SlideShare a Scribd company logo
1 of 25
Download to read offline
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 1
GREEN FUNCTION
Example 1:-
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 𝑥3
𝑊(1) = 𝑊,𝑥(1) = 0
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = −2𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 −
2
𝑥
𝑊,𝑥 +
2
𝑥2
𝑊 = 𝑥
𝑃(𝑥) = 𝑒∫ −
2
𝑥
𝑑𝑥
=
1
𝑥2
1
𝑥2
𝑊,𝑥𝑥 −
2
𝑥3
𝑊,𝑥 +
2
𝑥4
𝑊 =
1
𝑥
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 1
𝑅2 = 2
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡
+ 𝐵(𝑧) 𝑒2𝑡
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 𝐵(𝑧) 𝑒2𝑧
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧
𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1
∎ {
𝐎(𝑧) = −𝑒−𝑧
𝐵(𝑧) = 𝑒−2𝑧
𝐺(𝑡, 𝑧) = −𝑒−𝑧
𝑒 𝑡
+ 𝑒−2𝑧
𝑒2𝑡
, 𝑓(𝑧) = 𝑒3𝑧
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 2
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑡
0
𝑊(𝑡) = −𝑒 𝑡
∫ 𝑒2𝑧
𝑑𝑧
𝑡
0
+ 𝑒2𝑡
∫ 𝑒 𝑧
𝑑𝑧
𝑡
0
𝑊(𝑡) = −
𝑒 𝑡
2
(𝑒2𝑧|0
𝑡 ) + 𝑒2𝑡(𝑒 𝑧|0
𝑡 )
𝑊(𝑡) =
𝑒3𝑡
2
+
𝑒 𝑡
2
− 𝑒2𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊( 𝑥) =
𝑥3
2
+
𝑥
2
− 𝑥2
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 3
Example1-1:-
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 𝑥3
𝑊(1) = 𝑊,𝑥(1) = 0
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = −2𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 −
2
𝑥
𝑊,𝑥 +
2
𝑥2
𝑊 = 𝑥
𝑃(𝑥) = 𝑒∫ −
2
𝑥
𝑑𝑥
=
1
𝑥2
1
𝑥2
𝑊,𝑥𝑥 −
2
𝑥3
𝑊,𝑥 +
2
𝑥4
𝑊 =
1
𝑥
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 1
𝑅2 = 2
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2
𝐺(𝑥, 𝑧) = 𝐎(𝑧) 𝑥 + 𝐵(𝑧) 𝑥2
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑧 + 𝐵(𝑧) 𝑧2
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑧
𝐺,𝑥(𝑧, 𝑧) = 𝐎(𝑧) + 2𝐵(𝑧) 𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑧 + 2𝐵(𝑧) 𝑧 = 1
∎ {
𝐎(𝑧) = −1
𝐵(𝑧) =
1
𝑧
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 4
𝐺(𝑡, 𝑧) = −𝑥 +
𝑥2
𝑧
, 𝑓(𝑧) = 𝑧
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑥
1
𝑊(𝑡) = −𝑥 ∫ 𝑧 𝑑𝑧
𝑥
1
+ 𝑥2
∫ 1 𝑑𝑧
𝑥
1
𝑊(𝑡) = −
𝑥
2
(𝑧2|0
𝑡 ) + 𝑥2(𝑧|0
𝑡 )
𝑊( 𝑥) =
𝑥3
2
+
𝑥
2
− 𝑥2
𝑀𝐎𝑇𝐿𝐎𝐵
|
≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′
𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 𝑥^2′
, ′
𝑊(1) = 0′
, ′
𝐷𝑊(1) = 0′
,′
𝑥′)
≫ 𝑊 = 𝑥^3 2⁄ + 𝑥 2⁄ − 𝑥^2
Example 2:-
𝑥2
𝑊,𝑥𝑥 + 𝑥𝑊,𝑥 − 𝑊 = 𝑥2
𝑊(1) = 𝑊,𝑥(1) = 0
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = 𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 +
1
𝑥
𝑊,𝑥 −
1
𝑥2
𝑊 = 1
𝑃(𝑥) = 𝑒∫
1
𝑥
𝑑𝑥
= 𝑥
𝑥𝑊,𝑥𝑥 + 𝑊,𝑥 −
1
𝑥
𝑊 =
1
𝑥
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 5
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) + 𝑅 − 1 = 0
𝑅2
− 1 = 0 ⇒ {
𝑅1 = 1
𝑅2 = −1
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒−𝑡
𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡
+ 𝐵(𝑧) 𝑒−𝑡
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 𝐵(𝑧) 𝑒−𝑧
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒−2𝑧
𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
− 𝐵(𝑧) 𝑒−𝑧
= 1 ⇒ − 𝐵(𝑧) 𝑒−𝑧
− 𝐵(𝑧) 𝑒−𝑧
= 1
∎ {
𝐎(𝑧) = 𝑒−𝑧
2⁄
𝐵(𝑧) = −𝑒 𝑧
2⁄
𝐺(𝑡, 𝑧) =
1
2
𝑒−𝑧
𝑒 𝑡
−
1
2
𝑒 𝑧
𝑒−𝑡
, 𝑓(𝑧) = 𝑒2𝑧
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑡
0
𝑊(𝑡) =
𝑒 𝑡
2
∫ 𝑒 𝑧
𝑑𝑧
𝑡
0
−
𝑒−𝑡
2
∫ 𝑒3𝑧
𝑑𝑧
𝑡
0
𝑊(𝑡) =
𝑒 𝑡
2
(𝑒 𝑧|0
𝑡 ) −
𝑒−𝑡
6
(𝑒3𝑧|0
𝑡 )
𝑊(𝑡) =
𝑒2𝑡
3
−
𝑒 𝑡
2
+
1
6𝑒 𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) =
𝑥2
3
+
1
6𝑥
−
𝑥
2
𝑊( 𝑥) = 𝑥 (
𝑥
3
+
1
6𝑥2
) −
𝑥
2
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 6
Example 2-1:-
𝑥2
𝑊,𝑥𝑥 + 𝑥𝑊,𝑥 − 𝑊 = 𝑥2
𝑊(1) = 𝑊,𝑥(1) = 0
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = 𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 +
1
𝑥
𝑊,𝑥 −
1
𝑥2
𝑊 = 1
𝑃(𝑥) = 𝑒∫
1
𝑥
𝑑𝑥
= 𝑥
𝑥𝑊,𝑥𝑥 + 𝑊,𝑥 −
1
𝑥
𝑊 =
1
𝑥
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) + 𝑅 − 1 = 0
𝑅2
− 1 = 0 ⇒ {
𝑅1 = 1
𝑅2 = −1
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒−𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) = 𝐎𝑥 +
𝐵
𝑥
𝐺(𝑥, 𝑧) = 𝐎(𝑧) 𝑥 +
𝐵(𝑧)
𝑥
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑧 +
𝐵(𝑧)
𝑧
= 0 ⇒ 𝐎(𝑧) = −
𝐵(𝑧)
𝑧2
𝐺,𝑥(𝑧, 𝑧) = 𝐎(𝑧) −
𝐵(𝑧)
𝑧2
= 1 ⇒ −
𝐵(𝑧)
𝑧2
−
𝐵(𝑧)
𝑧2
= 1
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 7
∎
{
𝐎(𝑧) =
1
2
𝐵(𝑧) = −
𝑧2
2
𝐺(𝑡, 𝑧) =
𝑥
2
−
𝑧2
2𝑥
, 𝑓(𝑧) = 1
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑥
1
𝑊(𝑡) =
𝑥
2
∫ 1 𝑑𝑧
𝑥
1
−
1
2𝑥
∫ 𝑧2
𝑑𝑧
𝑥
1
𝑊(𝑡) =
𝑥
2
(𝑧|0
𝑡 ) −
1
6𝑥
(𝑧3|0
