Cu
X
Si
H
Cu H
L
L
FCu(PPh3) / R3SiH: Mori, A.; Fujita, A.; Nishihara, Y.; Hiyama, T. Chem. Commun. 1997, 2159.
Early	Studies	on	Diboron/Cu	Catalysis
CuCl/KOAc: Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982.
CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821.
+
cat. CuX
PR3
DMI, rt
H3O+
O
O
B
B B
O
OO
O
O
O
87%
■	First	Cu-Catalyzed	Formal	Nucleophilic	Borylation
Early	Studies	on	Diboron/Cu	Catalysis
CuCl/KOAc: Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982.
CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821.
+
cat. CuX
PR3
DMI, rt
H3O+
O
O
B
B B
O
OO
O
O
O
87%
■	First	Cu-Catalyzed	Formal	Nucleophilic	Borylation
Cu
X
B
B
Cu B
L
L
✔	Boryl-Copper	Intermediate	
							Boron	Nucleophilicity

							Ligand	Controlled	Selectivity
Early	Studies	on	Diboron/Cu	Catalysis
Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314, 113.
NN
B
Br
iPr
iPr iPr
iPr
NN
B
Li
iPr
iPr iPr
iPr
Li, naphthalene
THF
■	Generation	of	”Boryl-Anion”	was	dif]icult.
CuCl/KOAc: Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982.
CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821.
+
cat. CuX
PR3
DMI, rt
H3O+
O
O
B
B B
O
OO
O
O
O
87%
■	First	Cu-Catalyzed	Formal	Nucleophilic	Borylation
Cu
X
B
B
Cu B
L
L
✔	Boryl-Copper	Intermediate	
							Boron	Nucleophilicity

							Ligand	Controlled	Selectivity
Early	Studies	on	Diboron/Cu	Catalysis
CuCl/KOAc: Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982.
CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821.
+
cat. CuX
PR3
DMI, rt
H3O+
O
O
B
B B
O
OO
O
O
O
87%
■	First	Cu-Catalyzed	Formal	Nucleophilic	Borylation
Cu
X
B
B
Cu B
L
L
✔	Boryl-Copper	Intermediate	
							Boron	Nucleophilicity

							Ligand	Controlled	Selectivity	
R M X B R B
Fornmal	Nucleophilic	borylation
▶ ▶	Mild	reaction	conditions	
B CuR X R B
Umpolung
▶	Catalytic	asymmetric	synthesis	▶
Electrophilic	borylation	
Highly	basic	conditions
Stoichiometric	reaction
M R
Xantphos/Cu shows
High reactivity
High regio- and E/Z selectivity
Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034.
Cu(O-t-Bu)
/ ligand
(5 mol %)
GC yield, %
dppf
100
37
44
Xantphos
Ligand E : Z a
97 : 399 : 1
96 : 4> 99 : < 1
97 : 3> 99 : < 1
11 62 : 38> 99 : < 1
γ : α
dppe
dppp
O
PPh2Ph2P
+
2.0 equiv.
O
B
O
O
B
O
Xantphos:
Pd(dba)2 0 57 : 43
R
OCO2Me
R
B
R = (CH2)3Ph
O O
γ
THF, rt, 3 h
B
Cu
OR
L
B
Allyboron	Synthesis:	Xantphos/Cu
S R
2.4 equiv.
Bu
B(pin)MeO2CO Bu
(pin)B B(pin)+
THF, 0 °C, 40 h
10 mol%
Cu(O-t-Bu)ーXantphos
88%, 97% ee
γ:α = >99:1, E:Z = >99:1
97% ee
Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034.
C C
R2
C
H R1
R3
OR
H
C C
B
R1
R2
H
CR3
H
C C
R2C
H R1
R3
OR
H
Cu B
L
L Cu B
■	Cu/Xantphos:	anti-SN2’	reaction
Allyboron	Synthesis:	Asymmetric	Reactions
S R
2.4 equiv.
Bu
B(pin)MeO2CO Bu
(pin)B B(pin)+
THF, 0 °C, 40 h
10 mol%
Cu(O-t-Bu)ーXantphos
88%, 97% ee
γ:α = >99:1, E:Z = >99:1
97% ee
Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034.
C C
R2
C
H R1
R3
OR
H
C C
B
R1
R2
H
CR3
H
C C
R2C
H R1
R3
OR
H
Cu B
L
L Cu B
■	Cu/Xantphos:	anti-SN2’	reaction
Allyboron	Synthesis:	Asymmetric	Reactions
■	Asymmetric	Cu-catalyzed	Allylboron	Synthesis	
Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856.
N
N P
P
t-BuMe
t-Bu Me
(R,R)-QuinoxP*
R OCO2Me B B
O
OO
O
+
5 mol% Cu(O-t-Bu)
/ chiral ligand
THF, 0 °C
20 h R
B
OO
78%, 96% ee
R = PhCH2CH2
Early	Studies	on	Diboron/Cu	Catalysis
Mun, S.; Lee, J. E.; Yun, J. Org Lett. 2006, 8, 4887, Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145.
R
EWG B B
O
OO
O
+
cat. CuCl/Na(O-t-Bu)
chiral ligand, ROH
R
EWG
B
OO Fe PPh2
PCy2
(R)-(S)-Josiphos
*
■	First	Enantioselective	Reactions	by	Yun
Early	Studies	on	Diboron/Cu	Catalysis
Mun, S.; Lee, J. E.; Yun, J. Org Lett. 2006, 8, 4887, Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145.
R
EWG B B
O
OO
O
+
cat. CuCl/Na(O-t-Bu)
chiral ligand, ROH
R
EWG
B
OO Fe PPh2
PCy2
(R)-(S)-Josiphos
*
■	First	Enantioselective	Reactions	by	Yun
■	First	Isolation	of	Borylcopper	Species
David S. Laitar, Peter Mu¨ller, and Joseph P. Sadighi*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts AVenue,
Cambridge Massachusetts 02139
Received September 28, 2005; E-mail: jsadighi@mit.edu
Nature uses carbon dioxide, on a massive scale, as a one-carbon
building block for the synthesis of organic molecules.1 An important
pathway for the consumption of CO2 is its reduction to CO by the
enzyme acetyl-CoA synthase/CO dehydrogenase (ACS-CODH).2
Due to the large energy input required to generate it from CO2,
CO is produced industrially from fossil fuels.3 Even with strong
reducing agents, however, overcoming the OdCO bond enthalpy
of 532 kJ/mol4 often presents kinetic difficulties.5,6
Certain metal complexes abstract oxygen readily from CO2,7 but
the resulting metal-oxygen bonds are necessarily strong, and
catalytic turnover is rare.8 Photolytic9 and photocatalytic10 ap-
proaches show promise, and synthetic electrocatalysts have achieved
impressive yields and selectivities in the reduction of CO2 to CO.11
However, the chemical processes involved are obscure, making it
difficult to improve these systems by design, and CODH remains
notably the most efficient catalyst for this reduction.12 We report
herein that a new carbene-supported copper(I) boryl complex
abstracts oxygen from CO2 and undergoes subsequent turnover
readily. Using an easily handled diboron reagent as the net oxygen
acceptor,13 these key steps permit unprecedented turnover numbers
and frequencies for the chemical reduction of CO2 to CO in a
homogeneous system.
While exploring the chemistry of organocopper(I) complexes
supported by N-heterocyclic carbene (NHC) ligands,14 we sought
to synthesize a copper(I) boryl complex and explore its reactivity
toward CO2. Metal boryls often display distinctive reactivity,15
catalyzing a number of remarkable transformations.16 Although
C-B bond-forming reactions have been achieved using diboron
compounds with catalytic17a or stoichiometric17b copper(I), well-
defined copper boryl complexes have not been described.
The known (IPr)Cu(Ot-Bu) reacts rapidly with bis(pinacolato)-
diboron (pinB-Bpin), forming a product identified as (IPr)Cu(Bpin)
(1, Scheme 1) by 1H and 11B NMR spectroscopy. Diffusion of
hexane vapor into a concentrated solution of 1 in toluene, carried
out at -40 °C to avoid thermal decomposition,18 produces single
crystals suitable for analysis by X-ray diffraction. The resulting
structure (Figure 1a) shows a monomeric, nearly linear coordination
geometry with a Cu-B distance of 2.002(3) Å.
Complex 1 reacts with CO2 under atmospheric pressure in C6D6
conversion of 1 to 2. The sole labeled products visible in the
NMR spectrum (Figure 2b) are 13CO (δ 184 ppm) and an ad
(δ 164 ppm) formed reversibly from CO and borate 2.20
Treatment of 2 in C6D6 solution with pinB-Bpin smo
regenerates 1, forming the stable byproduct pinB-O-Bpin,21
a reaction time of about 20 min. The success of this turnover
closes a catalytic cycle for the deoxygenation of CO2. Additio
a THF solution of (IPr)Cu(Ot-Bu) to a 100-fold excess of pi
Scheme 1 a
a Isolated yield, contains some 2 (5 mol % by 11B NMR); (b) react
complete in <10 min at ambient temp; (c) L ) IPr or ICy.
Figure 1. X-ray crystal structures, shown as 50% thermal ellipsoid
boryl complex 1‚C6H14 (a), and borate 2‚C7H8 (b). Hydrogen atoms (c
and solvent are omitted for clarity. Selected bond lengths (Å) and a
(deg), (a): Cu(1)-B(1) 2.002(3), Cu(1)-C(1) 1.937(2), C(1)-N(1) 1.3
C(1)-N(2) 1.363(3), C(1)-Cu(1)-B(1) 168.07(16), N(1)-C(1)-
102.97(18); (b): Cu(1)-O(1) 1.8096(16), O(1)-B(1) 1.306(3), Cu
C(1) 1.857(2), C(1)-N(1) 1.355(3), C(1)-N(2) 1.364(3), C(1)-Cu
O(1) 174.85(10), B(1)-O(1)-Cu(1) 133.61(16), N(1)-C(1)-N(2) 103.0
NN
Cu
tBuO
iPr
iPr
iPr
iPr
NN
Cu
iPr
iPr
iPr
iPr
B(pin)
(pin)B-B(pin)
Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17197.
Early	Studies	on	Diboron/Cu	Catalysis
Mun, S.; Lee, J. E.; Yun, J. Org Lett. 2006, 8, 4887, Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145.
R
EWG B B
O
OO
O
+
cat. CuCl/Na(O-t-Bu)
chiral ligand, ROH
R
EWG
B
OO Fe PPh2
PCy2
(R)-(S)-Josiphos
*
■	First	Enantioselective	Reactions	by	Yun
■	Chiral	NHC	Ligand
Lee, Y.; Hoveyda, A. J. Am. Chem. Soc. 2009, 131, 3160.
N N
Ph Ph
i-Pr
i-Pr
i-Pr
SO3
–
Ph (pin)B B(pin)+
cat.CuCl/K(O-t-Bu)
THF, –50°C, 48 h, MeOH, 2.0 equiv
+
Ph
B(pin)
80%, 98% ee
■	First	Isolation	of	Borylcopper	Species
David S. Laitar, Peter Mu¨ller, and Joseph P. Sadighi*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts AVenue,
Cambridge Massachusetts 02139
Received September 28, 2005; E-mail: jsadighi@mit.edu
Nature uses carbon dioxide, on a massive scale, as a one-carbon
building block for the synthesis of organic molecules.1 An important
pathway for the consumption of CO2 is its reduction to CO by the
enzyme acetyl-CoA synthase/CO dehydrogenase (ACS-CODH).2
Due to the large energy input required to generate it from CO2,
CO is produced industrially from fossil fuels.3 Even with strong
reducing agents, however, overcoming the OdCO bond enthalpy
of 532 kJ/mol4 often presents kinetic difficulties.5,6
Certain metal complexes abstract oxygen readily from CO2,7 but
the resulting metal-oxygen bonds are necessarily strong, and
catalytic turnover is rare.8 Photolytic9 and photocatalytic10 ap-
proaches show promise, and synthetic electrocatalysts have achieved
impressive yields and selectivities in the reduction of CO2 to CO.11
However, the chemical processes involved are obscure, making it
difficult to improve these systems by design, and CODH remains
notably the most efficient catalyst for this reduction.12 We report
herein that a new carbene-supported copper(I) boryl complex
abstracts oxygen from CO2 and undergoes subsequent turnover
readily. Using an easily handled diboron reagent as the net oxygen
acceptor,13 these key steps permit unprecedented turnover numbers
and frequencies for the chemical reduction of CO2 to CO in a
homogeneous system.
While exploring the chemistry of organocopper(I) complexes
supported by N-heterocyclic carbene (NHC) ligands,14 we sought
to synthesize a copper(I) boryl complex and explore its reactivity
toward CO2. Metal boryls often display distinctive reactivity,15
catalyzing a number of remarkable transformations.16 Although
C-B bond-forming reactions have been achieved using diboron
compounds with catalytic17a or stoichiometric17b copper(I), well-
defined copper boryl complexes have not been described.
The known (IPr)Cu(Ot-Bu) reacts rapidly with bis(pinacolato)-
diboron (pinB-Bpin), forming a product identified as (IPr)Cu(Bpin)
(1, Scheme 1) by 1H and 11B NMR spectroscopy. Diffusion of
hexane vapor into a concentrated solution of 1 in toluene, carried
out at -40 °C to avoid thermal decomposition,18 produces single
crystals suitable for analysis by X-ray diffraction. The resulting
structure (Figure 1a) shows a monomeric, nearly linear coordination
geometry with a Cu-B distance of 2.002(3) Å.
Complex 1 reacts with CO2 under atmospheric pressure in C6D6
conversion of 1 to 2. The sole labeled products visible in the
NMR spectrum (Figure 2b) are 13CO (δ 184 ppm) and an ad
(δ 164 ppm) formed reversibly from CO and borate 2.20
Treatment of 2 in C6D6 solution with pinB-Bpin smo
regenerates 1, forming the stable byproduct pinB-O-Bpin,21
a reaction time of about 20 min. The success of this turnover
closes a catalytic cycle for the deoxygenation of CO2. Additio
a THF solution of (IPr)Cu(Ot-Bu) to a 100-fold excess of pi
Scheme 1 a
a Isolated yield, contains some 2 (5 mol % by 11B NMR); (b) react
complete in <10 min at ambient temp; (c) L ) IPr or ICy.
Figure 1. X-ray crystal structures, shown as 50% thermal ellipsoid
boryl complex 1‚C6H14 (a), and borate 2‚C7H8 (b). Hydrogen atoms (c
and solvent are omitted for clarity. Selected bond lengths (Å) and a
(deg), (a): Cu(1)-B(1) 2.002(3), Cu(1)-C(1) 1.937(2), C(1)-N(1) 1.3
C(1)-N(2) 1.363(3), C(1)-Cu(1)-B(1) 168.07(16), N(1)-C(1)-
102.97(18); (b): Cu(1)-O(1) 1.8096(16), O(1)-B(1) 1.306(3), Cu
C(1) 1.857(2), C(1)-N(1) 1.355(3), C(1)-N(2) 1.364(3), C(1)-Cu
O(1) 174.85(10), B(1)-O(1)-Cu(1) 133.61(16), N(1)-C(1)-N(2) 103.0
NN
Cu
tBuO
iPr
iPr
iPr
iPr
NN
Cu
iPr
iPr
iPr
iPr
B(pin)
(pin)B-B(pin)
Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17197.
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X X X
X
X
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X X X
X
X
Ito, 2000–
Miyaura, 2000–
Yun, 2006–
Marder, 2007–
Molander, 2008–
Kanai, 2009–
Hoveyda, 2009–
Santos, 2010–
McQuade, 2010–
Cordova, 2011–
Hall, 2010–
Carretero, 2011–
Fernandez, 2011–
Lam, 2012–
Kobayashi, 2012–
Tsuji, 2012–
de Vries, 2012–
Ma, 2010–
Zhu, 2013–
Caser, 2013–
Chun, 2013–
Yoshida, 2014–
Xiao and Fu, 2015–
Feringa, 2015–
Quiling, 2015–……
> 180 publications
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X X X
X
Ito, 2000–
Miyaura, 2000–
Yun, 2006–
Marder, 2007–
Molander, 2008–
Kanai, 2009–
Hoveyda, 2009–
Santos, 2010–
McQuade, 2010–
Cordova, 2011–
Hall, 2010–
Carretero, 2011–
Fernandez, 2011–
Lam, 2012–
Kobayashi, 2012–
Tsuji, 2012–
de Vries, 2012–
Ma, 2010–
Zhu, 2013–
Caser, 2013–
Chun, 2013–
Yoshida, 2014–
Xiao and Fu, 2015–
Feringa, 2015–
Quiling, 2015–……
> 180 publications
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X X X
Ito, 2000–
Miyaura, 2000–
Yun, 2006–
Marder, 2007–
Molander, 2008–
Kanai, 2009–
Hoveyda, 2009–
Santos, 2010–
McQuade, 2010–
Cordova, 2011–
Hall, 2010–
Carretero, 2011–
Fernandez, 2011–
Lam, 2012–
Kobayashi, 2012–
Tsuji, 2012–
de Vries, 2012–
Ma, 2010–
Zhu, 2013–
Caser, 2013–
Chun, 2013–
Yoshida, 2014–
Xiao and Fu, 2015–
Feringa, 2015–
Quiling, 2015–……
> 180 publications
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X X
Ito, 2000–
Miyaura, 2000–
Yun, 2006–
Marder, 2007–
Molander, 2008–
Kanai, 2009–
Hoveyda, 2009–
Santos, 2010–
McQuade, 2010–
Cordova, 2011–
Hall, 2010–
Carretero, 2011–
Fernandez, 2011–
Lam, 2012–
Kobayashi, 2012–
Tsuji, 2012–
de Vries, 2012–
Ma, 2010–
Zhu, 2013–
Caser, 2013–
Chun, 2013–
Yoshida, 2014–
Xiao and Fu, 2015–
Feringa, 2015–
Quiling, 2015–……
> 180 publications
Allylic	Substitutions,	Meso-	and	Propargyls
Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560.
RO
(pin)B
diboron
Cu(O-t-Bu)/
(R,R)-QuinoxP*
(5.0 mol %)
base
H2O
iPrOCO2
H
Ph
OH
PhCHO (1.0 eq.)
0 °C, 18 h
rt, 2 hRO- = i-PrOCO2 87%, 97% ee
dr >99:1
ORRO
Allylic	Substitutions,	Meso-	and	Propargyls
Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560.
RO
(pin)B
diboron
Cu(O-t-Bu)/
(R,R)-QuinoxP*
(5.0 mol %)
base
H2O
iPrOCO2
H
Ph
OH
PhCHO (1.0 eq.)
0 °C, 18 h
rt, 2 hRO- = i-PrOCO2 87%, 97% ee
dr >99:1
ORRO
Allylic	Substitutions,	Meso-	and	Propargyls
OTIPS
N
N
N
N
NH2
Cl
Anti	Virus	Drug	Precursor
H
OTBS
CO2Me
OH
H
97% ee, >98% ds
Four	Chiral	Centers
Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560.
RO
(pin)B
diboron
Cu(O-t-Bu)/
(R,R)-QuinoxP*
(5.0 mol %)
base
H2O
iPrOCO2
H
Ph
OH
PhCHO (1.0 eq.)
0 °C, 18 h
rt, 2 hRO- = i-PrOCO2 87%, 97% ee
dr >99:1
ORRO
CCC
Bu
B(pin)
Me
H
74%, 97% ee
10 mol %
Cu(O-t-Bu)/Xantphos
THF, 50 °C, 5 h
97% ee
Me
C
C C Bu
OCO2Me
H
(S)
(S)
2.0 equiv.
O
B
O
O
B
O
+
■	Allenylboron	compounds	with	high	ee.
Ito, H.; Sasaki, Y.; Sawamura, M., J. Am. Chem. Soc. 2008, 130, 15774.
Allylic	Substitutions,	Meso-	and	Propargyls
OTIPS
N
N
N
N
NH2
Cl
Anti	Virus	Drug	Precursor
H
OTBS
CO2Me
OH
H
97% ee, >98% ds
Four	Chiral	Centers
Ito, H; Kunii, S; Sawamura, M. Nature Chem. 2010, 2, 972.
Cu(O-t-Bu)
(R,R)-QuinoxP*
(5.0 mol %)
(pin)B B(pin)
(1.5 equiv)
Et2O, 24 h
OCH3
Ph
racemic 98% yield
97% ee
Ph
B
O
O
Direct	Enantio-Convergent	Reaction
Ito, H; Kunii, S; Sawamura, M. Nature Chem. 2010, 2, 972.
Cu(O-t-Bu)
(R,R)-QuinoxP*
(5.0 mol %)
(pin)B B(pin)
(1.5 equiv)
Et2O, 24 h
OCH3
Ph
racemic 98% yield
97% ee
Ph
B
O
O
Direct	Enantio-Convergent	Reaction
OCH3
Ph
CH3O
Ph
OCH3
Ph
CH3O Ph
racemic
Cu
B
L*
Cu
B
L*
Ph
B
O
O
anti-SN2'
syn-SN2'
■	One	catalyst	converge	two	substrate	enantiomers	into	one	product				

