SlideShare a Scribd company logo
1 of 38
Download to read offline
配位・挿⼊入機構による  
極性モノマー/エチレンの直鎖コポリマー合成  
配位⼦子の設計と分⼦子量量への影響
2014,  12,  9  
後期雑誌会  
岩本  紘明
ポリエチレンの種類
1953,  Ziegler-‐‑‒Natta  Catalyst
■  低密度度ポリエチレン  (LDPE)
密度度:  0.910–0.940  g/cm3  
  
合成法:  ラジカル重合  
性質:  柔らかい,  透明  
構造:  分岐型
■  ⾼高密度度ポリエチレン  (HDPE)
密度度:  >0.942  g/cm3
  
合成法:  ⾦金金属触媒重合  
性質:  ⾼高強度度,  結晶性  
構造:  直鎖
1933,  Imperial  Chemical  Industries  (ICI)
n
O2 (radical initiator)
10–20 MPa
Karl	
  Ziegler Guilio	
  Natta
n
TiCl4, Et3Al
2
狭い分⼦子量量分散度度  (ca.  2)  
タクチシティーの制御  (アイソタクチック  or  シンジオタクチック  )  
⾦金金属触媒によるポリオレフィン重合の発達
■  不不均⼀一系  触媒  (Multi-‐‑‒Site  Type):  Zieglar-‐‑‒Natta  Catalyst
■  均⼀一系  触媒    (Single-‐‑‒Site  Type):  Metallocene  catalyst
問題点:  分⼦子量量分散度度  (ca.4),  
                      微⼩小構造のコントロール
Ti Ti
Ti
Zr
Cl
Cl
Cp2ZrCl
	