𝑡 )
𝑊(𝑥) =
𝑥
2
(𝑥 − 1) −
1
6𝑥
(𝑥3
− 1)
𝑊(𝑥) =
𝑥2
3
+
1
6𝑥
−
𝑥
2
𝑊( 𝑥) = 𝑥 (
𝑥
3
+
1
6𝑥2
) −
𝑥
2
𝑀𝐎𝑇𝐿𝐎𝐵
|
≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′
𝑥^2 ∗ 𝐷2𝑊 + 𝑥 ∗ 𝐷𝑊 − 𝑊 = 𝑥^2′
, ′
𝑊(1) = 0′
, ′
𝐷𝑊(1) = 0′
,′
𝑥′)
≫ 𝑊 = 𝑥 ∗ (𝑥 3⁄ + 1 (6 ∗ 𝑥^2)⁄ ) − 𝑥 2⁄
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 8
Example 3:-
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 2
𝑊(1) = 𝑊(2) = 0
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = −2𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 −
2
𝑥
𝑊,𝑥 +
2
𝑥2
𝑊 =
2
𝑥2
𝑃(𝑥) = 𝑒∫ −
2
𝑥
𝑑𝑥
=
1
𝑥2
1
𝑥2
𝑊,𝑥𝑥 −
2
𝑥3
𝑊,𝑥 +
2
𝑥4
𝑊 =
1
𝑥4
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 1
𝑅2 = 2
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡
+ 𝐵(𝑧) 𝑒2𝑡
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 𝐵(𝑧) 𝑒2𝑧
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧
𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1
∎ {
𝐎(𝑧) = −𝑒−𝑧
𝐵(𝑧) = 𝑒−2𝑧
𝐺(𝑡, 𝑧) = −𝑒−𝑧
𝑒 𝑡
+ 𝑒−2𝑧
𝑒2𝑡
, 𝑓(𝑧) = 2
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 9
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑡
0
𝑊(𝑡) = −2𝑒 𝑡
∫ 𝑒−𝑧
𝑑𝑧
𝑡
0
+ 2𝑒2𝑡
∫ 𝑒−2𝑧
𝑑𝑧
𝑡
0
𝑊(𝑡) = 2𝑒 𝑡(𝑒−𝑧|0
𝑡 ) − 𝑒2𝑡(𝑒−2𝑧|0
𝑡 )
2𝑒 𝑡(𝑒−𝑡
− 1) − 𝑒2𝑡(𝑒−2𝑡
− 1)
2 − 2𝑒 𝑡
− 1 + 𝑒2𝑡
𝑊𝑝(𝑡) = 𝑒2𝑡
− 2𝑒 𝑡
+ 1
𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡)
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
+ 𝑒2𝑡
− 2𝑒 𝑡
+ 1
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2
+ 𝑥2
− 2𝑥 + 1
𝑊(1) = 𝐎 + 𝐵 + 1 − 2 + 1 = 0 ⇒ 𝐎 = −𝐵
𝑊(2) = 2𝐎 + 4𝐵 + 4 − 4 + 1 = 0
−2𝐵 + 4𝐵 = −1 ⇒ 𝐵 = −
1
2
, 𝐎 =
1
2
𝑊(𝑥) =
1
2
𝑥 −
1
2
𝑥2
+ 𝑥2
− 2𝑥 + 1
𝑊( 𝑥) =
𝑥2
2
−
3𝑥
2
+ 1
𝑀𝐎𝑇𝐿𝐎𝐵
|
≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′
𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 2′
, ′
𝑊(1) = 0′
, ′
𝑊(2) = 0′
,′
𝑥′)
≫ 𝑊 = 𝑥2
2⁄ − 3 ∗ 𝑥 2⁄ + 1
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 10
Example 4:-
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 2𝑥3
𝑊(2) = 0 , 𝑊(3) = 6
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = −2𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 −
2
𝑥
𝑊,𝑥 +
2
𝑥2
𝑊 =
2
𝑥2
𝑃(𝑥) = 𝑒∫ −
2
𝑥
𝑑𝑥
=
1
𝑥2
1
𝑥2
𝑊,𝑥𝑥 −
2
𝑥3
𝑊,𝑥 +
2
𝑥4
𝑊 =
1
𝑥4
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 1
𝑅2 = 2
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡
+ 𝐵(𝑧) 𝑒2𝑡
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 𝐵(𝑧) 𝑒2𝑧
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧
𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1
∎ {
𝐎(𝑧) = −𝑒−𝑧
𝐵(𝑧) = 𝑒−2𝑧
𝐺(𝑡, 𝑧) = −𝑒−𝑧
𝑒 𝑡
+ 𝑒−2𝑧
𝑒2𝑡
, 𝑓(𝑧) = 2𝑒3𝑧
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 11
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑡
0
𝑊𝑝(𝑡) = −2𝑒 𝑡
∫ 𝑒2𝑧
𝑑𝑧
𝑡
0
+ 2𝑒2𝑡
∫ 𝑒 𝑧
𝑑𝑧
𝑡
0
𝑊𝑝(𝑡) = −𝑒 𝑡(𝑒2𝑧|0
𝑡 ) + 2𝑒2𝑡(𝑒 𝑧|0
𝑡 )
𝑊𝑝(𝑡) = −𝑒 𝑡(𝑒2𝑡
− 1) + 2𝑒2𝑡(𝑒 𝑡
− 1)
𝑊𝑝(𝑡) = −𝑒3𝑡
+ 𝑒 𝑡
+ 2𝑒3𝑡
− 2𝑒2𝑡
𝑊𝑝(𝑡) = 𝑒3𝑡
− 2𝑒2𝑡
+ 𝑒 𝑡
𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡)
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
+ 𝑒3𝑡
− 2𝑒2𝑡
+ 𝑒 𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2
+ 𝑥3
− 2𝑥2
+ 𝑥
𝑊(2) = 2𝐎 + 4𝐵 + 8 − 8 + 2 = 0 ⇒ 2𝐎 + 4𝐵 = −2 → (1)
𝑊(3) = 3𝐎 + 9𝐵 + 27 − 18 + 3 = 6 ⇒ 3𝐎 + 9𝐵 = −6 → (2)
∎ 𝐎 = 1 , 𝐵 = −1
𝑊(𝑥) = 𝑥 − 𝑥2
+ 𝑥3
− 2𝑥2
+ 𝑥
𝑊( 𝑥) = 𝑥3
− 3𝑥2
+ 2𝑥
𝑀𝐎𝑇𝐿𝐎𝐵
|
≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′
𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 2𝑥^3′
, ′
𝑊(2) = 0′
, ′
𝑊(3) = 6′
,′
𝑥′)
≫ 𝑊 = 𝑥^3 − 3 ∗ 𝑥^2 + 2 ∗ 𝑥
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 12
Example 5:-
𝑥2
𝑊,𝑥𝑥 − 6 = 6𝑥
𝑊(1) = −1 , 𝑊(2) = 29
Solution
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 6 = 0
𝑅2
− 𝑅 − 6 = 0 ⇒ {
𝑅1 = 3
𝑅2 = −2
𝑊ℎ(𝑡) = 𝐎𝑒3𝑡
+ 𝐵𝑒−2𝑡
𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒3𝑡
+ 𝐵(𝑧) 𝑒−2𝑡
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒3𝑧
+ 𝐵(𝑧) 𝑒−2𝑧
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒−5𝑧
𝐺,𝑡(𝑧, 𝑧) = 3𝐎(𝑧) 𝑒3𝑧
− 2𝐵(𝑧) 𝑒−2𝑧
= 1
= −𝐵(𝑧) 𝑒2𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1
∎
{
𝐎(𝑧) =
𝑒−3𝑧
5
𝐵(𝑧) = −
𝑒2𝑧
5
𝐺(𝑡, 𝑧) =
𝑒−3𝑧
5
𝑒3𝑡
−
𝑒2𝑧
5
𝑒−2𝑡
, 𝑓(𝑧) = 6𝑒 𝑧
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑡
0
𝑊𝑝(𝑡) =
6
5
𝑒3𝑡
∫ 𝑒−2𝑧
𝑑𝑧
𝑡
0
−
6
5
𝑒−2𝑡
∫ 𝑒3𝑧
𝑑𝑧
𝑡
0
𝑊𝑝(𝑡) = −
6
10
𝑒3𝑡(𝑒−2𝑧|0
𝑡 ) −
6
15
𝑒−2𝑡(𝑒3𝑧|0
𝑡 )
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 13
𝑊𝑝(𝑡) = −
6
10
𝑒3𝑡(𝑒−2𝑡
− 1) −
6
15
𝑒−2𝑡(𝑒3𝑡
− 1)
𝑊𝑝(𝑡) = −
3
5
𝑒 𝑡
