SlideShare a Scribd company logo
1 of 62
Download to read offline
Thanks for coming early!
This is:
Validating
Big Data & ML Pipelines
And will start @ 2PM :)Melinda
Seckington
Validating
Big Data & ML Pipelines
(Apache Spark)
Now
mostly
“works”*
Melinda
Seckington
Holden:
● My name is Holden Karau
● Prefered pronouns are she/her
● Developer Advocate at Google
● Apache Spark PMC, contributor to many others (including Airflow)
● previously IBM, Alpine, Databricks, Google, Foursquare & Amazon
● co-author of Learning Spark & High Performance Spark
● Twitter: @holdenkarau
● Slide share http://www.slideshare.net/hkarau
● Code review livestreams: https://www.twitch.tv/holdenkarau /
https://www.youtube.com/user/holdenkarau
● Spark Talk Videos http://bit.ly/holdenSparkVideos
● Talk feedback (if you are so inclined): http://bit.ly/holdenTalkFeedback
What is going to be covered:
● Why my employer cares about this stuff
● My assumptions about y’all
● A super brief look at property testing
● What validation is & why you should do it for your data pipelines
● How to make simple validation rules & our current limitations
● ML Validation - Guessing if our black box is “correct”
● Cute & scary pictures
○ I promise at least one cat
Andrew
Some of the reasons my employer cares*
● We have a hoted Spark/Hadoop solution (called Dataproc)
● We also have hosted pipeline management tools (based on Airflow called
Cloud Composer)
● Being good open source community members
*Probably, it’s not like I go to all of the meetings I’m invited to.
Khairil Zhafri
Who I think you wonderful humans are?
● Nice* people
● Like silly pictures
● Possibly Familiar with one of Scala, Java, or Python?
● Possibly Familiar with one of Spark
● Want to make better software
○ (or models, or w/e)
● Or just want to make software good enough to not have to keep your resume
up to date
So why should you test?
● Makes you a better person
● Avoid making your users angry
● Save $s
○ Having an ML job fail in hour 26 to restart everything can be expensive...
● Waiting for our jobs to fail is a pretty long dev cycle
● Honestly you’re probably not watching this unless you agree
So why should you validate?
● tl;dr - Your tests probably aren’t perfect
● You want to know when you're aboard the failboat
● Our code will most likely fail at some point
○ Sometimes data sources fail in new & exciting ways (see “Call me Maybe”)
○ That jerk on that other floor changed the meaning of a field :(
○ Our tests won’t catch all of the corner cases that the real world finds
● We should try and minimize the impact
○ Avoid making potentially embarrassing recommendations
○ Save having to be woken up at 3am to do a roll-back
○ Specifying a few simple invariants isn’t all that hard
○ Repeating Holden’s mistakes is still not fun
So why should you test & validate:
Results from: Testing with Spark survey http://bit.ly/holdenTestingSpark
So why should you test & validate - cont
Results from: Testing with Spark survey http://bit.ly/holdenTestingSpark
Why don’t we test?
● It’s hard
○ Faking data, setting up integration tests
● Our tests can get too slow
○ Packaging and building scala is already sad
● It takes a lot of time
○ and people always want everything done yesterday
○ or I just want to go home see my partner
○ Etc.
● Distributed systems is particularly hard
Why don’t we test? (continued)
Why don’t we validate?
● We already tested our code
○ Riiiight?
● What could go wrong?
Also extra hard in distributed systems
● Distributed metrics are hard
● not much built in (not very consistent)
● not always deterministic
● Complicated production systems
What happens when we don’t
● Personal stories go here
○ I have no comment about where these stories are from
This talk is being recorded so we’ll leave it at:
● Negatively impacted the brand in difficult to quantify ways with words with
multiple meanings
● Breaking a feature that cost a few million dollars
● Almost recommended illegal content (caught by a lucky manual)
● Every search result was a coffee shop
itsbruce
Cat photo from http://galato901.deviantart.com/art/Cat-on-Work-Break-173043455
Where do folks get the data for pipeline tests?
● Most people generate data by hand
● If you have production data you can
sample you are lucky!
○ If possible you can try and save in the same
format
● If our data is a bunch of Vectors or
Doubles Spark’s got tools :)
● Coming up with good test data can
take a long time
● Important to test different distributions,
input files, empty partitions etc.
Lori Rielly
Property generating libs: QuickCheck / ScalaCheck
● QuickCheck (haskell) generates tests data under a set of constraints
● Scala version is ScalaCheck - supported by the two unit testing libraries for
Spark
● Sscheck (scala check for spark)
○ Awesome people*, supports generating DStreams too!
● spark-testing-base
○ Also Awesome people*, generates more pathological (e.g. empty partitions etc.) RDDs
*I assume
PROtara hunt
With spark-testing-base & a million entries
test("map should not change number of elements") {
implicit val generatorDrivenConfig =
PropertyCheckConfig(minSize = 0, maxSize = 1000000)
val property = forAll(RDDGenerator.genRDD[String](sc)){
rdd => importantBussinesLogicFunction(rdd).count() == rdd.count()
}
check(property)
}
But that can get a bit slow for all of our tests
● Not all of your tests should need a cluster (or even a cluster simulator)
● If you are ok with not using lambdas everywhere you can factor out that logic
and test with traditional tools
● Or if you want to keep those lambdas - or verify the transformations logic
without the overhead of running a local distributed systems you can try a
library like kontextfrei
○ Don’t rely on this alone (but can work well with something like scalacheck)
Lets focus on validation some more:
*Can be used during integration tests to further validate integration results
So how do we validate our jobs?
● The idea is, at some point, you made software which worked.
● Maybe you manually tested and sampled your results
● Hopefully you did a lot of other checks too
● But we can’t do that every time, our pipelines are no longer write-once
run-once they are often write-once, run forever, and debug-forever.
Photo by:
Paul Schadler
How many people have something like this?
val data = ...
val parsed = data.flatMap(x =>
try {
Some(parse(x))
} catch {
case _ => None // Whatever, it's JSON
}
}
Lilithis
But if we’re going to validate...
val data = ...
data.cache()
val validData = data.filter(isValid)
val badData = data.filter(! isValid(_))
if validData.count() < badData.count() {
// Ruh Roh! Special business error handling goes here
}
...
Pager photo by Vitachao CC-SA 3
Well that’s less fun :(
● Our optimizer can’t just magically chain everything together anymore
● My flatMap.map.map is fnur :(
● Now I’m blocking on a thing in the driver
Sn.Ho
Counters* to the rescue**!
● Spark has built in counters
○ Per-stage bytes r/w, shuffle r/w, record r/w. execution time, etc.
○ In UI can also register a listener from spark validator project
● We can add counters for things we care about
○ invalid records, users with no recommendations, etc.
○ Accumulators have some challenges (see SPARK-12469 for progress) but are an interesting
option
● We can _pretend_ we still have nice functional code
*Counters/Accumulators are your friends, but the kind of friends who steal your
lunch money
** In a similar way to how regular expressions can solve problems….
Miguel Olaya
First counters free….
Just a little bit of code for the next ones….
val parsed = data.flatMap(x => try {
Some(parse(x))
happyCounter.add(1)
} catch {
case _ =>
sadCounter.add(1)
None // What's it's JSON
}
}
// Special business data logic (aka wordcount)
// Much much later* business error logic goes here
Pager photo by Vitachao CC-SA 3
Phoebe Baker
Ok but what about those *s
● Turns out accumulators aren’t really great for tracking data properties
● Turns out sometimes for validation we really care about data properties
● But we can kind of fake it and hope
Miguel Olaya
General Rules for making Validation rules
● According to a sad survey most people check execution time & record count
● spark-validator is still in early stages but interesting proof of concept
● Sometimes your rules will miss-fire and you’ll need to manually approve a job
● Remember those property tests? Could be Validation rules
● Historical data
● Domain specific solutions
Photo by:
Paul Schadler
Turning property tests to validation rules*
● Yes in theory they’re already “tested” but...
● Common function to check accumulator value between validation & tests
● The real-world is can be fuzzier
Photo by:
Paul Schadler
Input Schema Validation
● Handling the “wrong” type of cat
● Many many different approaches
○ filter/flatMap stages
○ Working in Scala/Java pre-filter then .as[T]
○ Manually specify your schema after doing inference the first time :p
● Unless your working on mnist.csv there is a good chance your validation is
going to be fuzzy (reject some records accept others)
● How do we know if we’ve rejected too much?
Bradley Gordon
e.g. write our “rule” like:
val (ok, bad) = (sc.accumulator(0), sc.accumulator(0))
val records = input.flatMap{ x => if (isValid(x)) ok +=1 else bad += 1
// Actual parse logic here
}
// An action (e.g. count, save, etc.)
if (bad.value > 0.1* ok.value) {
throw Exception("bad data - do not use results")
// Optional cleanup
}
// Mark as safe
P.S: If you are interested in this check out spark-validator (still early stages).
Found Animals Foundation Follow
Validating records read matches our expectations:
val vc = new ValidationConf(tempPath, "1", true,
List[ValidationRule](
new AbsoluteSparkCounterValidationRule("recordsRead", Some(3000000),
Some(10000000)))
)
val sqlCtx = new SQLContext(sc)
val v = Validation(sc, sqlCtx, vc)
//Business logic goes here
assert(v.validate(5) === true)
}
Photo by Dvortygirl
% of data change
● Not just invalid records, if a field’s value changes everywhere it could still be
“valid” but have a different meaning
○ Remember that example about almost recommending illegal content?
● Join and see number of rows different on each side