  Kaminsky	
  Catalyst
Sinn, H; Kaminsky, W; Vollmer, H. -J.; Woldt, E. Angew. Chem. Int. Ed. 1980, 19, 390.
Walter  Kaminsky
年年間5百万トンのLLDPE(Linear  Low  Density  Polyethylene)が  
Single-‐‑‒Site  触媒で製造されている
Baier, M. C.; Zuideveld, M. A.; Mecking, S. Angew. Chem. Int. Ed. 2014, 53, 9722.
Multi-‐‑‒site
Cp2ZrCl, MAO
3
⾦金金属触媒による配位­−挿⼊入重合の⼀一般的な重合機構
L
L
M
P
H
L
L
M
P
H
L
L
M
P
L
L
M
H
L
L
M
P H
L
L
M
P H
P
直鎖ポリマー オリゴマー 分岐ポリマー
propagation chain  transfer
β-‐‑‒hydride  
elimination chain  walking
branch  formation
Nakamura. A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215.
4
コポリマーの種類
グラフトコポリマー
ブロックコポリマー
末端修飾型ポリオレフィン
局在型 分散型
■  機能性官能基をポリマーへと導⼊入することで機能性の発現  
特性:    粘着⼒力力,  染⾊色性,  印刷適性,  適合性  
分岐型コポリマー  (低密度度)  
合成:ラジカル共重合
直鎖コポリマー  (⾼高密度度)  
合成:  今回のテーマ
Nakamura. A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215.
5
極性モノマーとエチレンの直鎖コポリマー
Post-‐‑‒functionalization
1)  ROMP
2)  Hydrogenaion
1)  ADMET
2)  Hydrogenaion
過酷な反応条件
特異異なモノマー  
&  
多段階合成
直接的なアプローチ
Copolymerization
n
FG
FG
n n
+ FG
FG
yx n
極性モノマーの効果により材料料表⾯面の性質を変える
FG
yx n
直鎖コポリマー ⾼高密度度ポリエチレンの応⽤用範囲の拡⼤大
Nakamura. A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215.
6
直鎖コポリマー合成における障害
■  従来の前期遷移⾦金金属触媒による合成
+ FG
FG
mn
Early  Transition  Metal  
Catalyst(Zr,  Ti,  etc.)
■  よりオレフィンと親和性の⾼高い後期遷移⾦金金属触媒による合成
酸素原⼦子などを含む極性ビニルモノマーは触媒を失活させてしまう
L
L
M
R
H
L
L
M
R
H
β-‐‑‒Hydride  Elimination
β-‐‑‒⽔水素脱離離の競合により⾼高分⼦子量量体を得ることが困難
配位⼦子の効果による成⻑⾧長反応のコントロールへ
L=ligand
M=Ni  or  Pd
Nakamura. A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215.
Oligomer
L
L
M
R
Polymer
propagation
Chain  Transfer
7
後期遷移⾦金金属触媒によるポリマー合成
■  αジイミン配位⼦子を⽤用いた⾼高分⼦子量量体重合の達成
  Brookhart  Catalyst
N N
Ni
Br Br
Maurice  S.  Brookhart
問題点:  β⽔水素脱離離を抑制できていないので分岐型ポリマーが⽣生成する
Chain  Walking
嵩⾼高い配位⼦子により連鎖移動反応を抑制  →  ⾼高分⼦子量量体(>105  
g/mol)
N
N
Ni
P
H
N
N
Ni
P
H
N
N
Ni
P H
N
N
Ni
H
P
N
N
Ni
P
N
N
Ni
P H
propagation
Chain  Transfer
Ittel. S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169.
Johnson, K. L.; Brookhart, M. et al. J. Am. Chem. Soc. 1995, 117, 6414.
n
Ni Catalyst / MAO
(0.83×10-6 mol)
toluene, 25 ºC, 30 min
1 atm
Mn = 190×103 g/mol
Mw / Mn = 2.2
branches / 1000C = 71
Tm = 39 ºC
8
ホスフィンースルホン酸配位⼦子の登場
Drent, E.; van Dijk, R.; van Ginkel, R. van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 744.
異異なる元素が⾦金金属上に配位した⾮非対称⼆二座配位⼦子が直鎖の合成に有利利なのでは?
1987年年、Union  CarbideのMurrayがホスフィンースルホン酸配位⼦子を⽤用いた  
エチレンのオリゴマー化を報告
1964年年、SHOP  (Shell  Higher  Olefin  Process)  の開発
酸素とリンがNiに配位する  
触媒を⽤用いた直鎖C4–C8脂肪族  
αオレフィンの⼯工業的⽣生産
Keim, W. Angew. Chem. Int. Ed. 2013, 52, 12492.
P
O
Ni
Ph
Ph
Ph3P
Ph
Ph
年年間200,000トン
2002年年、ShellのDrentらアクリル酸メチルを⽤用いた直鎖コポリマー合成を報告
O
O+
Pd(OAc)2 (0.1 mmol)
ligand (0.12 mmol)
toluene (25 ml)
80 ºC, 15 h25 ml30 bar Mn = 12.8×103 g/mol
Mw / Mn = 1.6
CO2Me
yx n
P
S OHO
O
R1 R1
R1 = 2-MeO-C6H4
9
⾮非対称⼆二座配位⼦子はcis-‐‑‒体とtrans-‐‑‒体が存在する
■  X線構造解析による⽴立立体構造の決定
cis trans
P
S OO
O
Pd
Me
N
R1 R1
P
S OO
O
Pd
Me
R1 R1
N
MeO
R1 =
cis-‐‑‒体のみ単離離 X-ray structure of cis-complex
R1 = 3.80%, R2 = 8.86%, GOF = 1.106
cis trans
P
S OO
O
Pd
Me
N
Me Me
P
S OO
O
Pd
Me
Me Me
N
■  計算による解析
0 Kcal/mol +10.7 Kcal/mol
TS
+20.6 Kcal/mol
B3LYP/ 6-31G* and Lanl2dz
Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088.
trans-‐‑‒体の⽅方が不不安定  
異異性化には⼤大きな  
エネルギーが必要
アルキル配位⼦子の強いトランス影響によりcis-‐‑‒体が安定化する
10
+17.0
TS  
+23.7
TS  +27.7
–1.2
–10.6
P
O
Pd
P
O
Pd
H
P
O
Pd
Py
P
O
Pd
+7.6
ポリエチレン成⻑⾧長反応の各段階のエネルギー計算
0.0
TS  
+17.5
TS  +38.9
+8.7
B3LYP/  6-‐‑‒31G*  and  Lanl2dz
Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088.
P
O
P
S OO
O
Me Me
=
P
O
Pd
Py
P
O
Pd
P
O
Pd
P
O
Pd
H
ΔG  [kcal/mol]
cis-‐‑‒trans異異性化の経路路
11
βヒドリド脱離離のエネルギー計算
B3LYP/  6-‐‑‒31G*  and  Lanl2dz
Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088.
P
O
Pd
Py
0.0
+10.7
TS  
+27.4
+19.6
TS  
+19.9
+9.4
ΔG  [kcal/mol]
P
O
Pd
Py
TS  
+20.6
TS  
+20.4
P
O
Pd
H
+18.6
P
O
Pd
H
P
O
Pd
Hcis-‐‑‒trans異異性化の遷移状態  
ピリジンの脱離離の遷移状態  
のエネルギー準位が⾼高い
←  異異性化において中間体の存在が⽰示唆される
12
cis-‐‑‒trans異異性化の経路路
B3LYP/  6-‐‑‒31G*  and  Lanl2dz
Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088.
cis-‐‑‒  
0.0  kcal/mol
intermediate  
18.6  kcal/mol
スルホン酸のもう⼀一つの酸素を使った擬似回転(Pseudorotation)の様な機構
Pd
OS
O
P
O
Py
Pd
PyO
OS
O
P
Pd
OS
O
P
O
Py
Pd
OS
O
P
O
Py
TS  
31  kcal/mol
trams-‐‑‒  
10.7  kcal/mol
TS  
+20.6  kcal/mol
TS  
+20.4  kcal/mol
Zhou, X.;Lau, K.-C..;Petro, B. J.; Jordan, R. F. Organometallics. 2014, ASAP.
L2 L5
L1
L3
M
L4
13
L1 L3
L3
L2
M
L5
様々な極性ビニルモノマーとエチレンの共重合を達成
CN
yx n
CN+
2.5 ml4.0 MPa
Mn = 12.3×103
Mw / Mn = 1.6
i.r. = 2.0%, Tm = 121.4
Pd catalyst (0.01 mmol)
toluene (25 ml)
80 ºC, 270 h
P
S OO
O
Pd
Me
N
R1 R1
Kochi, T.; Noda, S.; Yoshimura. K.; Nozaki, K. J. Am. Chem. Soc. 2007, 129, 8948.
F+
0.28 MPa1.4 MPa
Pd catalyst (0.01 mmol)
toluene (50 ml)
80 ºC, 270 h F
yx n
Mn = 14.5×103
Mw / Mn = 3.0
Tm = 132.6 ºC
P
S OO
O
Pd
Me
N
R1 R1
R1 = 2-MeO-C6H4
R1 = 2-MeO-C6H4
Weng, W.; Shen, Z.; Jordan. R. F. J. Am. Chem. Soc. 2007, 129, 15450.
■  アクリロニトリルとの共重合
■  フッ化ビニルとの共重合
■  その他多くの共重合が報告されている
OEt
yx n
Mn = 4.8×103
Mw / Mn = 2.0
i.r. = 2.0%
OO O
n
Mn = 8.0×103
Mw / Mn = 1.7
x y
Jordan, R. F. et al. J. Am. Chem. Soc. 2007, 129, 8946.
Claverie, J. P. et al. Macromolecules. 2008, 41, 2309.
yx n
Mn = 6.5×103
Mw / Mn = 2.4
i.r. = 4.9%
O
Sen, A. et al. Organometallics. 2008, 27, 3331.
14
ホスフィン­−スルホン酸配位⼦子の問題点
ポリエチレン系プラスチックの実⽤用的な平均分⼦子量量(Mn)は105  
g/mol  以上
現時点では、分⼦子量量が数万程度度と⼩小さい
P
S OO
O
R2
M
R3
L
R1 R1
P上の置換基が分⼦子量量に与える  
影響を検討する
15
P上の置換基が与える分⼦子量量への影響
Neuwald, B.; Falivene, L.; Caporaso, L.; Cavallo, L.; Mecking, S. Chem. Eur. J. 2013, 19, 17788.
MeO
OMe
Ar/(MeO)21
MeO
MeO
R1 = R2 =
O MeO
MeO
R1 = R2 =
cHexO/(MeO)21
Me
MeO
MeO
OMe
Me/(MeO)31
R1 = R2 =
MeO
OMe MeO MeO
MeO
MeO O F3C
MeO
MeO
OMe
iPrO
iPrO
P
S OO
O
Pd
Me
R1R2
R1 = R2 =
Ph1 Ar1 (MeO;Me2)1 (MeO)21
MeO1 cHexO1 H1 CF31 (MeO)31 (MeO)31
DOI: 10.1002/chem.201301365
Exploring Electronic and Steric Effects on the Insertion and Polymerization
Reactivity of Phosphinesulfonato PdII
Catalysts
Boris Neuwald,[a]
Laura Falivene,[b]
Lucia Caporaso,*[b]
Luigi Cavallo,[c]
and
Stefan Mecking*[a]
Introduction
The catalytic insertion polymerization of ethylene and pro-
pylene is one of the most well-studied chemical reactions. In
terms of applications, it is employed for the production of
more than 70 million tons of polyolefins annually. However,
an insertion polymerization of polar-substituted vinyl mono-
mers had remained elusive for a long time. Copolymeriza-
tion with ethylene was achieved for the first time with cat-
ionic PdII
diimine complexes. In this case, highly branched
copolymers are formed, which consist of ethylene as the
major component (!75 mol%) and contain acrylate units
situated preferentially at the ends of the branches.[1,2]
By
contrast, neutral arylphosphinesulfonato PdII
complexes co-
polymerize methyl acrylate (MA) and ethylene to linear
random copolymers.[3]