				enantiomer.
Ito, H; Kunii, S; Sawamura, M. Nature Chem. 2010, 2, 972.
Cu(O-t-Bu)
(R,R)-QuinoxP*
(5.0 mol %)
(pin)B B(pin)
(1.5 equiv)
Et2O, 24 h
OCH3
Ph
racemic 98% yield
97% ee
Ph
B
O
O
PhCHO
Ph
B
C
O
H
Ph Ph
HO
Ph
85% yield, 97% ee
Direct	Enantio-Convergent	Reaction
OCH3
Ph
CH3O
Ph
OCH3
Ph
CH3O Ph
racemic
Cu
B
L*
Cu
B
L*
Ph
B
O
O
anti-SN2'
syn-SN2'
■	One	catalyst	converge	two	substrate	enantiomers	into	one	product				

				enantiomer.
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X X
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X
Cu(I) cat.
(pin)B–B(pin)
Cu BL
OR
RO
RE
RE
RO
RE
Cu B
L
B(pin)
RE
RE = SiR3, Ar
β LCuOR+
Asymmetric	Borylative	Cyclizations
Cu(I) cat.
(pin)B–B(pin)
Cu BL
OR
RO
RE
RE
RO
RE
Cu B
L
B(pin)
RE
RE = SiR3, Ar
β LCuOR+
(pin)B B(pin)
Cu(O-t-Bu) / ligand
R X
THF, 30 °C
B(pin)
R
R = R3Si, Ar, HetAr
B(pin)
N
Boc
B(pin)
S
B(pin)
70%, 92% ee90%, 92% ee 70%, 92% ee
X = OCO2R, OPO(OR)2
B(pin)
Me3Si
94%, 94% ee
B(pin)
BnMe2Si
83%, 94% ee
Ito, H.; Kosaka, Y.; Nonoyama, K.; Sasaki, Y.; Sawamura, M. Angew. Chem., Int. Ed. 2008, 47, 7424.
Zhong, C.; Kunii, S.; Kosaka, Y.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 11440.
Asymmetric	Borylative	Cyclizations
a The endo-cyclization product was detected (7%).
(pin)B
4 h, 86%
(pin)B
Me
Me
4 h, 90%
(pin)B
4 h, 84%
(pin)B
6 h, 87%
d.r. = 1.1:1
Si(pin)B
Me
Me
4 h, 74%a
5 mol % CuCl
5 mol % Xantphos
(pin)B-B(pin) (1.2 equiv)
K(O-t-Bu) (1.2 equiv)
THF, 30 °C
n
C
C
Cu
(pin)B
– CuBr
C n
n = 1−3 n = 1−3
C
C
Br
Br C
(pin)B
L
complex mixtureb
Br
(pin)B
4 h, 95%
d.r. = 1.4:1
(pin)B
Me
Me
4 h, 83%
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635.
b The six-membered ring product was detected (4%).
Borylative	Cyclization	of	Terminal	Alkenes
Spiro	Compounds
B
B
88%
O
O
O
O
O
B
O
B
O
O
(1.2 equiv)
Br
Br
+
10 mol % CuCl
10 mol % Xantphos
K(O-t-Bu) (2.0 equiv)
THF, 30 °C, 4 h
High	exo/endo	selectivity
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635.
Spiro	Compounds
5 mol % CuCl / Xantphos
(pin)B-B(pin) (1.2 equiv)
t-BuOK (1.2 equiv)
THF, 30 °C, 4 h, 82%
B(pin)
N
S
O O
N
S
O O
Br
Borylative	cyclization
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635.
Short	Synthesis	of	Drug	Candidate
5 mol % CuCl / Xantphos
(pin)B-B(pin) (1.2 equiv)
t-BuOK (1.2 equiv)
THF, 30 °C, 4 h, 82%
B(pin)
N
S
O O
N
S
O O
Br
Borylative	cyclization
1. NaBO3/4H2O
THF/H2O, rt, 1 h
2. Jones Reagent
acetone, 0 °C, 1 h
64% (2 steps)
C-O	Bond	formation
Condensation
Histamine	H3	Receptor	Ligand
O
N
S
O O
HO
O
N
S
O O
N
N
NHN
HBTU, iPr2NEt
DMF, rt, 2 h, 91%
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635.
Short	Synthesis	of	Drug	Candidate
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X
Asymmteric	Monoboryaltion
v
■	First	Asymmetric	1,2-Monoborylation	of	1,3-Dienes
Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
(pin)B (pin)B+
THF, MeOH (2.0 equiv)
–40°C, 24.5h
Cu(O-t-Bu)–(R,R)-Me-DuPhos
(5.0 mol %)
(pin)B B(pin) (1.5 equiv)
96%, 96% ee, dr >99:1
H
Asymmteric	Monoboryaltion
v
■	First	Asymmetric	1,2-Monoborylation	of	1,3-Dienes
Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
(pin)B (pin)B+
THF, MeOH (2.0 equiv)
–40°C, 24.5h
Cu(O-t-Bu)–(R,R)-Me-DuPhos
(5.0 mol %)
(pin)B B(pin) (1.5 equiv)
96%, 96% ee, dr >99:1
H
Asymmteric	Monoboryaltion
(pin)B (pin)B
96 % ee
chiral Cu catalyst
B2(pin)2(1.5 equiv)
THF, t-BuOH (5.0 equiv)
room temp.77% (dr 92:8)
chiral Cu catalyst
B2(pin)2(1.5 equiv)
THF, MeOH (5.0 equiv)
–40°C 87% (dr 7:93)
v
■	First	Asymmetric	1,2-Monoborylation	of	1,3-Dienes
Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
(pin)B (pin)B+
THF, MeOH (2.0 equiv)
–40°C, 24.5h
Cu(O-t-Bu)–(R,R)-Me-DuPhos
(5.0 mol %)
(pin)B B(pin) (1.5 equiv)
96%, 96% ee, dr >99:1
H
v Me
Me
BuB(pin) B(pin)
BuMe
Bu
cat. Cu(OtBu)
/diphosphine
(pin)B B(pin)
THF, MeOH
cat. Cu(OtBu)
/PPh3
(pin)B B(pin)
THF, MeOHup to 84% ee
■	Enantio-	and	Regioselective	Borylation	of	1,3-Enynes
Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem., Int. Edit. 2011, 50, 2778.
Asymmteric	Monoboryaltion
(pin)B (pin)B
96 % ee
chiral Cu catalyst
B2(pin)2(1.5 equiv)
THF, t-BuOH (5.0 equiv)
room temp.77% (dr 92:8)
chiral Cu catalyst
B2(pin)2(1.5 equiv)
THF, MeOH (5.0 equiv)
–40°C 87% (dr 7:93)
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X X
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X
Boryl	Substitution	of	C(sp3)−X
Br +
CuCl / Xantphos (3 mol %)
K(O-t-Bu) (1.0 equiv)
THF, rt
B(pin)Alkyl AlkylB B
O
OO
O
1.2 equiv
B(pin)
B(pin)
4 h, 85% 5 h, 91%
B(pin)
5 h, 90%
B(pin)
44 h, 0%
B(pin)
48 h, 17%
B(pin)
5 h, 51%
B(pin)
B(pin)
24 h, 62%a
B(pin)B(pin)
30 h, 68%a
aReaction was carried out at 40°C with 15 mol % of catalyst, 2.2 equiv of B2pin2 and 2.0 equiv
of base.
B(pin)
5 h, 84%
B(pin)
4 h, 92%
Alkyl X Alkyl B
Cu cat.
B B
O
OO
O
+
X = Cl, Br, I
O
O
base
Alkyl MgX or Li
XB(pin)
CuCl / Xantphos: Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890. 

CuI / PPh3: Yang, C.-T.; Steel, P. G.; Marder, T. B.; Liu, L. et al. Angew. Chem., Int. Ed. 2012, 51, 528.
K. Kubota
Boryl	Substitution	of	C(sp3)−X
Br +
CuCl / Xantphos (3 mol %)
K(O-t-Bu) (1.0 equiv)
THF, rt
B(pin)Alkyl AlkylB B
O
OO
O
1.2 equiv
B(pin)
B(pin)
4 h, 85% 5 h, 91%
B(pin)
5 h, 90%
B(pin)
44 h, 0%
B(pin)
48 h, 17%
B(pin)
5 h, 51%
B(pin)
B(pin)
24 h, 62%a
B(pin)B(pin)
30 h, 68%a
aReaction was carried out at 40°C with 15 mol % of catalyst, 2.2 equiv of B2pin2 and 2.0 equiv
of base.
B(pin)
5 h, 84%
B(pin)
4 h, 92%
Alkyl X Alkyl B
Cu cat.
B B
O
OO
O
+
X = Cl, Br, I
O
O
base
Alkyl MgX or Li
XB(pin)
CuCl / Xantphos: Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890. 

CuI / PPh3: Yang, C.-T.; Steel, P. G.; Marder, T. B.; Liu, L. et al. Angew. Chem., Int. Ed. 2012, 51, 528.
Ni catalyst: Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693.
Pd catalyst: Joshi-Pangu, A.; Ma, X.; Diane, M.; Iqbal, S.; Kribs, R. J.; Huang, R.;
Wang, C.-Y.; Biscoe, M. R. J. Org. Chem. 2012, 77, 6629.
Pd, Ni catalyst: Yi, J.; Liu, J. H.; Liang, J.; Dai, J. J.; Yang, C.-T.; Fu, Y.; Liu, L. 

Adv. Synth. Catal. 2012, 354, 1685.
Fe catalyst: Atack, T. C.; Lecker, R. M.; Cook, S. P. J. Am. Chem. Soc. 2014.
Zn catalyst: Bose, S. K.; Fucke, K.; Liu, L.; Steel, P. G.; Marder, T. B.
Angew. Chem., Int. Edit. 2014, 53, 1799.
◼	Very	Simple	Reaction,	and	Competitive!
K. Kubota
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
X
Cu B
O
O
L
C C
C C
C C
Cu B
or
C C
H B
C C
B
C C
B
X
Cu
C C
BCu
X
C C
B
n
Cu ORL
(pin)B B(pin)
C C
E B
H+
or
E
R X
Ar X
or
R B
O
O
O
C
R'R
N
C
R'R
R''
or
C
R'R
OHB
C
R'R
NHR"B
Catalysis	Design
allylic