● Expensive operation, but if your data changes slowly / at a constant ish rate
○ Sometimes done as a separate parallel job
● Can also be used on output if applicable
○ You do have a table/file/as applicable to roll back to right?
Not just data changes: Software too
● Things change! Yay! Often for the better.
○ Especially with handling edge cases like NA fields
○ Don’t expect the results to change - side-by-side run + diff
● Blue/Green deployments aren’t just for microservices
○ Run your pipeline side-by-side and compare diffs when pushing new
version
○ In CI you can do this on smaller test batches
● Excellent PyData London talk about how this can impact
ML models
Francesco
Onto ML (or Beyond ETL :p)
● Some of the same principals work (yay!)
○ Schemas, invalid records, etc.
● Some new things to check
○ CV performance, Feature normalization ranges
● Some things don’t really work
○ Output size probably isn’t that great a metric anymore
○ Eyeballing the results for override is a lot harder
contraption
Traditional theory (Models)
● Human decides it's time to “update their models”
● Human goes through a model update run-book
● Human does other work while their “big-data” job runs
● Human deploys X% new models
● Looks at graphs
● Presses deploy
Andrew
Traditional practice (Models)
● Human is cornered by stakeholders and forced to update models
● Spends a few hours trying to remember where the guide is
● Gives up and kind of wings it
● Comes back to a trained model
● Human deploys X% models
● Human reads reddit/hacker news/etc.
● Presses deploy
Bruno Caimi
New possible practice (sometimes)
● Computer kicks off job (probably at an hour boundary because *shrug*) to
update model
● Workflow tool notices new model is available
● Computer deploys X% models
● Software looks at monitoring graphs, uses statistical test to see if it’s bad
● Robot rolls it back & pager goes off
● Human Presses overrides and deploys anyways
Henrique Pinto
Extra considerations for ML jobs:
● Harder to look at output size and say if its good
● We can look at the cross-validation performance
● Fixed test set performance
● Number of iterations / convergence rate
● Number of features selected / number of features
changed in selection
● (If applicable) delta in model weights or tree size or ...
Jennifer C.
Cross-validation
because saving a test set is effort
● Trains on X% of the data and tests on Y%
○ Multiple times switching the samples
● org.apache.spark.ml.tuning has the tools for auto fitting
using CB
○ If your going to use this for auto-tuning please please save a test set
○ Otherwise your models will look awesome and perform like a ford
pinto (or whatever a crappy car is here. Maybe a renault reliant?)
Jonathan Kotta
False sense of security:
● A/B test please even if CV says many many $s
● Rank based things can have training bias with previous
orders
● Non-displayed options: unlikely to be chosen
● Sometimes can find previous formulaic corrections
● Sometimes we can “experimentally” determine
● Other times we just hope it’s better than nothing
● Try and make sure your ML isn’t evil or re-encoding
human biases but stronger
Some ending notes
● Your validation rules don’t have to be perfect
○ But they should be good enough they alert infrequently
○ Occasional overrides are OK
● Your validation rules can live in seperate jobs
● Just like tests, try and make your validation rules
specific and actionable
○ Execution time changed is not a great message - table XYZ grew
unexpectedly to Y%
James Petts
Related packages
● spark-testing-base: https://github.com/holdenk/spark-testing-base
● sscheck: https://github.com/juanrh/sscheck
● spark-validator: https://github.com/holdenk/spark-validator *Proof of
concept, do not actually use*
● spark-perf - https://github.com/databricks/spark-perf
● spark-integration-tests - https://github.com/databricks/spark-integration-tests
● scalacheck - https://www.scalacheck.org/
Becky Lai
Learning Spark
Fast Data
Processing with
Spark
(Out of Date)
Fast Data
Processing with
Spark
(2nd edition)
Advanced
Analytics with
Spark
Spark in Action
High Performance SparkLearning PySpark
High Performance Spark!
Available today, not a lot on testing and almost nothing on
validation, but that should not stop you from buying several
copies (if you have an expense account).
Cat’s love it!
Amazon sells it: http://bit.ly/hkHighPerfSpark :D
Sign up for the mailing list @
http://www.distributedcomputing4kids.com
Cat wave photo by Quinn Dombrowski
k thnx bye! (or questions…)
If you want to fill out survey:
http://bit.ly/holdenTestingSpark
I will use update results in &
give the talk again the next
time Spark adds a major
feature.
Give feedback on this presentation
http://bit.ly/holdenTalkFeedback
Have questions? - sli.do: SL18 -
Union Grand EF
I’ll be giving another talk
tomorrow @ 4:20 PM on ML
on Spark Error Messages*
The state of serving is generally a mess
● If it’s not ML models its can be better
○ Reports for everyone!
○ Or database updates for everyone!
● Big challenge: when something goes wrong - how do I
fix it?
○ Something will go wrong eventually - do you have an old snap shot
you can roll back to quickly?
● One project which aims to improve this for ML is
KubeFlow
○ Goal is unifying training & serving experiences
○ Despite the name targeting more than just TensorFlow
○ Doesn’t work with Spark yet, but it’s on my PR list.
Updating your model
● The real world changes
● Online learning (streaming) is super cool, but hard to
version
○ Common kappa-like arch and then revert to checkpoint
○ Slowly degrading models, oh my!
● Iterative batches: automatically train on new data,
deploy model, and A/B test
● But A/B testing isn’t enough -- bad data can result in
wrong or even illegal results (ask me after a bud light
lime)
Jennifer C.
Related talks & blog posts
● Testing Spark Best Practices (Spark Summit 2014)
● Every Day I’m Shuffling (Strata 2015) & slides
● Spark and Spark Streaming Unit Testing
● Making Spark Unit Testing With Spark Testing Base
● Testing strategy for Apache Spark jobs
● The BEAM programming guide
Interested in OSS (especially Spark)?
● Check out my Twitch & Youtube for livestreams - http://twitch.tv/holdenkarau
& https://www.youtube.com/user/holdenkarau
Becky Lai
And including spark-testing-base up to spark 2.3.1
sbt:
"com.holdenkarau" %% "spark-testing-base" % "2.3.1_0.10.0" % "test"
Maven:
<dependency>
<groupId>com.holdenkarau</groupId>
<artifactId>spark-testing-base_2.11</artifactId>
<version>${spark.version}_0.10.0</version>
<scope>test</scope>
</dependency>
Vladimir Pustovit
Other options for generating data:
● mapPartitions + Random + custom code
● RandomRDDs in mllib
○ Uniform, Normal, Possion, Exponential, Gamma, logNormal & Vector versions
○ Different type: implement the RandomDataGenerator interface
● Random
RandomRDDs
val zipRDD = RandomRDDs.exponentialRDD(sc, mean = 1000, size
= rows).map(_.toInt.toString)
val valuesRDD = RandomRDDs.normalVectorRDD(sc, numRows = rows,
numCols = numCols).repartition(zipRDD.partitions.size)
val keyRDD = sc.parallelize(1L.to(rows),
zipRDD.getNumPartitions)
keyRDD.zipPartitions(zipRDD, valuesRDD){
(i1, i2, i3) =>
new Iterator[(Long, String, Vector)] {
...
Testing libraries:
● Spark unit testing
○ spark-testing-base - https://github.com/holdenk/spark-testing-base
○ sscheck - https://github.com/juanrh/sscheck
● Simplified unit testing (“business logic only”)
○ kontextfrei - https://github.com/dwestheide/kontextfrei *
● Integration testing
○ spark-integration-tests (Spark internals) - https://github.com/databricks/spark-integration-tests
● Performance
○ spark-perf (also for Spark internals) - https://github.com/databricks/spark-perf
● Spark job validation
○ spark-validator - https://github.com/holdenk/spark-validator *
Photo by Mike Mozart
*Early stage or work-in progress, or proof of concept
Let’s talk about local mode
● It’s way better than you would expect*
● It does its best to try and catch serialization errors
● It’s still not the same as running on a “real” cluster
● Especially since if we were just local mode, parallelize and collect might be
fine
Photo by: Bev Sykes
Options beyond local mode:
● Just point at your existing cluster (set master)
● Start one with your shell scripts & change the master
○ Really easy way to plug into existing integration testing
● spark-docker - hack in our own tests
● YarnMiniCluster
○ https://github.com/apache/spark/blob/master/yarn/src/test/scala/org/apache/spark/deploy/yarn/
BaseYarnClusterSuite.scala
○ In Spark Testing Base extend SharedMiniCluster
■ Not recommended until after SPARK-10812 (e.g. 1.5.2+ or 1.6+)
Photo by Richard Masoner
Integration testing - docker is awesome
● Spark-docker, kafka-docker, etc.
○ Not always super up to date sadly - if you are last stable release A-OK, if you build from
master - sad pandas
● Or checkout JuJu Charms (from Canonical) - https://jujucharms.com/
○ Makes it easy to deploy a bunch of docker containers together & configured in a reasonable
way.
Setting up integration on Yarn/Mesos
● So lucky!
● You can write your tests in the same way as before - just read from your test
data sources
● Missing a data source?
○ Can you sample it or fake it using the techniques from before?
○ If so - do that and save the result to your integration enviroment
○ If not… well good luck
● Need streaming integration?
○ You will probably need a second Spark (or other) job to generate the test data
“Business logic” only test w/kontextfrei
import com.danielwestheide.kontextfrei.DCollectionOps
trait UsersByPopularityProperties[DColl[_]] extends
BaseSpec[DColl] {
import DCollectionOps.Imports._
property("Each user appears only once") {
forAll { starredEvents: List[RepoStarred] =>
val result =
logic.usersByPopularity(unit(starredEvents)).collect().toList
result.distinct mustEqual result
}
}
… (continued in example/src/test/scala/com/danielwestheide/kontextfrei/example/)
Generating Data with Spark
import org.apache.spark.mllib.random.RandomRDDs
...
RandomRDDs.exponentialRDD(sc, mean = 1000, size = rows)
RandomRDDs.normalVectorRDD(sc, numRows = rows, numCols = numCols)