−
3
5
𝑒3𝑡
+
2
5
𝑒 𝑡
+
2
5
𝑒−2𝑡
𝑊𝑝(𝑡) = −𝑒 𝑡
−
3
5
𝑒3𝑡
+
2
5
𝑒−2𝑡
𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡)
𝑊(𝑡) = 𝐎𝑒3𝑡
+ 𝐵𝑒−2𝑡
− 𝑒 𝑡
−
3
5
𝑒3𝑡
+
2
5
𝑒−2𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) = 𝐎𝑥3
+
𝐵
𝑥2
− 𝑥 −
3
5
𝑥3
+
2
5𝑥2
𝑊(1) = 𝐎 + 𝐵 − 1 −
3
5
+
2
5
= −1 ⇒ 𝐎 =
1
5
− 𝐵 → (1)
𝑊(2) = 8𝐎 +
𝐵
4
− 2 −
24
5
+
2
20
= 29
= 8 (
1
5
− 𝐵) +
𝐵
4
− 2 −
24
5
+
2
20
= 29 → × 20
∎ 𝐵 = −
682
155
⇒ 𝐎 =
713
155
𝑊(𝑥) =
713
155
𝑥3
−
682
155𝑥2
− 𝑥 −
3
5
𝑥3
+
2
5𝑥2
𝑊( 𝑥) = 4𝑥3
−
4
𝑥2
− 𝑥
𝑀𝐎𝑇𝐿𝐎𝐵
|
≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′
𝑥^2 ∗ 𝐷2𝑊 − 6 ∗ 𝑊 = 6 ∗ 𝑥′
, ′
𝑊(2) = 0′
, ′
𝑊(3) = 6′
,′
𝑥′)
≫ 𝑊 = 4 ∗ 𝑥^3 − 4 𝑥^2⁄ − 𝑥
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 14
Example 6:-
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 =
6
𝑥
𝑊(1) = 1 , 𝑊(2) =
1
2
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = −2𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 −
2
𝑥
𝑊,𝑥 +
2
𝑥2
𝑊 =
2
𝑥2
𝑃(𝑥) = 𝑒∫ −
2
𝑥
𝑑𝑥
=
1
𝑥2
1
𝑥2
𝑊,𝑥𝑥 −
2
𝑥3
𝑊,𝑥 +
2
𝑥4
𝑊 =
1
𝑥4
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 2
𝑅2 = 1
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡
+ 𝐵(𝑧) 𝑒2𝑡
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒2𝑧
+ 𝐵(𝑧) 𝑒 𝑧
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒−𝑧
𝐺,𝑡(𝑧, 𝑧) = 2𝐎(𝑧) 𝑒 𝑧
+ 𝐵(𝑧) 𝑒2𝑧
= 1 ⇒ − 2𝐵(𝑧) 𝑒 𝑧
+ 𝐵(𝑧) 𝑒 𝑧
= 1
∎ {
𝐎(𝑧) = 𝑒−2𝑧
𝐵(𝑧) = −𝑒−𝑧
𝐺(𝑡, 𝑧) = 𝑒−2𝑧
𝑒2𝑡
− 𝑒−𝑧
𝑒 𝑡
, 𝑓(𝑧) = 6𝑒−𝑧
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 15
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑡
0
𝑊𝑝(𝑡) = 6𝑒2𝑡
∫ 𝑒−3𝑧
𝑑𝑧
𝑡
0
− 6𝑒 𝑡
∫ 𝑒−2𝑧
𝑑𝑧
𝑡
0
𝑊𝑝(𝑡) = −2𝑒2𝑡(𝑒−3𝑧|0
𝑡 ) − 3𝑒 𝑡(𝑒−2𝑧|0
𝑡 )
𝑊𝑝(𝑡) = −2𝑒−2𝑡(𝑒−3𝑡
− 1) + 𝑒 𝑡(𝑒2𝑡
− 1)
𝑊𝑝(𝑡) = −2𝑒−𝑡
+ 2𝑒2𝑡
+ 3𝑒−𝑡
+ 3𝑒 𝑡
𝑊𝑝(𝑡) = 2𝑒2𝑡
+ 𝑒−𝑡
+ 3𝑒 𝑡
𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡)
𝑊(𝑡) = 𝐎𝑒2𝑡
+ 𝐵𝑒 𝑡
+ 2𝑒2𝑡
+ 𝑒−𝑡
+ 3𝑒 𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) = 𝐎𝑥2
+ 𝐵𝑥 + 2𝑥2
+
1
𝑥
+ 3𝑥
𝑊(1) = 𝐎 + 𝐵 + 2 + 1 + 3 = 1 ⇒ 𝐎 + 𝐵 = −5 → (1)
𝑊(2) = 4𝐎 + 2𝐵 + 8 +
1
2
+ 6 = 0 ⇒ 2𝐎 + 4𝐵 = −14 → (2)
∎ 𝐎 = −2 , 𝐵 = −3
𝑊( 𝑥) =
1
𝑥
𝑀𝐎𝑇𝐿𝐎𝐵
|
≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′
𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 6 𝑥⁄ ′
, ′
𝑊(1) = 1′
, ′
𝑊(2) = 0.5′
,′
𝑥′
)
≫ 𝑊 = 1 𝑥⁄
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 16
Use Laplace transform
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 =
6
𝑥
𝑊(1) = 1 , 𝑊(2) =
1
2
Solution
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 2
𝑅2 = 1
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝑊,𝑡𝑡 − 3𝑊,𝑡 + 2𝑊 = 6𝑒−𝑡
(𝑠2
− 3𝑠 + 2)𝑊(𝑠) =
6
(𝑠 + 1)
𝑊(𝑠) =
6
(𝑠 + 1)(𝑠 − 2)(𝑠 − 1)
6
(𝑠 + 1)(𝑠 − 2)(𝑠 − 1)
=
𝐎
(𝑠 + 1)
+
𝐵
(𝑠 − 2)
+
𝐶
(𝑠 − 1)
𝐎𝑠2
− 3𝐎𝑠 + 2𝐎 + 𝐵𝑠2
− 𝐵 + 𝐶𝑠2
− 𝐶𝑠 − 2𝑐 = 6
𝐎 = 1 , 𝐵 = 2 , 𝐶 = −3
𝑊(𝑠) =
1
(𝑠 + 1)
+
2
(𝑠 − 2)
−
3
(𝑠 − 1)
𝑊(𝑡) = 𝑒−𝑡
+ 2𝑒2𝑡
− 3𝑒 𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊𝑝(𝑥) = 2𝑥2
+
1
𝑥
− 3𝑥
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 17
𝑊(𝑥) = 𝑊ℎ(𝑥) + 𝑊𝑝(𝑥)
𝑊(𝑥) = 𝐎𝑥2
+ 𝐵𝑥 + 2𝑥2
+
1
𝑥
− 3𝑥
𝑊(1) = 1 ⇒ 𝐎 + 𝐵 = 1
𝑊(2) =
1
2
⇒ 4𝐎 + 2𝐵 = −2
𝐎 = −2 , 𝐵 = 3
𝑊( 𝑥) =
1
𝑥
Use variation of parameter method
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 =
6
𝑥
𝑊(1) = 1 , 𝑊(2) =
1
2
Solution
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 2
𝑅2 = 1
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝑀 = | 𝑒 𝑡
𝑒2𝑡
𝑒 𝑡
2𝑒2𝑡| = 𝑒3𝑡
𝑢1̀ =
| 0 𝑒2𝑡
6𝑒−𝑡
2𝑒2𝑡|
𝑒3𝑡
= −6𝑒−2𝑡
𝑢1 = ∫ −6𝑒−2𝑡
𝑑𝑡 = 3𝑒−2𝑡
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 18
𝑢2̀ =
| 𝑒 𝑡
0
𝑒 𝑡
6𝑒−𝑡|
𝑒3𝑡
= 6𝑒−3𝑡
𝑢2 = ∫ 6𝑒−3𝑡
𝑑𝑡 = −2𝑒−3𝑡
𝑊𝑝(𝑡) = 𝑢1 𝑊1 + 𝑢2 𝑊2 = 𝑒−𝑡
𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡)
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
+ 𝑒−𝑡
𝑙𝑒𝑡 𝑡 = ln(𝑥)
𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2
+
1
𝑥
𝑊(1) ⇒ 𝐎 = −𝐵
𝑊(2) ⇒ 𝐵 = 0 ∎ 𝐎 = 0
𝑊( 𝑥) =
1
𝑥
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 19
Example 7:-
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 12𝑥5
𝑊(1) = 0 , 𝑊(2) = 0
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = −2𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 −
2
𝑥
𝑊,𝑥 +
2
𝑥2
𝑊 =
2
𝑥2
𝑃(𝑥) = 𝑒∫ −
2
𝑥
𝑑𝑥
=
1
𝑥2
1
𝑥2
𝑊,𝑥𝑥 −
2
𝑥3
𝑊,𝑥 +
2
𝑥4
𝑊 =
1
𝑥4
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 1
𝑅2 = 2
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡
+ 𝐵(𝑧) 𝑒2𝑡
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 𝐵(𝑧) 𝑒2𝑧