substitution
borylative
cyclization
alkyl-, aryl-
substitution
aldehyde, imine
addition
■
Latitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128, 11036.
O
H
1.0 mol % ICyCu(O-t-Bu)
(pin)B−B(pin), toluene
86%
O
B(pin)
B(pin)
Catalytic	diboration
(pin)B−B(pin)
MeOH, toluene
O
H
1.5 mol %
ICyCu(O-t-Bu) OH
B(pin)
crude product
KHF2
MeOH/H2O
OH
BF3K
81%
Molander, G. A.; Wisnieski, S. R. J. Am. Chem. Soc. 2012, 134, 16856.
■ Catalytic	monoborylation
N N
ICy
Copper(I)-Catalyzed	Carbonyl	Borylation
Enantioselective	borylation
L*M
B C
R
H
B OM
Enantioenriched	
α-alkoxyalkylboronates
O
C
R
H
Boryl	nucleophile
Enantioselective	nucleophilic	borylation	of	a	C=O	double	bond	
has	not	ever	been	achieved.
■
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
Enantioselective	Borylation	of	Aldehydes
R
O
B(pin)
B(pin)
R
OH
BF3K
Low	stability Low	solubility
Sadighi, J. Am. Chem. Soc. 2006 Molander, J. Am. Chem. Soc. 2012
R
O
H
L*CuCl
K(O-t-Bu)
THF
(pin)B−B(pin)
R H
BHO O
O
unstable
R H
BPGO O
Oprotection
Our	approach	for	isolation
High	stability			
High	solubility
■ Not	suitable	for	HPLC	analysis	to	determine	ee	values
✓
cf. Moore, C. M.; Medina, C. R.; Cannameia, P. C.; Mclntosh, M. L.; Ferber, C. J.; Roering, A. J.;
Clark, T. B. Org. Lett. 2014, 16, 6056.
alcohol
Protection	for	HPLC	Analysis
H
B(pin)BnO
Ph H
B(pin)MeO
Ph H
B(pin)O
Ph
Ph
O
H
B(pin)O
Ph
Me2N
O
H
B(pin)Me3SiO
Ph
BnBr, NaH
26%
Me3OBF4
28%
(PhCO)2O, DMAP
20%
Me2NCOCl, pyridine
complex mixture
Me3SiCl, imidazole
64%
Ph H
O
CuCl (2 mol %)
ICy⋅HCl (2 mol %)
(pin)B−B(pin) (1.0 equiv)
K(O-t-Bu) (10 mol %)
MeOH (2.0 equiv), THF
R H
B(pin)HO
not isolated
protection
H
B(pin)PGO
isolated yield (%)
Ph
then silica gel short column
Protection	for	HPLC	Analysis	
K. Kubota
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
Ph
O
1. CuCl / L* (5 mol %)
K(O-t-Bu) (10 mol %)
MeOH (2.0 equiv)
THF, 30 °C, 6 h
2. BnMe2SiCl, imidazole
CH2Cl2, 3 h
Ph HH
BnMe2SiO B
(S)
NMR yield (%)
B B
O
O O
O
+
1.0 equiv
O
O
Chiral	Ligand	Screening	
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
Ph
O
1. CuCl / L* (5 mol %)
K(O-t-Bu) (10 mol %)
MeOH (2.0 equiv)
THF, 30 °C, 6 h
2. BnMe2SiCl, imidazole
CH2Cl2, 3 h
Ph HH
BnMe2SiO B
(S)
NMR yield (%)
B B
O
O O
O
+
1.0 equiv
O
O
O
O
O
O
P
P
tBu
OMe
tBu
tBu
OMe
tBu
2
2
(R)-DTBM-SEGPHOS
72%, 96% ee
O
O
O
O
P
P
Me
Me
Me
Me
2
2
(R)-DM-SEGPHOS
71%, 32% ee
(R)-SEGPHOS
74%, 24% ee
O
O
O
O
P
P
2
2
larger	steric	hinderance	
higher	enantioselectivity	
Chiral	Ligand	Screening	
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
coordination
σ-bond	
metathesis
protonation
enantioselective	
insertion	
P
P
= (R)-DTBM-SEGPHOS
DFT: Kubota, K.; Jin, M.; Ito, H. Organometallics, under revision.
cf. Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. J. Am. Chem. Soc. 2008, 130, 5586.
Cu B(pin)
P
P
Cu
B(pin)
P
P
O C
H
R
O C
Cu
R
B(pin)
H
P
P
Cu OR
P
P R = OMe or
O-t-Bu
O C
H
R
(pin)B−B(pin)
MeOH
(pin)B−OR
A
B
C
DO C
R
B(pin)
H
H
Points	not	elucidated	
1.	Mechanism	of	enantioselection	
2.	Effect	of	proton	source	
Proposed	Reaction	Mechanism	
M. Jing
K. Kubota
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
Cu
B
P P
O
H
H
H
Cu
B
P P
O
H
H
H
Ph Ph
Ph Ph
Ph
Ph Ph
Ph
Si-face	TS	(favored) Re-face	TS	(disfavored)
0	kcal/mol +1.04	kcal/mol
<
B3PW91/cc-PVDZ	,	Relative	G	value	(kcal/mol)	at	298	K,	1.0	atm,	gas	phase.		
Observed	result	
24%	ee
DFT: Kubota, K.; Jin, M.; Ito, H. Organometallics, under revision.
Enantioselection	Models	[(R)-SEGPHOS]
Cu
B
P P
O
H
H
H
Cu
B
P P
O
H
H
H
Ar
Ar
Ar Ar
Ar
Ar Ar
Ar
Si-face	TS	(favored) Re-face	TS	(disfavored)
0	kcal/mol +1.97	kcal/mol
<
observed	result	
96%	ee
Models	for	[(R)-DTBM-SEGPHOS]
DFT: Kubota, K.; Jin, M.; Ito, H. Organometallics, under revision.
B3PW91/cc-PVDZ	,	Relative	G	value	(kcal/mol)	at	298	K,	1.0	atm,	gas	phase.
Cu
B
P P
O
H
H
H
Cu
B
P P
O
H
H
H
Ar
Ar
Ar Ar
Ar
Ar Ar
Ar
Si-face	TS	(favored) Re-face	TS	(disfavored)
0	kcal/mol +1.97	kcal/mol
<
observed	result	
96%	ee
Models	for	[(R)-DTBM-SEGPHOS]
DFT: Kubota, K.; Jin, M.; Ito, H. Organometallics, under revision.
B3PW91/cc-PVDZ	,	Relative	G	value	(kcal/mol)	at	298	K,	1.0	atm,	gas	phase.
R
O
1. 5 mol % CuCl/
(R)-DTBM-SEGPHOS
K(O-t-Bu) (10 mol %)
MeOH (2.0 equiv)
THF, 30 °C, 6 h
2. R3SiCl, imidazole
CH2Cl2, 3 h
H
B B
O
O O
O
+
1.0 equiv
R H
R3SiO B
(S)
isolated yield (%)
O
O
B(pin)Me3SiO
H
B(pin)Me3SiO
H
B(pin)Me3SiO
H
51%, 96% ee 61%, 95% ee 84%, 95% ee 61%, 96% ee
B(pin)HO
H
B(pin)BnMe2SiO
H
N
B(pin)Me3SiO
H
N
Boc Ts
81%, 95% ee 52%, 91% ee
B(pin)BnMe2SiO
H
69%, 90% ee
BzO
B(pin)BnMe2SiO
H
69%, 95% ee
BnO
Borylation	of	Various	Aldehydes	
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
H
O
H
B(pin)HO
CuCl / L* (5 mol %)
(pin)B−B(pin) (1.0 equiv)
K(O-t-Bu) (10 mol %)
MeOH (2.0 equiv)
THF (0.5 M), 30 °C, 6 h
Ph2MeSiCl
imidazole
CH2Cl2, 3 h
>99% conversion
L* = (R)-DTBM-SEGPHOS
H
B(pin)Ph2MeSiO
22% yield
99% ee
H
BF3KHO
KHF2 (4.0 equiv)
MeOH/H2O, 30 min
71% yield
■ Poor	stability	of	the	product	toward	silica	gel	column
Good	isolated	yield	(71%)	by	converting	into	tri]luoroborate■
Aromatic	Aldehyde	Case:	Unstable
CuCl / ligand (5 mol %)
(pin)B−B(pin) (1.0 equiv)
K(O-t-Bu) (10 mol %)
MeOH (2.0 equiv)
solvent, 30 °C, 18 h
then Me3SiCl
imidazole, 3 h (R,S)
H
O
Me
TBSO
B(pin)
OSiMe3
Me
TBSO
(R,R)
B(pin)
OSiMe3
Me
TBSO
+
(R)
α-Stereocenter
ICy⋅HCl (2 mol %), toluene: 69%, (R,S):(R,R) = 30:70
(R)-DTBM-SEGPHOS, THF: 73%, (R,S):(R,R) = 89:11
(S)-DTBM-SEGPHOS, THF: 77%, (R,S):(R,R) = 5:>95
■ Catalyst-controlled	selectivity	over	substrate	vias
Catalyst	Controlled	Reaction
For a review of Matteson homologation chemistry: Matteson, D. S. Tetrahedron 1998, 54, 10555.
cf. Sadhu, K. M.; Matteson, D. S. Organometallics 1985, 4, 1687.
Stereospeci@ic	C(sp3)-C(sp3)	bond	formation;	
One-carbon	homologation	
Larouche-Gauthier, R.; Elfold, T. G.; Aggarval, V. K. J. Am. Chem. Soc. 2011, 133, 16794.
Ph H
B(pin)BnMe2SiO
96% ee
ClCH2Br
n-BuLi
THF
−78 °C→rt
3 h
Ph H
BnMe2SiO B(pin)
92%, 96% ee
H2O2
NaOH Ph H
HO OH
77%, 96% ee
chiral	1,2-diol
chiral	1,2-haloalcohol
Ph H
R3SiO Br
80%, 96% ee
3,5-(CF3)2C6H3Li
then NBS, −78 °C
Useful	intermediate	
chiral	β-alkoxyboron
Stereospeci]ic	Functionalization	
Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
H
(pin)B OSiMe3
95% ee
(S)
Benzofuran (1.2 equiv)
n-BuLi (1.2 equiv)
THF, −78 °C, 1 h
NBS (1.2 equiv)
−78 °C, 1 h
then TBAF, 2 hH
Li
H
52%, 95% ee
(pin)B OSiMe3
O
OH
O
(R)
Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nature. Chem. 2014, 6, 584.
Stereospeci@ic	C(sp3)-C(sp2)	bond	formation;	
Cross-coupling	with	a	heteroaromatic	compound
Aggarwal	Arylation
Chiral	NHC/copper(I)		
complex	catalyst
HO B O
O
Ph *
59%, 9% ee
HO B O
O
*Ph
62%, 9% ee
HO B O
O
*
no reaction
Unsuccessful	
substrates
O
B B
O
O O
O
+
1.0 equiv
5 mol % CuCl / L*
NNL* =
BF4
HO B O
O
*
47%, 98% ee
10 mol % K(O-t-Bu)
MeOH (2.0 equiv)
toluene/THF, rt, 4 h
Enantioselective	Borylation	of	Ketones
N
H
F
O
O
O
(−)-paroxetine N
N
N
N
N
OPh
NH2
O ibrutinib
WAY-163909
N
N
H
N
OH
(−)-preclamol
N
N
Me
H
Me
Me
O
H
N
O
Me
(−)-Physostigmine
Novel	Boron	Reagents	for	Alkaloid	Synthesis
N OH
(–)-preclamol
N
O
Ph
PhO
O zamifenacine
ibrutinib
Pyridine	and	its	Derivatives	in	Heterocycles	in	Natural	Product	Synthesis,	Majumdar,	K.	C.;	Chattopadhyay,	S.	K.,	Ed.;		
Wiley-VCH,	Weinheim,	2011,	Chap.	8,	pp.	267.
N
H
F
O
O
O
(−)-paroxetine N
N
N
N
N
OPh
NH2
O ibrutinib
WAY-163909
N
N
H
N
OH
(−)-preclamol
N
N
Me
H
Me
Me
O
H
N
O
Me
(−)-Physostigmine
Novel	Boron	Reagents	for	Alkaloid	Synthesis
N OH
(–)-preclamol
N
O
Ph
PhO
O zamifenacine
ibrutinib
Pyridine	and	its	Derivatives	in	Heterocycles	in	Natural	Product	Synthesis,	Majumdar,	K.	C.;	Chattopadhyay,	S.	K.,	Ed.;		
Wiley-VCH,	Weinheim,	2011,	Chap.	8,	pp.	267.
N-Heterocyclic borons
N
H
B
R
N
H
R1
B
R
N
H
F
O
O
O
(−)-paroxetine N
N
N
N
N
OPh
NH2
O ibrutinib
WAY-163909
N
N
H
N
OH
(−)-preclamol
N
N
Me
H
Me
Me
O
H
N
O
Me
(−)-Physostigmine
Novel	Boron	Reagents	for	Alkaloid	Synthesis
*LCu B
N
R3
R1
R2
N
R1
R2
Novel enantioselective
borylation
Abundant, cheap and
readily available
N OH
(–)-preclamol
N
O
Ph
PhO
O zamifenacine
ibrutinib
Pyridine	and	its	Derivatives	in	Heterocycles	in	Natural	Product	Synthesis,	Majumdar,	K.	C.;	Chattopadhyay,	S.	K.,	Ed.;		
Wiley-VCH,	Weinheim,	2011,	Chap.	8,	pp.	267.
N-Heterocyclic borons
N
H
B
R
N
H
R1
B
R
Hydrogenation
Electrophilic	allylic	substitution
Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 7614.
Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
Trost ligand
(S,S)-(R,R)-PhTRAP
Fe
Fe
PPh2PPh2
O
N
H
HN O
Ph2P
PPh2
2.5 mol % Pd2(dba)3CHCl3
7.5 mol % chiral ligand
9-BBN-C6H13 (1.05 equiv)
CH2Cl2, 4 °C
N
H
N
+
HO
MeO
MeO
3 equiv
92%, 85% ee
1.0 mol % [Rh(nbd)2]SbF6
1.05 mol % PhTRAP
10 mol % Cs2CO3
i-PrOH, H2 (5.0 MPa)
60 °C, 2 h
N
Ac
N
Ac
91%, 91% ee
Asymmetric	Dearomatizations
Kubota,	K.;	Hayama,	K.;	Iwamoto,	H.;	Ito,	H.	Angew.	Chem.,	Int.	Ed.	2015,	30,	8809.
The first enantioselective carbon-boron bond forming dearomatization by copper(I) catalysis✓
Direct synthesis of chiral boryl-indolines from readily available indoles✓
N
O
OMe
Cbz
+ B B
2.0 equiv
O
OO
O
10 mol % Cu(O-t-Bu) / L*
10 mol % Na(O-t-Bu)
t-BuOH (2.0 equiv)
THF, 30 °C, 20 h
N
Cbz
B(pin)
OMe
O
98%, d.r. 97:3
93% ee
P P
Me
Me
Me
Me
Me
Me
Me
Me
L* = (R,R)-xyl-BDPP
Enantioselective	Borylative	Dearomatization
Coordinationσ-Bond	
metathesis
Diastereoselective	
protonation
3,4-Addition	and	
toutomerization
Steric	
repulsion
Cu B
P
P
P
P
= (R,R)-xyl-BDPP
(pin)B−(O-t-Bu)
N
Cbz
O
OMe
Cu B
PP
N
Cbz
O
OMeB
P
P
N
Cbz
O
OMeB
H
O
H
O
Cu(O-t-Bu)
P
P
diboron
substrate
HO
disfavored
favored
Cu
Cu
P
P
A
B
C
D
E
N
Cbz
B(pin)
OMe
OH
Kubota,	K.;	Hayama,	K.;	Iwamoto,	H.;	Ito,	H.	Angew.	Chem.,	Int.	Ed.	2015,	30,	8809.
Proposed	Reaction	Mechanism
Coordinationσ-Bond	
metathesis
Diastereoselective	
protonation
3,4-Addition	and	
toutomerization
Steric	
repulsion
Cu B
P
P
P
P
= (R,R)-xyl-BDPP
(pin)B−(O-t-Bu)
N
Cbz
O
OMe
Cu B
PP
N
Cbz
O
OMeB
P
P
N
Cbz
O
OMeB
H
O
H
O
Cu(O-t-Bu)
P
P
diboron
substrate
HO
disfavored
favored
Cu
Cu
P
P
A
B
C
D
E
N
Cbz
B(pin)
OMe
OH
Kubota,	K.;	Hayama,	K.;	Iwamoto,	H.;	Ito,	H.	Angew.	Chem.,	Int.	Ed.	2015,	30,	8809.
MeOH: 94%, 94% ee
d.r. 75:25
t-BuOH: 98%, 93% ee
d.r. 97:3
Proposed	Reaction	Mechanism
10 mol % Cu(O-t-Bu)
10 mol % chiral ligand
10 mol % Na(O-t-Bu)
N
O
OMe
Cbz
N
O
OMe
Cbz
B(pin)
0.5 mmol
+
O
B
O
B
O
O
2.0 equiv
t-BuOH (2.0 equiv)
THF, 30 °C, 18−48 h
NMR yield (%)
PP
Me
Me
Me
Me
Me
Me
Me
Me PP
P
P
Me
Me
Me
Me
(R,R)-BenzP*
77%, d.r. 91:9
61% ee
(R,R)-Me-Duphos
71%, d.r. 97:3
37% ee
P
P
Me
tBu
tBu
Me
N
N P
P
Me
tBu
tBu
Me
(R,R)-3,5-xyl-BDPP
98%, d.r. 97:3
93% ee
(R,R)-BDPP
98%, d.r. 89:11
74% ee
(R,R)-QuinoxP*
93%, d.r. 90:10
27% ee
Ligand	Screening
Kubota, K.; Hayama, K. Ito, H. Angew. Chem., Int. Ed. 2015, 54, 8809.
N
Cbz
B(pin)
OMe
OF
93% yield
d.r. 97:3, 95% ee
N
Cbz
B(pin)
OMe
OCl
93% yield
d.r. 93:7, 95% ee
N
Cbz
B(pin)
OMe
OBr
96% yield
d.r. 97:3, 92% ee
N
Cbz
B(pin)
OMe
OMeO
99% yield
d.r. 97:3, 97% ee
N
Cbz
B(pin)
OMe
O
88% yield
d.r. 97:3, 93% ee
MeO N
Cbz
B(pin)
OMe
O
99% yield
d.r. 93:7, 86% ee
Br N
Cbz
B(pin)
OMe
O
82% yield
d.r. 83:17, 89% ee
N
O
OMe
Cbz
10 mol % Cu(O-t-Bu)
10 mol % (R,R)-xyl-BDPP
B2(pin)2 (2.0 equiv)
10 mol % Na(O-t-Bu)
t-BuOH (2.0 equiv)
THF, 30 °C, 4−18 h
N
Cbz
B(pin)
OMe
O
R1
R2
R1
R2
Kubota,	K.;	Hayama,	K.;	Iwamoto,	H.;	Ito,	H.	Angew.	Chem.,	Int.	Ed.	2015,	30,	8809.
Borylative	Dearomatization	of	Various	Indoles
CuCl (5 mol %)
Xantphos (5 mol %)
ClCO2Me (1.0 equiv)
K(O-t-Bu)/THF (1.0 equiv)
MeOH (2.0 equiv), rt,
N
+ B B
1.2 equiv
O
OO
O
N
MeO
O
B
O O
detected by GC-Mass
decomposed during purification
predicted structures
N
MeO
O
B
O
O+Possible intermediate
NO
MeO
Cl
O
P
P
Ph Ph
Ph Ph
CuBvia
Kubota,	K.;	Watanabe,	Y.;	Hayama,	K.;	Ito,	H.	Submitted.
Initial	Attempt	for	Chiral	Boryl-Piperidine
cat. Cu/L*
B2(pin)2
alkoxide base
alcohol
N N
RO
O
ClCO2R
hydride
source
N
RO
O
N
RO
O
B(pin)
B(pin)
N
RO
O
(pin)B
N
RO
O
B(pin)
*
*
*
*
Regioselective? Enantioselective?
No examples of selective borylation
of conjugated dienamines
ClCO2R
NaBH4 or
LiBH4
✓
✓
cat. Cu(I)/L*
B2(pin)2
alkoxide base
alcohol
Kubota,	K.;	Watanabe,	Y.;	Hayama,	K.;	Ito,	H.	Submitted.
Alternative	Strategy:	Sequencial	Method
cat. Cu/L*
B2(pin)2
alkoxide base
alcohol
N N
RO
O
ClCO2R
hydride
source
N
RO
O
N
RO
O
B(pin)
B(pin)
N
RO
O
(pin)B
N
RO
O
B(pin)
*
*
*
*
Regioselective? Enantioselective?
No examples of selective borylation
of conjugated dienamines
ClCO2R
NaBH4 or
LiBH4
✓
✓
cat. Cu(I)/L*
B2(pin)2
alkoxide base
alcohol
Kubota,	K.;	Watanabe,	Y.;	Hayama,	K.;	Ito,	H.	Submitted.
Sasaki,	Y.;	Zhong,	C.;	Sawamura,	M.;	Ito,	H.	J.	Am.	Chem.	Soc.	2010,	132,	1226.
MeOH (2.0 equiv)
THF,−20 °C, 22 h
5 mol%
Cu(O-t-Bu)/
(R,R)-Me-Duphos
90%, 95% ee
B(pin)
P
P
Me
Me
Me
Me
(R,R)-Me-Duphos
+ B B
1.5 equiv
O
OO
O
cf. Enantioselective monoborylation of carbocyclic dienes
10 mol %
Cu(O-t-Bu)/
(R,R)-Me-Duphos
MeOH (1.0 equiv)
THF, –20 °C, 22 h
90%, 95% ee
P
P
Me
Me
Me
Me
(R,R)-Me-Duphos
Alternative	Strategy:	Sequencial	Method
Pyridines	to	3-Substituted	Piperidines	
CuCl (5 mol %)
chiral ligand (5 mol %)
3 (1.2 equiv)
K(O-t-Bu) (20 mol %)
MeOH (2 equiv)
THF, temp., 2-4 h2a (R)-4a
NaBH4
ClCO2Me
MeOH
−78 °C
1 h, 71%1a
N
NO
MeO
NO
MeO
B(pin)
P
P
Me tBu
tBu Me
(R,R)-BenzP*
92%, 98% ee
N
N P
P
Me tBu
tBu Me
(R,R)-QuinoxP*
93%, 99% ee
O
O
O
O
PPh2
PPh2
(R)-SEGPHOS, <5%
P
P
Me
Me
Me
Me
(R,R)-Me-Duphos
83%, 93% ee
PPh2
PPh2
(R)-SEGPHOS, <5%
NaBH4 or
LiBH4
ClCO2R3
MeOH
−78 °C
N
R3O
O
R1
R2 5 mol % CuCl/
(R,R)-QuinoxP*
B2(pin)2 (1.2 equiv)
K(O-t-Bu) (20 mol %)
MeOH (2.0 equiv)
THF, –10 °C, 2 h
N
R3O
O
R1
R2
B(pin)
76%, 97% ee
N
BnO
O
B(pin)
N
MeO
O
B(pin)
93%, 99% ee
N
O
O
B(pin)
88%, 98% ee
N
O
O
B(pin)
90%, 97% ee
N
PhO
O
B(pin)
84%, 93% ee
N
O
O
B(pin)
91%, 97% ee
N
MeO
O
B(pin)
86%, 92% ee
N
MeO
O
B(pin)
67%, 96% ee
Me Me
N
MeO
O
B(pin)
Me
no reaction
76%, 97% ee
N
N P
P
Me tBu
tBu Me
(R,R)-QuinoxP*
93%, 99% ee 88%, 98% ee 90%, 97% ee 76%, 97% ee 84%, 93% ee
91%, 97% ee 86%, 92% ee 67%, 96% ee
Kubota,	K.;	Watanabe,	Y.;	Hayama,	K.;	Ito,	H.	Submitted.
Unprecedented	Regio-	and	Enantioselective
CO2Me
eOH
78 °C
N
MeO
O
aBH4
Ar
5 mol % CuCl/
(S)-SEGPHOS
B2(pin)2 (1.2 equiv)
K(O-t-Bu) (20 mol %)
t-BuOH (2.0 equiv)
toluene/DME
0 °C, 2 h
N
MeO
O
Ar
B(pin)
(R)-SEGPHOS
O
O
O
O
PPh2
PPh2
(R)-SEGPHOS
5 mol % CuCl/
(R)-SEGPHOS
B2(pin)2 (1.2 equiv)
K(O-t-Bu) (20 mol %)
t-BuOH (2.0 equiv)
toluene/DME/THF
(6:6:1), 0 °C, 2 h
N
MeO
O
B
O
O
Me
91%, d.r. 98:2
95% ee
N
MeO
O
B
O
O
OMe
82%, d.r. 96:4
96% ee
90%, d.r. 97:3
92% ee
N
MeO
O
B
93%, d.r. 99:1
39% ee
*(R,R)-QuinoxP*
was used.
O
O
N
MeO
O
B
O
O
F
91%, d.r. 96:4
96% ee
*(S)-SEGPHOS
was used.
Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Submitted.
Diastereo-	and	Enantioselective	Borylation
(−)-Paroxetine
Antidepressant drug
3. MsCl (1.5 equiv)
Et3N (3.0 equiv)
CH2Cl2, 0 °C→rt
1. LiCH2Cl (1.5 equiv)
−78 °C→rt, 3 h
2. NaBO3•4H2O
(4.0 equiv), rt, 1 h
N
MeO
O
B
O
O
d.r. 95:5
96% ee
F
N
MeO
O
F
OMs
77% (3 steps)
d.r. 95:5
O
O
HO
(2 equiv)
Cs2CO3 (4.0 equiv)
MeCN, 90 °C, 2 h
then Pd/C, H2, 12 h
N
MeO
O
F
O
67% (2 steps)
d.r. >95:5, 94% ee
O
O
KOH (30 equiv)
EtOH/H2O (4:1)
100 °C, 42 h
HN
F
O
61% O
O
d.r. 96:4
96% ee
77% (3 steps)
d.r. 96:4
67% (2 steps)
d.r. >95:5, 94% ee
61%
Hynes, P. S.; Stupple, P. A.; Dixon, D. J. Org. Lett. 2008, 10, 1389.
Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
KOH (30 equiv)
EtOH/H2O (4:1)
reflux, 42 h
d.r. 96:4
96% ee
77% (3 steps)
d.r. 96:4
67% (2 steps)
d.r. >95:5, 94% ee
61%
Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Submitted.
Diastereo-	and	Enantioselective	Borylation
Cu-Catalyzed	Borylation	from	Our	Group
CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821.
+
cat. CuX
PR3
DMI, rt
H3O+
O
O
B
B B
O
OO
O
O
O
87%
Cu-Catalyzed	Borylation	from	Our	Group
R
B
OO
J. Am. Chem. Soc. 2005
J. Am. Chem. Soc. 2007
B
OR
O
O
Angew. Chem., Int. Ed. 2010
BR O
O
J. Am. Chem. Soc. 2010
(rac)-
R
B
O
O
Angew. Chem., Int. Ed. 2008
J. Am. Chem. Soc. 2010
C C C
B
Bu
Me
H
O
O
J. Am. Chem. Soc. 2008
B
O
O
J. Am. Chem. Soc. 2010
B
O
O
or
B
B
O
O
O
O
J. Am. Chem. Soc. 2015
B(pin)
Org. Lett. 2012
R
B
O
O
Nature Chem. 2010
Bu
B
O
O
Angew. Chem., Int. Ed. 2011
RO
B
OO
J. Am. Chem. Soc. 2014
B
RSi
O
O
Ph
Ph
Org. Lett. 2010
B(pin)HO
H
J. Am. Chem. Soc. 2013
N
B(pin)
CO2R
Angew. Chem., Int. Ed. 2015
¥Funding¥
MEXT
PRESTO
NEXT
MMC
FCC
Dr. Tatsuo Ishiyama
Dr. Yasunori Yamamoto
Dr. Tomohiro Seki
Dr. Ikuo Sasaki
Dr. Eiji Yamamoto
Prof. Akira Hosomi
Prof. Tsuneo Imamoto
Prof. Masaya Sawamura
Prof. Tetsuya Taketsugu
Prof. Satoshi Maeda
Tomoko Ishizuka
Chika Kawakami
Yuki Kosaka
Shin-ichiro Ito
Kou Mtsuura
Kosuke Nonoyaam
Takashi Toyoda
Dr. Chongmin Zhong
Dr. Yusuke Sasaki
Takuma Okura
Shun Kunii
Koji Kubota
Taichi Ozaki
Yuta Takenouchi
Yuko Horita
Kiyotaka Izumi
Ryoto Kojima
Hiroaki Iwamoto
Satoshi Ukigai
Dr. Ryohei Uematsu
Acknowledgements