More Related Content

What's hot

Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018Holden Karau
 
PySpark on Kubernetes @ Python Barcelona March Meetup
PySpark on Kubernetes @ Python Barcelona March MeetupPySpark on Kubernetes @ Python Barcelona March Meetup
PySpark on Kubernetes @ Python Barcelona March MeetupHolden Karau
 
Using Spark ML on Spark Errors - What do the clusters tell us?
Using Spark ML on Spark Errors - What do the clusters tell us?Using Spark ML on Spark Errors - What do the clusters tell us?
Using Spark ML on Spark Errors - What do the clusters tell us?Holden Karau
 
Spark Autotuning Talk - Strata New York
Spark Autotuning Talk - Strata New YorkSpark Autotuning Talk - Strata New York
Spark Autotuning Talk - Strata New YorkHolden Karau
 
Debugging Spark: Scala and Python - Super Happy Fun Times @ Data Day Texas 2018
Debugging Spark:  Scala and Python - Super Happy Fun Times @ Data Day Texas 2018Debugging Spark:  Scala and Python - Super Happy Fun Times @ Data Day Texas 2018
Debugging Spark: Scala and Python - Super Happy Fun Times @ Data Day Texas 2018Holden Karau
 
Big data beyond the JVM - DDTX 2018
Big data beyond the JVM -  DDTX 2018Big data beyond the JVM -  DDTX 2018
Big data beyond the JVM - DDTX 2018Holden Karau
 
Debugging PySpark: Spark Summit East talk by Holden Karau
Debugging PySpark: Spark Summit East talk by Holden KarauDebugging PySpark: Spark Summit East talk by Holden Karau
Debugging PySpark: Spark Summit East talk by Holden KarauSpark Summit
 
Powering tensor flow with big data using apache beam, flink, and spark cern...
Powering tensor flow with big data using apache beam, flink, and spark   cern...Powering tensor flow with big data using apache beam, flink, and spark   cern...
Powering tensor flow with big data using apache beam, flink, and spark cern...Holden Karau
 
Apache Spark Super Happy Funtimes - CHUG 2016
Apache Spark Super Happy Funtimes - CHUG 2016Apache Spark Super Happy Funtimes - CHUG 2016
Apache Spark Super Happy Funtimes - CHUG 2016Holden Karau
 
Keeping the fun in functional w/ Apache Spark @ Scala Days NYC
Keeping the fun in functional   w/ Apache Spark @ Scala Days NYCKeeping the fun in functional   w/ Apache Spark @ Scala Days NYC
Keeping the fun in functional w/ Apache Spark @ Scala Days NYCHolden Karau
 
Validating Big Data Jobs—Stopping Failures Before Production on Apache Spark...
 Validating Big Data Jobs—Stopping Failures Before Production on Apache Spark... Validating Big Data Jobs—Stopping Failures Before Production on Apache Spark...
Validating Big Data Jobs—Stopping Failures Before Production on Apache Spark...Databricks
 
Testing and validating spark programs - Strata SJ 2016
Testing and validating spark programs - Strata SJ 2016Testing and validating spark programs - Strata SJ 2016
Testing and validating spark programs - Strata SJ 2016Holden Karau
 
Effective testing for spark programs scala bay preview (pre-strata ny 2015)
Effective testing for spark programs scala bay preview (pre-strata ny 2015)Effective testing for spark programs scala bay preview (pre-strata ny 2015)
Effective testing for spark programs scala bay preview (pre-strata ny 2015)Holden Karau
 
Apache spark as a gateway drug to FP concepts taught and broken - Curry On 2018
Apache spark as a gateway drug to FP concepts taught and broken - Curry On 2018Apache spark as a gateway drug to FP concepts taught and broken - Curry On 2018
Apache spark as a gateway drug to FP concepts taught and broken - Curry On 2018Holden Karau
 
Sharing (or stealing) the jewels of python with big data &amp; the jvm (1)
Sharing (or stealing) the jewels of python with big data &amp; the jvm (1)Sharing (or stealing) the jewels of python with big data &amp; the jvm (1)
Sharing (or stealing) the jewels of python with big data &amp; the jvm (1)Holden Karau
 
Systems Monitoring with Prometheus (Devops Ireland April 2015)
Systems Monitoring with Prometheus (Devops Ireland April 2015)Systems Monitoring with Prometheus (Devops Ireland April 2015)
Systems Monitoring with Prometheus (Devops Ireland April 2015)Brian Brazil
 
Node.js: CAMTA Presentation
Node.js: CAMTA PresentationNode.js: CAMTA Presentation
Node.js: CAMTA PresentationRob Tweed
 

What's hot (20)

Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018Intro - End to end ML with Kubeflow @ SignalConf 2018
Intro - End to end ML with Kubeflow @ SignalConf 2018
 
PySpark on Kubernetes @ Python Barcelona March Meetup
PySpark on Kubernetes @ Python Barcelona March MeetupPySpark on Kubernetes @ Python Barcelona March Meetup
PySpark on Kubernetes @ Python Barcelona March Meetup
 
Using Spark ML on Spark Errors - What do the clusters tell us?
Using Spark ML on Spark Errors - What do the clusters tell us?Using Spark ML on Spark Errors - What do the clusters tell us?
Using Spark ML on Spark Errors - What do the clusters tell us?
 