This catalyst system has recently at-
tracted much attention owing to the variety of polar mono-
mers that can be copolymerized with ethylene, including
acrylonitrile,[4,5]
vinyl acetate,[6]
and acrylic acid.[7,8]
Phos-
ACHTUNGTRENNUNGphinesulfonato PdII
methyl complexes are well-defined cata-
lyst precursors that can provide a convenient entry into the
catalytic cycle.[9]
For such complexes as (P^O)PdMe(L) (MeO
1-L; P^O=k2
-
P,O-(2-MeOC6H4)2PACHTUNGTRENNUNG(C6H4SO2O), Figure 1), the coordinat-
ing monodentate ligand L plays an important role for the
Abstract: Thirteen different symmetric
and asymmetric phosphinesulfonato
palladium complexes ([{(X
1-Cl)-m-M}n],
M=Na, Li, 1=X
ACHTUNGTRENNUNG(P^O)PdMe) were
prepared (see Figure 1). The solid-state
structures of the corresponding pyri-
dine or lutidine complexes were deter-
mined for (MeO)2
1-py, (iPrO)2
1-lut,
(MeO,Me2)
1-lut, (MeO)3
1-lut, CF3
1-lut, and
Ph
1-lut. The reactivities of the catalysts
X
1, obtained after chloride abstraction
with AgBF4, toward methyl acrylate
(MA) were quantified through deter-
mination of the rate constants for the
first and the consecutive MA insertion
and the analysis of b-H and other de-
composition products through NMR
spectroscopy. Differences in the homo-
and copolymerization of ethylene and
MA regarding catalyst activity and sta-
bility over time, polymer molecular
weight, and polar co-monomer incor-
poration were investigated. DFT calcu-
lations were performed on the main in-
sertion steps for both monomers to ra-
tionalize the effect of the ligand substi-
tution patterns on the polymerization
behaviors of the complexes. Full analy-
sis of the data revealed that: 1) elec-
tron-deficient catalysts polymerize with
higher activity, but fast deactivation is
also observed; 2) the double ortho-sub-
stituted catalysts (MeO)2
1 and (MeO)3
1
allow very high degrees of MA incor-
poration at low MA concentrations in
the copolymerization; and 3) steric
shielding leads to a pronounced in-
crease in polymer molecular weight in
the copolymerization. The catalyst
properties induced by a given P-aryl
(alkyl) moiety were combined effec-
tively in catalysts with two different
non-chelating aryl moieties, such as
cHexO/(MeO)2
1, which led to copolymers
with significantly increased molecular
weights compared to the prototypical
MeO
1.
Keywords: catalysis · coordination
modes · density-functional calcula-
tions · kinetics · reaction mecha-
nisms · theoretical chemistry
[a] Dr. B. Neuwald, Prof. Dr. S. Mecking
Chair of Chemical Materials Science, Department of Chemistry
University of Konstanz
78464 Konstanz (Germany)
Fax: (+49)7531-88-5152
E-mail: Stefan.Mecking@uni-konstanz.de
[b] Dr. L. Falivene, Dr. L. Caporaso
Department of Chemistry and Biology
FULL PAPER
Stefan  Mecking    
Universität  Konstanz
16
P上の置換基の⽴立立体障害と官能基の効果
Anselment, T. M. J.; Wichmann, C.; Anderson, C. E.; Herdtweck, E.; Rieger, B. Organometallics 2011, 30, 6602.
■  P上の置換基の⽴立立体障害が分⼦子量量に影響を及ぼす傾向がある
P
S OO
O
Pd
Me
N
R1 R1
(0.01 mmol)
MeO
MeOR1 =
■  P上の置換基の官能基の影響は少ない
P
S OO
O
Pd
Me
N
R1 R1
X = 20
Mn = 1.8×103
Mw / Mn = 2.2
X = 5
Mn = 33×103
Mw / Mn = 1.7
n
toluene (30 ml), 50 ºC, 2 h
X bar
n
toluene (50 ml), 80 ºC, 1 h
30 atm
(0.01 mmol)
R1 =
MeO
Me
Mn = 19.1×103
Mw / Mn = 2.1
Mn = 18.8×103
Mw / Mn = 2.1
Vela, J.; Lief, G. R.; Shen, Z.; Jordan, R. F. Organometallics 2007, 26, 6624.
17
P上の置換基の⽴立立体障害と官能基の効果
(0.002 mmol)
n
toluene (100 ml), 80 ºC, 30 min
5 bar
AgBF4 (0.002 mmol)
置換基の⽴立立体障害と分⼦子量量についての  
相関は得られなかったが  
電⼦子供与性の置換基で分⼦子量量の  
増⼤大が⾒見見られた
Neuwald, B.; Falivene, L.; Caporaso, L.; Cavallo, L.; Mecking, S. Chem. Eur. J. 2013, 19, 17788.
18
MeO
OMe
Ar1
P
S
O
O
O
Pd
Me
R1
R2
Cl
Na
2
R1 = R2 =
O MeO
MeO
R1 = R2 =
cHexO/(MeO)21
配位⼦子と分⼦子量量の関係を解明する
Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898.
P上のアルキル基の⽴立立体障害と分⼦子量量の相関を検討
従来では実現できなかった  
⾼高分⼦子量量(>105  
g/mol)の  
直鎖コポリマーの合成を達成
Kyoko  Nozaki    
The  Unversity  of  Tokyo
19
P
S OO
O
Pd
Me
N
R R
ジアルキルホスフィノ基を持つ配位⼦子
Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14606.
■  酢酸ビニルとエチレンの共重合
■  アリルモノマーとの重合
Ito, S.; Kanazawa, M.; Munakata, K.; Kuroda, J.; Nozaki, K. J. Am. Chem. Soc. 2011, 133, 1232.
P
S OO
O
Pd
Me
N
Cy Cy
(0.10 mmol)
O
toluene (3 ml)
80 ºC, 15 h12 ml Mn = 5.8×103
Mw / Mn = 2.3, i.r. = 1.9%
OAc
yx n
+
3.0 MPa
O
toluene (12 ml)
80 ºC, 3 h
3.0 ml Mn = 4.2×103
Mw / Mn = 2.3, i.r. = 0.9%
yx n
3.0 MPa
+
Cl
Cl
P
S OO
O
Pd
Me
N
Cy Cy
(0.10 mmol)
ラジカル重合では使⽤用できないアリルモノマーを⽤用いた共重合
FG
stable allyl radical
20
今回検討する配位⼦子
P
S OO
O
Pd
Me
N
R R
Figure 1. Steric maps of palladium/alkyl
The P−Pd−O plane is placed in the xz
containing the Pd center. The methyl an
Scheme 1. Copolymerization of Et
Monomers 2a−f with Palladium/A
Catalysts 1a−f
Journal of the American Chemic
e 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
nal of the American Chemical Society Communication
A, i-Pr B, t-Bu C, Cy D, 3-Pen E, 2,6-Dmhep F, Men
Pdまわりの⽴立立体障害の可視化  →  Men基を持つが最も⼤大きな⽴立立体障害をもつ
re 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
rnal of the American Chemical Society Communication
ure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
e P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
urnal of the American Chemical Society Communication
gure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
he P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
urnal of the American Chemical Society Communication
Figure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
The P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
ournal of the American Chemical Society Communication
Figure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
The P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
Journal of the American Chemical Society Communication
Steric
Map
R =
■  ジアルキルホスフィノ基をもつ触媒は詳細な検討が未だなされていない
Figure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
The P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
Journal of the American Chemical Society Communication
R = Alkyl
Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898.
21
エチレンの重合におけるP上の置換基の効果
P
S OO
O
Pd
Me
N
R R
R  =  Men  で分⼦子量量が100×103
  を超える
(0.010 mmol)
n
toluene (100 ml), 80 ºC, 1 h
3.0 MPa
Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898.
entry
1
2
3
4
5
6
i-Pr
t-Bu
Cy
3-Pen
2,6-Dmhep
Men
yielda
(%)
6.41
18.6
11.5
1.25
1.97
2.05
activity
(g/mmol•h)
641
1860
1150
125
200
205
aIsolate yield. bMolecular Weights determined by SEC using polystyrene
standards, and universal calibration.
R
Mn
b
(×103 g/mol)
6.7
6.2
9.9
33
72
169
Mw/
Mn
b
2.7
4.1
2.4
2.4
2.4
1.5
22
エチレンの重合における置換基と分⼦子量量の相関
P
S OO
O
Pd
Me
N
R R
(0.010 mmol)
n
toluene (100 ml), 80 ºC, 1 h
3.0 MPa
R = MeO
OMe
Mn = 57–96×103 Mn = 169×103
⾼高分⼦子量量体を与えるビアリール系置換基よりも⾼高分⼦子量量体を与える
⽴立立体障害のパラメータと分⼦子量量の相関は…
sterimol
entry
1
2
3
4
5
6
i-Pr
t-Bu
Cy
3-Pen
2,6-Dmhep
Men