More Related Content

What's hot

BIGINELLI REACTION
BIGINELLI REACTIONBIGINELLI REACTION
BIGINELLI REACTIONJagdish Jat
 
Anthony crasto presentation of biginelli reaction
Anthony crasto presentation of biginelli reactionAnthony crasto presentation of biginelli reaction
Anthony crasto presentation of biginelli reactionAnthony Melvin Crasto Ph.D
 
Reagents and-their-important-roles-in-the-functional-group-interconcersions
Reagents and-their-important-roles-in-the-functional-group-interconcersionsReagents and-their-important-roles-in-the-functional-group-interconcersions
Reagents and-their-important-roles-in-the-functional-group-interconcersionsGrc Vikram Reddy
 
Heck cross coupling reaction
Heck cross coupling reactionHeck cross coupling reaction
Heck cross coupling reactionDrShahidRasool1
 
伊藤肇 集中講義(名古屋大学 3年生対象)
伊藤肇 集中講義(名古屋大学 3年生対象)伊藤肇 集中講義(名古屋大学 3年生対象)
伊藤肇 集中講義(名古屋大学 3年生対象)Hajime Ito
 
Mechanistic aspects of C-C cross coupling reaction
Mechanistic aspects of C-C cross coupling reactionMechanistic aspects of C-C cross coupling reaction
Mechanistic aspects of C-C cross coupling reactionRashmi Gaur
 
Seven membered heterocycles-Oxepines & thiepines
Seven membered heterocycles-Oxepines & thiepines Seven membered heterocycles-Oxepines & thiepines
Seven membered heterocycles-Oxepines & thiepines Dr. Krishna Swamy. G
 
Zimmerman traxler model
Zimmerman traxler modelZimmerman traxler model
Zimmerman traxler modelDaniel Morton
 
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptx
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptxOrganometallics and Sustainable Chemistry of Pharmaceuticals.pptx
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptxKotwalBilal1
 
C-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
C-C Cross Coupling Reactions in Organic chemistry by Anthony crastoC-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
C-C Cross Coupling Reactions in Organic chemistry by Anthony crastoAnthony Melvin Crasto Ph.D
 
Passerini reaction
Passerini reactionPasserini reaction
Passerini reactionHuma Dar
 
Coupling reactions 2
Coupling reactions 2Coupling reactions 2
Coupling reactions 2Zaid Najah
 

What's hot (20)

BIGINELLI REACTION
BIGINELLI REACTIONBIGINELLI REACTION
BIGINELLI REACTION
 
Anthony crasto presentation of biginelli reaction
Anthony crasto presentation of biginelli reactionAnthony crasto presentation of biginelli reaction
Anthony crasto presentation of biginelli reaction
 
Suzuki coupling reaction
Suzuki coupling reactionSuzuki coupling reaction
Suzuki coupling reaction
 
Reagents and-their-important-roles-in-the-functional-group-interconcersions
Reagents and-their-important-roles-in-the-functional-group-interconcersionsReagents and-their-important-roles-in-the-functional-group-interconcersions
Reagents and-their-important-roles-in-the-functional-group-interconcersions
 
Heck cross coupling reaction
Heck cross coupling reactionHeck cross coupling reaction
Heck cross coupling reaction
 
NOYORI
NOYORI NOYORI
NOYORI
 
伊藤肇 集中講義(名古屋大学 3年生対象)
伊藤肇 集中講義(名古屋大学 3年生対象)伊藤肇 集中講義(名古屋大学 3年生対象)
伊藤肇 集中講義(名古屋大学 3年生対象)
 
CHAN LAM COUPLING
CHAN LAM COUPLING CHAN LAM COUPLING
CHAN LAM COUPLING
 
Mechanistic aspects of C-C cross coupling reaction
Mechanistic aspects of C-C cross coupling reactionMechanistic aspects of C-C cross coupling reaction
Mechanistic aspects of C-C cross coupling reaction
 
Olefin metathesis
Olefin metathesisOlefin metathesis
Olefin metathesis
 
Seven membered heterocycles-Oxepines & thiepines
Seven membered heterocycles-Oxepines & thiepines Seven membered heterocycles-Oxepines & thiepines
Seven membered heterocycles-Oxepines & thiepines
 
Mcmurry reaction
Mcmurry reactionMcmurry reaction
Mcmurry reaction
 
Heck reaction
Heck reactionHeck reaction
Heck reaction
 
Organotin compound
Organotin compoundOrganotin compound
Organotin compound
 
Zimmerman traxler model
Zimmerman traxler modelZimmerman traxler model
Zimmerman traxler model
 
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptx
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptxOrganometallics and Sustainable Chemistry of Pharmaceuticals.pptx
Organometallics and Sustainable Chemistry of Pharmaceuticals.pptx
 
C-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
C-C Cross Coupling Reactions in Organic chemistry by Anthony crastoC-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
C-C Cross Coupling Reactions in Organic chemistry by Anthony crasto
 
Imortance of DIBAL-H
Imortance of DIBAL-HImortance of DIBAL-H
Imortance of DIBAL-H
 
Passerini reaction
Passerini reactionPasserini reaction
Passerini reaction
 
Coupling reactions 2
Coupling reactions 2Coupling reactions 2
Coupling reactions 2
 

Similar to Copper-Catalyzed Reactions with Diborons: From the Beginning to Recent Results

Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyPatrick Françoisse
 
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...Stephan Irle
 
Tsuji-Trost reacton
Tsuji-Trost reactonTsuji-Trost reacton
Tsuji-Trost reactonSubham Sahoo
 
Chemo, Regio, Enantioselective Haloazidation
Chemo, Regio, Enantioselective HaloazidationChemo, Regio, Enantioselective Haloazidation
Chemo, Regio, Enantioselective HaloazidationJovan Lopez
 
Yields of stabilized Crieege Intermediates
Yields of stabilized Crieege IntermediatesYields of stabilized Crieege Intermediates
Yields of stabilized Crieege IntermediatesMixtli Campos-Pineda
 
Bowdoin seminar 2/3/2017
Bowdoin seminar 2/3/2017Bowdoin seminar 2/3/2017
Bowdoin seminar 2/3/2017Alex Peroff
 
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...Yuriko Takahashi
 
Biosorption process for removal and recovery (1)
Biosorption process for removal and recovery (1)Biosorption process for removal and recovery (1)
Biosorption process for removal and recovery (1)sonumehta217
 
Ramesh research scientist
Ramesh research scientistRamesh research scientist
Ramesh research scientistRamesh Yella
 
Catalytic N2 Conversion
Catalytic  N2 ConversionCatalytic  N2 Conversion
Catalytic N2 ConversionYutoYabuuchi
 
Macro receptors for TcO4- detection
Macro receptors for TcO4- detectionMacro receptors for TcO4- detection
Macro receptors for TcO4- detectionKonstantin German
 
北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014Hajime Ito
 
Paul Grieco Chemistry
Paul Grieco ChemistryPaul Grieco Chemistry
Paul Grieco Chemistryandy diep
 
aziz presentation (1)
aziz presentation (1)aziz presentation (1)
aziz presentation (1)aziz ahmad
 

Similar to Copper-Catalyzed Reactions with Diborons: From the Beginning to Recent Results (20)

Curious chemistry
Curious chemistryCurious chemistry
Curious chemistry
 
Methanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic StudyMethanol to Ethanol by Homologation - Kinetic Study
Methanol to Ethanol by Homologation - Kinetic Study
 
MCR
MCRMCR
MCR
 
Allenes - Alenos
Allenes - Alenos Allenes - Alenos
Allenes - Alenos
 
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
Rh(I)-catalyzed Aldol-type Reaction of Organonitriles under Mild Conditions: ...
 