Spark Autotuning Talk - Strata New York
Spark Autotuning Talk - Strata New YorkSpark Autotuning Talk - Strata New York
Spark Autotuning Talk - Strata New York
 
Debugging Spark: Scala and Python - Super Happy Fun Times @ Data Day Texas 2018
Debugging Spark:  Scala and Python - Super Happy Fun Times @ Data Day Texas 2018Debugging Spark:  Scala and Python - Super Happy Fun Times @ Data Day Texas 2018
Debugging Spark: Scala and Python - Super Happy Fun Times @ Data Day Texas 2018
 
Big data beyond the JVM - DDTX 2018
Big data beyond the JVM -  DDTX 2018Big data beyond the JVM -  DDTX 2018
Big data beyond the JVM - DDTX 2018
 
Debugging PySpark: Spark Summit East talk by Holden Karau
Debugging PySpark: Spark Summit East talk by Holden KarauDebugging PySpark: Spark Summit East talk by Holden Karau
Debugging PySpark: Spark Summit East talk by Holden Karau
 
Powering tensor flow with big data using apache beam, flink, and spark cern...
Powering tensor flow with big data using apache beam, flink, and spark   cern...Powering tensor flow with big data using apache beam, flink, and spark   cern...
Powering tensor flow with big data using apache beam, flink, and spark cern...
 
Apache Spark Super Happy Funtimes - CHUG 2016
Apache Spark Super Happy Funtimes - CHUG 2016Apache Spark Super Happy Funtimes - CHUG 2016
Apache Spark Super Happy Funtimes - CHUG 2016
 
Keeping the fun in functional w/ Apache Spark @ Scala Days NYC
Keeping the fun in functional   w/ Apache Spark @ Scala Days NYCKeeping the fun in functional   w/ Apache Spark @ Scala Days NYC
Keeping the fun in functional w/ Apache Spark @ Scala Days NYC
 
Validating Big Data Jobs—Stopping Failures Before Production on Apache Spark...
 Validating Big Data Jobs—Stopping Failures Before Production on Apache Spark... Validating Big Data Jobs—Stopping Failures Before Production on Apache Spark...
Validating Big Data Jobs—Stopping Failures Before Production on Apache Spark...
 
Testing and validating spark programs - Strata SJ 2016
Testing and validating spark programs - Strata SJ 2016Testing and validating spark programs - Strata SJ 2016
Testing and validating spark programs - Strata SJ 2016
 
Effective testing for spark programs scala bay preview (pre-strata ny 2015)
Effective testing for spark programs scala bay preview (pre-strata ny 2015)Effective testing for spark programs scala bay preview (pre-strata ny 2015)
Effective testing for spark programs scala bay preview (pre-strata ny 2015)
 
Apache spark as a gateway drug to FP concepts taught and broken - Curry On 2018
Apache spark as a gateway drug to FP concepts taught and broken - Curry On 2018Apache spark as a gateway drug to FP concepts taught and broken - Curry On 2018
Apache spark as a gateway drug to FP concepts taught and broken - Curry On 2018
 
Sharing (or stealing) the jewels of python with big data &amp; the jvm (1)
Sharing (or stealing) the jewels of python with big data &amp; the jvm (1)Sharing (or stealing) the jewels of python with big data &amp; the jvm (1)
Sharing (or stealing) the jewels of python with big data &amp; the jvm (1)
 
All of Javascript
All of JavascriptAll of Javascript
All of Javascript
 
Os Whitaker
Os WhitakerOs Whitaker
Os Whitaker
 
Systems Monitoring with Prometheus (Devops Ireland April 2015)
Systems Monitoring with Prometheus (Devops Ireland April 2015)Systems Monitoring with Prometheus (Devops Ireland April 2015)
Systems Monitoring with Prometheus (Devops Ireland April 2015)
 
Developing Async Sense
Developing Async SenseDeveloping Async Sense
Developing Async Sense
 
Node.js: CAMTA Presentation
Node.js: CAMTA PresentationNode.js: CAMTA Presentation
Node.js: CAMTA Presentation
 

Similar to Validating big data jobs - Spark AI Summit EU

Testing and validating distributed systems with Apache Spark and Apache Beam ...
Testing and validating distributed systems with Apache Spark and Apache Beam ...Testing and validating distributed systems with Apache Spark and Apache Beam ...
Testing and validating distributed systems with Apache Spark and Apache Beam ...Holden Karau
 
Adversarial Simulation Nickerson/Gates Wild West Hacking Fest Oct 2017
Adversarial Simulation Nickerson/Gates Wild West Hacking Fest Oct 2017Adversarial Simulation Nickerson/Gates Wild West Hacking Fest Oct 2017
Adversarial Simulation Nickerson/Gates Wild West Hacking Fest Oct 2017Chris Gates
 
Debugging PySpark - Spark Summit East 2017
Debugging PySpark - Spark Summit East 2017Debugging PySpark - Spark Summit East 2017
Debugging PySpark - Spark Summit East 2017Holden Karau
 
Beyond Parallelize and Collect by Holden Karau
Beyond Parallelize and Collect by Holden KarauBeyond Parallelize and Collect by Holden Karau
Beyond Parallelize and Collect by Holden KarauSpark Summit
 
Engineering data quality
Engineering data qualityEngineering data quality
Engineering data qualityLars Albertsson
 
Ml pipelines with Apache spark and Apache beam - Ottawa Reactive meetup Augus...
Ml pipelines with Apache spark and Apache beam - Ottawa Reactive meetup Augus...Ml pipelines with Apache spark and Apache beam - Ottawa Reactive meetup Augus...
Ml pipelines with Apache spark and Apache beam - Ottawa Reactive meetup Augus...Holden Karau
 
Black Ops Testing Workshop from Agile Testing Days 2014
Black Ops Testing Workshop from Agile Testing Days 2014Black Ops Testing Workshop from Agile Testing Days 2014
Black Ops Testing Workshop from Agile Testing Days 2014Alan Richardson
 
Beyond unit tests: Deployment and testing for Hadoop/Spark workflows
Beyond unit tests: Deployment and testing for Hadoop/Spark workflowsBeyond unit tests: Deployment and testing for Hadoop/Spark workflows
Beyond unit tests: Deployment and testing for Hadoop/Spark workflowsDataWorks Summit
 
Demise of test scripts rise of test ideas
Demise of test scripts rise of test ideasDemise of test scripts rise of test ideas
Demise of test scripts rise of test ideasRichard Robinson
 
Accelerating Big Data beyond the JVM - Fosdem 2018
Accelerating Big Data beyond the JVM - Fosdem 2018Accelerating Big Data beyond the JVM - Fosdem 2018
Accelerating Big Data beyond the JVM - Fosdem 2018Holden Karau
 
Collaborating with Developers: How-to Guide for Test Engineers - By Gil Tayar
Collaborating with Developers: How-to Guide for Test Engineers - By Gil Tayar Collaborating with Developers: How-to Guide for Test Engineers - By Gil Tayar
Collaborating with Developers: How-to Guide for Test Engineers - By Gil Tayar Applitools
 
Aws uk ug #8 not everything that happens in vegas stay in vegas
Aws uk ug #8   not everything that happens in vegas stay in vegasAws uk ug #8   not everything that happens in vegas stay in vegas
Aws uk ug #8 not everything that happens in vegas stay in vegasPeter Mounce
 
Benchmarks, performance, scalability, and capacity what's behind the numbers
Benchmarks, performance, scalability, and capacity what's behind the numbersBenchmarks, performance, scalability, and capacity what's behind the numbers
Benchmarks, performance, scalability, and capacity what's behind the numbersJustin Dorfman
 
Benchmarks, performance, scalability, and capacity what s behind the numbers...
Benchmarks, performance, scalability, and capacity  what s behind the numbers...Benchmarks, performance, scalability, and capacity  what s behind the numbers...
Benchmarks, performance, scalability, and capacity what s behind the numbers...james tong
 
A super fast introduction to Spark and glance at BEAM
A super fast introduction to Spark and glance at BEAMA super fast introduction to Spark and glance at BEAM
A super fast introduction to Spark and glance at BEAMHolden Karau
 
May 2021 Spark Testing ... or how to farm reputation on StackOverflow
May 2021 Spark Testing ... or how to farm reputation on StackOverflowMay 2021 Spark Testing ... or how to farm reputation on StackOverflow
May 2021 Spark Testing ... or how to farm reputation on StackOverflowAdam Doyle
 
Automated Performance Testing
Automated Performance TestingAutomated Performance Testing
Automated Performance TestingLars Thorup
 
OUG Ireland 2019 - building free, open-source, PL/SQL products in cloud
OUG Ireland 2019 - building free, open-source, PL/SQL products in cloudOUG Ireland 2019 - building free, open-source, PL/SQL products in cloud
OUG Ireland 2019 - building free, open-source, PL/SQL products in cloudJacek Gebal
 
Getting started contributing to Apache Spark
Getting started contributing to Apache SparkGetting started contributing to Apache Spark
Getting started contributing to Apache SparkHolden Karau
 

Similar to Validating big data jobs - Spark AI Summit EU (20)

Testing and validating distributed systems with Apache Spark and Apache Beam ...
Testing and validating distributed systems with Apache Spark and Apache Beam ...Testing and validating distributed systems with Apache Spark and Apache Beam ...
Testing and validating distributed systems with Apache Spark and Apache Beam ...
 