B5R
3.07
3.09
3.38
4.28
5.22
5.64
Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898.
Haper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366.
sterimol  B5  パラメーターとほぼ⼀一致
23
アリルモノマーとの共重合における⽴立立体障害の相関
toluene (7.5 ml)
80 ºC, 3 h7.5 ml
yx n
3.0 MPa
+
OAc
OAc
P
S OO
O
Pd
Me
N
R R
(0.010 mmol)
entry
1
2
3
4
5
6
i-Pr
t-Bu
Cy
3-Pen
2,6-Dmhep
Men
yielda
(g)
0.35
0.31
0.30
0.36
0.35
1.65
activity
(g/mmol•h)
12
10
10
12
12
55
aIsolate yield. bMolecular Weights determined by SEC using polystyrene standards,
and universal calibration. cMolar incomporration ratios of allyl monomer determined
by 1H NMR analysis.
R
Mn
b
(×103 g/mol)
5.2
10.3
7.8
17
29
177
Mw/
Mn
b
2.4
5.1
2.0
2.4
2.8
2.0
i.r.c
1.9
0.6
1.8
1.5
1.1
0.6
Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898.
共重合においても分⼦子量量が100×103  
を超える
24
さまざま極性モノマーとの共重合
Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898.
entry
1
2
3
4
5
6
7
8
9
10
11
12
13
14
yielda
(g)
1.65
1.05
1.10
0.48
0.30
0.35
2.02
0.88
0.44
0.24
1.61
1.30
0.30
0.34
activity
(g/mmol•h)
55
35
37
16
2.3
2.2
67
29
15
1.6
54
8.6
2.0
2.3
aIsolate yield. bMolecular Weights determined by SEC using polystyrene standards, and universal calibration.
cMolar incomporration ratios of allyl monomer determined by 1H NMR analysis.
comonomer
Mn
b
(×103 g/mol)
177
47
86
36
17
33
72
40
8.5
6.1
15
11
14
4.8
Mw/
Mn
b
2.0
2.2
2.1
1.7
2.0
2.3
2.5
2.0
2.0
1.8
4.1
2.4
1.9
2.7
i.r.c
0.6
2.5
2.2
5.1
7.8
0.6
1.4
3.0
8.3
11
1.1
7.7
0.7
1.3
ethylene
(MPa)
3.0
3.0
2.1
1.0
1.0
3.0
3.0
2.0
1.0
1.0
3.0
1.0
3.0
3.0
monomer
(mL)
7.5
7.5
7.5
7.5
12
3
7.5
7.5
7.5
12
7.5
12
7.5
12
solvent
(mL)
7.5
7.5
7.5
7.5
3
12
7.5
7.5
7.5
3
7.5
3
7.5
3
T
(ºC)
80
100
80
100
100
80
80
80
100
100
80
100
80
80
t
(h)
3
3
3
3
13
16
3
3
3
15
3
15
15
15
CH2OAc
CH2Cl
CO2Me
OBu
CN
OAc
P
S OO
O
Pd
Me
N
R R
(0.010 mmol)
R =
X+ toluene (7.5 ml)
temp, time X
yx n
25
Men基の共重合における分⼦子量量に対する効果
Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898.
allyl acetate (R = Men)
metyl acrylate(R = Men)
allyl acetate (R = Cy)
methyl acrylate (R = 2-MeO-C6H4)
様々なモノマー⽐比においてMen基の効果が表れている
Ito, S.; Kanazawa, M.; Munakata, K.; Kuroda, J.; Nozaki, K. J. Am. Chem. Soc. 2011, 133, 1232.
Drent, E.; van Dijk, R.; van Ginkel, R. van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 744.
26
まとめ
P
S OO
O
Pd
Me
N
R R
ホスフィン­−スルホン酸配位⼦子はさまざまな  
極性ビニルモノマーとエチレンを共重合させることが可能。  
配位⼦子の⽴立立体障害を調節することで⾼高分⼦子量量(>105
)の合成を達成。
さらなる、重合機構の解明、新材料料の開発が期待される
強いトランス効果に  
よる錯体の⽴立立体の固定
⾮非対称な配位座を  
もつことで重合機構  
をコントロール
中⼼心⾦金金属からやや離離れた  
場所の⽴立立体障害が効果的
27
resulting polyethylenes remained relatively low (Mn < 10 × 103
g/mol, entries 1−3 in Table 1). When bulkier ligands such as 1d
(3-Pen), 1e (2,6-Dmhep), and 1f (Men) were used, the Mn of the
polyethylenes increased to 33 × 103
, 72 × 103
, and 169 × 103
g/
mol, respectively, albeit with lower catalytic activity than 1a−c.
The exceptionally high Mn values achieved with catalyst 1f even
exceeded those gained by bis(2′,6′-dimethoxy-1,1′-biphenyl-2-
yl)phosphine−sulfonate (Mn = 57 × 103
−96 × 103
g/mol, after
ium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
methyl and 2,6-lutidine groups were omitted for the analysis of the steric maps.
on of Ethylene and Polar
adium/Alkylphosphine−Sulfonate
Chemical Society Communication
Steric
Map
ジアリールホスフィノ基の⽴立立体障害
resulting polyethylenes remained relatively low (Mn < 10 × 103
g/mol, entries 1−3 in Table 1). When bulkier ligands such as 1d
(3-Pen), 1e (2,6-Dmhep), and 1f (Men) were used, the Mn of the
polyethylenes increased to 33 × 103
, 72 × 103
, and 169 × 103
g/
mol, respectively, albeit with lower catalytic activity than 1a−c.
The exceptionally high Mn values achieved with catalyst 1f even
exceeded those gained by bis(2′,6′-dimethoxy-1,1′-biphenyl-2-
yl)phosphine−sulfonate (Mn = 57 × 103
−96 × 103
g/mol, after
universal calibration18
).3b,f
To gain a deeper understanding, we
te complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left).
xis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane
ps were omitted for the analysis of the steric maps.
r
Sulfonate
Communication
P
S OO
O
Pd
Me
R1 R1
optimization  by  
BP86/6-‐‑‒31G(d)+Lanl2dz
X-‐‑‒ray  structure
P
S OO
O
Pd
R1 R1
R = MeO
OMe
Figure S2. Taft Es parameters Figure S3. Correlation with %Vbur par
iPr
Cy
3-Pen
DmHep
tBu
1
10
-4 -3 -2 -1
Mn(103)
Taft param. (Es)
iPr
Cy
DmHep
M
tBu
3-Pen
1
10
100
46 48 50 52
Mn(103)
%VBur
iPr
tBu
Cy
3-Pen
DmHep
Men
1
10
100
1000
1 1.5 2 2.5 3
Mn(103)
B1
iPr
tBu
Cy
3-Pen
M
DmHep
1
10
100
1000
2 3 4 5
Mn(103)
ジアリールホスフィノ基の⽴立立体障害The correlations between the steric parameters and the molecular weights are shown below.
Figure S2. Taft Es parameters Figure S3. Correlation with %Vbur parameters
iPr
Cy
3-Pen
DmHep
tBu
1
10
100
-4 -3 -2 -1
Mn(103)
Taft param. (Es)
iPr
Cy
DmHep
Men
tBu
3-Pen
1
10
100
1000
46 48 50 52 54
Mn(103)
%VBur
iPr
tBu
Cy
3-Pen
DmHep
Men
1
10
100
1000
1 1.5 2 2.5 3
Mn(103)
iPr
tBu
Cy
3-Pen
Men
DmHep
1
10
100
1000
2 3 4 5 6
Mn(103)
e correlations between the steric parameters and the molecular weights are shown below.
Figure S2. Taft Es parameters Figure S3. Correlation with %Vbur parameters
iPr
Cy
3-Pen
DmHep
tBu
1
10
100
-4 -3 -2 -1
Mn(103)
Taft param. (Es)
iPr
Cy
DmHep
Men
tBu
3-Pen
1
10
100
1000
46 48 50 52 54
Mn(103)
%VBur
iPr
tBu
Cy
3-Pen
DmHep
Men
1
10
100
1000
1 1.5 2 2.5 3
Mn(103)
iPr
tBu
Cy
3-Pen
Men
DmHep
1
10
100
1000
Mn(103)
%Vburとは
中⼼心⾦金金属から指定された半径内の  
分⼦子の体積の詰まりの程度度を表す
https://www.molnac.unisa.it/OMtools/sambvca.php 12月9日閲覧
Steric  Mapの⾒見見⽅方
%Vburから求められる錯体の  
中⼼心⾦金金属まわりの⽴立立体障害の可視化
Poater, A. et al. Procedia Computer Science. 2013, 18. 845.
Sterimolパラメータの計算
X線構造解析の結果に基づいてソフトウェア:Mol2Molを⽤用いて計算
http://www.gunda.hu/mol2mol/m2m/index.html    12⽉月7⽇日閲覧entry
1
2
3
4
5
i-Pr
t-Bu
Cy
2-bu
2,6-Dmhep
B5R
3.17
3.17
3.49
4.01
5.47
⽂文献値
Hansch, C.; Leo, A. Explording QSAR: Fundamentals and Applications in Chemistry
and Biology; American Chemical Society: Washington, DC, 1995.
速度度論論的にはトランス体が安定
R = 2-MeO-C6H4
quant.
trans : cis = 4 : 1
PR2
S ONaO
O
Pd
Cl
Cl
Pd
N
Me
N
Me
+ CD2Cl2, –25 ºC
P
S OO
O
Pd
Me
R1 R1
N P
S OO
O
Pd
Me
N
R1 R1
+
CD2Cl2, –25 ºC
P
S OO
O
Pd
Me
N
R1 R1
cis only
Zhou, X.;Lau, K.-C..;Petro, B. J.; Jordan, R. F. Organometallics. 2014, ASAP.
M
L1
L3L2
L4
トランス影響    →    熱⼒力力学的安定(静的トランス効果)  
トランス効果  →  速度度論論的安定性(動的トランス効果)
平⾯面四配位錯体においてある配位⼦子が  
トランス位の配位⼦子に影響を与える現象
例例:L1が強いσドナー性  (アルキル基など)  
↓  
L3はアニオン性配位⼦子が有利利
ホスフィンオキサイドでも反応は進⾏行行
Carrow. B. P.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 8802.
全体の反応機構
Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088.
共重合におけるエネルギー計算
Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi, T.; Chung, L. W.; Morokuma, K. J. Am. Chem. Soc. 2010, 132, 16031.
共重合におけるエネルギー計算
Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi, T.; Chung, L. W.; Morokuma, K. J. Am. Chem. Soc. 2010, 132, 16031.

