SlideShare a Scribd company logo
1 of 40
Download to read offline
Dealing with latent
discrete parameters in
Stan
ITÔ, Hiroki
2016-06-04
Tokyo.Stan
Michael Betancourt’s Stan Lecture
About me
• An end user of statistical
software
• Researcher of forest
ecology
• Species composition of
forests
• Forest dynamics
Contents
1. Introduction
• Population Ecology
2. Examples
1. Capture-recapture data and data augmentation
2. Multistate model
Bayesian Population Analysis
using WinBUGS (BPA)
• My colleagues and I translated “Bayesian Population
Analysis using WinBUGS” by M. Kéry and M. Schaub into
Japanese.
• Many practical examples for population ecology
Stan translation of BPA models
https://github.com/stan-dev/example-models/tree/master/BPA
Population ecology
• A subfield of ecology
• Studies of population
• Changes in size (number of individuals) of
animals, plants and other organisms
• Estimation of population size, growth rate,
extinction probability, etc.
Population ecology
• Latent discrete parameters are often used.
• Unobserved status
• Present or absent
• Dead or alive
• But Stan does not support discrete parameters.
• Marginalizing out is required to deal with discrete
parameters.
Example 1
Capture-recapture data and data augmentation
(in Chapter 6 of BPA)
Capture-recapture data
Capture
Release
Recapture
🐞
①
🐞
②
🐞
③
🐞
④
🐞
⑤
🐞
⑥
🐞
⑦
🐞
⑧
🐞
⑨
🐞
①
🐞
③
🐞
④
🐞
⑧
🐞
⑩
🐞
⑪
🐞
⑫
🐞
⑬
Assume closed population: fixed size, no recruitment,
no death, no immigration nor emigration
Data
[,1] [,2] [,3]
[1,] 0 0 1
[2,] 1 1 1
[3,] 1 0 0
[4,] 1 0 1
[5,] 1 0 1
[6,] 1 0 1
:
[85,] 0 1 0
[86,] 0 1 1
[87,] 1 1 0
Individuals
Survey occasions
Estimation
• Population size (total number of individuals
including unobserved)
• Detection (capture) probability
Data augmentation
[,1] [,2] [,3]
[1,] 0 0 1
[2,] 1 1 1
[3,] 1 0 0
[4,] 1 0 1
:
[87,] 1 1 0
[88,] 0 0 0
:
[236,] 0 0 0
[237,] 0 0 0
Add 150
dummy records
Model
BUGS
model {
# Priors
omega ~ dunif(0, 1) # Inclusion probability
p ~ dunif(0, 1) # Detection probability
# Likelihood
for (i in 1:M){
z[i] ~ dbern(omega) # Inclusion indicators
for (j in 1:T) {
y[i, j] ~ dbern(p.eff[i, j])
p.eff[i, j] <- z[i] * p
}
}
# Derived quantities
N <- sum(z[])
}
Stan
data {
int<lower=0> M; // Size of augmented data set
int<lower=0> T; // Number of sampling occasions
int<lower=0,upper=1> y[M, T]; // Capture-history matrix
}
transformed data {
int<lower=0> s[M]; // Totals in each row
int<lower=0> C; // Size of observed data set
C <- 0;
for (i in 1:M) {
s[i] <- sum(y[i]);
if (s[i] > 0)
C <- C + 1;
}
}
parameters {
real<lower=0,upper=1> omega; // Inclusion probability
real<lower=0,upper=1> p; // Detection probability
}
model {
for (i in 1:M) {
real lp[2];
if (s[i] > 0) {
// Included
increment_log_prob(bernoulli_log(1, omega)
+ binomial_log(s[i], T, p));
} else {
// Included
lp[1] <- bernoulli_log(1, omega)
+ binomial_log(0, T, p);
// Not included
lp[2] <- bernoulli_log(0, omega);
increment_log_prob(log_sum_exp(lp));
}
}
}
generated quantities {
int<lower=C> N;
N <- C + binomial_rng(M, omega * pow(1 - p, T));
}
Results
Computing times
OpenBUGS Stan
Number of chains 3 4
Burn-in or warmup +
iterations / chain
500 + 1000 500 + 1000
Computing time (sec) 5.9 5.8
Effective sample size
of p
320 1867
Eff. sample size /
time (sec-1)
54.6 319.5
Environment: 2.8 GHz Xeon W3530, Ubuntu 14.04, No parallell computing.
Compilation time is not included in Stan.
Times were measured using system.time(). The values are mean of 3 measurements.
Data augmentation
Example 2
Multistate model
(in chapter 9 of BPA)
Multistate model
🐞
①
🐞
②
🐞
③
🐞
④
🐞
⑤
🐞⑥
🐞⑦
🐞⑧
🐞⑨
Site A
Site B
Capture
Release
Recapture
🐞①
🐞
②
🐞
⑤
🐞
⑥
🐞⑦
🐞⑫
🐞⑪
Site A
Site B
🐞
⑩
Data
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 3 2 3 1