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧
𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1
∎ {
𝐎(𝑧) = −𝑒−𝑧
𝐵(𝑧) = 𝑒−2𝑧
𝐺(𝑡, 𝑧) = −𝑒−𝑧
𝑒 𝑡
+ 𝑒−2𝑧
𝑒2𝑡
, 𝑓(𝑧) = 12𝑒5𝑧
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 20
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑡
0
𝑊𝑝(𝑡) = −12𝑒 𝑡
∫ 𝑒4𝑧
𝑑𝑧
𝑡
0
+ 12𝑒2𝑡
∫ 𝑒3𝑧
𝑑𝑧
𝑡
0
𝑊𝑝(𝑡) = −3𝑒 𝑡(𝑒4𝑧|0
𝑡 ) + 4𝑒2𝑡(𝑒3𝑧|0
𝑡 )
𝑊𝑝(𝑡) = −3𝑒 𝑡(𝑒4𝑡
− 1) + 4𝑒2𝑡(𝑒3𝑡
− 1)
𝑊𝑝(𝑡) = −3𝑒5𝑡
+ 3𝑒 𝑡
+ 4𝑒5𝑡
+ 4𝑒2𝑡
𝑊𝑝(𝑡) = 𝑒5𝑡
+ 4𝑒2𝑡
+ 3𝑒 𝑡
𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡)
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
+ 𝑒5𝑡
+ 4𝑒2𝑡
+ 3𝑒 𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2
+ 𝑥5
+ 4𝑥2
+ 3𝑥
𝑊(1) = 2𝐎 + 4𝐵 + 1 + 4 + 3 = 0 ⇒ 𝐎 + 𝐵 = −8 → (1)
𝑊(2) = 2𝐎 + 4𝐵 + 32 + 16 + 6 = 0 ⇒ 2𝐎 + 4𝐵 = −54 → (2)
∎ 𝐎 = 11 , 𝐵 = −19
𝑊(𝑥) = 11𝑥 − 19𝑥2
+ 𝑥5
+ 4𝑥2
+ 3𝑥
𝑊( 𝑥) = 𝑥5
− 15𝑥2
+ 14𝑥
𝑀𝐎𝑇𝐿𝐎𝐵
|
≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′
𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 2 ∗ 𝑥^3′
, ′
𝑊(2) = 0′
, ′
𝑊(3) = 6′
,′
𝑥′)
≫ 𝑊 = 𝑥^5 − 15 ∗ 𝑥^2 + 14 ∗ 𝑥
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 21
Use Laplace transform
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 12𝑥5
𝑊(1) = 0 , 𝑊(2) = 0
Solution
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 2
𝑅2 = 1
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝑊,𝑡𝑡 − 3𝑊,𝑡 + 2𝑊 = 𝑒5𝑡
(𝑠2
− 3𝑠 + 2)𝑊(𝑠) =
12
(𝑠 − 5)
𝑊(𝑠) =
6
(𝑠 − 5)(𝑠 − 2)(𝑠 − 1)
6
(𝑠 − 5)(𝑠 − 2)(𝑠 − 1)
=
𝐎
(𝑠 − 5)
+
𝐵
(𝑠 − 2)
+
𝐶
(𝑠 − 1)
𝐎𝑠2
− 3𝐎𝑠 + 2𝐎 + 𝐵𝑠2
− 6𝐵𝑠 + 𝐵 + 𝐶𝑠2
− 7𝐶𝑠 + 10𝑐 = 12
𝐎 = 1 , 𝐵 = −4 , 𝐶 = 3
𝑊(𝑠) =
1
(𝑠 − 5)
−
4
(𝑠 − 2)
+
3
(𝑠 − 1)
𝑊(𝑡) = 𝑒5𝑡
− 4𝑒2𝑡
+ 3𝑒 𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊𝑝(𝑥) = 𝑥5
− 4𝑥2
+ 3𝑥
𝑊(𝑥) = 𝑊ℎ(𝑥) + 𝑊𝑝(𝑥)
𝑊(𝑥) = 𝐎𝑥2
+ 𝐵𝑥 + 𝑥5
− 4𝑥2
+ 3𝑥
𝑊(1) = 0 ⇒ 𝐎 + 𝐵 = 0
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 22
𝑊(2) = 0 ⇒ 4𝐎 + 2𝐵 = −22
𝐎 = −11 , 𝐵 = 11
𝑊( 𝑥) = 𝑥5
− 15𝑥2
+ 14𝑥
Example 8:-
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 6𝑥4
𝑊(1) = 𝑊(2) = 0
Solution
(𝑎 𝑜(𝑥)) = 𝑥2
, (𝑎 𝑜(𝑥)),𝑥
= 2𝑥 , (𝑎1(𝑥)) = −2𝑥
(𝑎 𝑜(𝑥)),𝑥
≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑊,𝑥𝑥 −
2
𝑥
𝑊,𝑥 +
2
𝑥2
𝑊 =
2
𝑥2
𝑃(𝑥) = 𝑒∫ −
2
𝑥
𝑑𝑥
=
1
𝑥2
1
𝑥2
𝑊,𝑥𝑥 −
2
𝑥3
𝑊,𝑥 +
2
𝑥4
𝑊 =
1
𝑥4
(𝑎 𝑜(𝑥)),𝑥
= (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 1
𝑅2 = 2
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡
+ 𝐵(𝑧) 𝑒2𝑡
𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 𝐵(𝑧) 𝑒2𝑧
= 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧
𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧
+ 2𝐵(𝑧) 𝑒2𝑧
= 1
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 23
∎ {
𝐎(𝑧) = −𝑒−𝑧
𝐵(𝑧) = 𝑒−2𝑧
𝐺(𝑡, 𝑧) = −𝑒−𝑧
𝑒 𝑡
+ 𝑒−2𝑧
𝑒2𝑡
, 𝑓(𝑧) = 6𝑒4𝑡
𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧
𝑡
0
𝑊(𝑡) = −6𝑒 𝑡
∫ 𝑒3𝑧
𝑑𝑧
𝑡
0
+ 6𝑒2𝑡
∫ 𝑒2𝑧
𝑑𝑧
𝑡
0
𝑊(𝑡) = −2𝑒 𝑡(𝑒3𝑧|0
𝑡 ) + 3𝑒2𝑡(𝑒2𝑧|0
𝑡 )
𝑊(𝑡) = −2𝑒 𝑡(𝑒3𝑡
− 1) + 3𝑒2𝑡(𝑒2𝑡
− 1)
𝑊(𝑡) = −2𝑒4𝑡
− 2𝑒 𝑡
+ 3𝑒4𝑡
− 3𝑒2𝑡
𝑊𝑝(𝑡) = 𝑒4𝑡
− 3𝑒2𝑡
− 2𝑒 𝑡
𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡)
𝑊(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
+ 𝑒4𝑡
− 3𝑒2𝑡
− 2𝑒 𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2
+ 𝑥4
− 3𝑥2
− 2𝑥
𝑊(1) = 0 ⇒ 𝐎 + 𝐵 = 4
𝑊(2) = 0 ⇒ 2𝐵 + 4𝐵 = 0
𝐎 = 8 , 𝐵 = −4
𝑊(𝑥) = 8𝑥 − 4𝑥2
+ 𝑥4
− 3𝑥2
− 2𝑥
𝑊( 𝑥) = 𝑥4
− 7𝑥2
+ 6𝑥
𝑀𝐎𝑇𝐿𝐎𝐵
|
≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′
𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 2′
, ′
𝑊(1) = 0′
, ′
𝑊(2) = 0′
,′
𝑥′)
≫ 𝑊 = 𝑥^2 2⁄ − 3 ∗ 𝑥 2⁄ + 1
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 24
Use Laplace transform
𝑥2
𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 6𝑥4
𝑊(1) = 0 , 𝑊(2) = 0
Solution
𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡
𝑅(𝑅 − 1) − 2𝑅 + 2 = 0
𝑅2
− 3𝑅 + 2 = 0 ⇒ {
𝑅1 = 2
𝑅2 = 1
𝑊ℎ(𝑡) = 𝐎𝑒 𝑡
+ 𝐵𝑒2𝑡
𝑊,𝑡𝑡 − 3𝑊,𝑡 + 2𝑊 = 6𝑒4𝑡
(𝑠2
− 3𝑠 + 2)𝑊(𝑠) =
6
(𝑠 − 4)
𝑊(𝑠) =
6
(𝑠 − 4)(𝑠 − 2)(𝑠 − 1)
6
(𝑠 − 4)(𝑠 − 2)(𝑠 − 1)
=
𝐎
(𝑠 − 4)
+
𝐵
(𝑠 − 2)
+
𝐶
(𝑠 − 1)
𝐎𝑠2
− 3𝐎𝑠 + 2𝐎 + 𝐵𝑠2
− 5𝐵𝑠 + 4𝐵 + 𝐶𝑠2
− 6𝐶𝑠 + 8𝑐 = 6
𝐎 = 1 , 𝐵 = −3 , 𝐶 = 2
𝑊(𝑠) =
1
(𝑠 − 4)
−
3
(𝑠 − 2)
+
2
(𝑠 − 1)
𝑊(𝑡) = 𝑒4𝑡
− 3𝑒2𝑡
+ 2𝑒 𝑡
𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥)
𝑊𝑝(𝑥) = 𝑥4
− 3𝑥2
+ 2𝑥
𝑊(𝑥) = 𝑊ℎ(𝑥) + 𝑊𝑝(𝑥)
𝑊(𝑥) = 𝐎𝑥2
+ 𝐵𝑥 + 𝑥4
− 3𝑥2
+ 2𝑥
𝑊(1) = 0 ⇒ 𝐎 + 𝐵 = 0
ADVANCED MATHEMATICS
By.Eng. Hamza-Mahmoud-Dahoka 25
𝑊(2) = 0 ⇒ 4𝐎 + 2𝐵 = −8
𝐎 = −4 , 𝐵 = 4
𝑊( 𝑥) = 𝑥4
− 7𝑥2
+ 6𝑥

