Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

23

Share

Download to read offline

Pythonで機械学習入門以前

Download to read offline

2016/6/7 みんなのPython勉強会で発表した資料です。

scikit-learnの初心者向けに、データのまとめ方やドキュメントを読む時の心構えについて書いてあります。

Related Books

Free with a 30 day trial from Scribd

See all

Pythonで機械学習入門以前

  1. 1. Python 2016/6/7 Python
  2. 2. Python 3 3
  3. 3. Python http://bit.ly/yoseiml
  4. 4. Python • • scikit-learn • Numpy/Scipy •
  5. 5. • • • • • •
  6. 6. scikit-learn model = SomeAlogrithm(hyperparameters) model.fit(x,y) prediction = model.predict(z) model = SomeAlogrithm(hyperparameters) model.fit(x) prediction_x = model.labels_ prediction_z = model.predict(z) model = SomeAlogrithm(hyperparameters) model.fit(x) transformed = model.transform(z)
  7. 7. scikit-learn n×m n×1 n
  8. 8. from sklearn import datasets from sklearn.svm import SVC iris=datasets.load_iris() data_train=iris.data[:-10,:] target_train=iris.target[:-10] data_eval=iris.data[-10:,:] target_eval=iris.target[-10:] svc=SVC() svc.fit(data_train,target_train) predicted=svc.predict(data_eval) print("Accuracy: {}".format((target_eval==predicted).sum()/10.))
  9. 9. scikit-learn • • scikit-learn • • •
  10. 10. • • •
  11. 11.
  12. 12. 0 1 … 0 1 … 1 /1 Python i j (i,j)
  13. 13. 0 1 2 3 4 5 6 7 8 9 10 11 a 1 [3,4,5] 0 [0,3,6,9] (2,1) a[2,1] 1 a[1,:] 0 a[:,0] (2,1) 7 >>> import numpy as np >>> a=np.arange(12).reshape(4,3) >>> a array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) >>> a[1,:] array([3, 4, 5]) >>> a[2,1] 7 >>> a[:,0] array([0, 3, 6, 9]) >>>
  14. 14. csv 9 10 import numpy as np import csv data = [] target = [] filename = "input_data.csv" with open(filename) as f: for row in csv.reader(f): data.append([float(x) for x in row[:9]]) target.append(float(row[9])) data = np.array(data) target = np.array(target)
  15. 15. • • • np.array
  16. 16. MovieLens from scipy import sparse items = [] users = [] ratings = [] for line in open("ml-100k/u.data"): a = line.split("t") users.append(int(a[0])) items.append(int(a[1])) ratings.append(int(a[2])) n_users = max(users) n_items = max(items) mat = sparse.lil_matrix((n_users, n_items)) for u, i, r in zip(users, items, ratings): mat[u - 1, i - 1] = r mat = mat.tocsr()
  17. 17. • lil_matrix • csr_matrix
  18. 18. scikit-learn
  19. 19. • • • • •
  20. 20. scikit-learn …
  21. 21. • • SVM SVC • • SVM • •
  22. 22. scikit-learn
  23. 23. np.meshgrid? np.c_? ravel?? ???
  24. 24. … model = SomeAlogrithm(hyperparameters) model.fit(x,y) prediction = model.predict(z)
  25. 25. • scikit-learn • • scikit-learn numpy matplotlib
  26. 26.
  27. 27.
  28. 28. Python http://bit.ly/yoseiml
  29. 29. scikit-learn • • • • OK
  • hiroakiusui3

    Jul. 9, 2019
  • TakahiroOhori1

    Jun. 13, 2019
  • ShusukeOkita

    May. 28, 2019
  • yasuhirosakuramoto

    Jul. 5, 2017
  • RyousukeNakazato

    Jul. 5, 2017
  • ssuserd807c4

    Jul. 4, 2017
  • atsushimori0521

    Nov. 9, 2016
  • MasahiroTabata

    Nov. 9, 2016
  • yuukiebihara79

    Jul. 9, 2016
  • hiroyukikomatsuzawa

    Jul. 7, 2016
  • mackenichi

    Jun. 21, 2016
  • YukinoriKitadai

    Jun. 11, 2016
  • YutakaMiyaji

    Jun. 9, 2016
  • DaikiTsukahara1

    Jun. 9, 2016
  • 36ra3

    Jun. 9, 2016
  • chroum

    Jun. 9, 2016
  • EbaraTadashi

    Jun. 9, 2016
  • dyagi1983

    Jun. 9, 2016
  • ish_imada

    Jun. 9, 2016
  • tomonarikamba

    Jun. 8, 2016

2016/6/7 みんなのPython勉強会で発表した資料です。 scikit-learnの初心者向けに、データのまとめ方やドキュメントを読む時の心構えについて書いてあります。

Views

Total views

35,606

On Slideshare

0

From embeds

0

Number of embeds

20,059

Actions

Downloads

53

Shares

0

Comments

0

Likes

23

×