[2,] 1 1 1 1 1 2
[3,] 1 1 1 1 3 3
[4,] 1 3 3 3 3 3
[5,] 1 3 3 3 3 3
[6,] 1 1 2 3 3 3
:
[798,] 3 3 3 3 2 3
[799,] 3 3 3 3 2 3
[800,] 3 3 3 3 2 3
Individuals
Survey occasion
Values
1: seen (captured) at site A, 2: seen (captured) at site B,
3: not seen (not captured)
Estimation
• Survival probability (at site A and B)
• Movement probability (from site A to B and B to A)
• Detection (capture) probability (at site A and B)
State transition
State at time t+1
Site A Site B Dead
Site A φA(1-ψAB) φAψAB 1-φA
State at
time t
Site B φBψBA φB(1-ψBA) 1-φB
Dead 0 0 1
φA: survival probability at site A, φB: survival probability at site B,
ψAB: movement probability from A to B,
ψBA: movement probability from B to A
Observation
Observation at time t
Site A Site B Not seen
Site A pA 0 1-pA
State at
time t
Site B 0 pB 1-pB
Dead 0 0 1
pA: detection probability at site A,
pB: detection probability at site B
Model
BUGS
model {
:
# Define probabilities of state S(t+1) given S(t)
ps[1, 1] <- phiA * (1 - psiAB)
ps[1, 2] <- phiA * psiAB
ps[1, 3] <- 1 - phiA
ps[2, 1] <- phiB * psiBA
ps[2, 2] <- phiB * (1 - psiBA)
ps[2, 3] <- 1 - phiB
ps[3, 1] <- 0
ps[3, 2] <- 0
ps[3, 3] <- 1
# Define probabilities of O(t) given S(t)
po[1, 1] <- pA
po[1, 2] <- 0
po[1, 3] <- 1 - pA
po[2, 1] <- 0
po[2, 2] <- pB
po[2, 3] <- 1 - pB
po[3, 1] <- 0
po[3, 2] <- 0
po[3, 3] <- 1
:
for (i in 1:nind) {
# Define latent state at first capture
z[i, f[i]] <- y[i, f[i]]
for (t in (f[i] + 1):n.occasions) {
# State process
z[i, t] ~ dcat(ps[z[i, t - 1], ])
# Observation process
y[i, t] ~ dcat(po[z[i, t], ])
}
}
f[]: array containing first capture occasion
ps[,]: state transition matrix
po[,]: observation matrix
Stan
Treating as a Hidden Markov model
Site B Site B Site A DeadSite A
Hidden Markov model
State
Observation
Seen at
site A
Dead
Not seen
Seen at
site B
Seen at
site A
Not seen Not seen
model {
real acc[3];
vector[3] gamma[n_occasions];
// See Stan Modeling Language User's Guide and Reference Manual
for (i in 1:nind) {
if (f[i] > 0) {
for (k in 1:3)
gamma[f[i], k] <- (k == y[i, f[i]]);
for (t in (f[i] + 1):n_occasions) {
for (k in 1:3) {
for (j in 1:3)
acc[j] <- gamma[t - 1, j] * ps[j, k]
* po[k, y[i, t]];
gamma[t, k] <- sum(acc);
}
}
increment_log_prob(log(sum(gamma[n_occasions])));
}
}
}
Results
Computing times
OpenBUGS Stan
Number of chains 3 4
Burn-in or warmup +
iterations / chain
500 + 2000 500 + 1000
Computing time (sec) 327.9 193.5
Effective sample size
of pA
140 649
Eff. sample size /
time (sec-1)
0.4 3.4
Environment: 2.8 GHz Xeon W3530, Ubuntu 14.04, No parallell computing.
Compilation time is not included in Stan.
Times were measured using system.time(). The values are mean of 3 measurements.
Binomial-mixture model
(in Chapter 12 of BPA)
Stan code
data {
int<lower=0> R; // Number of sites
int<lower=0> T; // Number of temporal replications
int<lower=0> y[R, T]; // Counts
int<lower=0> K; // Upper bounds of population size
}
model {
:
// Likelihood
for (i in 1:R) {
vector[K+1] lp;
for (n in max_y[i]:K) {
lp[n + 1] <- binomial_log(y[i], n, p)
+ poisson_log(n, lambda);
}
increment_log_prob(log_sum_exp(lp[(max_y[i] + 1):(K + 1)]));
}
:
}
Computing times
OpenBUGS
Stan
(K=100)
Number of chains 3 4
Burn-in or warmup +
iterations / chain
200 + 1000 500 + 1000
Computing time (sec) 25.4 1007.8
Effective sample size
of λ
3000 401
Eff. sample size /
time (sec-1)
118.3 0.4
Environment: 2.8 GHz Xeon W3530, Ubuntu 14.04, No parallell computing.
Compilation time is not included in Stan.
Times were measured using system.time(). The values are mean of 3 measurements.
Summary
• Stan can deal with models including discrete
parameters by marginalizing.
• Divide and sum up every cases
• However, the formulation used are less
straightforward.