Adversarial Simulation Nickerson/Gates Wild West Hacking Fest Oct 2017
Adversarial Simulation Nickerson/Gates Wild West Hacking Fest Oct 2017Adversarial Simulation Nickerson/Gates Wild West Hacking Fest Oct 2017
Adversarial Simulation Nickerson/Gates Wild West Hacking Fest Oct 2017
 
Debugging PySpark - Spark Summit East 2017
Debugging PySpark - Spark Summit East 2017Debugging PySpark - Spark Summit East 2017
Debugging PySpark - Spark Summit East 2017
 
Beyond Parallelize and Collect by Holden Karau
Beyond Parallelize and Collect by Holden KarauBeyond Parallelize and Collect by Holden Karau
Beyond Parallelize and Collect by Holden Karau
 
Engineering data quality
Engineering data qualityEngineering data quality
Engineering data quality
 
Ml pipelines with Apache spark and Apache beam - Ottawa Reactive meetup Augus...
Ml pipelines with Apache spark and Apache beam - Ottawa Reactive meetup Augus...Ml pipelines with Apache spark and Apache beam - Ottawa Reactive meetup Augus...
Ml pipelines with Apache spark and Apache beam - Ottawa Reactive meetup Augus...
 
Black Ops Testing Workshop from Agile Testing Days 2014
Black Ops Testing Workshop from Agile Testing Days 2014Black Ops Testing Workshop from Agile Testing Days 2014
Black Ops Testing Workshop from Agile Testing Days 2014
 
Beyond unit tests: Deployment and testing for Hadoop/Spark workflows
Beyond unit tests: Deployment and testing for Hadoop/Spark workflowsBeyond unit tests: Deployment and testing for Hadoop/Spark workflows
Beyond unit tests: Deployment and testing for Hadoop/Spark workflows
 
Demise of test scripts rise of test ideas
Demise of test scripts rise of test ideasDemise of test scripts rise of test ideas
Demise of test scripts rise of test ideas
 
Accelerating Big Data beyond the JVM - Fosdem 2018
Accelerating Big Data beyond the JVM - Fosdem 2018Accelerating Big Data beyond the JVM - Fosdem 2018
Accelerating Big Data beyond the JVM - Fosdem 2018
 
Collaborating with Developers: How-to Guide for Test Engineers - By Gil Tayar
Collaborating with Developers: How-to Guide for Test Engineers - By Gil Tayar Collaborating with Developers: How-to Guide for Test Engineers - By Gil Tayar
Collaborating with Developers: How-to Guide for Test Engineers - By Gil Tayar
 
Aws uk ug #8 not everything that happens in vegas stay in vegas
Aws uk ug #8   not everything that happens in vegas stay in vegasAws uk ug #8   not everything that happens in vegas stay in vegas
Aws uk ug #8 not everything that happens in vegas stay in vegas
 
Benchmarks, performance, scalability, and capacity what's behind the numbers
Benchmarks, performance, scalability, and capacity what's behind the numbersBenchmarks, performance, scalability, and capacity what's behind the numbers
Benchmarks, performance, scalability, and capacity what's behind the numbers
 
Benchmarks, performance, scalability, and capacity what s behind the numbers...
Benchmarks, performance, scalability, and capacity  what s behind the numbers...Benchmarks, performance, scalability, and capacity  what s behind the numbers...
Benchmarks, performance, scalability, and capacity what s behind the numbers...
 
Java vs. C/C++
Java vs. C/C++Java vs. C/C++
Java vs. C/C++
 
A super fast introduction to Spark and glance at BEAM
A super fast introduction to Spark and glance at BEAMA super fast introduction to Spark and glance at BEAM
A super fast introduction to Spark and glance at BEAM
 
May 2021 Spark Testing ... or how to farm reputation on StackOverflow
May 2021 Spark Testing ... or how to farm reputation on StackOverflowMay 2021 Spark Testing ... or how to farm reputation on StackOverflow
May 2021 Spark Testing ... or how to farm reputation on StackOverflow
 
Automated Performance Testing
Automated Performance TestingAutomated Performance Testing
Automated Performance Testing
 
OUG Ireland 2019 - building free, open-source, PL/SQL products in cloud
OUG Ireland 2019 - building free, open-source, PL/SQL products in cloudOUG Ireland 2019 - building free, open-source, PL/SQL products in cloud
OUG Ireland 2019 - building free, open-source, PL/SQL products in cloud
 
Getting started contributing to Apache Spark
Getting started contributing to Apache SparkGetting started contributing to Apache Spark
Getting started contributing to Apache Spark
 

Recently uploaded

'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...APNIC
 
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...Delhi Call girls
 
Call Girls In Model Towh Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Model Towh Delhi 💯Call Us 🔝8264348440🔝Call Girls In Model Towh Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Model Towh Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
On Starlink, presented by Geoff Huston at NZNOG 2024
On Starlink, presented by Geoff Huston at NZNOG 2024On Starlink, presented by Geoff Huston at NZNOG 2024
On Starlink, presented by Geoff Huston at NZNOG 2024APNIC
 
Moving Beyond Twitter/X and Facebook - Social Media for local news providers
Moving Beyond Twitter/X and Facebook - Social Media for local news providersMoving Beyond Twitter/X and Facebook - Social Media for local news providers
Moving Beyond Twitter/X and Facebook - Social Media for local news providersDamian Radcliffe
 
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting High Prof...
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting  High Prof...VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting  High Prof...
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting High Prof...singhpriety023
 
Russian Call girl in Ajman +971563133746 Ajman Call girl Service
Russian Call girl in Ajman +971563133746 Ajman Call girl ServiceRussian Call girl in Ajman +971563133746 Ajman Call girl Service
Russian Call girl in Ajman +971563133746 Ajman Call girl Servicegwenoracqe6
 
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Hot Call Girls |Delhi |Hauz Khas ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Hauz Khas ☎ 9711199171 Book Your One night StandHot Call Girls |Delhi |Hauz Khas ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Hauz Khas ☎ 9711199171 Book Your One night Standkumarajju5765
 
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...Diya Sharma
 
Top Rated Pune Call Girls Daund ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated  Pune Call Girls Daund ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Top Rated  Pune Call Girls Daund ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated Pune Call Girls Daund ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Call Girls in Nagpur High Profile
 
Lucknow ❤CALL GIRL 88759*99948 ❤CALL GIRLS IN Lucknow ESCORT SERVICE❤CALL GIRL
Lucknow ❤CALL GIRL 88759*99948 ❤CALL GIRLS IN Lucknow ESCORT SERVICE❤CALL GIRLLucknow ❤CALL GIRL 88759*99948 ❤CALL GIRLS IN Lucknow ESCORT SERVICE❤CALL GIRL
Lucknow ❤CALL GIRL 88759*99948 ❤CALL GIRLS IN Lucknow ESCORT SERVICE❤CALL GIRLimonikaupta
 
CALL ON ➥8923113531 🔝Call Girls Lucknow Lucknow best sexual service Online
CALL ON ➥8923113531 🔝Call Girls Lucknow Lucknow best sexual service OnlineCALL ON ➥8923113531 🔝Call Girls Lucknow Lucknow best sexual service Online
CALL ON ➥8923113531 🔝Call Girls Lucknow Lucknow best sexual service Onlineanilsa9823
 