More Related Content

What's hot

Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolationVISHAL DONGA
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesEnrique Valderrama
 
Euler's Method
Euler's MethodEuler's Method
Euler's Methoddmidgette
 
Numerical integration
Numerical integrationNumerical integration
Numerical integrationSunny Chauhan
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation Meet Patel
 
Unit 1: Topological spaces (its definition and definition of open sets)
Unit 1:  Topological spaces (its definition and definition of open sets)Unit 1:  Topological spaces (its definition and definition of open sets)
Unit 1: Topological spaces (its definition and definition of open sets)nasserfuzt
 
Metric space
Metric spaceMetric space
Metric spaceNaliniSPatil
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeDheirya Joshi
 
Laurent's Series & Types of Singularities
Laurent's Series & Types of SingularitiesLaurent's Series & Types of Singularities
Laurent's Series & Types of SingularitiesAakash Singh
 
Linear Systems Gauss Seidel
Linear Systems   Gauss SeidelLinear Systems   Gauss Seidel
Linear Systems Gauss SeidelEric Davishahl
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equationsDiler4
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Digvijaysinh Gohil
 
Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...vaibhav tailor
 
Presentation mathmatic 3
Presentation mathmatic 3Presentation mathmatic 3
Presentation mathmatic 3nashaat algrara
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson methodJayesh Ranjan
 
Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Suddhasheel GHOSH, PhD
 
Numerical solution of ordinary differential equation
Numerical solution of ordinary differential equationNumerical solution of ordinary differential equation
Numerical solution of ordinary differential equationDixi Patel
 

What's hot (20)

Differential equations
Differential equationsDifferential equations
Differential equations
 
Newton divided difference interpolation
Newton divided difference interpolationNewton divided difference interpolation
Newton divided difference interpolation
 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
 
Partial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examplesPartial Differential Equations, 3 simple examples
Partial Differential Equations, 3 simple examples
 
Euler's Method
Euler's MethodEuler's Method
Euler's Method
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Newton’s Forward & backward interpolation
Newton’s Forward &  backward interpolation Newton’s Forward &  backward interpolation
Newton’s Forward & backward interpolation
 
Unit 1: Topological spaces (its definition and definition of open sets)
Unit 1:  Topological spaces (its definition and definition of open sets)Unit 1:  Topological spaces (its definition and definition of open sets)
Unit 1: Topological spaces (its definition and definition of open sets)
 
Metric space
Metric spaceMetric space
Metric space
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First Degree
 
Laurent's Series & Types of Singularities
Laurent's Series & Types of SingularitiesLaurent's Series & Types of Singularities
Laurent's Series & Types of Singularities
 
Linear Systems Gauss Seidel
Linear Systems   Gauss SeidelLinear Systems   Gauss Seidel
Linear Systems Gauss Seidel
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )
 
Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...Numerical integration;Gaussian integration one point, two point and three poi...
Numerical integration;Gaussian integration one point, two point and three poi...
 
Presentation mathmatic 3
Presentation mathmatic 3Presentation mathmatic 3
Presentation mathmatic 3
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...Point Collocation Method used in the solving of Differential Equations, parti...
Point Collocation Method used in the solving of Differential Equations, parti...
 
Numerical solution of ordinary differential equation
Numerical solution of ordinary differential equationNumerical solution of ordinary differential equation
Numerical solution of ordinary differential equation
 

Viewers also liked

Uni2go week4_interview summary
Uni2go week4_interview summaryUni2go week4_interview summary
Uni2go week4_interview summaryUNI2GO
 
Techniques for Developing Directory and Marketplace Sites with WordPress
Techniques for Developing Directory and Marketplace Sites with WordPressTechniques for Developing Directory and Marketplace Sites with WordPress
Techniques for Developing Directory and Marketplace Sites with WordPressonthegosystems
 
KIDS_Lookbook_EMAIL_FINAL
KIDS_Lookbook_EMAIL_FINALKIDS_Lookbook_EMAIL_FINAL
KIDS_Lookbook_EMAIL_FINALDerek Smith
 
That's me !!
That's me !!That's me !!
That's me !!Sameh Ezzat
 
UNI2GO Pitch Draft
UNI2GO Pitch DraftUNI2GO Pitch Draft
UNI2GO Pitch DraftUNI2GO
 
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015wsa-mobile
 
Uni2 go week5
Uni2 go week5Uni2 go week5
Uni2 go week5UNI2GO
 
Uni2 go week3
Uni2 go week3Uni2 go week3
Uni2 go week3UNI2GO
 
Legal environtment
Legal environtmentLegal environtment
Legal environtmentfawaidalvian
 
How to Prevent an International Incident: Communicating with Global Teams
How to Prevent an International Incident: Communicating with Global TeamsHow to Prevent an International Incident: Communicating with Global Teams
How to Prevent an International Incident: Communicating with Global TeamsMeredith Kramer
 

Viewers also liked (14)

Uni2go week4_interview summary
Uni2go week4_interview summaryUni2go week4_interview summary
Uni2go week4_interview summary
 
Techniques for Developing Directory and Marketplace Sites with WordPress
Techniques for Developing Directory and Marketplace Sites with WordPressTechniques for Developing Directory and Marketplace Sites with WordPress
Techniques for Developing Directory and Marketplace Sites with WordPress
 
KIDS_Lookbook_EMAIL_FINAL
KIDS_Lookbook_EMAIL_FINALKIDS_Lookbook_EMAIL_FINAL
KIDS_Lookbook_EMAIL_FINAL
 
That's me !!
That's me !!That's me !!
That's me !!
 
UNI2GO Pitch Draft
UNI2GO Pitch DraftUNI2GO Pitch Draft
UNI2GO Pitch Draft
 
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
 
Uni2 go week5
Uni2 go week5Uni2 go week5
Uni2 go week5
 
JMNeyrey CV 2015 - sales
JMNeyrey CV 2015 - salesJMNeyrey CV 2015 - sales
JMNeyrey CV 2015 - sales
 
Uni2 go week3
Uni2 go week3Uni2 go week3
Uni2 go week3
 
Legal environtment
Legal environtmentLegal environtment
Legal environtment
 
Kuivalainen_Miikka
Kuivalainen_MiikkaKuivalainen_Miikka
Kuivalainen_Miikka
 
Lo8
Lo8Lo8
Lo8
 
0felicitari 8 martie
0felicitari 8 martie0felicitari 8 martie
0felicitari 8 martie
 
How to Prevent an International Incident: Communicating with Global Teams
How to Prevent an International Incident: Communicating with Global TeamsHow to Prevent an International Incident: Communicating with Global Teams
How to Prevent an International Incident: Communicating with Global Teams
 