More Related Content

What's hot

データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎Seiichi Uchida
 
高速なガンマ分布の最尤推定法について
高速なガンマ分布の最尤推定法について高速なガンマ分布の最尤推定法について
高速なガンマ分布の最尤推定法についてhoxo_m
 
スパース推定法による統計モデリング(入門)
スパース推定法による統計モデリング(入門)スパース推定法による統計モデリング(入門)
スパース推定法による統計モデリング(入門)Hidetoshi Matsui
 
2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰logics-of-blue
 
心理学における「再現性」の問題とBayes Factor
心理学における「再現性」の問題とBayes Factor心理学における「再現性」の問題とBayes Factor
心理学における「再現性」の問題とBayes FactorShushi Namba
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章nocchi_airport
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11Koichi Hamada
 
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~nocchi_airport
 
Information-Theoretic Metric Learning
Information-Theoretic Metric LearningInformation-Theoretic Metric Learning
Information-Theoretic Metric LearningKoji Matsuda
 
Kaggleのテクニック
KaggleのテクニックKaggleのテクニック
KaggleのテクニックYasunori Ozaki
 
トピックモデルによる統計的潜在意味解析読書会 3.7 評価方法 - 3.9 モデル選択 #トピ本
トピックモデルによる統計的潜在意味解析読書会 3.7 評価方法 - 3.9 モデル選択 #トピ本トピックモデルによる統計的潜在意味解析読書会 3.7 評価方法 - 3.9 モデル選択 #トピ本
トピックモデルによる統計的潜在意味解析読書会 3.7 評価方法 - 3.9 モデル選択 #トピ本hoxo_m
 
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−Deep Learning JP
 
GLMM in interventional study at Require 23, 20151219
GLMM in interventional study at Require 23, 20151219GLMM in interventional study at Require 23, 20151219
GLMM in interventional study at Require 23, 20151219Shuhei Ichikawa
 
ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫るKen'ichi Matsui
 
コサインクラスタリング
コサインクラスタリングコサインクラスタリング
コサインクラスタリングosamu morimoto
 
あなたの心にBridgeSampling
あなたの心にBridgeSamplingあなたの心にBridgeSampling
あなたの心にBridgeSamplingdaiki hojo
 
[Tokyor08] Rによるデータサイエンス 第2部 第3章 対応分析
[Tokyor08] Rによるデータサイエンス第2部 第3章 対応分析[Tokyor08] Rによるデータサイエンス第2部 第3章 対応分析
[Tokyor08] Rによるデータサイエンス 第2部 第3章 対応分析Yohei Sato
 

What's hot (20)

データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
データサイエンス概論第一=3-1 線形代数に基づくデータ解析の基礎
 
高速なガンマ分布の最尤推定法について
高速なガンマ分布の最尤推定法について高速なガンマ分布の最尤推定法について
高速なガンマ分布の最尤推定法について
 
スパース推定法による統計モデリング(入門)
スパース推定法による統計モデリング(入門)スパース推定法による統計モデリング(入門)
スパース推定法による統計モデリング(入門)
 
2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰
 
心理学における「再現性」の問題とBayes Factor
心理学における「再現性」の問題とBayes Factor心理学における「再現性」の問題とBayes Factor
心理学における「再現性」の問題とBayes Factor
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
 
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR  #11
「R言語による Random Forest 徹底入門 -集団学習による分類・予測-」 - #TokyoR #11
 
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
StanとRでベイズ統計モデリング読書会 Chapter 7(7.6-7.9) 回帰分析の悩みどころ ~統計の力で歌うまになりたい~
 
Information-Theoretic Metric Learning
Information-Theoretic Metric LearningInformation-Theoretic Metric Learning
Information-Theoretic Metric Learning
 
Kaggleのテクニック
KaggleのテクニックKaggleのテクニック
Kaggleのテクニック
 
トピックモデルによる統計的潜在意味解析読書会 3.7 評価方法 - 3.9 モデル選択 #トピ本
トピックモデルによる統計的潜在意味解析読書会 3.7 評価方法 - 3.9 モデル選択 #トピ本トピックモデルによる統計的潜在意味解析読書会 3.7 評価方法 - 3.9 モデル選択 #トピ本
トピックモデルによる統計的潜在意味解析読書会 3.7 評価方法 - 3.9 モデル選択 #トピ本
 
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
 
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
[DL輪読会]The Neural Process Family−Neural Processes関連の実装を読んで動かしてみる−
 