Enjoy Night⚡Call Girls Dlf City Phase 3 Gurgaon >༒8448380779 Escort Service
Enjoy Night⚡Call Girls Dlf City Phase 3 Gurgaon >༒8448380779 Escort ServiceEnjoy Night⚡Call Girls Dlf City Phase 3 Gurgaon >༒8448380779 Escort Service
Enjoy Night⚡Call Girls Dlf City Phase 3 Gurgaon >༒8448380779 Escort ServiceDelhi Call girls
 
(+971568250507 ))# Young Call Girls in Ajman By Pakistani Call Girls in ...
(+971568250507  ))#  Young Call Girls  in Ajman  By Pakistani Call Girls  in ...(+971568250507  ))#  Young Call Girls  in Ajman  By Pakistani Call Girls  in ...
(+971568250507 ))# Young Call Girls in Ajman By Pakistani Call Girls in ...Escorts Call Girls
 
WhatsApp 📞 8448380779 ✅Call Girls In Mamura Sector 66 ( Noida)
WhatsApp 📞 8448380779 ✅Call Girls In Mamura Sector 66 ( Noida)WhatsApp 📞 8448380779 ✅Call Girls In Mamura Sector 66 ( Noida)
WhatsApp 📞 8448380779 ✅Call Girls In Mamura Sector 66 ( Noida)Delhi Call girls
 
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...SofiyaSharma5
 
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...Sheetaleventcompany
 
Pune Airport ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready...
Pune Airport ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready...Pune Airport ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready...
Pune Airport ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready...tanu pandey
 

Recently uploaded (20)

'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
 
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
Hire↠Young Call Girls in Tilak nagar (Delhi) ☎️ 9205541914 ☎️ Independent Esc...
 
Call Girls In Model Towh Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Model Towh Delhi 💯Call Us 🔝8264348440🔝Call Girls In Model Towh Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Model Towh Delhi 💯Call Us 🔝8264348440🔝
 
On Starlink, presented by Geoff Huston at NZNOG 2024
On Starlink, presented by Geoff Huston at NZNOG 2024On Starlink, presented by Geoff Huston at NZNOG 2024
On Starlink, presented by Geoff Huston at NZNOG 2024
 
Moving Beyond Twitter/X and Facebook - Social Media for local news providers
Moving Beyond Twitter/X and Facebook - Social Media for local news providersMoving Beyond Twitter/X and Facebook - Social Media for local news providers
Moving Beyond Twitter/X and Facebook - Social Media for local news providers
 
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting High Prof...
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting  High Prof...VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting  High Prof...
VIP Model Call Girls Hadapsar ( Pune ) Call ON 9905417584 Starting High Prof...
 
Russian Call girl in Ajman +971563133746 Ajman Call girl Service
Russian Call girl in Ajman +971563133746 Ajman Call girl ServiceRussian Call girl in Ajman +971563133746 Ajman Call girl Service
Russian Call girl in Ajman +971563133746 Ajman Call girl Service
 
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
 
Hot Call Girls |Delhi |Hauz Khas ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Hauz Khas ☎ 9711199171 Book Your One night StandHot Call Girls |Delhi |Hauz Khas ☎ 9711199171 Book Your One night Stand
Hot Call Girls |Delhi |Hauz Khas ☎ 9711199171 Book Your One night Stand
 
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
 
Top Rated Pune Call Girls Daund ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated  Pune Call Girls Daund ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...Top Rated  Pune Call Girls Daund ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
Top Rated Pune Call Girls Daund ⟟ 6297143586 ⟟ Call Me For Genuine Sex Servi...
 
Lucknow ❤CALL GIRL 88759*99948 ❤CALL GIRLS IN Lucknow ESCORT SERVICE❤CALL GIRL
Lucknow ❤CALL GIRL 88759*99948 ❤CALL GIRLS IN Lucknow ESCORT SERVICE❤CALL GIRLLucknow ❤CALL GIRL 88759*99948 ❤CALL GIRLS IN Lucknow ESCORT SERVICE❤CALL GIRL
Lucknow ❤CALL GIRL 88759*99948 ❤CALL GIRLS IN Lucknow ESCORT SERVICE❤CALL GIRL
 
Russian Call Girls in %(+971524965298 )# Call Girls in Dubai
Russian Call Girls in %(+971524965298  )#  Call Girls in DubaiRussian Call Girls in %(+971524965298  )#  Call Girls in Dubai
Russian Call Girls in %(+971524965298 )# Call Girls in Dubai
 
CALL ON ➥8923113531 🔝Call Girls Lucknow Lucknow best sexual service Online
CALL ON ➥8923113531 🔝Call Girls Lucknow Lucknow best sexual service OnlineCALL ON ➥8923113531 🔝Call Girls Lucknow Lucknow best sexual service Online
CALL ON ➥8923113531 🔝Call Girls Lucknow Lucknow best sexual service Online
 
Enjoy Night⚡Call Girls Dlf City Phase 3 Gurgaon >༒8448380779 Escort Service
Enjoy Night⚡Call Girls Dlf City Phase 3 Gurgaon >༒8448380779 Escort ServiceEnjoy Night⚡Call Girls Dlf City Phase 3 Gurgaon >༒8448380779 Escort Service
Enjoy Night⚡Call Girls Dlf City Phase 3 Gurgaon >༒8448380779 Escort Service
 
(+971568250507 ))# Young Call Girls in Ajman By Pakistani Call Girls in ...
(+971568250507  ))#  Young Call Girls  in Ajman  By Pakistani Call Girls  in ...(+971568250507  ))#  Young Call Girls  in Ajman  By Pakistani Call Girls  in ...
(+971568250507 ))# Young Call Girls in Ajman By Pakistani Call Girls in ...
 
WhatsApp 📞 8448380779 ✅Call Girls In Mamura Sector 66 ( Noida)
WhatsApp 📞 8448380779 ✅Call Girls In Mamura Sector 66 ( Noida)WhatsApp 📞 8448380779 ✅Call Girls In Mamura Sector 66 ( Noida)
WhatsApp 📞 8448380779 ✅Call Girls In Mamura Sector 66 ( Noida)
 
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
Low Rate Young Call Girls in Sector 63 Mamura Noida ✔️☆9289244007✔️☆ Female E...
 
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
Call Girls Service Chandigarh Lucky ❤️ 7710465962 Independent Call Girls In C...
 
Pune Airport ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready...
Pune Airport ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready...Pune Airport ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready...
Pune Airport ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready...
 