More Related Content

What's hot

今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシンShinya Shimizu
 
単語の分散表現と構成性の計算モデルの発展
単語の分散表現と構成性の計算モデルの発展単語の分散表現と構成性の計算モデルの発展
単語の分散表現と構成性の計算モデルの発展Naoaki Okazaki
 
(2018.3) 分子のグラフ表現と機械学習
(2018.3) 分子のグラフ表現と機械学習(2018.3) 分子のグラフ表現と機械学習
(2018.3) 分子のグラフ表現と機械学習Ichigaku Takigawa
 
Generative Models(メタサーベイ )
Generative Models(メタサーベイ )Generative Models(メタサーベイ )
Generative Models(メタサーベイ )cvpaper. challenge
 
単項イデアル整域の証明 整数環Zがpidである事の証明
単項イデアル整域の証明 整数環Zがpidである事の証明単項イデアル整域の証明 整数環Zがpidである事の証明
単項イデアル整域の証明 整数環Zがpidである事の証明HanpenRobot
 
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...Deep Learning JP
 
スマホと簡易ヘッドセットAryzonで光学シースルーAR
スマホと簡易ヘッドセットAryzonで光学シースルーARスマホと簡易ヘッドセットAryzonで光学シースルーAR
スマホと簡易ヘッドセットAryzonで光学シースルーARTakashi Yoshinaga
 
[DL輪読会]representation learning via invariant causal mechanisms
[DL輪読会]representation learning via invariant causal mechanisms[DL輪読会]representation learning via invariant causal mechanisms
[DL輪読会]representation learning via invariant causal mechanismsDeep Learning JP
 
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"Ryohei Suzuki
 
ユークリッド最小全域木
ユークリッド最小全域木ユークリッド最小全域木
ユークリッド最小全域木理玖 川崎
 
SHAP値の考え方を理解する(木構造編)
SHAP値の考え方を理解する(木構造編)SHAP値の考え方を理解する(木構造編)
SHAP値の考え方を理解する(木構造編)Kazuyuki Wakasugi
 
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?Ichigaku Takigawa
 
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築Kosuke Shinoda
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化gree_tech
 
機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)
機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)
機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)Ichigaku Takigawa
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for VisionDeep Learning JP
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language ModelsDeep Learning JP
 

What's hot (20)

今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン今さら聞けないカーネル法とサポートベクターマシン
今さら聞けないカーネル法とサポートベクターマシン
 
単語の分散表現と構成性の計算モデルの発展
単語の分散表現と構成性の計算モデルの発展単語の分散表現と構成性の計算モデルの発展
単語の分散表現と構成性の計算モデルの発展
 
(2018.3) 分子のグラフ表現と機械学習
(2018.3) 分子のグラフ表現と機械学習(2018.3) 分子のグラフ表現と機械学習
(2018.3) 分子のグラフ表現と機械学習
 
Generative Models(メタサーベイ )
Generative Models(メタサーベイ )Generative Models(メタサーベイ )
Generative Models(メタサーベイ )
 
単項イデアル整域の証明 整数環Zがpidである事の証明
単項イデアル整域の証明 整数環Zがpidである事の証明単項イデアル整域の証明 整数環Zがpidである事の証明
単項イデアル整域の証明 整数環Zがpidである事の証明
 
研究効率化Tips Ver.2
研究効率化Tips Ver.2研究効率化Tips Ver.2
研究効率化Tips Ver.2
 
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
[DL輪読会]Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neu...
 