GLMM in interventional study at Require 23, 20151219
GLMM in interventional study at Require 23, 20151219GLMM in interventional study at Require 23, 20151219
GLMM in interventional study at Require 23, 20151219
 
ggplotのplotエリアで日本語ラベルを使う
ggplotのplotエリアで日本語ラベルを使うggplotのplotエリアで日本語ラベルを使う
ggplotのplotエリアで日本語ラベルを使う
 
Prml 2.3
Prml 2.3Prml 2.3
Prml 2.3
 
ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫る
 
コサインクラスタリング
コサインクラスタリングコサインクラスタリング
コサインクラスタリング
 
あなたの心にBridgeSampling
あなたの心にBridgeSamplingあなたの心にBridgeSampling
あなたの心にBridgeSampling
 
[Tokyor08] Rによるデータサイエンス 第2部 第3章 対応分析
[Tokyor08] Rによるデータサイエンス第2部 第3章 対応分析[Tokyor08] Rによるデータサイエンス第2部 第3章 対応分析
[Tokyor08] Rによるデータサイエンス 第2部 第3章 対応分析
 

Viewers also liked

Replica exchange MCMC
Replica exchange MCMCReplica exchange MCMC
Replica exchange MCMC. .
 
RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門Masaki Tsuda
 
階層ベイズモデルで割安mobile PCを探す
階層ベイズモデルで割安mobile PCを探す階層ベイズモデルで割安mobile PCを探す
階層ベイズモデルで割安mobile PCを探す. .
 
Satoyama woodland management
Satoyama woodland managementSatoyama woodland management
Satoyama woodland managementHiroki Itô
 
MLPI Lecture 3: Advanced Sampling Techniques
MLPI Lecture 3: Advanced Sampling TechniquesMLPI Lecture 3: Advanced Sampling Techniques
MLPI Lecture 3: Advanced Sampling TechniquesDahua Lin
 
データ解析で割安賃貸物件を探せ!(山手線沿線編) LT
データ解析で割安賃貸物件を探せ!(山手線沿線編) LTデータ解析で割安賃貸物件を探せ!(山手線沿線編) LT
データ解析で割安賃貸物件を探せ!(山手線沿線編) LT. .
 
分布から見た線形モデル・GLM・GLMM
分布から見た線形モデル・GLM・GLMM分布から見た線形モデル・GLM・GLMM
分布から見た線形モデル・GLM・GLMM. .
 
100人のための統計解析 和食レストラン編
100人のための統計解析   和食レストラン編100人のための統計解析   和食レストラン編
100人のための統計解析 和食レストラン編. .
 
PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説弘毅 露崎
 
順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング. .
 
状態空間モデルの実行方法と実行環境の比較
状態空間モデルの実行方法と実行環境の比較状態空間モデルの実行方法と実行環境の比較
状態空間モデルの実行方法と実行環境の比較Hiroki Itô
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)Takao Yamanaka
 
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)Hiroshi Shimizu
 
変分ベイズ法の説明
変分ベイズ法の説明変分ベイズ法の説明
変分ベイズ法の説明Haruka Ozaki
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないToshihiro Kamishima
 
RとStanでクラウドセットアップ時間を分析してみたら #TokyoR
RとStanでクラウドセットアップ時間を分析してみたら #TokyoRRとStanでクラウドセットアップ時間を分析してみたら #TokyoR
RとStanでクラウドセットアップ時間を分析してみたら #TokyoRShuyo Nakatani
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編Hiroshi Shimizu
 
エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてエクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてHiroshi Shimizu
 
Pythonによる機械学習入門 ~Deep Learningに挑戦~
Pythonによる機械学習入門 ~Deep Learningに挑戦~Pythonによる機械学習入門 ~Deep Learningに挑戦~
Pythonによる機械学習入門 ~Deep Learningに挑戦~Yasutomo Kawanishi
 

Viewers also liked (19)

Replica exchange MCMC
Replica exchange MCMCReplica exchange MCMC
Replica exchange MCMC
 
RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門RStanとShinyStanによるベイズ統計モデリング入門
RStanとShinyStanによるベイズ統計モデリング入門
 
階層ベイズモデルで割安mobile PCを探す
階層ベイズモデルで割安mobile PCを探す階層ベイズモデルで割安mobile PCを探す
階層ベイズモデルで割安mobile PCを探す
 
Satoyama woodland management
Satoyama woodland managementSatoyama woodland management
Satoyama woodland management
 
MLPI Lecture 3: Advanced Sampling Techniques
MLPI Lecture 3: Advanced Sampling TechniquesMLPI Lecture 3: Advanced Sampling Techniques
MLPI Lecture 3: Advanced Sampling Techniques
 
データ解析で割安賃貸物件を探せ!(山手線沿線編) LT
データ解析で割安賃貸物件を探せ!(山手線沿線編) LTデータ解析で割安賃貸物件を探せ!(山手線沿線編) LT
データ解析で割安賃貸物件を探せ!(山手線沿線編) LT
 