Green function

  • 1. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 1 GREEN FUNCTION Example 1:- 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 𝑥3 𝑊(1) = 𝑊,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 − 2 𝑥 𝑊,𝑥 + 2 𝑥2 𝑊 = 𝑥 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑊,𝑥𝑥 − 2 𝑥3 𝑊,𝑥 + 2 𝑥4 𝑊 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∎ { 𝐎(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 𝑒3𝑧
  • 2. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 2 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑊(𝑡) = −𝑒 𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 + 𝑒2𝑡 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 𝑊(𝑡) = − 𝑒 𝑡 2 (𝑒2𝑧|0 𝑡 ) + 𝑒2𝑡(𝑒 𝑧|0 𝑡 ) 𝑊(𝑡) = 𝑒3𝑡 2 + 𝑒 𝑡 2 − 𝑒2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊( 𝑥) = 𝑥3 2 + 𝑥 2 − 𝑥2
  • 3. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 3 Example1-1:- 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 𝑥3 𝑊(1) = 𝑊,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 − 2 𝑥 𝑊,𝑥 + 2 𝑥2 𝑊 = 𝑥 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑊,𝑥𝑥 − 2 𝑥3 𝑊,𝑥 + 2 𝑥4 𝑊 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2 𝐺(𝑥, 𝑧) = 𝐎(𝑧) 𝑥 + 𝐵(𝑧) 𝑥2 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑧 + 𝐵(𝑧) 𝑧2 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑧 𝐺,𝑥(𝑧, 𝑧) = 𝐎(𝑧) + 2𝐵(𝑧) 𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑧 + 2𝐵(𝑧) 𝑧 = 1 ∎ { 𝐎(𝑧) = −1 𝐵(𝑧) = 1 𝑧
  • 4. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 4 𝐺(𝑡, 𝑧) = −𝑥 + 𝑥2 𝑧 , 𝑓(𝑧) = 𝑧 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑥 1 𝑊(𝑡) = −𝑥 ∫ 𝑧 𝑑𝑧 𝑥 1 + 𝑥2 ∫ 1 𝑑𝑧 𝑥 1 𝑊(𝑡) = − 𝑥 2 (𝑧2|0 𝑡 ) + 𝑥2(𝑧|0 𝑡 ) 𝑊( 𝑥) = 𝑥3 2 + 𝑥 2 − 𝑥2 𝑀𝐎𝑇𝐿𝐎𝐵 | ≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 𝑥^2′ , ′ 𝑊(1) = 0′ , ′ 𝐷𝑊(1) = 0′ ,′ 𝑥′) ≫ 𝑊 = 𝑥^3 2⁄ + 𝑥 2⁄ − 𝑥^2 Example 2:- 𝑥2 𝑊,𝑥𝑥 + 𝑥𝑊,𝑥 − 𝑊 = 𝑥2 𝑊(1) = 𝑊,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = 𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 + 1 𝑥 𝑊,𝑥 − 1 𝑥2 𝑊 = 1 𝑃(𝑥) = 𝑒∫ 1 𝑥 𝑑𝑥 = 𝑥 𝑥𝑊,𝑥𝑥 + 𝑊,𝑥 − 1 𝑥 𝑊 = 1 𝑥
  • 5. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 5 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) + 𝑅 − 1 = 0 𝑅2 − 1 = 0 ⇒ { 𝑅1 = 1 𝑅2 = −1 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒−𝑡 𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒−𝑡 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒−𝑧 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒−2𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 − 𝐵(𝑧) 𝑒−𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒−𝑧 − 𝐵(𝑧) 𝑒−𝑧 = 1 ∎ { 𝐎(𝑧) = 𝑒−𝑧 2⁄ 𝐵(𝑧) = −𝑒 𝑧 2⁄ 𝐺(𝑡, 𝑧) = 1 2 𝑒−𝑧 𝑒 𝑡 − 1 2 𝑒 𝑧 𝑒−𝑡 , 𝑓(𝑧) = 𝑒2𝑧 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑊(𝑡) = 𝑒 𝑡 2 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 − 𝑒−𝑡 2 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑊(𝑡) = 𝑒 𝑡 2 (𝑒 𝑧|0 𝑡 ) − 𝑒−𝑡 6 (𝑒3𝑧|0 𝑡 ) 𝑊(𝑡) = 𝑒2𝑡 3 − 𝑒 𝑡 2 + 1 6𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝑥2 3 + 1 6𝑥 − 𝑥 2 𝑊( 𝑥) = 𝑥 ( 𝑥 3 + 1 6𝑥2 ) − 𝑥 2
  • 6. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 6 Example 2-1:- 𝑥2 𝑊,𝑥𝑥 + 𝑥𝑊,𝑥 − 𝑊 = 𝑥2 𝑊(1) = 𝑊,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = 𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 + 1 𝑥 𝑊,𝑥 − 1 𝑥2 𝑊 = 1 𝑃(𝑥) = 𝑒∫ 1 𝑥 𝑑𝑥 = 𝑥 𝑥𝑊,𝑥𝑥 + 𝑊,𝑥 − 1 𝑥 𝑊 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) + 𝑅 − 1 = 0 𝑅2 − 1 = 0 ⇒ { 𝑅1 = 1 𝑅2 = −1 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒−𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝐎𝑥 + 𝐵 𝑥 𝐺(𝑥, 𝑧) = 𝐎(𝑧) 𝑥 + 𝐵(𝑧) 𝑥 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑧 + 𝐵(𝑧) 𝑧 = 0 ⇒ 𝐎(𝑧) = − 𝐵(𝑧) 𝑧2 𝐺,𝑥(𝑧, 𝑧) = 𝐎(𝑧) − 𝐵(𝑧) 𝑧2 = 1 ⇒ − 𝐵(𝑧) 𝑧2 − 𝐵(𝑧) 𝑧2 = 1
  • 7. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 7 ∎ { 𝐎(𝑧) = 1 2 𝐵(𝑧) = − 𝑧2 2 𝐺(𝑡, 𝑧) = 𝑥 2 − 𝑧2 2𝑥 , 𝑓(𝑧) = 1 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑥 1 𝑊(𝑡) = 𝑥 2 ∫ 1 𝑑𝑧 𝑥 1 − 1 2𝑥 ∫ 𝑧2 𝑑𝑧 𝑥 1 𝑊(𝑡) = 𝑥 2 (𝑧|0 𝑡 ) − 1 6𝑥 (𝑧3|0 𝑡 ) 𝑊(𝑥) = 𝑥 2 (𝑥 − 1) − 1 6𝑥 (𝑥3 − 1) 𝑊(𝑥) = 𝑥2 3 + 1 6𝑥 − 𝑥 2 𝑊( 𝑥) = 𝑥 ( 𝑥 3 + 1 6𝑥2 ) − 𝑥 2 𝑀𝐎𝑇𝐿𝐎𝐵 | ≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑊 + 𝑥 ∗ 𝐷𝑊 − 𝑊 = 𝑥^2′ , ′ 𝑊(1) = 0′ , ′ 𝐷𝑊(1) = 0′ ,′ 𝑥′) ≫ 𝑊 = 𝑥 ∗ (𝑥 3⁄ + 1 (6 ∗ 𝑥^2)⁄ ) − 𝑥 2⁄
  • 8. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 8 Example 3:- 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 2 𝑊(1) = 𝑊(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 − 2 𝑥 𝑊,𝑥 + 2 𝑥2 𝑊 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑊,𝑥𝑥 − 2 𝑥3 𝑊,𝑥 + 2 𝑥4 𝑊 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∎ { 𝐎(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 2
  • 9. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 9 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑊(𝑡) = −2𝑒 𝑡 ∫ 𝑒−𝑧 𝑑𝑧 𝑡 0 + 2𝑒2𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 𝑊(𝑡) = 2𝑒 𝑡(𝑒−𝑧|0 𝑡 ) − 𝑒2𝑡(𝑒−2𝑧|0 𝑡 ) 2𝑒 𝑡(𝑒−𝑡 − 1) − 𝑒2𝑡(𝑒−2𝑡 − 1) 2 − 2𝑒 𝑡 − 1 + 𝑒2𝑡 𝑊𝑝(𝑡) = 𝑒2𝑡 − 2𝑒 𝑡 + 1 𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡) 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒2𝑡 − 2𝑒 𝑡 + 1 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2 + 𝑥2 − 2𝑥 + 1 𝑊(1) = 𝐎 + 𝐵 + 1 − 2 + 1 = 0 ⇒ 𝐎 = −𝐵 𝑊(2) = 2𝐎 + 4𝐵 + 4 − 4 + 1 = 0 −2𝐵 + 4𝐵 = −1 ⇒ 𝐵 = − 1 2 , 𝐎 = 1 2 𝑊(𝑥) = 1 2 𝑥 − 1 2 𝑥2 + 𝑥2 − 2𝑥 + 1 𝑊( 𝑥) = 𝑥2 2 − 3𝑥 2 + 1 𝑀𝐎𝑇𝐿𝐎𝐵 | ≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 2′ , ′ 𝑊(1) = 0′ , ′ 𝑊(2) = 0′ ,′ 𝑥′) ≫ 𝑊 = 𝑥2 2⁄ − 3 ∗ 𝑥 2⁄ + 1