Validating big data jobs - Spark AI Summit EU

  • 1. Thanks for coming early! This is: Validating Big Data & ML Pipelines And will start @ 2PM :)Melinda Seckington
  • 2. Validating Big Data & ML Pipelines (Apache Spark) Now mostly “works”* Melinda Seckington
  • 3. Holden: ● My name is Holden Karau ● Prefered pronouns are she/her ● Developer Advocate at Google ● Apache Spark PMC, contributor to many others (including Airflow) ● previously IBM, Alpine, Databricks, Google, Foursquare & Amazon ● co-author of Learning Spark & High Performance Spark ● Twitter: @holdenkarau ● Slide share http://www.slideshare.net/hkarau ● Code review livestreams: https://www.twitch.tv/holdenkarau / https://www.youtube.com/user/holdenkarau ● Spark Talk Videos http://bit.ly/holdenSparkVideos ● Talk feedback (if you are so inclined): http://bit.ly/holdenTalkFeedback
  • 4.
  • 5. What is going to be covered: ● Why my employer cares about this stuff ● My assumptions about y’all ● A super brief look at property testing ● What validation is & why you should do it for your data pipelines ● How to make simple validation rules & our current limitations ● ML Validation - Guessing if our black box is “correct” ● Cute & scary pictures ○ I promise at least one cat Andrew
  • 6. Some of the reasons my employer cares* ● We have a hoted Spark/Hadoop solution (called Dataproc) ● We also have hosted pipeline management tools (based on Airflow called Cloud Composer) ● Being good open source community members *Probably, it’s not like I go to all of the meetings I’m invited to. Khairil Zhafri
  • 7. Who I think you wonderful humans are? ● Nice* people ● Like silly pictures ● Possibly Familiar with one of Scala, Java, or Python? ● Possibly Familiar with one of Spark ● Want to make better software ○ (or models, or w/e) ● Or just want to make software good enough to not have to keep your resume up to date
  • 8. So why should you test? ● Makes you a better person ● Avoid making your users angry ● Save $s ○ Having an ML job fail in hour 26 to restart everything can be expensive... ● Waiting for our jobs to fail is a pretty long dev cycle ● Honestly you’re probably not watching this unless you agree
  • 9. So why should you validate? ● tl;dr - Your tests probably aren’t perfect ● You want to know when you're aboard the failboat ● Our code will most likely fail at some point ○ Sometimes data sources fail in new & exciting ways (see “Call me Maybe”) ○ That jerk on that other floor changed the meaning of a field :( ○ Our tests won’t catch all of the corner cases that the real world finds ● We should try and minimize the impact ○ Avoid making potentially embarrassing recommendations ○ Save having to be woken up at 3am to do a roll-back ○ Specifying a few simple invariants isn’t all that hard ○ Repeating Holden’s mistakes is still not fun
  • 10. So why should you test & validate: Results from: Testing with Spark survey http://bit.ly/holdenTestingSpark
  • 11. So why should you test & validate - cont Results from: Testing with Spark survey http://bit.ly/holdenTestingSpark
  • 12. Why don’t we test? ● It’s hard ○ Faking data, setting up integration tests ● Our tests can get too slow ○ Packaging and building scala is already sad ● It takes a lot of time ○ and people always want everything done yesterday ○ or I just want to go home see my partner ○ Etc. ● Distributed systems is particularly hard
  • 13. Why don’t we test? (continued)
  • 14. Why don’t we validate? ● We already tested our code ○ Riiiight? ● What could go wrong? Also extra hard in distributed systems ● Distributed metrics are hard ● not much built in (not very consistent) ● not always deterministic ● Complicated production systems
  • 15. What happens when we don’t ● Personal stories go here ○ I have no comment about where these stories are from This talk is being recorded so we’ll leave it at: ● Negatively impacted the brand in difficult to quantify ways with words with multiple meanings ● Breaking a feature that cost a few million dollars ● Almost recommended illegal content (caught by a lucky manual) ● Every search result was a coffee shop itsbruce
  • 16. Cat photo from http://galato901.deviantart.com/art/Cat-on-Work-Break-173043455
  • 17. Where do folks get the data for pipeline tests? ● Most people generate data by hand ● If you have production data you can sample you are lucky! ○ If possible you can try and save in the same format ● If our data is a bunch of Vectors or Doubles Spark’s got tools :) ● Coming up with good test data can take a long time ● Important to test different distributions, input files, empty partitions etc. Lori Rielly
  • 18. Property generating libs: QuickCheck / ScalaCheck ● QuickCheck (haskell) generates tests data under a set of constraints ● Scala version is ScalaCheck - supported by the two unit testing libraries for Spark ● Sscheck (scala check for spark) ○ Awesome people*, supports generating DStreams too! ● spark-testing-base ○ Also Awesome people*, generates more pathological (e.g. empty partitions etc.) RDDs *I assume PROtara hunt
  • 19. With spark-testing-base & a million entries test("map should not change number of elements") { implicit val generatorDrivenConfig = PropertyCheckConfig(minSize = 0, maxSize = 1000000) val property = forAll(RDDGenerator.genRDD[String](sc)){ rdd => importantBussinesLogicFunction(rdd).count() == rdd.count() } check(property) }
  • 20. But that can get a bit slow for all of our tests ● Not all of your tests should need a cluster (or even a cluster simulator) ● If you are ok with not using lambdas everywhere you can factor out that logic and test with traditional tools ● Or if you want to keep those lambdas - or verify the transformations logic without the overhead of running a local distributed systems you can try a library like kontextfrei ○ Don’t rely on this alone (but can work well with something like scalacheck)
  • 21. Lets focus on validation some more: *Can be used during integration tests to further validate integration results
  • 22. So how do we validate our jobs? ● The idea is, at some point, you made software which worked. ● Maybe you manually tested and sampled your results ● Hopefully you did a lot of other checks too ● But we can’t do that every time, our pipelines are no longer write-once run-once they are often write-once, run forever, and debug-forever. Photo by: Paul Schadler
  • 23. How many people have something like this? val data = ... val parsed = data.flatMap(x => try { Some(parse(x)) } catch { case _ => None // Whatever, it's JSON } } Lilithis
  • 24. But if we’re going to validate... val data = ... data.cache() val validData = data.filter(isValid) val badData = data.filter(! isValid(_)) if validData.count() < badData.count() { // Ruh Roh! Special business error handling goes here } ... Pager photo by Vitachao CC-SA 3
  • 25. Well that’s less fun :( ● Our optimizer can’t just magically chain everything together anymore ● My flatMap.map.map is fnur :( ● Now I’m blocking on a thing in the driver Sn.Ho
  • 26. Counters* to the rescue**! ● Spark has built in counters ○ Per-stage bytes r/w, shuffle r/w, record r/w. execution time, etc. ○ In UI can also register a listener from spark validator project ● We can add counters for things we care about ○ invalid records, users with no recommendations, etc. ○ Accumulators have some challenges (see SPARK-12469 for progress) but are an interesting option ● We can _pretend_ we still have nice functional code *Counters/Accumulators are your friends, but the kind of friends who steal your lunch money ** In a similar way to how regular expressions can solve problems…. Miguel Olaya
  • 28. Just a little bit of code for the next ones…. val parsed = data.flatMap(x => try { Some(parse(x)) happyCounter.add(1) } catch { case _ => sadCounter.add(1) None // What's it's JSON } } // Special business data logic (aka wordcount) // Much much later* business error logic goes here Pager photo by Vitachao CC-SA 3 Phoebe Baker
  • 29. Ok but what about those *s ● Turns out accumulators aren’t really great for tracking data properties ● Turns out sometimes for validation we really care about data properties ● But we can kind of fake it and hope Miguel Olaya
  • 30. General Rules for making Validation rules ● According to a sad survey most people check execution time & record count ● spark-validator is still in early stages but interesting proof of concept ● Sometimes your rules will miss-fire and you’ll need to manually approve a job ● Remember those property tests? Could be Validation rules ● Historical data ● Domain specific solutions Photo by: Paul Schadler
  • 31. Turning property tests to validation rules* ● Yes in theory they’re already “tested” but... ● Common function to check accumulator value between validation & tests ● The real-world is can be fuzzier Photo by: Paul Schadler
  • 32. Input Schema Validation ● Handling the “wrong” type of cat ● Many many different approaches ○ filter/flatMap stages ○ Working in Scala/Java pre-filter then .as[T] ○ Manually specify your schema after doing inference the first time :p ● Unless your working on mnist.csv there is a good chance your validation is going to be fuzzy (reject some records accept others) ● How do we know if we’ve rejected too much? Bradley Gordon
  • 33. e.g. write our “rule” like: val (ok, bad) = (sc.accumulator(0), sc.accumulator(0)) val records = input.flatMap{ x => if (isValid(x)) ok +=1 else bad += 1 // Actual parse logic here } // An action (e.g. count, save, etc.) if (bad.value > 0.1* ok.value) { throw Exception("bad data - do not use results") // Optional cleanup } // Mark as safe P.S: If you are interested in this check out spark-validator (still early stages). Found Animals Foundation Follow