分布から見た線形モデル・GLM・GLMM
分布から見た線形モデル・GLM・GLMM分布から見た線形モデル・GLM・GLMM
分布から見た線形モデル・GLM・GLMM
 
100人のための統計解析 和食レストラン編
100人のための統計解析   和食レストラン編100人のための統計解析   和食レストラン編
100人のための統計解析 和食レストラン編
 
PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説PCAの最終形態GPLVMの解説
PCAの最終形態GPLVMの解説
 
順序データでもベイズモデリング
順序データでもベイズモデリング順序データでもベイズモデリング
順序データでもベイズモデリング
 
状態空間モデルの実行方法と実行環境の比較
状態空間モデルの実行方法と実行環境の比較状態空間モデルの実行方法と実行環境の比較
状態空間モデルの実行方法と実行環境の比較
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
 
変分ベイズ法の説明
変分ベイズ法の説明変分ベイズ法の説明
変分ベイズ法の説明
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
 
RとStanでクラウドセットアップ時間を分析してみたら #TokyoR
RとStanでクラウドセットアップ時間を分析してみたら #TokyoRRとStanでクラウドセットアップ時間を分析してみたら #TokyoR
RとStanでクラウドセットアップ時間を分析してみたら #TokyoR
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編
 
エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてエクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについて
 
Pythonによる機械学習入門 ~Deep Learningに挑戦~
Pythonによる機械学習入門 ~Deep Learningに挑戦~Pythonによる機械学習入門 ~Deep Learningに挑戦~
Pythonによる機械学習入門 ~Deep Learningに挑戦~
 

Similar to Dealing with latent discrete parameters in Stan

Applied machine learning for search engine relevance 3
Applied machine learning for search engine relevance 3Applied machine learning for search engine relevance 3
Applied machine learning for search engine relevance 3Charles Martin
 
Actors for Behavioural Simulation
Actors for Behavioural SimulationActors for Behavioural Simulation
Actors for Behavioural SimulationClarkTony
 
Simple representations for learning: factorizations and similarities
Simple representations for learning: factorizations and similarities Simple representations for learning: factorizations and similarities
Simple representations for learning: factorizations and similarities Gael Varoquaux
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..KarthikeyaLanka1
 
Exploring temporal graph data with Python: 
a study on tensor decomposition o...
Exploring temporal graph data with Python: 
a study on tensor decomposition o...Exploring temporal graph data with Python: 
a study on tensor decomposition o...
Exploring temporal graph data with Python: 
a study on tensor decomposition o...André Panisson
 
Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Toshiyuki Shimono
 
Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...
Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...
Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...Flink Forward
 
Gradient Boosted Regression Trees in scikit-learn
Gradient Boosted Regression Trees in scikit-learnGradient Boosted Regression Trees in scikit-learn
Gradient Boosted Regression Trees in scikit-learnDataRobot
 
Efficient Process Model Discovery Using Maximal Pattern Mining
Efficient Process Model Discovery Using Maximal Pattern MiningEfficient Process Model Discovery Using Maximal Pattern Mining
Efficient Process Model Discovery Using Maximal Pattern MiningDr. Sira Yongchareon
 
Vu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxVu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxQucngV
 
Bayesian Experimental Design for Stochastic Kinetic Models
Bayesian Experimental Design for Stochastic Kinetic ModelsBayesian Experimental Design for Stochastic Kinetic Models
Bayesian Experimental Design for Stochastic Kinetic ModelsColin Gillespie
 
Monitoring nonlinear profiles with {R}: an application to quality control
Monitoring nonlinear profiles with {R}: an application to quality controlMonitoring nonlinear profiles with {R}: an application to quality control
Monitoring nonlinear profiles with {R}: an application to quality controlEmilio L. Cano
 
Dual-time Modeling and Forecasting in Consumer Banking (2016)
Dual-time Modeling and Forecasting in Consumer Banking (2016)Dual-time Modeling and Forecasting in Consumer Banking (2016)
Dual-time Modeling and Forecasting in Consumer Banking (2016)Aijun Zhang
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 
Introduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfIntroduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfTulasiramKandula1
 
RSC: Mining and Modeling Temporal Activity in Social Media
RSC: Mining and Modeling Temporal Activity in Social MediaRSC: Mining and Modeling Temporal Activity in Social Media
RSC: Mining and Modeling Temporal Activity in Social MediaAlceu Ferraz Costa
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDChristos Kallidonis
 

Similar to Dealing with latent discrete parameters in Stan (20)

Applied machine learning for search engine relevance 3
Applied machine learning for search engine relevance 3Applied machine learning for search engine relevance 3
Applied machine learning for search engine relevance 3
 
Actors for Behavioural Simulation
Actors for Behavioural SimulationActors for Behavioural Simulation
Actors for Behavioural Simulation
 
MUMS Undergraduate Workshop - Parameter Selection and Model Calibration for a...
MUMS Undergraduate Workshop - Parameter Selection and Model Calibration for a...MUMS Undergraduate Workshop - Parameter Selection and Model Calibration for a...
MUMS Undergraduate Workshop - Parameter Selection and Model Calibration for a...
 