  • 10. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 10 Example 4:- 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 2𝑥3 𝑊(2) = 0 , 𝑊(3) = 6 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 − 2 𝑥 𝑊,𝑥 + 2 𝑥2 𝑊 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑊,𝑥𝑥 − 2 𝑥3 𝑊,𝑥 + 2 𝑥4 𝑊 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∎ { 𝐎(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 2𝑒3𝑧
  • 11. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 11 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑊𝑝(𝑡) = −2𝑒 𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 + 2𝑒2𝑡 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 𝑊𝑝(𝑡) = −𝑒 𝑡(𝑒2𝑧|0 𝑡 ) + 2𝑒2𝑡(𝑒 𝑧|0 𝑡 ) 𝑊𝑝(𝑡) = −𝑒 𝑡(𝑒2𝑡 − 1) + 2𝑒2𝑡(𝑒 𝑡 − 1) 𝑊𝑝(𝑡) = −𝑒3𝑡 + 𝑒 𝑡 + 2𝑒3𝑡 − 2𝑒2𝑡 𝑊𝑝(𝑡) = 𝑒3𝑡 − 2𝑒2𝑡 + 𝑒 𝑡 𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡) 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒3𝑡 − 2𝑒2𝑡 + 𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2 + 𝑥3 − 2𝑥2 + 𝑥 𝑊(2) = 2𝐎 + 4𝐵 + 8 − 8 + 2 = 0 ⇒ 2𝐎 + 4𝐵 = −2 → (1) 𝑊(3) = 3𝐎 + 9𝐵 + 27 − 18 + 3 = 6 ⇒ 3𝐎 + 9𝐵 = −6 → (2) ∎ 𝐎 = 1 , 𝐵 = −1 𝑊(𝑥) = 𝑥 − 𝑥2 + 𝑥3 − 2𝑥2 + 𝑥 𝑊( 𝑥) = 𝑥3 − 3𝑥2 + 2𝑥 𝑀𝐎𝑇𝐿𝐎𝐵 | ≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 2𝑥^3′ , ′ 𝑊(2) = 0′ , ′ 𝑊(3) = 6′ ,′ 𝑥′) ≫ 𝑊 = 𝑥^3 − 3 ∗ 𝑥^2 + 2 ∗ 𝑥
  • 12. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 12 Example 5:- 𝑥2 𝑊,𝑥𝑥 − 6 = 6𝑥 𝑊(1) = −1 , 𝑊(2) = 29 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 6 = 0 𝑅2 − 𝑅 − 6 = 0 ⇒ { 𝑅1 = 3 𝑅2 = −2 𝑊ℎ(𝑡) = 𝐎𝑒3𝑡 + 𝐵𝑒−2𝑡 𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒3𝑡 + 𝐵(𝑧) 𝑒−2𝑡 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒3𝑧 + 𝐵(𝑧) 𝑒−2𝑧 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒−5𝑧 𝐺,𝑡(𝑧, 𝑧) = 3𝐎(𝑧) 𝑒3𝑧 − 2𝐵(𝑧) 𝑒−2𝑧 = 1 = −𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∎ { 𝐎(𝑧) = 𝑒−3𝑧 5 𝐵(𝑧) = − 𝑒2𝑧 5 𝐺(𝑡, 𝑧) = 𝑒−3𝑧 5 𝑒3𝑡 − 𝑒2𝑧 5 𝑒−2𝑡 , 𝑓(𝑧) = 6𝑒 𝑧 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑊𝑝(𝑡) = 6 5 𝑒3𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 − 6 5 𝑒−2𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑊𝑝(𝑡) = − 6 10 𝑒3𝑡(𝑒−2𝑧|0 𝑡 ) − 6 15 𝑒−2𝑡(𝑒3𝑧|0 𝑡 )
  • 13. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 13 𝑊𝑝(𝑡) = − 6 10 𝑒3𝑡(𝑒−2𝑡 − 1) − 6 15 𝑒−2𝑡(𝑒3𝑡 − 1) 𝑊𝑝(𝑡) = − 3 5 𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒 𝑡 + 2 5 𝑒−2𝑡 𝑊𝑝(𝑡) = −𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒−2𝑡 𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡) 𝑊(𝑡) = 𝐎𝑒3𝑡 + 𝐵𝑒−2𝑡 − 𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒−2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝐎𝑥3 + 𝐵 𝑥2 − 𝑥 − 3 5 𝑥3 + 2 5𝑥2 𝑊(1) = 𝐎 + 𝐵 − 1 − 3 5 + 2 5 = −1 ⇒ 𝐎 = 1 5 − 𝐵 → (1) 𝑊(2) = 8𝐎 + 𝐵 4 − 2 − 24 5 + 2 20 = 29 = 8 ( 1 5 − 𝐵) + 𝐵 4 − 2 − 24 5 + 2 20 = 29 → × 20 ∎ 𝐵 = − 682 155 ⇒ 𝐎 = 713 155 𝑊(𝑥) = 713 155 𝑥3 − 682 155𝑥2 − 𝑥 − 3 5 𝑥3 + 2 5𝑥2 𝑊( 𝑥) = 4𝑥3 − 4 𝑥2 − 𝑥 𝑀𝐎𝑇𝐿𝐎𝐵 | ≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑊 − 6 ∗ 𝑊 = 6 ∗ 𝑥′ , ′ 𝑊(2) = 0′ , ′ 𝑊(3) = 6′ ,′ 𝑥′) ≫ 𝑊 = 4 ∗ 𝑥^3 − 4 𝑥^2⁄ − 𝑥
  • 14. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 14 Example 6:- 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 6 𝑥 𝑊(1) = 1 , 𝑊(2) = 1 2 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 − 2 𝑥 𝑊,𝑥 + 2 𝑥2 𝑊 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑊,𝑥𝑥 − 2 𝑥3 𝑊,𝑥 + 2 𝑥4 𝑊 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒2𝑧 + 𝐵(𝑧) 𝑒 𝑧 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒−𝑧 𝐺,𝑡(𝑧, 𝑧) = 2𝐎(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 2𝐵(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒 𝑧 = 1 ∎ { 𝐎(𝑧) = 𝑒−2𝑧 𝐵(𝑧) = −𝑒−𝑧 𝐺(𝑡, 𝑧) = 𝑒−2𝑧 𝑒2𝑡 − 𝑒−𝑧 𝑒 𝑡 , 𝑓(𝑧) = 6𝑒−𝑧
  • 15. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 15 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑊𝑝(𝑡) = 6𝑒2𝑡 ∫ 𝑒−3𝑧 𝑑𝑧 𝑡 0 − 6𝑒 𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 𝑊𝑝(𝑡) = −2𝑒2𝑡(𝑒−3𝑧|0 𝑡 ) − 3𝑒 𝑡(𝑒−2𝑧|0 𝑡 ) 𝑊𝑝(𝑡) = −2𝑒−2𝑡(𝑒−3𝑡 − 1) + 𝑒 𝑡(𝑒2𝑡 − 1) 𝑊𝑝(𝑡) = −2𝑒−𝑡 + 2𝑒2𝑡 + 3𝑒−𝑡 + 3𝑒 𝑡 𝑊𝑝(𝑡) = 2𝑒2𝑡 + 𝑒−𝑡 + 3𝑒 𝑡 𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡) 𝑊(𝑡) = 𝐎𝑒2𝑡 + 𝐵𝑒 𝑡 + 2𝑒2𝑡 + 𝑒−𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝐎𝑥2 + 𝐵𝑥 + 2𝑥2 + 1 𝑥 + 3𝑥 𝑊(1) = 𝐎 + 𝐵 + 2 + 1 + 3 = 1 ⇒ 𝐎 + 𝐵 = −5 → (1) 𝑊(2) = 4𝐎 + 2𝐵 + 8 + 1 2 + 6 = 0 ⇒ 2𝐎 + 4𝐵 = −14 → (2) ∎ 𝐎 = −2 , 𝐵 = −3 𝑊( 𝑥) = 1 𝑥 𝑀𝐎𝑇𝐿𝐎𝐵 | ≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 6 𝑥⁄ ′ , ′ 𝑊(1) = 1′ , ′ 𝑊(2) = 0.5′ ,′ 𝑥′ ) ≫ 𝑊 = 1 𝑥⁄
  • 16. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 16 Use Laplace transform 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 6 𝑥 𝑊(1) = 1 , 𝑊(2) = 1 2 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝑊,𝑡𝑡 − 3𝑊,𝑡 + 2𝑊 = 6𝑒−𝑡 (𝑠2 − 3𝑠 + 2)𝑊(𝑠) = 6 (𝑠 + 1) 𝑊(𝑠) = 6 (𝑠 + 1)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 + 1)(𝑠 − 2)(𝑠 − 1) = 𝐎 (𝑠 + 1) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐎𝑠2 − 3𝐎𝑠 + 2𝐎 + 𝐵𝑠2 − 𝐵 + 𝐶𝑠2 − 𝐶𝑠 − 2𝑐 = 6 𝐎 = 1 , 𝐵 = 2 , 𝐶 = −3 𝑊(𝑠) = 1 (𝑠 + 1) + 2 (𝑠 − 2) − 3 (𝑠 − 1) 𝑊(𝑡) = 𝑒−𝑡 + 2𝑒2𝑡 − 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊𝑝(𝑥) = 2𝑥2 + 1 𝑥 − 3𝑥