Tsuji-Trost reacton
Tsuji-Trost reactonTsuji-Trost reacton
Tsuji-Trost reacton
 
Chemo, Regio, Enantioselective Haloazidation
Chemo, Regio, Enantioselective HaloazidationChemo, Regio, Enantioselective Haloazidation
Chemo, Regio, Enantioselective Haloazidation
 
Yields of stabilized Crieege Intermediates
Yields of stabilized Crieege IntermediatesYields of stabilized Crieege Intermediates
Yields of stabilized Crieege Intermediates
 
Bowdoin seminar 2/3/2017
Bowdoin seminar 2/3/2017Bowdoin seminar 2/3/2017
Bowdoin seminar 2/3/2017
 
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
I. Novel, One-Pot Reactions towards Molecular Alkaline Earth Species, II. Exp...
 
Biosorption process for removal and recovery (1)
Biosorption process for removal and recovery (1)Biosorption process for removal and recovery (1)
Biosorption process for removal and recovery (1)
 
Ramesh research scientist
Ramesh research scientistRamesh research scientist
Ramesh research scientist
 
Catalytic N2 Conversion
Catalytic  N2 ConversionCatalytic  N2 Conversion
Catalytic N2 Conversion
 
Macro receptors for TcO4- detection
Macro receptors for TcO4- detectionMacro receptors for TcO4- detection
Macro receptors for TcO4- detection
 
北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014
 
Paul Grieco Chemistry
Paul Grieco ChemistryPaul Grieco Chemistry
Paul Grieco Chemistry
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Surfaces of Metal Oxides.
 
CHM 491 Senior Seminar
CHM 491 Senior SeminarCHM 491 Senior Seminar
CHM 491 Senior Seminar
 
ACS Poster
ACS PosterACS Poster
ACS Poster
 
aziz presentation (1)
aziz presentation (1)aziz presentation (1)
aziz presentation (1)
 

More from Hajime Ito

メカノケミカル合成の夜明け The rise of mechanochemical synthesis
メカノケミカル合成の夜明け The rise of mechanochemical synthesis メカノケミカル合成の夜明け The rise of mechanochemical synthesis
メカノケミカル合成の夜明け The rise of mechanochemical synthesis Hajime Ito
 
第48回有機金属若手の会夏の学校(滋賀) 若手講演 久保田
第48回有機金属若手の会夏の学校(滋賀) 若手講演 久保田第48回有機金属若手の会夏の学校(滋賀) 若手講演 久保田
第48回有機金属若手の会夏の学校(滋賀) 若手講演 久保田Hajime Ito
 
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part IIHajime Ito
 
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part IHajime Ito
 
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)Hajime Ito
 
北大有機元素化学雑誌会M1田口2014
北大有機元素化学雑誌会M1田口2014北大有機元素化学雑誌会M1田口2014
北大有機元素化学雑誌会M1田口2014Hajime Ito
 
北大有機元素化学雑誌会D2久保田2015
北大有機元素化学雑誌会D2久保田2015北大有機元素化学雑誌会D2久保田2015
北大有機元素化学雑誌会D2久保田2015Hajime Ito
 
北海道大学有機元素化学抄録会2014
北海道大学有機元素化学抄録会2014北海道大学有機元素化学抄録会2014
北海道大学有機元素化学抄録会2014Hajime Ito
 

More from Hajime Ito (8)

メカノケミカル合成の夜明け The rise of mechanochemical synthesis
メカノケミカル合成の夜明け The rise of mechanochemical synthesis メカノケミカル合成の夜明け The rise of mechanochemical synthesis
メカノケミカル合成の夜明け The rise of mechanochemical synthesis
 
第48回有機金属若手の会夏の学校(滋賀) 若手講演 久保田
第48回有機金属若手の会夏の学校(滋賀) 若手講演 久保田第48回有機金属若手の会夏の学校(滋賀) 若手講演 久保田
第48回有機金属若手の会夏の学校(滋賀) 若手講演 久保田
 
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
 
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
 
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
 
北大有機元素化学雑誌会M1田口2014
北大有機元素化学雑誌会M1田口2014北大有機元素化学雑誌会M1田口2014
北大有機元素化学雑誌会M1田口2014
 
北大有機元素化学雑誌会D2久保田2015
北大有機元素化学雑誌会D2久保田2015北大有機元素化学雑誌会D2久保田2015
北大有機元素化学雑誌会D2久保田2015
 
北海道大学有機元素化学抄録会2014
北海道大学有機元素化学抄録会2014北海道大学有機元素化学抄録会2014
北海道大学有機元素化学抄録会2014
 

Recently uploaded

Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squaresusmanzain586
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
Ai in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxAi in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxsubscribeus100
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsCharlene Llagas
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlshansessene
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Biological classification of plants with detail
Biological classification of plants with detailBiological classification of plants with detail
Biological classification of plants with detailhaiderbaloch3
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Organic farming with special reference to vermiculture
Organic farming with special reference to vermicultureOrganic farming with special reference to vermiculture
Organic farming with special reference to vermicultureTakeleZike1
 

Recently uploaded (20)

Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squares
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Ai in communication electronicss[1].pptx
Ai in communication electronicss[1].pptxAi in communication electronicss[1].pptx
Ai in communication electronicss[1].pptx
 
Quarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and FunctionsQuarter 4_Grade 8_Digestive System Structure and Functions
Quarter 4_Grade 8_Digestive System Structure and Functions
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girls
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Biological classification of plants with detail
Biological classification of plants with detailBiological classification of plants with detail
Biological classification of plants with detail
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Organic farming with special reference to vermiculture
Organic farming with special reference to vermicultureOrganic farming with special reference to vermiculture
Organic farming with special reference to vermiculture
 