Simple representations for learning: factorizations and similarities
Simple representations for learning: factorizations and similarities Simple representations for learning: factorizations and similarities
Simple representations for learning: factorizations and similarities
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..
 
Exploring temporal graph data with Python: 
a study on tensor decomposition o...
Exploring temporal graph data with Python: 
a study on tensor decomposition o...Exploring temporal graph data with Python: 
a study on tensor decomposition o...
Exploring temporal graph data with Python: 
a study on tensor decomposition o...
 
MSSISS riBART 20160321
MSSISS riBART 20160321MSSISS riBART 20160321
MSSISS riBART 20160321
 
Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...
 
Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...
Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...
Flink Forward Berlin 2017: David Rodriguez - The Approximate Filter, Join, an...
 
PS
PSPS
PS
 
Gradient Boosted Regression Trees in scikit-learn
Gradient Boosted Regression Trees in scikit-learnGradient Boosted Regression Trees in scikit-learn
Gradient Boosted Regression Trees in scikit-learn
 
Efficient Process Model Discovery Using Maximal Pattern Mining
Efficient Process Model Discovery Using Maximal Pattern MiningEfficient Process Model Discovery Using Maximal Pattern Mining
Efficient Process Model Discovery Using Maximal Pattern Mining
 
Vu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxVu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptx
 
Bayesian Experimental Design for Stochastic Kinetic Models
Bayesian Experimental Design for Stochastic Kinetic ModelsBayesian Experimental Design for Stochastic Kinetic Models
Bayesian Experimental Design for Stochastic Kinetic Models
 
Monitoring nonlinear profiles with {R}: an application to quality control
Monitoring nonlinear profiles with {R}: an application to quality controlMonitoring nonlinear profiles with {R}: an application to quality control
Monitoring nonlinear profiles with {R}: an application to quality control
 
Dual-time Modeling and Forecasting in Consumer Banking (2016)
Dual-time Modeling and Forecasting in Consumer Banking (2016)Dual-time Modeling and Forecasting in Consumer Banking (2016)
Dual-time Modeling and Forecasting in Consumer Banking (2016)
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 
Introduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfIntroduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdf
 
RSC: Mining and Modeling Temporal Activity in Social Media
RSC: Mining and Modeling Temporal Activity in Social MediaRSC: Mining and Modeling Temporal Activity in Social Media
RSC: Mining and Modeling Temporal Activity in Social Media
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 

Recently uploaded

Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Delhi Call girls
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxolyaivanovalion
 
ALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxolyaivanovalion
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Data-Analysis for Chicago Crime Data 2023
Data-Analysis for Chicago Crime Data  2023Data-Analysis for Chicago Crime Data  2023
Data-Analysis for Chicago Crime Data 2023ymrp368
 
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxBPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxMohammedJunaid861692
 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Delhi Call girls
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfadriantubila
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionfulawalesam
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxolyaivanovalion
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusTimothy Spann
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Delhi Call girls
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxfirstjob4
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfLars Albertsson
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxolyaivanovalion
 

Recently uploaded (20)

Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
Best VIP Call Girls Noida Sector 39 Call Me: 8448380779
 
Ravak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptxRavak dropshipping via API with DroFx.pptx
Ravak dropshipping via API with DroFx.pptx
 
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get CytotecAbortion pills in Doha Qatar (+966572737505 ! Get Cytotec
Abortion pills in Doha Qatar (+966572737505 ! Get Cytotec
 
ALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptxALSO dropshipping via API with DroFx.pptx
ALSO dropshipping via API with DroFx.pptx
 
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
(PARI) Call Girls Wanowrie ( 7001035870 ) HI-Fi Pune Escorts Service
 
Data-Analysis for Chicago Crime Data 2023
Data-Analysis for Chicago Crime Data  2023Data-Analysis for Chicago Crime Data  2023
Data-Analysis for Chicago Crime Data 2023
 
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxBPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
 
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
Best VIP Call Girls Noida Sector 22 Call Me: 8448380779
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interaction
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
Generative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and MilvusGenerative AI on Enterprise Cloud with NiFi and Milvus
Generative AI on Enterprise Cloud with NiFi and Milvus
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in  KishangarhDelhi 99530 vip 56974 Genuine Escort Service Call Girls in  Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
Call Girls in Sarai Kale Khan Delhi 💯 Call Us 🔝9205541914 🔝( Delhi) Escorts S...
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptx
 