スマホと簡易ヘッドセットAryzonで光学シースルーAR
スマホと簡易ヘッドセットAryzonで光学シースルーARスマホと簡易ヘッドセットAryzonで光学シースルーAR
スマホと簡易ヘッドセットAryzonで光学シースルーAR
 
[DL輪読会]representation learning via invariant causal mechanisms
[DL輪読会]representation learning via invariant causal mechanisms[DL輪読会]representation learning via invariant causal mechanisms
[DL輪読会]representation learning via invariant causal mechanisms
 
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
 
ユークリッド最小全域木
ユークリッド最小全域木ユークリッド最小全域木
ユークリッド最小全域木
 
SHAP値の考え方を理解する(木構造編)
SHAP値の考え方を理解する(木構造編)SHAP値の考え方を理解する(木構造編)
SHAP値の考え方を理解する(木構造編)
 
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
 
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
PyTorchLightning ベース Hydra+MLFlow+Optuna による機械学習開発環境の構築
 
機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化機械学習モデルのハイパパラメータ最適化
機械学習モデルのハイパパラメータ最適化
 
ELBO型VAEのダメなところ
ELBO型VAEのダメなところELBO型VAEのダメなところ
ELBO型VAEのダメなところ
 
lsh
lshlsh
lsh
 
機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)
機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)
機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models
 

Viewers also liked

北大有機元素化学雑誌会M1田口2014
北大有機元素化学雑誌会M1田口2014北大有機元素化学雑誌会M1田口2014
北大有機元素化学雑誌会M1田口2014Hajime Ito
 
北海道大学有機元素化学抄録会2014
北海道大学有機元素化学抄録会2014北海道大学有機元素化学抄録会2014
北海道大学有機元素化学抄録会2014Hajime Ito
 
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part IIHajime Ito
 
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)Hajime Ito
 
伊藤肇 平25年日本化学会学術賞 講演会資料
伊藤肇 平25年日本化学会学術賞 講演会資料伊藤肇 平25年日本化学会学術賞 講演会資料
伊藤肇 平25年日本化学会学術賞 講演会資料Hajime Ito
 
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part IHajime Ito
 

Viewers also liked (6)

北大有機元素化学雑誌会M1田口2014
北大有機元素化学雑誌会M1田口2014北大有機元素化学雑誌会M1田口2014
北大有機元素化学雑誌会M1田口2014
 
北海道大学有機元素化学抄録会2014
北海道大学有機元素化学抄録会2014北海道大学有機元素化学抄録会2014
北海道大学有機元素化学抄録会2014
 
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料 Part II
 
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
伊藤肇 集中講義(名古屋大学 教員+大学院生参加の講演会)
 
伊藤肇 平25年日本化学会学術賞 講演会資料
伊藤肇 平25年日本化学会学術賞 講演会資料伊藤肇 平25年日本化学会学術賞 講演会資料
伊藤肇 平25年日本化学会学術賞 講演会資料
 
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
有機ホウ素化合物の
新しい合成方法と
発光性メカノクロミズム材料Part I
 

Similar to 北大有機元素化学雑誌会M1岩本2014

Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactionsPallavi Kumbhar
 
prakash_JMS_2015
prakash_JMS_2015prakash_JMS_2015
prakash_JMS_2015omshamli
 
Epoxidation Reaction Lab Report
Epoxidation Reaction Lab ReportEpoxidation Reaction Lab Report
Epoxidation Reaction Lab ReportSamantha Randall
 
Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactionsPriyanka Jaiswal
 
Smith_ProteinScience_2013
Smith_ProteinScience_2013Smith_ProteinScience_2013
Smith_ProteinScience_2013Austin Smith
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52Dinesh Barawkar
 
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Maciej Przybyłek
 
Deciphering reaction mechanism with intermediate trapping
Deciphering reaction mechanism with intermediate trappingDeciphering reaction mechanism with intermediate trapping
Deciphering reaction mechanism with intermediate trappingDaniel Morton
 
Lanthanide shift reagents in nmr
Lanthanide shift reagents in nmrLanthanide shift reagents in nmr
Lanthanide shift reagents in nmrDongguk University
 
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...Trinity College Dublin
 
Electrochemical Behavior of L-Tyrosine at Poly (Dicyclomine Hydrochloride) Fi...
Electrochemical Behavior of L-Tyrosine at Poly (Dicyclomine Hydrochloride) Fi...Electrochemical Behavior of L-Tyrosine at Poly (Dicyclomine Hydrochloride) Fi...
Electrochemical Behavior of L-Tyrosine at Poly (Dicyclomine Hydrochloride) Fi...paperpublications3
 
dynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdfdynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdfQamarIqbal50
 
Determination of reaction mechanisms
Determination of reaction mechanismsDetermination of reaction mechanisms
Determination of reaction mechanismsmulleshm
 
2015 phys chemruss-v.9#2p.185-192
2015 phys chemruss-v.9#2p.185-1922015 phys chemruss-v.9#2p.185-192
2015 phys chemruss-v.9#2p.185-192Konstantin German
 

Similar to 北大有機元素化学雑誌会M1岩本2014 (20)

Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactions
 
2017 apme le-me
2017 apme le-me2017 apme le-me
2017 apme le-me
 
2017 apme le-me
2017 apme le-me2017 apme le-me
2017 apme le-me
 
prakash_JMS_2015
prakash_JMS_2015prakash_JMS_2015
prakash_JMS_2015
 
Research proposal.pptx
Research proposal.pptxResearch proposal.pptx
Research proposal.pptx
 
ja2041139_paper1
ja2041139_paper1ja2041139_paper1
ja2041139_paper1
 
Epoxidation Reaction Lab Report
Epoxidation Reaction Lab ReportEpoxidation Reaction Lab Report
Epoxidation Reaction Lab Report
 
Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactions
 
Smith_ProteinScience_2013
Smith_ProteinScience_2013Smith_ProteinScience_2013
Smith_ProteinScience_2013
 
2006_JSC
2006_JSC2006_JSC
2006_JSC
 
PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52PNAS-1998-Barawkar-11047-52
PNAS-1998-Barawkar-11047-52
 
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
Reaction of aniline with ammonium persulphate and concentrated hydrochloric a...
 
Deciphering reaction mechanism with intermediate trapping
Deciphering reaction mechanism with intermediate trappingDeciphering reaction mechanism with intermediate trapping
Deciphering reaction mechanism with intermediate trapping
 
Lanthanide shift reagents in nmr
Lanthanide shift reagents in nmrLanthanide shift reagents in nmr
Lanthanide shift reagents in nmr
 
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
Understanding ionic structure and dynamics in novel electrolytes; Paving the ...
 
Electrochemical Behavior of L-Tyrosine at Poly (Dicyclomine Hydrochloride) Fi...
Electrochemical Behavior of L-Tyrosine at Poly (Dicyclomine Hydrochloride) Fi...Electrochemical Behavior of L-Tyrosine at Poly (Dicyclomine Hydrochloride) Fi...
Electrochemical Behavior of L-Tyrosine at Poly (Dicyclomine Hydrochloride) Fi...
 
Understanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic InterfaceUnderstanding Dynamic chemistry at the Catalytic Interface
Understanding Dynamic chemistry at the Catalytic Interface
 
dynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdfdynamicchemistryatthecatalyticinterface-190304061810.pdf
dynamicchemistryatthecatalyticinterface-190304061810.pdf
 
Determination of reaction mechanisms
Determination of reaction mechanismsDetermination of reaction mechanisms
Determination of reaction mechanisms
 
2015 phys chemruss-v.9#2p.185-192
2015 phys chemruss-v.9#2p.185-1922015 phys chemruss-v.9#2p.185-192
2015 phys chemruss-v.9#2p.185-192
 

Recently uploaded

Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squaresusmanzain586
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx023NiWayanAnggiSriWa
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxuniversity
 

Recently uploaded (20)

Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squares
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
 