Copper-Catalyzed Reactions with Diborons: From the Beginning to Recent Results

  • 5. Researches in Ito’s Group Cu catalysis (2000−) Si-B/base Chemistry (2012−) J. Am. Chem. Soc., 2012, 134, 19997; Chem. Sci. 2015, 6, 2943. Borylation Reactions Angew. Chem., Int. Ed. 2015, 54, 8809. J. Am. Chem. Soc. 2015, 137, 420. J. Am. Chem. Soc. 2014, 136, 16515. J. Am. Chem. Soc. 2013, 135, 2635. Org. Lett. 2012, 14, 890. Angew. Chem., Int. Ed. 2011, 50, 2778. J. Am. Chem. Soc. 2010, 132, 11440. J. Am. Chem. Soc. 2010, 132, 1226 . J. Am. Chem. Soc. 2010, 132, 5990. Angew. Chem., Int. Ed. 2010, 122, 570. Nature Chemistry 2010, 2, 972. J. Am. Chem. Soc. 2008, 130, 15774. Angew. Chem., Int. Ed. 2008, 47, 7424. J. Am. Chem. Soc. 2007, 129, 14856. J. Am. Chem. Soc. 2005, 127, 16034. DFT calculation: J. Am. Chem. Soc. 2015, 137, 4090. EWG (pin)B B(pin) Cu cat. EWG (pin)B Ito, Hosomi Tetrahedron Lett. 2000, 40, 7807. (Ishiyama, Miyaura, Chem. Lett. 2000, 982.) Chem. Sci., 2015, 6, 2187. Mechano-Responsive Material J. Am. Chem. Soc. 2008, 130, 10044. Nature Comm. 2013, 4, 2009. Angew. Chem., Int. Ed. 2013, 52, 12828, VIP. Chem. Sci., 2015, 6, 1491. Chem. Sci., 2015, 6, 2187.
  • 6. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2 nd revised ed.; 
 Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2011. B R1 R1 H C R1 R1 H HO R1 R1 H H2N R1 R1 H Versatile Building Block Major Synthetic Methods ・Hydroboration ・Electrophilic reactions of boron reagents ・Pd-catalyzed reactions of B2pin2 (Miyaura’s procedure) Organoboron Compounds No practical nucleophilic reactions of boron reagents Low electronegativity of B (2.0) makes generation of B anion dif@icult.
  • 8. ・Hydroboration Hydroboration is not the perfect solution. ■ Asymmetric catalytic hydroboration was limited. Ph [Rh(cod)2]BF4 (1 mol %) (R)-BINAP (1 mol %) –78°C, 6 h O HB O + Ph B(cat) 91%, 96.2 % ee Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1989, 111, 3426.! ■ Brown’s asymmetric hydroboration with stoichiometric chiral group BH 2 + H B(ipc)2 H OHoxidation 99% ee OH + 2 H. C. Brown (1961)
  • 9. ・RLi, RMgX and Boron Electrophiles RLi and RMgBr still have limitations. M R X B X X −MX R B X X Highly basic conditions, low functional group compatibility
  • 10. ・RLi, RMgX and Boron Electrophiles RLi and RMgBr still have limitations. M R X B X X −MX R B X X Highly basic conditions, low functional group compatibility N Ph O N(i-Pr)2 O (-)-sparteine s-BuLi –78°C Ph O N(i-Pr)2 OLi H N Ph O N(i-Pr)2 OB H O O Et Et B O O MgBr2 Ph B O O Et 90%, 96% ee R Li BX ■ Chiral Organoboron (Aggarwal et al)
  • 11. Cu Cl + NN O (DMI)(THF) O H Si CH3 CH3 Copper-Catalyzed Hydrosilylation
  • 12. no reaction Cu Cl + NN O (DMI)(THF) O H Si CH3 CH3 Copper-Catalyzed Hydrosilylation
  • 13. no reaction Cu Cl + NN O (DMI)(THF) O H Si CH3 CH3 Copper-Catalyzed Hydrosilylation
  • 14. no reaction (DMI)nCu H(DMI)nCu Cl H Si Cu Cl + NN O (DMI)(THF) O H Si CH3 CH3 Copper-Catalyzed Hydrosilylation
  • 15. no reaction (DMI)nCu H(DMI)nCu Cl H Si Ito, H.; Ishizuka, T.; Arimoto, K.; Miura, K.; Hosomi, A. Tetrahedron Lett. 1997, 38, 8887. O H Si+ cat. CuCl DMI, rt O H 92% H3O+CH3 CH3 Cu Cl + NN O (DMI)(THF) O H Si CH3 CH3 Catalysis Copper-Catalyzed Hydrosilylation Stoichiometric Reaction
  • 17. Our Preliminary Copper-Catalyzed Reactions ■ Hydorsilylaiton CuCl / DMI / R3SiH: Ito, H.; Ishizuka, T.; Arimoto, K.; Miura, K.; Hosomi, A. Tetrahedron Lett. 1997, 38, 8887. O H Si+ cat. CuCl DMI, rt O H 92% H3O+CH3 CH3 Cu X Si H Cu H L L FCu(PPh3) / R3SiH: Mori, A.; Fujita, A.; Nishihara, Y.; Hiyama, T. Chem. Commun. 1997, 2159.
  • 18. Our Preliminary Copper-Catalyzed Reactions ■ Silylation with disilanes Si Ph+ cat. CuOTf PBu3 DMI, rt H3O+ O SiPh O Si Ph Ito, H.; Ishizuka, T.; Tateiwa, J.; Sonoda, M.; Hosomi, A. J. Am. Chem. Soc. 1998, 120, 11196. Cu X Si Si Cu Si L L ■ Hydorsilylaiton CuCl / DMI / R3SiH: Ito, H.; Ishizuka, T.; Arimoto, K.; Miura, K.; Hosomi, A. Tetrahedron Lett. 1997, 38, 8887. O H Si+ cat. CuCl DMI, rt O H 92% H3O+CH3 CH3 Cu X Si H Cu H L L FCu(PPh3) / R3SiH: Mori, A.; Fujita, A.; Nishihara, Y.; Hiyama, T. Chem. Commun. 1997, 2159.
  • 19. Early Studies on Diboron/Cu Catalysis CuCl/KOAc: Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982. CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821. + cat. CuX PR3 DMI, rt H3O+ O O B B B O OO O O O 87% ■ First Cu-Catalyzed Formal Nucleophilic Borylation
  • 20. Early Studies on Diboron/Cu Catalysis CuCl/KOAc: Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982. CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821. + cat. CuX PR3 DMI, rt H3O+ O O B B B O OO O O O 87% ■ First Cu-Catalyzed Formal Nucleophilic Borylation Cu X B B Cu B L L ✔ Boryl-Copper Intermediate Boron Nucleophilicity
 Ligand Controlled Selectivity
  • 21. Early Studies on Diboron/Cu Catalysis Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314, 113. NN B Br iPr iPr iPr iPr NN B Li iPr iPr iPr iPr Li, naphthalene THF ■ Generation of ”Boryl-Anion” was dif]icult. CuCl/KOAc: Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982. CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821. + cat. CuX PR3 DMI, rt H3O+ O O B B B O OO O O O 87% ■ First Cu-Catalyzed Formal Nucleophilic Borylation Cu X B B Cu B L L ✔ Boryl-Copper Intermediate Boron Nucleophilicity
 Ligand Controlled Selectivity
  • 22. Early Studies on Diboron/Cu Catalysis CuCl/KOAc: Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982. CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821. + cat. CuX PR3 DMI, rt H3O+ O O B B B O OO O O O 87% ■ First Cu-Catalyzed Formal Nucleophilic Borylation Cu X B B Cu B L L ✔ Boryl-Copper Intermediate Boron Nucleophilicity
 Ligand Controlled Selectivity R M X B R B Fornmal Nucleophilic borylation ▶ ▶ Mild reaction conditions B CuR X R B Umpolung ▶ Catalytic asymmetric synthesis ▶ Electrophilic borylation Highly basic conditions Stoichiometric reaction M R
  • 23. Xantphos/Cu shows High reactivity High regio- and E/Z selectivity Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034. Cu(O-t-Bu) / ligand (5 mol %) GC yield, % dppf 100 37 44 Xantphos Ligand E : Z a 97 : 399 : 1 96 : 4> 99 : < 1 97 : 3> 99 : < 1 11 62 : 38> 99 : < 1 γ : α dppe dppp O PPh2Ph2P + 2.0 equiv. O B O O B O Xantphos: Pd(dba)2 0 57 : 43 R OCO2Me R B R = (CH2)3Ph O O γ THF, rt, 3 h B Cu OR L B Allyboron Synthesis: Xantphos/Cu
  • 24. S R 2.4 equiv. Bu B(pin)MeO2CO Bu (pin)B B(pin)+ THF, 0 °C, 40 h 10 mol% Cu(O-t-Bu)ーXantphos 88%, 97% ee γ:α = >99:1, E:Z = >99:1 97% ee Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034. C C R2 C H R1 R3 OR H C C B R1 R2 H CR3 H C C R2C H R1 R3 OR H Cu B L L Cu B ■ Cu/Xantphos: anti-SN2’ reaction Allyboron Synthesis: Asymmetric Reactions
  • 25. S R 2.4 equiv. Bu B(pin)MeO2CO Bu (pin)B B(pin)+ THF, 0 °C, 40 h 10 mol% Cu(O-t-Bu)ーXantphos 88%, 97% ee γ:α = >99:1, E:Z = >99:1 97% ee Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034. C C R2 C H R1 R3 OR H C C B R1 R2 H CR3 H C C R2C H R1 R3 OR H Cu B L L Cu B ■ Cu/Xantphos: anti-SN2’ reaction Allyboron Synthesis: Asymmetric Reactions ■ Asymmetric Cu-catalyzed Allylboron Synthesis Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.; Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856. N N P P t-BuMe t-Bu Me (R,R)-QuinoxP* R OCO2Me B B O OO O + 5 mol% Cu(O-t-Bu) / chiral ligand THF, 0 °C 20 h R B OO 78%, 96% ee R = PhCH2CH2
  • 26. Early Studies on Diboron/Cu Catalysis Mun, S.; Lee, J. E.; Yun, J. Org Lett. 2006, 8, 4887, Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145. R EWG B B O OO O + cat. CuCl/Na(O-t-Bu) chiral ligand, ROH R EWG B OO Fe PPh2 PCy2 (R)-(S)-Josiphos * ■ First Enantioselective Reactions by Yun
  • 27. Early Studies on Diboron/Cu Catalysis Mun, S.; Lee, J. E.; Yun, J. Org Lett. 2006, 8, 4887, Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145. R EWG B B O OO O + cat. CuCl/Na(O-t-Bu) chiral ligand, ROH R EWG B OO Fe PPh2 PCy2 (R)-(S)-Josiphos * ■ First Enantioselective Reactions by Yun ■ First Isolation of Borylcopper Species David S. Laitar, Peter Mu¨ller, and Joseph P. Sadighi* Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts AVenue, Cambridge Massachusetts 02139 Received September 28, 2005; E-mail: jsadighi@mit.edu Nature uses carbon dioxide, on a massive scale, as a one-carbon building block for the synthesis of organic molecules.1 An important pathway for the consumption of CO2 is its reduction to CO by the enzyme acetyl-CoA synthase/CO dehydrogenase (ACS-CODH).2 Due to the large energy input required to generate it from CO2, CO is produced industrially from fossil fuels.3 Even with strong reducing agents, however, overcoming the OdCO bond enthalpy of 532 kJ/mol4 often presents kinetic difficulties.5,6 Certain metal complexes abstract oxygen readily from CO2,7 but the resulting metal-oxygen bonds are necessarily strong, and catalytic turnover is rare.8 Photolytic9 and photocatalytic10 ap- proaches show promise, and synthetic electrocatalysts have achieved impressive yields and selectivities in the reduction of CO2 to CO.11 However, the chemical processes involved are obscure, making it difficult to improve these systems by design, and CODH remains notably the most efficient catalyst for this reduction.12 We report herein that a new carbene-supported copper(I) boryl complex abstracts oxygen from CO2 and undergoes subsequent turnover readily. Using an easily handled diboron reagent as the net oxygen acceptor,13 these key steps permit unprecedented turnover numbers and frequencies for the chemical reduction of CO2 to CO in a homogeneous system. While exploring the chemistry of organocopper(I) complexes supported by N-heterocyclic carbene (NHC) ligands,14 we sought to synthesize a copper(I) boryl complex and explore its reactivity toward CO2. Metal boryls often display distinctive reactivity,15 catalyzing a number of remarkable transformations.16 Although C-B bond-forming reactions have been achieved using diboron compounds with catalytic17a or stoichiometric17b copper(I), well- defined copper boryl complexes have not been described. The known (IPr)Cu(Ot-Bu) reacts rapidly with bis(pinacolato)- diboron (pinB-Bpin), forming a product identified as (IPr)Cu(Bpin) (1, Scheme 1) by 1H and 11B NMR spectroscopy. Diffusion of hexane vapor into a concentrated solution of 1 in toluene, carried out at -40 °C to avoid thermal decomposition,18 produces single crystals suitable for analysis by X-ray diffraction. The resulting structure (Figure 1a) shows a monomeric, nearly linear coordination geometry with a Cu-B distance of 2.002(3) Å. Complex 1 reacts with CO2 under atmospheric pressure in C6D6 conversion of 1 to 2. The sole labeled products visible in the NMR spectrum (Figure 2b) are 13CO (δ 184 ppm) and an ad (δ 164 ppm) formed reversibly from CO and borate 2.20 Treatment of 2 in C6D6 solution with pinB-Bpin smo regenerates 1, forming the stable byproduct pinB-O-Bpin,21 a reaction time of about 20 min. The success of this turnover closes a catalytic cycle for the deoxygenation of CO2. Additio a THF solution of (IPr)Cu(Ot-Bu) to a 100-fold excess of pi Scheme 1 a a Isolated yield, contains some 2 (5 mol % by 11B NMR); (b) react complete in <10 min at ambient temp; (c) L ) IPr or ICy. Figure 1. X-ray crystal structures, shown as 50% thermal ellipsoid boryl complex 1‚C6H14 (a), and borate 2‚C7H8 (b). Hydrogen atoms (c and solvent are omitted for clarity. Selected bond lengths (Å) and a (deg), (a): Cu(1)-B(1) 2.002(3), Cu(1)-C(1) 1.937(2), C(1)-N(1) 1.3 C(1)-N(2) 1.363(3), C(1)-Cu(1)-B(1) 168.07(16), N(1)-C(1)- 102.97(18); (b): Cu(1)-O(1) 1.8096(16), O(1)-B(1) 1.306(3), Cu C(1) 1.857(2), C(1)-N(1) 1.355(3), C(1)-N(2) 1.364(3), C(1)-Cu O(1) 174.85(10), B(1)-O(1)-Cu(1) 133.61(16), N(1)-C(1)-N(2) 103.0 NN Cu tBuO iPr iPr iPr iPr NN Cu iPr iPr iPr iPr B(pin) (pin)B-B(pin) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17197.
  • 28. Early Studies on Diboron/Cu Catalysis Mun, S.; Lee, J. E.; Yun, J. Org Lett. 2006, 8, 4887, Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47, 145. R EWG B B O OO O + cat. CuCl/Na(O-t-Bu) chiral ligand, ROH R EWG B OO Fe PPh2 PCy2 (R)-(S)-Josiphos * ■ First Enantioselective Reactions by Yun ■ Chiral NHC Ligand Lee, Y.; Hoveyda, A. J. Am. Chem. Soc. 2009, 131, 3160. N N Ph Ph i-Pr i-Pr i-Pr SO3 – Ph (pin)B B(pin)+ cat.CuCl/K(O-t-Bu) THF, –50°C, 48 h, MeOH, 2.0 equiv + Ph B(pin) 80%, 98% ee ■ First Isolation of Borylcopper Species David S. Laitar, Peter Mu¨ller, and Joseph P. Sadighi* Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts AVenue, Cambridge Massachusetts 02139 Received September 28, 2005; E-mail: jsadighi@mit.edu Nature uses carbon dioxide, on a massive scale, as a one-carbon building block for the synthesis of organic molecules.1 An important pathway for the consumption of CO2 is its reduction to CO by the enzyme acetyl-CoA synthase/CO dehydrogenase (ACS-CODH).2 Due to the large energy input required to generate it from CO2, CO is produced industrially from fossil fuels.3 Even with strong reducing agents, however, overcoming the OdCO bond enthalpy of 532 kJ/mol4 often presents kinetic difficulties.5,6 Certain metal complexes abstract oxygen readily from CO2,7 but the resulting metal-oxygen bonds are necessarily strong, and catalytic turnover is rare.8 Photolytic9 and photocatalytic10 ap- proaches show promise, and synthetic electrocatalysts have achieved impressive yields and selectivities in the reduction of CO2 to CO.11 However, the chemical processes involved are obscure, making it difficult to improve these systems by design, and CODH remains notably the most efficient catalyst for this reduction.12 We report herein that a new carbene-supported copper(I) boryl complex abstracts oxygen from CO2 and undergoes subsequent turnover readily. Using an easily handled diboron reagent as the net oxygen acceptor,13 these key steps permit unprecedented turnover numbers and frequencies for the chemical reduction of CO2 to CO in a homogeneous system. While exploring the chemistry of organocopper(I) complexes supported by N-heterocyclic carbene (NHC) ligands,14 we sought to synthesize a copper(I) boryl complex and explore its reactivity toward CO2. Metal boryls often display distinctive reactivity,15 catalyzing a number of remarkable transformations.16 Although C-B bond-forming reactions have been achieved using diboron compounds with catalytic17a or stoichiometric17b copper(I), well- defined copper boryl complexes have not been described. The known (IPr)Cu(Ot-Bu) reacts rapidly with bis(pinacolato)- diboron (pinB-Bpin), forming a product identified as (IPr)Cu(Bpin) (1, Scheme 1) by 1H and 11B NMR spectroscopy. Diffusion of hexane vapor into a concentrated solution of 1 in toluene, carried out at -40 °C to avoid thermal decomposition,18 produces single crystals suitable for analysis by X-ray diffraction. The resulting structure (Figure 1a) shows a monomeric, nearly linear coordination geometry with a Cu-B distance of 2.002(3) Å. Complex 1 reacts with CO2 under atmospheric pressure in C6D6 conversion of 1 to 2. The sole labeled products visible in the NMR spectrum (Figure 2b) are 13CO (δ 184 ppm) and an ad (δ 164 ppm) formed reversibly from CO and borate 2.20 Treatment of 2 in C6D6 solution with pinB-Bpin smo regenerates 1, forming the stable byproduct pinB-O-Bpin,21 a reaction time of about 20 min. The success of this turnover closes a catalytic cycle for the deoxygenation of CO2. Additio a THF solution of (IPr)Cu(Ot-Bu) to a 100-fold excess of pi Scheme 1 a a Isolated yield, contains some 2 (5 mol % by 11B NMR); (b) react complete in <10 min at ambient temp; (c) L ) IPr or ICy. Figure 1. X-ray crystal structures, shown as 50% thermal ellipsoid boryl complex 1‚C6H14 (a), and borate 2‚C7H8 (b). Hydrogen atoms (c and solvent are omitted for clarity. Selected bond lengths (Å) and a (deg), (a): Cu(1)-B(1) 2.002(3), Cu(1)-C(1) 1.937(2), C(1)-N(1) 1.3 C(1)-N(2) 1.363(3), C(1)-Cu(1)-B(1) 168.07(16), N(1)-C(1)- 102.97(18); (b): Cu(1)-O(1) 1.8096(16), O(1)-B(1) 1.306(3), Cu C(1) 1.857(2), C(1)-N(1) 1.355(3), C(1)-N(2) 1.364(3), C(1)-Cu O(1) 174.85(10), B(1)-O(1)-Cu(1) 133.61(16), N(1)-C(1)-N(2) 103.0 NN Cu tBuO iPr iPr iPr iPr NN Cu iPr iPr iPr iPr B(pin) (pin)B-B(pin) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17197.