Schema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdfSchema on read is obsolete. Welcome metaprogramming..pdf
Schema on read is obsolete. Welcome metaprogramming..pdf
 
BigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptxBigBuy dropshipping via API with DroFx.pptx
BigBuy dropshipping via API with DroFx.pptx
 

Dealing with latent discrete parameters in Stan

  • 1. Dealing with latent discrete parameters in Stan ITÔ, Hiroki 2016-06-04 Tokyo.Stan Michael Betancourt’s Stan Lecture
  • 2. About me • An end user of statistical software • Researcher of forest ecology • Species composition of forests • Forest dynamics
  • 3. Contents 1. Introduction • Population Ecology 2. Examples 1. Capture-recapture data and data augmentation 2. Multistate model
  • 4. Bayesian Population Analysis using WinBUGS (BPA) • My colleagues and I translated “Bayesian Population Analysis using WinBUGS” by M. Kéry and M. Schaub into Japanese. • Many practical examples for population ecology
  • 5. Stan translation of BPA models https://github.com/stan-dev/example-models/tree/master/BPA
  • 6. Population ecology • A subfield of ecology • Studies of population • Changes in size (number of individuals) of animals, plants and other organisms • Estimation of population size, growth rate, extinction probability, etc.
  • 7. Population ecology • Latent discrete parameters are often used. • Unobserved status • Present or absent • Dead or alive • But Stan does not support discrete parameters. • Marginalizing out is required to deal with discrete parameters.
  • 8. Example 1 Capture-recapture data and data augmentation (in Chapter 6 of BPA)
  • 10. Data [,1] [,2] [,3] [1,] 0 0 1 [2,] 1 1 1 [3,] 1 0 0 [4,] 1 0 1 [5,] 1 0 1 [6,] 1 0 1 : [85,] 0 1 0 [86,] 0 1 1 [87,] 1 1 0 Individuals Survey occasions
  • 11. Estimation • Population size (total number of individuals including unobserved) • Detection (capture) probability
  • 12. Data augmentation [,1] [,2] [,3] [1,] 0 0 1 [2,] 1 1 1 [3,] 1 0 0 [4,] 1 0 1 : [87,] 1 1 0 [88,] 0 0 0 : [236,] 0 0 0 [237,] 0 0 0 Add 150 dummy records
  • 13. Model
  • 14. BUGS model { # Priors omega ~ dunif(0, 1) # Inclusion probability p ~ dunif(0, 1) # Detection probability # Likelihood for (i in 1:M){ z[i] ~ dbern(omega) # Inclusion indicators for (j in 1:T) { y[i, j] ~ dbern(p.eff[i, j]) p.eff[i, j] <- z[i] * p } } # Derived quantities N <- sum(z[]) }
  • 15. Stan
  • 16. data { int<lower=0> M; // Size of augmented data set int<lower=0> T; // Number of sampling occasions int<lower=0,upper=1> y[M, T]; // Capture-history matrix } transformed data { int<lower=0> s[M]; // Totals in each row int<lower=0> C; // Size of observed data set C <- 0; for (i in 1:M) { s[i] <- sum(y[i]); if (s[i] > 0) C <- C + 1; } } parameters { real<lower=0,upper=1> omega; // Inclusion probability real<lower=0,upper=1> p; // Detection probability }
  • 17. model { for (i in 1:M) { real lp[2]; if (s[i] > 0) { // Included increment_log_prob(bernoulli_log(1, omega) + binomial_log(s[i], T, p)); } else { // Included lp[1] <- bernoulli_log(1, omega) + binomial_log(0, T, p); // Not included lp[2] <- bernoulli_log(0, omega); increment_log_prob(log_sum_exp(lp)); } } }
  • 18. generated quantities { int<lower=C> N; N <- C + binomial_rng(M, omega * pow(1 - p, T)); }
  • 20. Computing times OpenBUGS Stan Number of chains 3 4 Burn-in or warmup + iterations / chain 500 + 1000 500 + 1000 Computing time (sec) 5.9 5.8 Effective sample size of p 320 1867 Eff. sample size / time (sec-1) 54.6 319.5 Environment: 2.8 GHz Xeon W3530, Ubuntu 14.04, No parallell computing. Compilation time is not included in Stan. Times were measured using system.time(). The values are mean of 3 measurements.
  • 22. Example 2 Multistate model (in chapter 9 of BPA)
  • 23. Multistate model 🐞 ① 🐞 ② 🐞 ③ 🐞 ④ 🐞 ⑤ 🐞⑥ 🐞⑦ 🐞⑧ 🐞⑨ Site A Site B Capture Release Recapture 🐞① 🐞 ② 🐞 ⑤ 🐞 ⑥ 🐞⑦ 🐞⑫ 🐞⑪ Site A Site B 🐞 ⑩