北大有機元素化学雑誌会M1岩本2014

  • 2. ポリエチレンの種類 1953,  Ziegler-‐‑‒Natta  Catalyst ■  低密度度ポリエチレン  (LDPE) 密度度:  0.910–0.940  g/cm3     合成法:  ラジカル重合   性質:  柔らかい,  透明   構造:  分岐型 ■  ⾼高密度度ポリエチレン  (HDPE) 密度度:  >0.942  g/cm3   合成法:  ⾦金金属触媒重合   性質:  ⾼高強度度,  結晶性   構造:  直鎖 1933,  Imperial  Chemical  Industries  (ICI) n O2 (radical initiator) 10–20 MPa Karl  Ziegler Guilio  Natta n TiCl4, Et3Al 2
  • 3. 狭い分⼦子量量分散度度  (ca.  2)   タクチシティーの制御  (アイソタクチック  or  シンジオタクチック  )   ⾦金金属触媒によるポリオレフィン重合の発達 ■  不不均⼀一系  触媒  (Multi-‐‑‒Site  Type):  Zieglar-‐‑‒Natta  Catalyst ■  均⼀一系  触媒    (Single-‐‑‒Site  Type):  Metallocene  catalyst 問題点:  分⼦子量量分散度度  (ca.4),                        微⼩小構造のコントロール Ti Ti Ti Zr Cl Cl Cp2ZrCl  Kaminsky  Catalyst Sinn, H; Kaminsky, W; Vollmer, H. -J.; Woldt, E. Angew. Chem. Int. Ed. 1980, 19, 390. Walter  Kaminsky 年年間5百万トンのLLDPE(Linear  Low  Density  Polyethylene)が   Single-‐‑‒Site  触媒で製造されている Baier, M. C.; Zuideveld, M. A.; Mecking, S. Angew. Chem. Int. Ed. 2014, 53, 9722. Multi-‐‑‒site Cp2ZrCl, MAO 3
  • 4. ⾦金金属触媒による配位­−挿⼊入重合の⼀一般的な重合機構 L L M P H L L M P H L L M P L L M H L L M P H L L M P H P 直鎖ポリマー オリゴマー 分岐ポリマー propagation chain  transfer β-‐‑‒hydride   elimination chain  walking branch  formation Nakamura. A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215. 4
  • 5. コポリマーの種類 グラフトコポリマー ブロックコポリマー 末端修飾型ポリオレフィン 局在型 分散型 ■  機能性官能基をポリマーへと導⼊入することで機能性の発現   特性:    粘着⼒力力,  染⾊色性,  印刷適性,  適合性   分岐型コポリマー  (低密度度)   合成:ラジカル共重合 直鎖コポリマー  (⾼高密度度)   合成:  今回のテーマ Nakamura. A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215. 5
  • 6. 極性モノマーとエチレンの直鎖コポリマー Post-‐‑‒functionalization 1)  ROMP 2)  Hydrogenaion 1)  ADMET 2)  Hydrogenaion 過酷な反応条件 特異異なモノマー   &   多段階合成 直接的なアプローチ Copolymerization n FG FG n n + FG FG yx n 極性モノマーの効果により材料料表⾯面の性質を変える FG yx n 直鎖コポリマー ⾼高密度度ポリエチレンの応⽤用範囲の拡⼤大 Nakamura. A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215. 6
  • 7. 直鎖コポリマー合成における障害 ■  従来の前期遷移⾦金金属触媒による合成 + FG FG mn Early  Transition  Metal   Catalyst(Zr,  Ti,  etc.) ■  よりオレフィンと親和性の⾼高い後期遷移⾦金金属触媒による合成 酸素原⼦子などを含む極性ビニルモノマーは触媒を失活させてしまう L L M R H L L M R H β-‐‑‒Hydride  Elimination β-‐‑‒⽔水素脱離離の競合により⾼高分⼦子量量体を得ることが困難 配位⼦子の効果による成⻑⾧長反応のコントロールへ L=ligand M=Ni  or  Pd Nakamura. A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109, 5215. Oligomer L L M R Polymer propagation Chain  Transfer 7
  • 8. 後期遷移⾦金金属触媒によるポリマー合成 ■  αジイミン配位⼦子を⽤用いた⾼高分⼦子量量体重合の達成  Brookhart  Catalyst N N Ni Br Br Maurice  S.  Brookhart 問題点:  β⽔水素脱離離を抑制できていないので分岐型ポリマーが⽣生成する Chain  Walking 嵩⾼高い配位⼦子により連鎖移動反応を抑制  →  ⾼高分⼦子量量体(>105   g/mol) N N Ni P H N N Ni P H N N Ni P H N N Ni H P N N Ni P N N Ni P H propagation Chain  Transfer Ittel. S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169. Johnson, K. L.; Brookhart, M. et al. J. Am. Chem. Soc. 1995, 117, 6414. n Ni Catalyst / MAO (0.83×10-6 mol) toluene, 25 ºC, 30 min 1 atm Mn = 190×103 g/mol Mw / Mn = 2.2 branches / 1000C = 71 Tm = 39 ºC 8
  • 9. ホスフィンースルホン酸配位⼦子の登場 Drent, E.; van Dijk, R.; van Ginkel, R. van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 744. 異異なる元素が⾦金金属上に配位した⾮非対称⼆二座配位⼦子が直鎖の合成に有利利なのでは? 1987年年、Union  CarbideのMurrayがホスフィンースルホン酸配位⼦子を⽤用いた   エチレンのオリゴマー化を報告 1964年年、SHOP  (Shell  Higher  Olefin  Process)  の開発 酸素とリンがNiに配位する   触媒を⽤用いた直鎖C4–C8脂肪族   αオレフィンの⼯工業的⽣生産 Keim, W. Angew. Chem. Int. Ed. 2013, 52, 12492. P O Ni Ph Ph Ph3P Ph Ph 年年間200,000トン 2002年年、ShellのDrentらアクリル酸メチルを⽤用いた直鎖コポリマー合成を報告 O O+ Pd(OAc)2 (0.1 mmol) ligand (0.12 mmol) toluene (25 ml) 80 ºC, 15 h25 ml30 bar Mn = 12.8×103 g/mol Mw / Mn = 1.6 CO2Me yx n P S OHO O R1 R1 R1 = 2-MeO-C6H4 9
  • 10. ⾮非対称⼆二座配位⼦子はcis-‐‑‒体とtrans-‐‑‒体が存在する ■  X線構造解析による⽴立立体構造の決定 cis trans P S OO O Pd Me N R1 R1 P S OO O Pd Me R1 R1 N MeO R1 = cis-‐‑‒体のみ単離離 X-ray structure of cis-complex R1 = 3.80%, R2 = 8.86%, GOF = 1.106 cis trans P S OO O Pd Me N Me Me P S OO O Pd Me Me Me N ■  計算による解析 0 Kcal/mol +10.7 Kcal/mol TS +20.6 Kcal/mol B3LYP/ 6-31G* and Lanl2dz Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088. trans-‐‑‒体の⽅方が不不安定   異異性化には⼤大きな   エネルギーが必要 アルキル配位⼦子の強いトランス影響によりcis-‐‑‒体が安定化する 10
  • 11. +17.0 TS   +23.7 TS  +27.7 –1.2 –10.6 P O Pd P O Pd H P O Pd Py P O Pd +7.6 ポリエチレン成⻑⾧長反応の各段階のエネルギー計算 0.0 TS   +17.5 TS  +38.9 +8.7 B3LYP/  6-‐‑‒31G*  and  Lanl2dz Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088. P O P S OO O Me Me = P O Pd Py P O Pd P O Pd P O Pd H ΔG  [kcal/mol] cis-‐‑‒trans異異性化の経路路 11
  • 12. βヒドリド脱離離のエネルギー計算 B3LYP/  6-‐‑‒31G*  and  Lanl2dz Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088. P O Pd Py 0.0 +10.7 TS   +27.4 +19.6 TS   +19.9 +9.4 ΔG  [kcal/mol] P O Pd Py TS   +20.6 TS   +20.4 P O Pd H +18.6 P O Pd H P O Pd Hcis-‐‑‒trans異異性化の遷移状態   ピリジンの脱離離の遷移状態   のエネルギー準位が⾼高い ←  異異性化において中間体の存在が⽰示唆される 12
  • 13. cis-‐‑‒trans異異性化の経路路 B3LYP/  6-‐‑‒31G*  and  Lanl2dz Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088. cis-‐‑‒   0.0  kcal/mol intermediate   18.6  kcal/mol スルホン酸のもう⼀一つの酸素を使った擬似回転(Pseudorotation)の様な機構 Pd OS O P O Py Pd PyO OS O P Pd OS O P O Py Pd OS O P O Py TS   31  kcal/mol trams-‐‑‒   10.7  kcal/mol TS   +20.6  kcal/mol TS   +20.4  kcal/mol Zhou, X.;Lau, K.-C..;Petro, B. J.; Jordan, R. F. Organometallics. 2014, ASAP. L2 L5 L1 L3 M L4 13 L1 L3 L3 L2 M L5
  • 14. 様々な極性ビニルモノマーとエチレンの共重合を達成 CN yx n CN+ 2.5 ml4.0 MPa Mn = 12.3×103 Mw / Mn = 1.6 i.r. = 2.0%, Tm = 121.4 Pd catalyst (0.01 mmol) toluene (25 ml) 80 ºC, 270 h P S OO O Pd Me N R1 R1 Kochi, T.; Noda, S.; Yoshimura. K.; Nozaki, K. J. Am. Chem. Soc. 2007, 129, 8948. F+ 0.28 MPa1.4 MPa Pd catalyst (0.01 mmol) toluene (50 ml) 80 ºC, 270 h F yx n Mn = 14.5×103 Mw / Mn = 3.0 Tm = 132.6 ºC P S OO O Pd Me N R1 R1 R1 = 2-MeO-C6H4 R1 = 2-MeO-C6H4 Weng, W.; Shen, Z.; Jordan. R. F. J. Am. Chem. Soc. 2007, 129, 15450. ■  アクリロニトリルとの共重合 ■  フッ化ビニルとの共重合 ■  その他多くの共重合が報告されている OEt yx n Mn = 4.8×103 Mw / Mn = 2.0 i.r. = 2.0% OO O n Mn = 8.0×103 Mw / Mn = 1.7 x y Jordan, R. F. et al. J. Am. Chem. Soc. 2007, 129, 8946. Claverie, J. P. et al. Macromolecules. 2008, 41, 2309. yx n Mn = 6.5×103 Mw / Mn = 2.4 i.r. = 4.9% O Sen, A. et al. Organometallics. 2008, 27, 3331. 14
  • 16. P上の置換基が与える分⼦子量量への影響 Neuwald, B.; Falivene, L.; Caporaso, L.; Cavallo, L.; Mecking, S. Chem. Eur. J. 2013, 19, 17788. MeO OMe Ar/(MeO)21 MeO MeO R1 = R2 = O MeO MeO R1 = R2 = cHexO/(MeO)21 Me MeO MeO OMe Me/(MeO)31 R1 = R2 = MeO OMe MeO MeO MeO MeO O F3C MeO MeO OMe iPrO iPrO P S OO O Pd Me R1R2 R1 = R2 = Ph1 Ar1 (MeO;Me2)1 (MeO)21 MeO1 cHexO1 H1 CF31 (MeO)31 (MeO)31 DOI: 10.1002/chem.201301365 Exploring Electronic and Steric Effects on the Insertion and Polymerization Reactivity of Phosphinesulfonato PdII Catalysts Boris Neuwald,[a] Laura Falivene,[b] Lucia Caporaso,*[b] Luigi Cavallo,[c] and Stefan Mecking*[a] Introduction The catalytic insertion polymerization of ethylene and pro- pylene is one of the most well-studied chemical reactions. In terms of applications, it is employed for the production of more than 70 million tons of polyolefins annually. However, an insertion polymerization of polar-substituted vinyl mono- mers had remained elusive for a long time. Copolymeriza- tion with ethylene was achieved for the first time with cat- ionic PdII diimine complexes. In this case, highly branched copolymers are formed, which consist of ethylene as the major component (!75 mol%) and contain acrylate units situated preferentially at the ends of the branches.[1,2] By contrast, neutral arylphosphinesulfonato PdII complexes co- polymerize methyl acrylate (MA) and ethylene to linear random copolymers.[3] This catalyst system has recently at- tracted much attention owing to the variety of polar mono- mers that can be copolymerized with ethylene, including acrylonitrile,[4,5] vinyl acetate,[6] and acrylic acid.[7,8] Phos- ACHTUNGTRENNUNGphinesulfonato PdII methyl complexes are well-defined cata- lyst precursors that can provide a convenient entry into the catalytic cycle.[9] For such complexes as (P^O)PdMe(L) (MeO 1-L; P^O=k2 - P,O-(2-MeOC6H4)2PACHTUNGTRENNUNG(C6H4SO2O), Figure 1), the coordinat- ing monodentate ligand L plays an important role for the Abstract: Thirteen different symmetric and asymmetric phosphinesulfonato palladium complexes ([{(X 1-Cl)-m-M}n], M=Na, Li, 1=X ACHTUNGTRENNUNG(P^O)PdMe) were prepared (see Figure 1). The solid-state structures of the corresponding pyri- dine or lutidine complexes were deter- mined for (MeO)2 1-py, (iPrO)2 1-lut, (MeO,Me2) 1-lut, (MeO)3 1-lut, CF3 1-lut, and Ph 1-lut. The reactivities of the catalysts X 1, obtained after chloride abstraction with AgBF4, toward methyl acrylate (MA) were quantified through deter- mination of the rate constants for the first and the consecutive MA insertion and the analysis of b-H and other de- composition products through NMR spectroscopy. Differences in the homo- and copolymerization of ethylene and MA regarding catalyst activity and sta- bility over time, polymer molecular weight, and polar co-monomer incor- poration were investigated. DFT calcu- lations were performed on the main in- sertion steps for both monomers to ra- tionalize the effect of the ligand substi- tution patterns on the polymerization behaviors of the complexes. Full analy- sis of the data revealed that: 1) elec- tron-deficient catalysts polymerize with higher activity, but fast deactivation is also observed; 2) the double ortho-sub- stituted catalysts (MeO)2 1 and (MeO)3 1 allow very high degrees of MA incor- poration at low MA concentrations in the copolymerization; and 3) steric shielding leads to a pronounced in- crease in polymer molecular weight in the copolymerization. The catalyst properties induced by a given P-aryl (alkyl) moiety were combined effec- tively in catalysts with two different non-chelating aryl moieties, such as cHexO/(MeO)2 1, which led to copolymers with significantly increased molecular weights compared to the prototypical MeO 1. Keywords: catalysis · coordination modes · density-functional calcula- tions · kinetics · reaction mecha- nisms · theoretical chemistry [a] Dr. B. Neuwald, Prof. Dr. S. Mecking Chair of Chemical Materials Science, Department of Chemistry University of Konstanz 78464 Konstanz (Germany) Fax: (+49)7531-88-5152 E-mail: Stefan.Mecking@uni-konstanz.de [b] Dr. L. Falivene, Dr. L. Caporaso Department of Chemistry and Biology FULL PAPER Stefan  Mecking     Universität  Konstanz 16