  • 29. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X X X X X
  • 30. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X X X X X Ito, 2000– Miyaura, 2000– Yun, 2006– Marder, 2007– Molander, 2008– Kanai, 2009– Hoveyda, 2009– Santos, 2010– McQuade, 2010– Cordova, 2011– Hall, 2010– Carretero, 2011– Fernandez, 2011– Lam, 2012– Kobayashi, 2012– Tsuji, 2012– de Vries, 2012– Ma, 2010– Zhu, 2013– Caser, 2013– Chun, 2013– Yoshida, 2014– Xiao and Fu, 2015– Feringa, 2015– Quiling, 2015–…… > 180 publications
  • 31. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X X X X Ito, 2000– Miyaura, 2000– Yun, 2006– Marder, 2007– Molander, 2008– Kanai, 2009– Hoveyda, 2009– Santos, 2010– McQuade, 2010– Cordova, 2011– Hall, 2010– Carretero, 2011– Fernandez, 2011– Lam, 2012– Kobayashi, 2012– Tsuji, 2012– de Vries, 2012– Ma, 2010– Zhu, 2013– Caser, 2013– Chun, 2013– Yoshida, 2014– Xiao and Fu, 2015– Feringa, 2015– Quiling, 2015–…… > 180 publications
  • 32. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X X X Ito, 2000– Miyaura, 2000– Yun, 2006– Marder, 2007– Molander, 2008– Kanai, 2009– Hoveyda, 2009– Santos, 2010– McQuade, 2010– Cordova, 2011– Hall, 2010– Carretero, 2011– Fernandez, 2011– Lam, 2012– Kobayashi, 2012– Tsuji, 2012– de Vries, 2012– Ma, 2010– Zhu, 2013– Caser, 2013– Chun, 2013– Yoshida, 2014– Xiao and Fu, 2015– Feringa, 2015– Quiling, 2015–…… > 180 publications
  • 33. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X X Ito, 2000– Miyaura, 2000– Yun, 2006– Marder, 2007– Molander, 2008– Kanai, 2009– Hoveyda, 2009– Santos, 2010– McQuade, 2010– Cordova, 2011– Hall, 2010– Carretero, 2011– Fernandez, 2011– Lam, 2012– Kobayashi, 2012– Tsuji, 2012– de Vries, 2012– Ma, 2010– Zhu, 2013– Caser, 2013– Chun, 2013– Yoshida, 2014– Xiao and Fu, 2015– Feringa, 2015– Quiling, 2015–…… > 180 publications
  • 35. Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560. RO (pin)B diboron Cu(O-t-Bu)/ (R,R)-QuinoxP* (5.0 mol %) base H2O iPrOCO2 H Ph OH PhCHO (1.0 eq.) 0 °C, 18 h rt, 2 hRO- = i-PrOCO2 87%, 97% ee dr >99:1 ORRO Allylic Substitutions, Meso- and Propargyls
  • 36. Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560. RO (pin)B diboron Cu(O-t-Bu)/ (R,R)-QuinoxP* (5.0 mol %) base H2O iPrOCO2 H Ph OH PhCHO (1.0 eq.) 0 °C, 18 h rt, 2 hRO- = i-PrOCO2 87%, 97% ee dr >99:1 ORRO Allylic Substitutions, Meso- and Propargyls OTIPS N N N N NH2 Cl Anti Virus Drug Precursor H OTBS CO2Me OH H 97% ee, >98% ds Four Chiral Centers
  • 37. Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560. RO (pin)B diboron Cu(O-t-Bu)/ (R,R)-QuinoxP* (5.0 mol %) base H2O iPrOCO2 H Ph OH PhCHO (1.0 eq.) 0 °C, 18 h rt, 2 hRO- = i-PrOCO2 87%, 97% ee dr >99:1 ORRO CCC Bu B(pin) Me H 74%, 97% ee 10 mol % Cu(O-t-Bu)/Xantphos THF, 50 °C, 5 h 97% ee Me C C C Bu OCO2Me H (S) (S) 2.0 equiv. O B O O B O + ■ Allenylboron compounds with high ee. Ito, H.; Sasaki, Y.; Sawamura, M., J. Am. Chem. Soc. 2008, 130, 15774. Allylic Substitutions, Meso- and Propargyls OTIPS N N N N NH2 Cl Anti Virus Drug Precursor H OTBS CO2Me OH H 97% ee, >98% ds Four Chiral Centers
  • 38. Ito, H; Kunii, S; Sawamura, M. Nature Chem. 2010, 2, 972. Cu(O-t-Bu) (R,R)-QuinoxP* (5.0 mol %) (pin)B B(pin) (1.5 equiv) Et2O, 24 h OCH3 Ph racemic 98% yield 97% ee Ph B O O Direct Enantio-Convergent Reaction
  • 39. Ito, H; Kunii, S; Sawamura, M. Nature Chem. 2010, 2, 972. Cu(O-t-Bu) (R,R)-QuinoxP* (5.0 mol %) (pin)B B(pin) (1.5 equiv) Et2O, 24 h OCH3 Ph racemic 98% yield 97% ee Ph B O O Direct Enantio-Convergent Reaction OCH3 Ph CH3O Ph OCH3 Ph CH3O Ph racemic Cu B L* Cu B L* Ph B O O anti-SN2' syn-SN2' ■ One catalyst converge two substrate enantiomers into one product 
 enantiomer.
  • 40. Ito, H; Kunii, S; Sawamura, M. Nature Chem. 2010, 2, 972. Cu(O-t-Bu) (R,R)-QuinoxP* (5.0 mol %) (pin)B B(pin) (1.5 equiv) Et2O, 24 h OCH3 Ph racemic 98% yield 97% ee Ph B O O PhCHO Ph B C O H Ph Ph HO Ph 85% yield, 97% ee Direct Enantio-Convergent Reaction OCH3 Ph CH3O Ph OCH3 Ph CH3O Ph racemic Cu B L* Cu B L* Ph B O O anti-SN2' syn-SN2' ■ One catalyst converge two substrate enantiomers into one product 
 enantiomer.
  • 41. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X X
  • 42. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X
  • 43. Cu(I) cat. (pin)B–B(pin) Cu BL OR RO RE RE RO RE Cu B L B(pin) RE RE = SiR3, Ar β LCuOR+ Asymmetric Borylative Cyclizations
  • 44. Cu(I) cat. (pin)B–B(pin) Cu BL OR RO RE RE RO RE Cu B L B(pin) RE RE = SiR3, Ar β LCuOR+ (pin)B B(pin) Cu(O-t-Bu) / ligand R X THF, 30 °C B(pin) R R = R3Si, Ar, HetAr B(pin) N Boc B(pin) S B(pin) 70%, 92% ee90%, 92% ee 70%, 92% ee X = OCO2R, OPO(OR)2 B(pin) Me3Si 94%, 94% ee B(pin) BnMe2Si 83%, 94% ee Ito, H.; Kosaka, Y.; Nonoyama, K.; Sasaki, Y.; Sawamura, M. Angew. Chem., Int. Ed. 2008, 47, 7424. Zhong, C.; Kunii, S.; Kosaka, Y.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 11440. Asymmetric Borylative Cyclizations
  • 45. a The endo-cyclization product was detected (7%). (pin)B 4 h, 86% (pin)B Me Me 4 h, 90% (pin)B 4 h, 84% (pin)B 6 h, 87% d.r. = 1.1:1 Si(pin)B Me Me 4 h, 74%a 5 mol % CuCl 5 mol % Xantphos (pin)B-B(pin) (1.2 equiv) K(O-t-Bu) (1.2 equiv) THF, 30 °C n C C Cu (pin)B – CuBr C n n = 1−3 n = 1−3 C C Br Br C (pin)B L complex mixtureb Br (pin)B 4 h, 95% d.r. = 1.4:1 (pin)B Me Me 4 h, 83% Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635. b The six-membered ring product was detected (4%). Borylative Cyclization of Terminal Alkenes
  • 47. B B 88% O O O O O B O B O O (1.2 equiv) Br Br + 10 mol % CuCl 10 mol % Xantphos K(O-t-Bu) (2.0 equiv) THF, 30 °C, 4 h High exo/endo selectivity Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635. Spiro Compounds
  • 48. 5 mol % CuCl / Xantphos (pin)B-B(pin) (1.2 equiv) t-BuOK (1.2 equiv) THF, 30 °C, 4 h, 82% B(pin) N S O O N S O O Br Borylative cyclization Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635. Short Synthesis of Drug Candidate
  • 49. 5 mol % CuCl / Xantphos (pin)B-B(pin) (1.2 equiv) t-BuOK (1.2 equiv) THF, 30 °C, 4 h, 82% B(pin) N S O O N S O O Br Borylative cyclization 1. NaBO3/4H2O THF/H2O, rt, 1 h 2. Jones Reagent acetone, 0 °C, 1 h 64% (2 steps) C-O Bond formation Condensation Histamine H3 Receptor Ligand O N S O O HO O N S O O N N NHN HBTU, iPr2NEt DMF, rt, 2 h, 91% Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635. Short Synthesis of Drug Candidate
  • 50. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X
  • 52. v ■ First Asymmetric 1,2-Monoborylation of 1,3-Dienes Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226. (pin)B (pin)B+ THF, MeOH (2.0 equiv) –40°C, 24.5h Cu(O-t-Bu)–(R,R)-Me-DuPhos (5.0 mol %) (pin)B B(pin) (1.5 equiv) 96%, 96% ee, dr >99:1 H Asymmteric Monoboryaltion
  • 53. v ■ First Asymmetric 1,2-Monoborylation of 1,3-Dienes Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226. (pin)B (pin)B+ THF, MeOH (2.0 equiv) –40°C, 24.5h Cu(O-t-Bu)–(R,R)-Me-DuPhos (5.0 mol %) (pin)B B(pin) (1.5 equiv) 96%, 96% ee, dr >99:1 H Asymmteric Monoboryaltion (pin)B (pin)B 96 % ee chiral Cu catalyst B2(pin)2(1.5 equiv) THF, t-BuOH (5.0 equiv) room temp.77% (dr 92:8) chiral Cu catalyst B2(pin)2(1.5 equiv) THF, MeOH (5.0 equiv) –40°C 87% (dr 7:93)
  • 54. v ■ First Asymmetric 1,2-Monoborylation of 1,3-Dienes Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226. (pin)B (pin)B+ THF, MeOH (2.0 equiv) –40°C, 24.5h Cu(O-t-Bu)–(R,R)-Me-DuPhos (5.0 mol %) (pin)B B(pin) (1.5 equiv) 96%, 96% ee, dr >99:1 H v Me Me BuB(pin) B(pin) BuMe Bu cat. Cu(OtBu) /diphosphine (pin)B B(pin) THF, MeOH cat. Cu(OtBu) /PPh3 (pin)B B(pin) THF, MeOHup to 84% ee ■ Enantio- and Regioselective Borylation of 1,3-Enynes Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem., Int. Edit. 2011, 50, 2778. Asymmteric Monoboryaltion (pin)B (pin)B 96 % ee chiral Cu catalyst B2(pin)2(1.5 equiv) THF, t-BuOH (5.0 equiv) room temp.77% (dr 92:8) chiral Cu catalyst B2(pin)2(1.5 equiv) THF, MeOH (5.0 equiv) –40°C 87% (dr 7:93)
  • 55. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X X
  • 56. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X
  • 57. Boryl Substitution of C(sp3)−X Br + CuCl / Xantphos (3 mol %) K(O-t-Bu) (1.0 equiv) THF, rt B(pin)Alkyl AlkylB B O OO O 1.2 equiv B(pin) B(pin) 4 h, 85% 5 h, 91% B(pin) 5 h, 90% B(pin) 44 h, 0% B(pin) 48 h, 17% B(pin) 5 h, 51% B(pin) B(pin) 24 h, 62%a B(pin)B(pin) 30 h, 68%a aReaction was carried out at 40°C with 15 mol % of catalyst, 2.2 equiv of B2pin2 and 2.0 equiv of base. B(pin) 5 h, 84% B(pin) 4 h, 92% Alkyl X Alkyl B Cu cat. B B O OO O + X = Cl, Br, I O O base Alkyl MgX or Li XB(pin) CuCl / Xantphos: Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890. 
 CuI / PPh3: Yang, C.-T.; Steel, P. G.; Marder, T. B.; Liu, L. et al. Angew. Chem., Int. Ed. 2012, 51, 528. K. Kubota
  • 58. Boryl Substitution of C(sp3)−X Br + CuCl / Xantphos (3 mol %) K(O-t-Bu) (1.0 equiv) THF, rt B(pin)Alkyl AlkylB B O OO O 1.2 equiv B(pin) B(pin) 4 h, 85% 5 h, 91% B(pin) 5 h, 90% B(pin) 44 h, 0% B(pin) 48 h, 17% B(pin) 5 h, 51% B(pin) B(pin) 24 h, 62%a B(pin)B(pin) 30 h, 68%a aReaction was carried out at 40°C with 15 mol % of catalyst, 2.2 equiv of B2pin2 and 2.0 equiv of base. B(pin) 5 h, 84% B(pin) 4 h, 92% Alkyl X Alkyl B Cu cat. B B O OO O + X = Cl, Br, I O O base Alkyl MgX or Li XB(pin) CuCl / Xantphos: Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890. 
 CuI / PPh3: Yang, C.-T.; Steel, P. G.; Marder, T. B.; Liu, L. et al. Angew. Chem., Int. Ed. 2012, 51, 528. Ni catalyst: Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693. Pd catalyst: Joshi-Pangu, A.; Ma, X.; Diane, M.; Iqbal, S.; Kribs, R. J.; Huang, R.; Wang, C.-Y.; Biscoe, M. R. J. Org. Chem. 2012, 77, 6629. Pd, Ni catalyst: Yi, J.; Liu, J. H.; Liang, J.; Dai, J. J.; Yang, C.-T.; Fu, Y.; Liu, L. 
 Adv. Synth. Catal. 2012, 354, 1685. Fe catalyst: Atack, T. C.; Lecker, R. M.; Cook, S. P. J. Am. Chem. Soc. 2014. Zn catalyst: Bose, S. K.; Fucke, K.; Liu, L.; Steel, P. G.; Marder, T. B. Angew. Chem., Int. Edit. 2014, 53, 1799. ◼ Very Simple Reaction, and Competitive! K. Kubota
  • 59. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition X
  • 60. Cu B O O L C C C C C C Cu B or C C H B C C B C C B X Cu C C BCu X C C B n Cu ORL (pin)B B(pin) C C E B H+ or E R X Ar X or R B O O O C R'R N C R'R R'' or C R'R OHB C R'R NHR"B Catalysis Design allylic
 substitution borylative cyclization alkyl-, aryl- substitution aldehyde, imine addition
  • 61. ■ Latitar, D. S.; Tsui, E. Y.; Sadighi, J. P. J. Am. Chem. Soc. 2006, 128, 11036. O H 1.0 mol % ICyCu(O-t-Bu) (pin)B−B(pin), toluene 86% O B(pin) B(pin) Catalytic diboration (pin)B−B(pin) MeOH, toluene O H 1.5 mol % ICyCu(O-t-Bu) OH B(pin) crude product KHF2 MeOH/H2O OH BF3K 81% Molander, G. A.; Wisnieski, S. R. J. Am. Chem. Soc. 2012, 134, 16856. ■ Catalytic monoborylation N N ICy Copper(I)-Catalyzed Carbonyl Borylation
  • 63. R O B(pin) B(pin) R OH BF3K Low stability Low solubility Sadighi, J. Am. Chem. Soc. 2006 Molander, J. Am. Chem. Soc. 2012 R O H L*CuCl K(O-t-Bu) THF (pin)B−B(pin) R H BHO O O unstable R H BPGO O Oprotection Our approach for isolation High stability High solubility ■ Not suitable for HPLC analysis to determine ee values ✓ cf. Moore, C. M.; Medina, C. R.; Cannameia, P. C.; Mclntosh, M. L.; Ferber, C. J.; Roering, A. J.; Clark, T. B. Org. Lett. 2014, 16, 6056. alcohol Protection for HPLC Analysis
  • 64. H B(pin)BnO Ph H B(pin)MeO Ph H B(pin)O Ph Ph O H B(pin)O Ph Me2N O H B(pin)Me3SiO Ph BnBr, NaH 26% Me3OBF4 28% (PhCO)2O, DMAP 20% Me2NCOCl, pyridine complex mixture Me3SiCl, imidazole 64% Ph H O CuCl (2 mol %) ICy⋅HCl (2 mol %) (pin)B−B(pin) (1.0 equiv) K(O-t-Bu) (10 mol %) MeOH (2.0 equiv), THF R H B(pin)HO not isolated protection H B(pin)PGO isolated yield (%) Ph then silica gel short column Protection for HPLC Analysis K. Kubota Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
  • 65. Ph O 1. CuCl / L* (5 mol %) K(O-t-Bu) (10 mol %) MeOH (2.0 equiv) THF, 30 °C, 6 h 2. BnMe2SiCl, imidazole CH2Cl2, 3 h Ph HH BnMe2SiO B (S) NMR yield (%) B B O O O O + 1.0 equiv O O Chiral Ligand Screening Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
  • 66. Ph O 1. CuCl / L* (5 mol %) K(O-t-Bu) (10 mol %) MeOH (2.0 equiv) THF, 30 °C, 6 h 2. BnMe2SiCl, imidazole CH2Cl2, 3 h Ph HH BnMe2SiO B (S) NMR yield (%) B B O O O O + 1.0 equiv O O O O O O P P tBu OMe tBu tBu OMe tBu 2 2 (R)-DTBM-SEGPHOS 72%, 96% ee O O O O P P Me Me Me Me 2 2 (R)-DM-SEGPHOS 71%, 32% ee (R)-SEGPHOS 74%, 24% ee O O O O P P 2 2 larger steric hinderance higher enantioselectivity Chiral Ligand Screening Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