  • 17. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 17 𝑊(𝑥) = 𝑊ℎ(𝑥) + 𝑊𝑝(𝑥) 𝑊(𝑥) = 𝐎𝑥2 + 𝐵𝑥 + 2𝑥2 + 1 𝑥 − 3𝑥 𝑊(1) = 1 ⇒ 𝐎 + 𝐵 = 1 𝑊(2) = 1 2 ⇒ 4𝐎 + 2𝐵 = −2 𝐎 = −2 , 𝐵 = 3 𝑊( 𝑥) = 1 𝑥 Use variation of parameter method 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 6 𝑥 𝑊(1) = 1 , 𝑊(2) = 1 2 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝑀 = | 𝑒 𝑡 𝑒2𝑡 𝑒 𝑡 2𝑒2𝑡| = 𝑒3𝑡 𝑢1̀ = | 0 𝑒2𝑡 6𝑒−𝑡 2𝑒2𝑡| 𝑒3𝑡 = −6𝑒−2𝑡 𝑢1 = ∫ −6𝑒−2𝑡 𝑑𝑡 = 3𝑒−2𝑡
  • 18. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 18 𝑢2̀ = | 𝑒 𝑡 0 𝑒 𝑡 6𝑒−𝑡| 𝑒3𝑡 = 6𝑒−3𝑡 𝑢2 = ∫ 6𝑒−3𝑡 𝑑𝑡 = −2𝑒−3𝑡 𝑊𝑝(𝑡) = 𝑢1 𝑊1 + 𝑢2 𝑊2 = 𝑒−𝑡 𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡) 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒−𝑡 𝑙𝑒𝑡 𝑡 = ln(𝑥) 𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2 + 1 𝑥 𝑊(1) ⇒ 𝐎 = −𝐵 𝑊(2) ⇒ 𝐵 = 0 ∎ 𝐎 = 0 𝑊( 𝑥) = 1 𝑥
  • 19. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 19 Example 7:- 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 12𝑥5 𝑊(1) = 0 , 𝑊(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 − 2 𝑥 𝑊,𝑥 + 2 𝑥2 𝑊 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑊,𝑥𝑥 − 2 𝑥3 𝑊,𝑥 + 2 𝑥4 𝑊 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∎ { 𝐎(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 12𝑒5𝑧
  • 20. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 20 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑊𝑝(𝑡) = −12𝑒 𝑡 ∫ 𝑒4𝑧 𝑑𝑧 𝑡 0 + 12𝑒2𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑊𝑝(𝑡) = −3𝑒 𝑡(𝑒4𝑧|0 𝑡 ) + 4𝑒2𝑡(𝑒3𝑧|0 𝑡 ) 𝑊𝑝(𝑡) = −3𝑒 𝑡(𝑒4𝑡 − 1) + 4𝑒2𝑡(𝑒3𝑡 − 1) 𝑊𝑝(𝑡) = −3𝑒5𝑡 + 3𝑒 𝑡 + 4𝑒5𝑡 + 4𝑒2𝑡 𝑊𝑝(𝑡) = 𝑒5𝑡 + 4𝑒2𝑡 + 3𝑒 𝑡 𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡) 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒5𝑡 + 4𝑒2𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2 + 𝑥5 + 4𝑥2 + 3𝑥 𝑊(1) = 2𝐎 + 4𝐵 + 1 + 4 + 3 = 0 ⇒ 𝐎 + 𝐵 = −8 → (1) 𝑊(2) = 2𝐎 + 4𝐵 + 32 + 16 + 6 = 0 ⇒ 2𝐎 + 4𝐵 = −54 → (2) ∎ 𝐎 = 11 , 𝐵 = −19 𝑊(𝑥) = 11𝑥 − 19𝑥2 + 𝑥5 + 4𝑥2 + 3𝑥 𝑊( 𝑥) = 𝑥5 − 15𝑥2 + 14𝑥 𝑀𝐎𝑇𝐿𝐎𝐵 | ≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 2 ∗ 𝑥^3′ , ′ 𝑊(2) = 0′ , ′ 𝑊(3) = 6′ ,′ 𝑥′) ≫ 𝑊 = 𝑥^5 − 15 ∗ 𝑥^2 + 14 ∗ 𝑥
  • 21. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 21 Use Laplace transform 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 12𝑥5 𝑊(1) = 0 , 𝑊(2) = 0 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝑊,𝑡𝑡 − 3𝑊,𝑡 + 2𝑊 = 𝑒5𝑡 (𝑠2 − 3𝑠 + 2)𝑊(𝑠) = 12 (𝑠 − 5) 𝑊(𝑠) = 6 (𝑠 − 5)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 − 5)(𝑠 − 2)(𝑠 − 1) = 𝐎 (𝑠 − 5) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐎𝑠2 − 3𝐎𝑠 + 2𝐎 + 𝐵𝑠2 − 6𝐵𝑠 + 𝐵 + 𝐶𝑠2 − 7𝐶𝑠 + 10𝑐 = 12 𝐎 = 1 , 𝐵 = −4 , 𝐶 = 3 𝑊(𝑠) = 1 (𝑠 − 5) − 4 (𝑠 − 2) + 3 (𝑠 − 1) 𝑊(𝑡) = 𝑒5𝑡 − 4𝑒2𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊𝑝(𝑥) = 𝑥5 − 4𝑥2 + 3𝑥 𝑊(𝑥) = 𝑊ℎ(𝑥) + 𝑊𝑝(𝑥) 𝑊(𝑥) = 𝐎𝑥2 + 𝐵𝑥 + 𝑥5 − 4𝑥2 + 3𝑥 𝑊(1) = 0 ⇒ 𝐎 + 𝐵 = 0
  • 22. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 22 𝑊(2) = 0 ⇒ 4𝐎 + 2𝐵 = −22 𝐎 = −11 , 𝐵 = 11 𝑊( 𝑥) = 𝑥5 − 15𝑥2 + 14𝑥 Example 8:- 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 6𝑥4 𝑊(1) = 𝑊(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∎ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑊,𝑥𝑥 − 2 𝑥 𝑊,𝑥 + 2 𝑥2 𝑊 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑊,𝑥𝑥 − 2 𝑥3 𝑊,𝑥 + 2 𝑥4 𝑊 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∎ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐎(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐎(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐎(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1
  • 23. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 23 ∎ { 𝐎(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 6𝑒4𝑡 𝑊(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑊(𝑡) = −6𝑒 𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 + 6𝑒2𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 𝑊(𝑡) = −2𝑒 𝑡(𝑒3𝑧|0 𝑡 ) + 3𝑒2𝑡(𝑒2𝑧|0 𝑡 ) 𝑊(𝑡) = −2𝑒 𝑡(𝑒3𝑡 − 1) + 3𝑒2𝑡(𝑒2𝑡 − 1) 𝑊(𝑡) = −2𝑒4𝑡 − 2𝑒 𝑡 + 3𝑒4𝑡 − 3𝑒2𝑡 𝑊𝑝(𝑡) = 𝑒4𝑡 − 3𝑒2𝑡 − 2𝑒 𝑡 𝑊(𝑡) = 𝑊ℎ(𝑡) + 𝑊𝑝(𝑡) 𝑊(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒4𝑡 − 3𝑒2𝑡 − 2𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊(𝑥) = 𝐎𝑥 + 𝐵𝑥2 + 𝑥4 − 3𝑥2 − 2𝑥 𝑊(1) = 0 ⇒ 𝐎 + 𝐵 = 4 𝑊(2) = 0 ⇒ 2𝐵 + 4𝐵 = 0 𝐎 = 8 , 𝐵 = −4 𝑊(𝑥) = 8𝑥 − 4𝑥2 + 𝑥4 − 3𝑥2 − 2𝑥 𝑊( 𝑥) = 𝑥4 − 7𝑥2 + 6𝑥 𝑀𝐎𝑇𝐿𝐎𝐵 | ≫ 𝑊 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑊 − 2 ∗ 𝑥 ∗ 𝐷𝑊 + 2 ∗ 𝑊 = 2′ , ′ 𝑊(1) = 0′ , ′ 𝑊(2) = 0′ ,′ 𝑥′) ≫ 𝑊 = 𝑥^2 2⁄ − 3 ∗ 𝑥 2⁄ + 1
  • 24. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 24 Use Laplace transform 𝑥2 𝑊,𝑥𝑥 − 2𝑥𝑊,𝑥 + 2𝑊 = 6𝑥4 𝑊(1) = 0 , 𝑊(2) = 0 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑊ℎ(𝑡) = 𝐎𝑒 𝑡 + 𝐵𝑒2𝑡 𝑊,𝑡𝑡 − 3𝑊,𝑡 + 2𝑊 = 6𝑒4𝑡 (𝑠2 − 3𝑠 + 2)𝑊(𝑠) = 6 (𝑠 − 4) 𝑊(𝑠) = 6 (𝑠 − 4)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 − 4)(𝑠 − 2)(𝑠 − 1) = 𝐎 (𝑠 − 4) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐎𝑠2 − 3𝐎𝑠 + 2𝐎 + 𝐵𝑠2 − 5𝐵𝑠 + 4𝐵 + 𝐶𝑠2 − 6𝐶𝑠 + 8𝑐 = 6 𝐎 = 1 , 𝐵 = −3 , 𝐶 = 2 𝑊(𝑠) = 1 (𝑠 − 4) − 3 (𝑠 − 2) + 2 (𝑠 − 1) 𝑊(𝑡) = 𝑒4𝑡 − 3𝑒2𝑡 + 2𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑊𝑝(𝑥) = 𝑥4 − 3𝑥2 + 2𝑥 𝑊(𝑥) = 𝑊ℎ(𝑥) + 𝑊𝑝(𝑥) 𝑊(𝑥) = 𝐎𝑥2 + 𝐵𝑥 + 𝑥4 − 3𝑥2 + 2𝑥 𝑊(1) = 0 ⇒ 𝐎 + 𝐵 = 0
  • 25. ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka 25 𝑊(2) = 0 ⇒ 4𝐎 + 2𝐵 = −8 𝐎 = −4 , 𝐵 = 4 𝑊( 𝑥) = 𝑥4 − 7𝑥2 + 6𝑥