  • 24. Data [,1] [,2] [,3] [,4] [,5] [,6] [1,] 1 3 3 2 3 1 [2,] 1 1 1 1 1 2 [3,] 1 1 1 1 3 3 [4,] 1 3 3 3 3 3 [5,] 1 3 3 3 3 3 [6,] 1 1 2 3 3 3 : [798,] 3 3 3 3 2 3 [799,] 3 3 3 3 2 3 [800,] 3 3 3 3 2 3 Individuals Survey occasion Values 1: seen (captured) at site A, 2: seen (captured) at site B, 3: not seen (not captured)
  • 25. Estimation • Survival probability (at site A and B) • Movement probability (from site A to B and B to A) • Detection (capture) probability (at site A and B)
  • 26. State transition State at time t+1 Site A Site B Dead Site A φA(1-ψAB) φAψAB 1-φA State at time t Site B φBψBA φB(1-ψBA) 1-φB Dead 0 0 1 φA: survival probability at site A, φB: survival probability at site B, ψAB: movement probability from A to B, ψBA: movement probability from B to A
  • 27. Observation Observation at time t Site A Site B Not seen Site A pA 0 1-pA State at time t Site B 0 pB 1-pB Dead 0 0 1 pA: detection probability at site A, pB: detection probability at site B
  • 28. Model
  • 29. BUGS
  • 30. model { : # Define probabilities of state S(t+1) given S(t) ps[1, 1] <- phiA * (1 - psiAB) ps[1, 2] <- phiA * psiAB ps[1, 3] <- 1 - phiA ps[2, 1] <- phiB * psiBA ps[2, 2] <- phiB * (1 - psiBA) ps[2, 3] <- 1 - phiB ps[3, 1] <- 0 ps[3, 2] <- 0 ps[3, 3] <- 1 # Define probabilities of O(t) given S(t) po[1, 1] <- pA po[1, 2] <- 0 po[1, 3] <- 1 - pA po[2, 1] <- 0 po[2, 2] <- pB po[2, 3] <- 1 - pB po[3, 1] <- 0 po[3, 2] <- 0 po[3, 3] <- 1 :
  • 31. for (i in 1:nind) { # Define latent state at first capture z[i, f[i]] <- y[i, f[i]] for (t in (f[i] + 1):n.occasions) { # State process z[i, t] ~ dcat(ps[z[i, t - 1], ]) # Observation process y[i, t] ~ dcat(po[z[i, t], ]) } } f[]: array containing first capture occasion ps[,]: state transition matrix po[,]: observation matrix
  • 32. Stan Treating as a Hidden Markov model
  • 33. Site B Site B Site A DeadSite A Hidden Markov model State Observation Seen at site A Dead Not seen Seen at site B Seen at site A Not seen Not seen
  • 34. model { real acc[3]; vector[3] gamma[n_occasions]; // See Stan Modeling Language User's Guide and Reference Manual for (i in 1:nind) { if (f[i] > 0) { for (k in 1:3) gamma[f[i], k] <- (k == y[i, f[i]]); for (t in (f[i] + 1):n_occasions) { for (k in 1:3) { for (j in 1:3) acc[j] <- gamma[t - 1, j] * ps[j, k] * po[k, y[i, t]]; gamma[t, k] <- sum(acc); } } increment_log_prob(log(sum(gamma[n_occasions]))); } } }
  • 36. Computing times OpenBUGS Stan Number of chains 3 4 Burn-in or warmup + iterations / chain 500 + 2000 500 + 1000 Computing time (sec) 327.9 193.5 Effective sample size of pA 140 649 Eff. sample size / time (sec-1) 0.4 3.4 Environment: 2.8 GHz Xeon W3530, Ubuntu 14.04, No parallell computing. Compilation time is not included in Stan. Times were measured using system.time(). The values are mean of 3 measurements.
  • 38. Stan code data { int<lower=0> R; // Number of sites int<lower=0> T; // Number of temporal replications int<lower=0> y[R, T]; // Counts int<lower=0> K; // Upper bounds of population size } model { : // Likelihood for (i in 1:R) { vector[K+1] lp; for (n in max_y[i]:K) { lp[n + 1] <- binomial_log(y[i], n, p) + poisson_log(n, lambda); } increment_log_prob(log_sum_exp(lp[(max_y[i] + 1):(K + 1)])); } : }
  • 39. Computing times OpenBUGS Stan (K=100) Number of chains 3 4 Burn-in or warmup + iterations / chain 200 + 1000 500 + 1000 Computing time (sec) 25.4 1007.8 Effective sample size of λ 3000 401 Eff. sample size / time (sec-1) 118.3 0.4 Environment: 2.8 GHz Xeon W3530, Ubuntu 14.04, No parallell computing. Compilation time is not included in Stan. Times were measured using system.time(). The values are mean of 3 measurements.
  • 40. Summary • Stan can deal with models including discrete parameters by marginalizing. • Divide and sum up every cases • However, the formulation used are less straightforward.