  • 67. coordination σ-bond metathesis protonation enantioselective insertion P P = (R)-DTBM-SEGPHOS DFT: Kubota, K.; Jin, M.; Ito, H. Organometallics, under revision. cf. Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. J. Am. Chem. Soc. 2008, 130, 5586. Cu B(pin) P P Cu B(pin) P P O C H R O C Cu R B(pin) H P P Cu OR P P R = OMe or O-t-Bu O C H R (pin)B−B(pin) MeOH (pin)B−OR A B C DO C R B(pin) H H Points not elucidated 1. Mechanism of enantioselection 2. Effect of proton source Proposed Reaction Mechanism M. Jing K. Kubota Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
  • 68. Cu B P P O H H H Cu B P P O H H H Ph Ph Ph Ph Ph Ph Ph Ph Si-face TS (favored) Re-face TS (disfavored) 0 kcal/mol +1.04 kcal/mol < B3PW91/cc-PVDZ , Relative G value (kcal/mol) at 298 K, 1.0 atm, gas phase. Observed result 24% ee DFT: Kubota, K.; Jin, M.; Ito, H. Organometallics, under revision. Enantioselection Models [(R)-SEGPHOS]
  • 69. Cu B P P O H H H Cu B P P O H H H Ar Ar Ar Ar Ar Ar Ar Ar Si-face TS (favored) Re-face TS (disfavored) 0 kcal/mol +1.97 kcal/mol < observed result 96% ee Models for [(R)-DTBM-SEGPHOS] DFT: Kubota, K.; Jin, M.; Ito, H. Organometallics, under revision. B3PW91/cc-PVDZ , Relative G value (kcal/mol) at 298 K, 1.0 atm, gas phase.
  • 70. Cu B P P O H H H Cu B P P O H H H Ar Ar Ar Ar Ar Ar Ar Ar Si-face TS (favored) Re-face TS (disfavored) 0 kcal/mol +1.97 kcal/mol < observed result 96% ee Models for [(R)-DTBM-SEGPHOS] DFT: Kubota, K.; Jin, M.; Ito, H. Organometallics, under revision. B3PW91/cc-PVDZ , Relative G value (kcal/mol) at 298 K, 1.0 atm, gas phase.
  • 71. R O 1. 5 mol % CuCl/ (R)-DTBM-SEGPHOS K(O-t-Bu) (10 mol %) MeOH (2.0 equiv) THF, 30 °C, 6 h 2. R3SiCl, imidazole CH2Cl2, 3 h H B B O O O O + 1.0 equiv R H R3SiO B (S) isolated yield (%) O O B(pin)Me3SiO H B(pin)Me3SiO H B(pin)Me3SiO H 51%, 96% ee 61%, 95% ee 84%, 95% ee 61%, 96% ee B(pin)HO H B(pin)BnMe2SiO H N B(pin)Me3SiO H N Boc Ts 81%, 95% ee 52%, 91% ee B(pin)BnMe2SiO H 69%, 90% ee BzO B(pin)BnMe2SiO H 69%, 95% ee BnO Borylation of Various Aldehydes Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
  • 72. H O H B(pin)HO CuCl / L* (5 mol %) (pin)B−B(pin) (1.0 equiv) K(O-t-Bu) (10 mol %) MeOH (2.0 equiv) THF (0.5 M), 30 °C, 6 h Ph2MeSiCl imidazole CH2Cl2, 3 h >99% conversion L* = (R)-DTBM-SEGPHOS H B(pin)Ph2MeSiO 22% yield 99% ee H BF3KHO KHF2 (4.0 equiv) MeOH/H2O, 30 min 71% yield ■ Poor stability of the product toward silica gel column Good isolated yield (71%) by converting into tri]luoroborate■ Aromatic Aldehyde Case: Unstable
  • 73. CuCl / ligand (5 mol %) (pin)B−B(pin) (1.0 equiv) K(O-t-Bu) (10 mol %) MeOH (2.0 equiv) solvent, 30 °C, 18 h then Me3SiCl imidazole, 3 h (R,S) H O Me TBSO B(pin) OSiMe3 Me TBSO (R,R) B(pin) OSiMe3 Me TBSO + (R) α-Stereocenter ICy⋅HCl (2 mol %), toluene: 69%, (R,S):(R,R) = 30:70 (R)-DTBM-SEGPHOS, THF: 73%, (R,S):(R,R) = 89:11 (S)-DTBM-SEGPHOS, THF: 77%, (R,S):(R,R) = 5:>95 ■ Catalyst-controlled selectivity over substrate vias Catalyst Controlled Reaction
  • 74. For a review of Matteson homologation chemistry: Matteson, D. S. Tetrahedron 1998, 54, 10555. cf. Sadhu, K. M.; Matteson, D. S. Organometallics 1985, 4, 1687. Stereospeci@ic C(sp3)-C(sp3) bond formation; One-carbon homologation Larouche-Gauthier, R.; Elfold, T. G.; Aggarval, V. K. J. Am. Chem. Soc. 2011, 133, 16794. Ph H B(pin)BnMe2SiO 96% ee ClCH2Br n-BuLi THF −78 °C→rt 3 h Ph H BnMe2SiO B(pin) 92%, 96% ee H2O2 NaOH Ph H HO OH 77%, 96% ee chiral 1,2-diol chiral 1,2-haloalcohol Ph H R3SiO Br 80%, 96% ee 3,5-(CF3)2C6H3Li then NBS, −78 °C Useful intermediate chiral β-alkoxyboron Stereospeci]ic Functionalization Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 420.
  • 75. H (pin)B OSiMe3 95% ee (S) Benzofuran (1.2 equiv) n-BuLi (1.2 equiv) THF, −78 °C, 1 h NBS (1.2 equiv) −78 °C, 1 h then TBAF, 2 hH Li H 52%, 95% ee (pin)B OSiMe3 O OH O (R) Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nature. Chem. 2014, 6, 584. Stereospeci@ic C(sp3)-C(sp2) bond formation; Cross-coupling with a heteroaromatic compound Aggarwal Arylation
  • 76. Chiral NHC/copper(I) complex catalyst HO B O O Ph * 59%, 9% ee HO B O O *Ph 62%, 9% ee HO B O O * no reaction Unsuccessful substrates O B B O O O O + 1.0 equiv 5 mol % CuCl / L* NNL* = BF4 HO B O O * 47%, 98% ee 10 mol % K(O-t-Bu) MeOH (2.0 equiv) toluene/THF, rt, 4 h Enantioselective Borylation of Ketones
  • 77. N H F O O O (−)-paroxetine N N N N N OPh NH2 O ibrutinib WAY-163909 N N H N OH (−)-preclamol N N Me H Me Me O H N O Me (−)-Physostigmine Novel Boron Reagents for Alkaloid Synthesis N OH (–)-preclamol N O Ph PhO O zamifenacine ibrutinib Pyridine and its Derivatives in Heterocycles in Natural Product Synthesis, Majumdar, K. C.; Chattopadhyay, S. K., Ed.; Wiley-VCH, Weinheim, 2011, Chap. 8, pp. 267.
  • 78. N H F O O O (−)-paroxetine N N N N N OPh NH2 O ibrutinib WAY-163909 N N H N OH (−)-preclamol N N Me H Me Me O H N O Me (−)-Physostigmine Novel Boron Reagents for Alkaloid Synthesis N OH (–)-preclamol N O Ph PhO O zamifenacine ibrutinib Pyridine and its Derivatives in Heterocycles in Natural Product Synthesis, Majumdar, K. C.; Chattopadhyay, S. K., Ed.; Wiley-VCH, Weinheim, 2011, Chap. 8, pp. 267. N-Heterocyclic borons N H B R N H R1 B R
  • 79. N H F O O O (−)-paroxetine N N N N N OPh NH2 O ibrutinib WAY-163909 N N H N OH (−)-preclamol N N Me H Me Me O H N O Me (−)-Physostigmine Novel Boron Reagents for Alkaloid Synthesis *LCu B N R3 R1 R2 N R1 R2 Novel enantioselective borylation Abundant, cheap and readily available N OH (–)-preclamol N O Ph PhO O zamifenacine ibrutinib Pyridine and its Derivatives in Heterocycles in Natural Product Synthesis, Majumdar, K. C.; Chattopadhyay, S. K., Ed.; Wiley-VCH, Weinheim, 2011, Chap. 8, pp. 267. N-Heterocyclic borons N H B R N H R1 B R
  • 80. Hydrogenation Electrophilic allylic substitution Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 7614. Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314. Trost ligand (S,S)-(R,R)-PhTRAP Fe Fe PPh2PPh2 O N H HN O Ph2P PPh2 2.5 mol % Pd2(dba)3CHCl3 7.5 mol % chiral ligand 9-BBN-C6H13 (1.05 equiv) CH2Cl2, 4 °C N H N + HO MeO MeO 3 equiv 92%, 85% ee 1.0 mol % [Rh(nbd)2]SbF6 1.05 mol % PhTRAP 10 mol % Cs2CO3 i-PrOH, H2 (5.0 MPa) 60 °C, 2 h N Ac N Ac 91%, 91% ee Asymmetric Dearomatizations
  • 81. Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem., Int. Ed. 2015, 30, 8809. The first enantioselective carbon-boron bond forming dearomatization by copper(I) catalysis✓ Direct synthesis of chiral boryl-indolines from readily available indoles✓ N O OMe Cbz + B B 2.0 equiv O OO O 10 mol % Cu(O-t-Bu) / L* 10 mol % Na(O-t-Bu) t-BuOH (2.0 equiv) THF, 30 °C, 20 h N Cbz B(pin) OMe O 98%, d.r. 97:3 93% ee P P Me Me Me Me Me Me Me Me L* = (R,R)-xyl-BDPP Enantioselective Borylative Dearomatization
  • 82. Coordinationσ-Bond metathesis Diastereoselective protonation 3,4-Addition and toutomerization Steric repulsion Cu B P P P P = (R,R)-xyl-BDPP (pin)B−(O-t-Bu) N Cbz O OMe Cu B PP N Cbz O OMeB P P N Cbz O OMeB H O H O Cu(O-t-Bu) P P diboron substrate HO disfavored favored Cu Cu P P A B C D E N Cbz B(pin) OMe OH Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem., Int. Ed. 2015, 30, 8809. Proposed Reaction Mechanism
  • 83. Coordinationσ-Bond metathesis Diastereoselective protonation 3,4-Addition and toutomerization Steric repulsion Cu B P P P P = (R,R)-xyl-BDPP (pin)B−(O-t-Bu) N Cbz O OMe Cu B PP N Cbz O OMeB P P N Cbz O OMeB H O H O Cu(O-t-Bu) P P diboron substrate HO disfavored favored Cu Cu P P A B C D E N Cbz B(pin) OMe OH Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem., Int. Ed. 2015, 30, 8809. MeOH: 94%, 94% ee d.r. 75:25 t-BuOH: 98%, 93% ee d.r. 97:3 Proposed Reaction Mechanism
  • 84. 10 mol % Cu(O-t-Bu) 10 mol % chiral ligand 10 mol % Na(O-t-Bu) N O OMe Cbz N O OMe Cbz B(pin) 0.5 mmol + O B O B O O 2.0 equiv t-BuOH (2.0 equiv) THF, 30 °C, 18−48 h NMR yield (%) PP Me Me Me Me Me Me Me Me PP P P Me Me Me Me (R,R)-BenzP* 77%, d.r. 91:9 61% ee (R,R)-Me-Duphos 71%, d.r. 97:3 37% ee P P Me tBu tBu Me N N P P Me tBu tBu Me (R,R)-3,5-xyl-BDPP 98%, d.r. 97:3 93% ee (R,R)-BDPP 98%, d.r. 89:11 74% ee (R,R)-QuinoxP* 93%, d.r. 90:10 27% ee Ligand Screening Kubota, K.; Hayama, K. Ito, H. Angew. Chem., Int. Ed. 2015, 54, 8809.
  • 85. N Cbz B(pin) OMe OF 93% yield d.r. 97:3, 95% ee N Cbz B(pin) OMe OCl 93% yield d.r. 93:7, 95% ee N Cbz B(pin) OMe OBr 96% yield d.r. 97:3, 92% ee N Cbz B(pin) OMe OMeO 99% yield d.r. 97:3, 97% ee N Cbz B(pin) OMe O 88% yield d.r. 97:3, 93% ee MeO N Cbz B(pin) OMe O 99% yield d.r. 93:7, 86% ee Br N Cbz B(pin) OMe O 82% yield d.r. 83:17, 89% ee N O OMe Cbz 10 mol % Cu(O-t-Bu) 10 mol % (R,R)-xyl-BDPP B2(pin)2 (2.0 equiv) 10 mol % Na(O-t-Bu) t-BuOH (2.0 equiv) THF, 30 °C, 4−18 h N Cbz B(pin) OMe O R1 R2 R1 R2 Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem., Int. Ed. 2015, 30, 8809. Borylative Dearomatization of Various Indoles
  • 86. CuCl (5 mol %) Xantphos (5 mol %) ClCO2Me (1.0 equiv) K(O-t-Bu)/THF (1.0 equiv) MeOH (2.0 equiv), rt, N + B B 1.2 equiv O OO O N MeO O B O O detected by GC-Mass decomposed during purification predicted structures N MeO O B O O+Possible intermediate NO MeO Cl O P P Ph Ph Ph Ph CuBvia Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Submitted. Initial Attempt for Chiral Boryl-Piperidine
  • 87. cat. Cu/L* B2(pin)2 alkoxide base alcohol N N RO O ClCO2R hydride source N RO O N RO O B(pin) B(pin) N RO O (pin)B N RO O B(pin) * * * * Regioselective? Enantioselective? No examples of selective borylation of conjugated dienamines ClCO2R NaBH4 or LiBH4 ✓ ✓ cat. Cu(I)/L* B2(pin)2 alkoxide base alcohol Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Submitted. Alternative Strategy: Sequencial Method
  • 88. cat. Cu/L* B2(pin)2 alkoxide base alcohol N N RO O ClCO2R hydride source N RO O N RO O B(pin) B(pin) N RO O (pin)B N RO O B(pin) * * * * Regioselective? Enantioselective? No examples of selective borylation of conjugated dienamines ClCO2R NaBH4 or LiBH4 ✓ ✓ cat. Cu(I)/L* B2(pin)2 alkoxide base alcohol Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Submitted. Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226. MeOH (2.0 equiv) THF,−20 °C, 22 h 5 mol% Cu(O-t-Bu)/ (R,R)-Me-Duphos 90%, 95% ee B(pin) P P Me Me Me Me (R,R)-Me-Duphos + B B 1.5 equiv O OO O cf. Enantioselective monoborylation of carbocyclic dienes 10 mol % Cu(O-t-Bu)/ (R,R)-Me-Duphos MeOH (1.0 equiv) THF, –20 °C, 22 h 90%, 95% ee P P Me Me Me Me (R,R)-Me-Duphos Alternative Strategy: Sequencial Method
  • 89. Pyridines to 3-Substituted Piperidines CuCl (5 mol %) chiral ligand (5 mol %) 3 (1.2 equiv) K(O-t-Bu) (20 mol %) MeOH (2 equiv) THF, temp., 2-4 h2a (R)-4a NaBH4 ClCO2Me MeOH −78 °C 1 h, 71%1a N NO MeO NO MeO B(pin) P P Me tBu tBu Me (R,R)-BenzP* 92%, 98% ee N N P P Me tBu tBu Me (R,R)-QuinoxP* 93%, 99% ee O O O O PPh2 PPh2 (R)-SEGPHOS, <5% P P Me Me Me Me (R,R)-Me-Duphos 83%, 93% ee PPh2 PPh2 (R)-SEGPHOS, <5%
  • 90. NaBH4 or LiBH4 ClCO2R3 MeOH −78 °C N R3O O R1 R2 5 mol % CuCl/ (R,R)-QuinoxP* B2(pin)2 (1.2 equiv) K(O-t-Bu) (20 mol %) MeOH (2.0 equiv) THF, –10 °C, 2 h N R3O O R1 R2 B(pin) 76%, 97% ee N BnO O B(pin) N MeO O B(pin) 93%, 99% ee N O O B(pin) 88%, 98% ee N O O B(pin) 90%, 97% ee N PhO O B(pin) 84%, 93% ee N O O B(pin) 91%, 97% ee N MeO O B(pin) 86%, 92% ee N MeO O B(pin) 67%, 96% ee Me Me N MeO O B(pin) Me no reaction 76%, 97% ee N N P P Me tBu tBu Me (R,R)-QuinoxP* 93%, 99% ee 88%, 98% ee 90%, 97% ee 76%, 97% ee 84%, 93% ee 91%, 97% ee 86%, 92% ee 67%, 96% ee Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Submitted. Unprecedented Regio- and Enantioselective
  • 91. CO2Me eOH 78 °C N MeO O aBH4 Ar 5 mol % CuCl/ (S)-SEGPHOS B2(pin)2 (1.2 equiv) K(O-t-Bu) (20 mol %) t-BuOH (2.0 equiv) toluene/DME 0 °C, 2 h N MeO O Ar B(pin) (R)-SEGPHOS O O O O PPh2 PPh2 (R)-SEGPHOS 5 mol % CuCl/ (R)-SEGPHOS B2(pin)2 (1.2 equiv) K(O-t-Bu) (20 mol %) t-BuOH (2.0 equiv) toluene/DME/THF (6:6:1), 0 °C, 2 h N MeO O B O O Me 91%, d.r. 98:2 95% ee N MeO O B O O OMe 82%, d.r. 96:4 96% ee 90%, d.r. 97:3 92% ee N MeO O B 93%, d.r. 99:1 39% ee *(R,R)-QuinoxP* was used. O O N MeO O B O O F 91%, d.r. 96:4 96% ee *(S)-SEGPHOS was used. Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Submitted. Diastereo- and Enantioselective Borylation
  • 92. (−)-Paroxetine Antidepressant drug 3. MsCl (1.5 equiv) Et3N (3.0 equiv) CH2Cl2, 0 °C→rt 1. LiCH2Cl (1.5 equiv) −78 °C→rt, 3 h 2. NaBO3•4H2O (4.0 equiv), rt, 1 h N MeO O B O O d.r. 95:5 96% ee F N MeO O F OMs 77% (3 steps) d.r. 95:5 O O HO (2 equiv) Cs2CO3 (4.0 equiv) MeCN, 90 °C, 2 h then Pd/C, H2, 12 h N MeO O F O 67% (2 steps) d.r. >95:5, 94% ee O O KOH (30 equiv) EtOH/H2O (4:1) 100 °C, 42 h HN F O 61% O O d.r. 96:4 96% ee 77% (3 steps) d.r. 96:4 67% (2 steps) d.r. >95:5, 94% ee 61% Hynes, P. S.; Stupple, P. A.; Dixon, D. J. Org. Lett. 2008, 10, 1389. Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020. KOH (30 equiv) EtOH/H2O (4:1) reflux, 42 h d.r. 96:4 96% ee 77% (3 steps) d.r. 96:4 67% (2 steps) d.r. >95:5, 94% ee 61% Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Submitted. Diastereo- and Enantioselective Borylation
  • 93. Cu-Catalyzed Borylation from Our Group CuX/PR3: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821. + cat. CuX PR3 DMI, rt H3O+ O O B B B O OO O O O 87%
  • 94. Cu-Catalyzed Borylation from Our Group R B OO J. Am. Chem. Soc. 2005 J. Am. Chem. Soc. 2007 B OR O O Angew. Chem., Int. Ed. 2010 BR O O J. Am. Chem. Soc. 2010 (rac)- R B O O Angew. Chem., Int. Ed. 2008 J. Am. Chem. Soc. 2010 C C C B Bu Me H O O J. Am. Chem. Soc. 2008 B O O J. Am. Chem. Soc. 2010 B O O or B B O O O O J. Am. Chem. Soc. 2015 B(pin) Org. Lett. 2012 R B O O Nature Chem. 2010 Bu B O O Angew. Chem., Int. Ed. 2011 RO B OO J. Am. Chem. Soc. 2014 B RSi O O Ph Ph Org. Lett. 2010 B(pin)HO H J. Am. Chem. Soc. 2013 N B(pin) CO2R Angew. Chem., Int. Ed. 2015
  • 95. ¥Funding¥ MEXT PRESTO NEXT MMC FCC Dr. Tatsuo Ishiyama Dr. Yasunori Yamamoto Dr. Tomohiro Seki Dr. Ikuo Sasaki Dr. Eiji Yamamoto Prof. Akira Hosomi Prof. Tsuneo Imamoto Prof. Masaya Sawamura Prof. Tetsuya Taketsugu Prof. Satoshi Maeda Tomoko Ishizuka Chika Kawakami Yuki Kosaka Shin-ichiro Ito Kou Mtsuura Kosuke Nonoyaam Takashi Toyoda Dr. Chongmin Zhong Dr. Yusuke Sasaki Takuma Okura Shun Kunii Koji Kubota Taichi Ozaki Yuta Takenouchi Yuko Horita Kiyotaka Izumi Ryoto Kojima Hiroaki Iwamoto Satoshi Ukigai Dr. Ryohei Uematsu Acknowledgements