  • 17. P上の置換基の⽴立立体障害と官能基の効果 Anselment, T. M. J.; Wichmann, C.; Anderson, C. E.; Herdtweck, E.; Rieger, B. Organometallics 2011, 30, 6602. ■  P上の置換基の⽴立立体障害が分⼦子量量に影響を及ぼす傾向がある P S OO O Pd Me N R1 R1 (0.01 mmol) MeO MeOR1 = ■  P上の置換基の官能基の影響は少ない P S OO O Pd Me N R1 R1 X = 20 Mn = 1.8×103 Mw / Mn = 2.2 X = 5 Mn = 33×103 Mw / Mn = 1.7 n toluene (30 ml), 50 ºC, 2 h X bar n toluene (50 ml), 80 ºC, 1 h 30 atm (0.01 mmol) R1 = MeO Me Mn = 19.1×103 Mw / Mn = 2.1 Mn = 18.8×103 Mw / Mn = 2.1 Vela, J.; Lief, G. R.; Shen, Z.; Jordan, R. F. Organometallics 2007, 26, 6624. 17
  • 18. P上の置換基の⽴立立体障害と官能基の効果 (0.002 mmol) n toluene (100 ml), 80 ºC, 30 min 5 bar AgBF4 (0.002 mmol) 置換基の⽴立立体障害と分⼦子量量についての   相関は得られなかったが   電⼦子供与性の置換基で分⼦子量量の   増⼤大が⾒見見られた Neuwald, B.; Falivene, L.; Caporaso, L.; Cavallo, L.; Mecking, S. Chem. Eur. J. 2013, 19, 17788. 18 MeO OMe Ar1 P S O O O Pd Me R1 R2 Cl Na 2 R1 = R2 = O MeO MeO R1 = R2 = cHexO/(MeO)21
  • 19. 配位⼦子と分⼦子量量の関係を解明する Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898. P上のアルキル基の⽴立立体障害と分⼦子量量の相関を検討 従来では実現できなかった   ⾼高分⼦子量量(>105   g/mol)の   直鎖コポリマーの合成を達成 Kyoko  Nozaki     The  Unversity  of  Tokyo 19 P S OO O Pd Me N R R
  • 20. ジアルキルホスフィノ基を持つ配位⼦子 Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14606. ■  酢酸ビニルとエチレンの共重合 ■  アリルモノマーとの重合 Ito, S.; Kanazawa, M.; Munakata, K.; Kuroda, J.; Nozaki, K. J. Am. Chem. Soc. 2011, 133, 1232. P S OO O Pd Me N Cy Cy (0.10 mmol) O toluene (3 ml) 80 ºC, 15 h12 ml Mn = 5.8×103 Mw / Mn = 2.3, i.r. = 1.9% OAc yx n + 3.0 MPa O toluene (12 ml) 80 ºC, 3 h 3.0 ml Mn = 4.2×103 Mw / Mn = 2.3, i.r. = 0.9% yx n 3.0 MPa + Cl Cl P S OO O Pd Me N Cy Cy (0.10 mmol) ラジカル重合では使⽤用できないアリルモノマーを⽤用いた共重合 FG stable allyl radical 20
  • 21. 今回検討する配位⼦子 P S OO O Pd Me N R R Figure 1. Steric maps of palladium/alkyl The P−Pd−O plane is placed in the xz containing the Pd center. The methyl an Scheme 1. Copolymerization of Et Monomers 2a−f with Palladium/A Catalysts 1a−f Journal of the American Chemic e 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). −Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane nal of the American Chemical Society Communication A, i-Pr B, t-Bu C, Cy D, 3-Pen E, 2,6-Dmhep F, Men Pdまわりの⽴立立体障害の可視化  →  Men基を持つが最も⼤大きな⽴立立体障害をもつ re 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane rnal of the American Chemical Society Communication ure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). e P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane urnal of the American Chemical Society Communication gure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). he P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane urnal of the American Chemical Society Communication Figure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). The P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane ournal of the American Chemical Society Communication Figure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). The P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane Journal of the American Chemical Society Communication Steric Map R = ■  ジアルキルホスフィノ基をもつ触媒は詳細な検討が未だなされていない Figure 1. Steric maps of palladium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). The P−Pd−O plane is placed in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane Journal of the American Chemical Society Communication R = Alkyl Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898. 21
  • 22. エチレンの重合におけるP上の置換基の効果 P S OO O Pd Me N R R R  =  Men  で分⼦子量量が100×103  を超える (0.010 mmol) n toluene (100 ml), 80 ºC, 1 h 3.0 MPa Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898. entry 1 2 3 4 5 6 i-Pr t-Bu Cy 3-Pen 2,6-Dmhep Men yielda (%) 6.41 18.6 11.5 1.25 1.97 2.05 activity (g/mmol•h) 641 1860 1150 125 200 205 aIsolate yield. bMolecular Weights determined by SEC using polystyrene standards, and universal calibration. R Mn b (×103 g/mol) 6.7 6.2 9.9 33 72 169 Mw/ Mn b 2.7 4.1 2.4 2.4 2.4 1.5 22
  • 23. エチレンの重合における置換基と分⼦子量量の相関 P S OO O Pd Me N R R (0.010 mmol) n toluene (100 ml), 80 ºC, 1 h 3.0 MPa R = MeO OMe Mn = 57–96×103 Mn = 169×103 ⾼高分⼦子量量体を与えるビアリール系置換基よりも⾼高分⼦子量量体を与える ⽴立立体障害のパラメータと分⼦子量量の相関は… sterimol entry 1 2 3 4 5 6 i-Pr t-Bu Cy 3-Pen 2,6-Dmhep Men B5R 3.07 3.09 3.38 4.28 5.22 5.64 Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898. Haper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366. sterimol  B5  パラメーターとほぼ⼀一致 23
  • 24. アリルモノマーとの共重合における⽴立立体障害の相関 toluene (7.5 ml) 80 ºC, 3 h7.5 ml yx n 3.0 MPa + OAc OAc P S OO O Pd Me N R R (0.010 mmol) entry 1 2 3 4 5 6 i-Pr t-Bu Cy 3-Pen 2,6-Dmhep Men yielda (g) 0.35 0.31 0.30 0.36 0.35 1.65 activity (g/mmol•h) 12 10 10 12 12 55 aIsolate yield. bMolecular Weights determined by SEC using polystyrene standards, and universal calibration. cMolar incomporration ratios of allyl monomer determined by 1H NMR analysis. R Mn b (×103 g/mol) 5.2 10.3 7.8 17 29 177 Mw/ Mn b 2.4 5.1 2.0 2.4 2.8 2.0 i.r.c 1.9 0.6 1.8 1.5 1.1 0.6 Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898. 共重合においても分⼦子量量が100×103   を超える 24
  • 25. さまざま極性モノマーとの共重合 Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898. entry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 yielda (g) 1.65 1.05 1.10 0.48 0.30 0.35 2.02 0.88 0.44 0.24 1.61 1.30 0.30 0.34 activity (g/mmol•h) 55 35 37 16 2.3 2.2 67 29 15 1.6 54 8.6 2.0 2.3 aIsolate yield. bMolecular Weights determined by SEC using polystyrene standards, and universal calibration. cMolar incomporration ratios of allyl monomer determined by 1H NMR analysis. comonomer Mn b (×103 g/mol) 177 47 86 36 17 33 72 40 8.5 6.1 15 11 14 4.8 Mw/ Mn b 2.0 2.2 2.1 1.7 2.0 2.3 2.5 2.0 2.0 1.8 4.1 2.4 1.9 2.7 i.r.c 0.6 2.5 2.2 5.1 7.8 0.6 1.4 3.0 8.3 11 1.1 7.7 0.7 1.3 ethylene (MPa) 3.0 3.0 2.1 1.0 1.0 3.0 3.0 2.0 1.0 1.0 3.0 1.0 3.0 3.0 monomer (mL) 7.5 7.5 7.5 7.5 12 3 7.5 7.5 7.5 12 7.5 12 7.5 12 solvent (mL) 7.5 7.5 7.5 7.5 3 12 7.5 7.5 7.5 3 7.5 3 7.5 3 T (ºC) 80 100 80 100 100 80 80 80 100 100 80 100 80 80 t (h) 3 3 3 3 13 16 3 3 3 15 3 15 15 15 CH2OAc CH2Cl CO2Me OBu CN OAc P S OO O Pd Me N R R (0.010 mmol) R = X+ toluene (7.5 ml) temp, time X yx n 25
  • 26. Men基の共重合における分⼦子量量に対する効果 Ota, Y.; Ito, S.; Kuroda, J.; Okumura, Y. W.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 11898. allyl acetate (R = Men) metyl acrylate(R = Men) allyl acetate (R = Cy) methyl acrylate (R = 2-MeO-C6H4) 様々なモノマー⽐比においてMen基の効果が表れている Ito, S.; Kanazawa, M.; Munakata, K.; Kuroda, J.; Nozaki, K. J. Am. Chem. Soc. 2011, 133, 1232. Drent, E.; van Dijk, R.; van Ginkel, R. van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 744. 26
  • 27. まとめ P S OO O Pd Me N R R ホスフィン­−スルホン酸配位⼦子はさまざまな   極性ビニルモノマーとエチレンを共重合させることが可能。   配位⼦子の⽴立立体障害を調節することで⾼高分⼦子量量(>105 )の合成を達成。 さらなる、重合機構の解明、新材料料の開発が期待される 強いトランス効果に   よる錯体の⽴立立体の固定 ⾮非対称な配位座を   もつことで重合機構   をコントロール 中⼼心⾦金金属からやや離離れた   場所の⽴立立体障害が効果的 27 resulting polyethylenes remained relatively low (Mn < 10 × 103 g/mol, entries 1−3 in Table 1). When bulkier ligands such as 1d (3-Pen), 1e (2,6-Dmhep), and 1f (Men) were used, the Mn of the polyethylenes increased to 33 × 103 , 72 × 103 , and 169 × 103 g/ mol, respectively, albeit with lower catalytic activity than 1a−c. The exceptionally high Mn values achieved with catalyst 1f even exceeded those gained by bis(2′,6′-dimethoxy-1,1′-biphenyl-2- yl)phosphine−sulfonate (Mn = 57 × 103 −96 × 103 g/mol, after ium/alkylphosphine−sulfonate complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). in the xz-plane with the z-axis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane methyl and 2,6-lutidine groups were omitted for the analysis of the steric maps. on of Ethylene and Polar adium/Alkylphosphine−Sulfonate Chemical Society Communication Steric Map
  • 28. ジアリールホスフィノ基の⽴立立体障害 resulting polyethylenes remained relatively low (Mn < 10 × 103 g/mol, entries 1−3 in Table 1). When bulkier ligands such as 1d (3-Pen), 1e (2,6-Dmhep), and 1f (Men) were used, the Mn of the polyethylenes increased to 33 × 103 , 72 × 103 , and 169 × 103 g/ mol, respectively, albeit with lower catalytic activity than 1a−c. The exceptionally high Mn values achieved with catalyst 1f even exceeded those gained by bis(2′,6′-dimethoxy-1,1′-biphenyl-2- yl)phosphine−sulfonate (Mn = 57 × 103 −96 × 103 g/mol, after universal calibration18 ).3b,f To gain a deeper understanding, we te complexes 1a−f. The Pd-atom is placed at the center of the xyz coordinate system (left). xis bisecting the P−Pd−O angle. The y-axis represents the axial position of the xz-plane ps were omitted for the analysis of the steric maps. r Sulfonate Communication P S OO O Pd Me R1 R1 optimization  by   BP86/6-‐‑‒31G(d)+Lanl2dz X-‐‑‒ray  structure P S OO O Pd R1 R1 R = MeO OMe
  • 29. Figure S2. Taft Es parameters Figure S3. Correlation with %Vbur par iPr Cy 3-Pen DmHep tBu 1 10 -4 -3 -2 -1 Mn(103) Taft param. (Es) iPr Cy DmHep M tBu 3-Pen 1 10 100 46 48 50 52 Mn(103) %VBur iPr tBu Cy 3-Pen DmHep Men 1 10 100 1000 1 1.5 2 2.5 3 Mn(103) B1 iPr tBu Cy 3-Pen M DmHep 1 10 100 1000 2 3 4 5 Mn(103) ジアリールホスフィノ基の⽴立立体障害The correlations between the steric parameters and the molecular weights are shown below. Figure S2. Taft Es parameters Figure S3. Correlation with %Vbur parameters iPr Cy 3-Pen DmHep tBu 1 10 100 -4 -3 -2 -1 Mn(103) Taft param. (Es) iPr Cy DmHep Men tBu 3-Pen 1 10 100 1000 46 48 50 52 54 Mn(103) %VBur iPr tBu Cy 3-Pen DmHep Men 1 10 100 1000 1 1.5 2 2.5 3 Mn(103) iPr tBu Cy 3-Pen Men DmHep 1 10 100 1000 2 3 4 5 6 Mn(103) e correlations between the steric parameters and the molecular weights are shown below. Figure S2. Taft Es parameters Figure S3. Correlation with %Vbur parameters iPr Cy 3-Pen DmHep tBu 1 10 100 -4 -3 -2 -1 Mn(103) Taft param. (Es) iPr Cy DmHep Men tBu 3-Pen 1 10 100 1000 46 48 50 52 54 Mn(103) %VBur iPr tBu Cy 3-Pen DmHep Men 1 10 100 1000 1 1.5 2 2.5 3 Mn(103) iPr tBu Cy 3-Pen Men DmHep 1 10 100 1000 Mn(103)
  • 33. 速度度論論的にはトランス体が安定 R = 2-MeO-C6H4 quant. trans : cis = 4 : 1 PR2 S ONaO O Pd Cl Cl Pd N Me N Me + CD2Cl2, –25 ºC P S OO O Pd Me R1 R1 N P S OO O Pd Me N R1 R1 + CD2Cl2, –25 ºC P S OO O Pd Me N R1 R1 cis only Zhou, X.;Lau, K.-C..;Petro, B. J.; Jordan, R. F. Organometallics. 2014, ASAP.
  • 34. M L1 L3L2 L4 トランス影響    →    熱⼒力力学的安定(静的トランス効果)   トランス効果  →  速度度論論的安定性(動的トランス効果) 平⾯面四配位錯体においてある配位⼦子が   トランス位の配位⼦子に影響を与える現象 例例:L1が強いσドナー性  (アルキル基など)   ↓   L3はアニオン性配位⼦子が有利利
  • 35. ホスフィンオキサイドでも反応は進⾏行行 Carrow. B. P.; Nozaki, K. J. Am. Chem. Soc. 2012, 134, 8802.
  • 36. 全体の反応機構 Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088.
  • 37. 共重合におけるエネルギー計算 Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi, T.; Chung, L. W.; Morokuma, K. J. Am. Chem. Soc. 2010, 132, 16031.
  • 38. 共重合におけるエネルギー計算 Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi, T.; Chung, L. W.; Morokuma, K. J. Am. Chem. Soc. 2010, 132, 16031.