  • 34. Validating records read matches our expectations: val vc = new ValidationConf(tempPath, "1", true, List[ValidationRule]( new AbsoluteSparkCounterValidationRule("recordsRead", Some(3000000), Some(10000000))) ) val sqlCtx = new SQLContext(sc) val v = Validation(sc, sqlCtx, vc) //Business logic goes here assert(v.validate(5) === true) } Photo by Dvortygirl
  • 35. % of data change ● Not just invalid records, if a field’s value changes everywhere it could still be “valid” but have a different meaning ○ Remember that example about almost recommending illegal content? ● Join and see number of rows different on each side ● Expensive operation, but if your data changes slowly / at a constant ish rate ○ Sometimes done as a separate parallel job ● Can also be used on output if applicable ○ You do have a table/file/as applicable to roll back to right?
  • 36. Not just data changes: Software too ● Things change! Yay! Often for the better. ○ Especially with handling edge cases like NA fields ○ Don’t expect the results to change - side-by-side run + diff ● Blue/Green deployments aren’t just for microservices ○ Run your pipeline side-by-side and compare diffs when pushing new version ○ In CI you can do this on smaller test batches ● Excellent PyData London talk about how this can impact ML models Francesco
  • 37. Onto ML (or Beyond ETL :p) ● Some of the same principals work (yay!) ○ Schemas, invalid records, etc. ● Some new things to check ○ CV performance, Feature normalization ranges ● Some things don’t really work ○ Output size probably isn’t that great a metric anymore ○ Eyeballing the results for override is a lot harder contraption
  • 38. Traditional theory (Models) ● Human decides it's time to “update their models” ● Human goes through a model update run-book ● Human does other work while their “big-data” job runs ● Human deploys X% new models ● Looks at graphs ● Presses deploy Andrew
  • 39. Traditional practice (Models) ● Human is cornered by stakeholders and forced to update models ● Spends a few hours trying to remember where the guide is ● Gives up and kind of wings it ● Comes back to a trained model ● Human deploys X% models ● Human reads reddit/hacker news/etc. ● Presses deploy Bruno Caimi
  • 40. New possible practice (sometimes) ● Computer kicks off job (probably at an hour boundary because *shrug*) to update model ● Workflow tool notices new model is available ● Computer deploys X% models ● Software looks at monitoring graphs, uses statistical test to see if it’s bad ● Robot rolls it back & pager goes off ● Human Presses overrides and deploys anyways Henrique Pinto
  • 41. Extra considerations for ML jobs: ● Harder to look at output size and say if its good ● We can look at the cross-validation performance ● Fixed test set performance ● Number of iterations / convergence rate ● Number of features selected / number of features changed in selection ● (If applicable) delta in model weights or tree size or ... Jennifer C.
  • 42. Cross-validation because saving a test set is effort ● Trains on X% of the data and tests on Y% ○ Multiple times switching the samples ● org.apache.spark.ml.tuning has the tools for auto fitting using CB ○ If your going to use this for auto-tuning please please save a test set ○ Otherwise your models will look awesome and perform like a ford pinto (or whatever a crappy car is here. Maybe a renault reliant?) Jonathan Kotta
  • 43. False sense of security: ● A/B test please even if CV says many many $s ● Rank based things can have training bias with previous orders ● Non-displayed options: unlikely to be chosen ● Sometimes can find previous formulaic corrections ● Sometimes we can “experimentally” determine ● Other times we just hope it’s better than nothing ● Try and make sure your ML isn’t evil or re-encoding human biases but stronger
  • 44. Some ending notes ● Your validation rules don’t have to be perfect ○ But they should be good enough they alert infrequently ○ Occasional overrides are OK ● Your validation rules can live in seperate jobs ● Just like tests, try and make your validation rules specific and actionable ○ Execution time changed is not a great message - table XYZ grew unexpectedly to Y% James Petts
  • 45. Related packages ● spark-testing-base: https://github.com/holdenk/spark-testing-base ● sscheck: https://github.com/juanrh/sscheck ● spark-validator: https://github.com/holdenk/spark-validator *Proof of concept, do not actually use* ● spark-perf - https://github.com/databricks/spark-perf ● spark-integration-tests - https://github.com/databricks/spark-integration-tests ● scalacheck - https://www.scalacheck.org/ Becky Lai
  • 46. Learning Spark Fast Data Processing with Spark (Out of Date) Fast Data Processing with Spark (2nd edition) Advanced Analytics with Spark Spark in Action High Performance SparkLearning PySpark
  • 47. High Performance Spark! Available today, not a lot on testing and almost nothing on validation, but that should not stop you from buying several copies (if you have an expense account). Cat’s love it! Amazon sells it: http://bit.ly/hkHighPerfSpark :D
  • 48. Sign up for the mailing list @ http://www.distributedcomputing4kids.com
  • 49. Cat wave photo by Quinn Dombrowski k thnx bye! (or questions…) If you want to fill out survey: http://bit.ly/holdenTestingSpark I will use update results in & give the talk again the next time Spark adds a major feature. Give feedback on this presentation http://bit.ly/holdenTalkFeedback Have questions? - sli.do: SL18 - Union Grand EF I’ll be giving another talk tomorrow @ 4:20 PM on ML on Spark Error Messages*
  • 50. The state of serving is generally a mess ● If it’s not ML models its can be better ○ Reports for everyone! ○ Or database updates for everyone! ● Big challenge: when something goes wrong - how do I fix it? ○ Something will go wrong eventually - do you have an old snap shot you can roll back to quickly? ● One project which aims to improve this for ML is KubeFlow ○ Goal is unifying training & serving experiences ○ Despite the name targeting more than just TensorFlow ○ Doesn’t work with Spark yet, but it’s on my PR list.
  • 51. Updating your model ● The real world changes ● Online learning (streaming) is super cool, but hard to version ○ Common kappa-like arch and then revert to checkpoint ○ Slowly degrading models, oh my! ● Iterative batches: automatically train on new data, deploy model, and A/B test ● But A/B testing isn’t enough -- bad data can result in wrong or even illegal results (ask me after a bud light lime) Jennifer C.
  • 52. Related talks & blog posts ● Testing Spark Best Practices (Spark Summit 2014) ● Every Day I’m Shuffling (Strata 2015) & slides ● Spark and Spark Streaming Unit Testing ● Making Spark Unit Testing With Spark Testing Base ● Testing strategy for Apache Spark jobs ● The BEAM programming guide Interested in OSS (especially Spark)? ● Check out my Twitch & Youtube for livestreams - http://twitch.tv/holdenkarau & https://www.youtube.com/user/holdenkarau Becky Lai
  • 53. And including spark-testing-base up to spark 2.3.1 sbt: "com.holdenkarau" %% "spark-testing-base" % "2.3.1_0.10.0" % "test" Maven: <dependency> <groupId>com.holdenkarau</groupId> <artifactId>spark-testing-base_2.11</artifactId> <version>${spark.version}_0.10.0</version> <scope>test</scope> </dependency> Vladimir Pustovit
  • 54. Other options for generating data: ● mapPartitions + Random + custom code ● RandomRDDs in mllib ○ Uniform, Normal, Possion, Exponential, Gamma, logNormal & Vector versions ○ Different type: implement the RandomDataGenerator interface ● Random
  • 55. RandomRDDs val zipRDD = RandomRDDs.exponentialRDD(sc, mean = 1000, size = rows).map(_.toInt.toString) val valuesRDD = RandomRDDs.normalVectorRDD(sc, numRows = rows, numCols = numCols).repartition(zipRDD.partitions.size) val keyRDD = sc.parallelize(1L.to(rows), zipRDD.getNumPartitions) keyRDD.zipPartitions(zipRDD, valuesRDD){ (i1, i2, i3) => new Iterator[(Long, String, Vector)] { ...
  • 56. Testing libraries: ● Spark unit testing ○ spark-testing-base - https://github.com/holdenk/spark-testing-base ○ sscheck - https://github.com/juanrh/sscheck ● Simplified unit testing (“business logic only”) ○ kontextfrei - https://github.com/dwestheide/kontextfrei * ● Integration testing ○ spark-integration-tests (Spark internals) - https://github.com/databricks/spark-integration-tests ● Performance ○ spark-perf (also for Spark internals) - https://github.com/databricks/spark-perf ● Spark job validation ○ spark-validator - https://github.com/holdenk/spark-validator * Photo by Mike Mozart *Early stage or work-in progress, or proof of concept
  • 57. Let’s talk about local mode ● It’s way better than you would expect* ● It does its best to try and catch serialization errors ● It’s still not the same as running on a “real” cluster ● Especially since if we were just local mode, parallelize and collect might be fine Photo by: Bev Sykes
  • 58. Options beyond local mode: ● Just point at your existing cluster (set master) ● Start one with your shell scripts & change the master ○ Really easy way to plug into existing integration testing ● spark-docker - hack in our own tests ● YarnMiniCluster ○ https://github.com/apache/spark/blob/master/yarn/src/test/scala/org/apache/spark/deploy/yarn/ BaseYarnClusterSuite.scala ○ In Spark Testing Base extend SharedMiniCluster ■ Not recommended until after SPARK-10812 (e.g. 1.5.2+ or 1.6+) Photo by Richard Masoner
  • 59. Integration testing - docker is awesome ● Spark-docker, kafka-docker, etc. ○ Not always super up to date sadly - if you are last stable release A-OK, if you build from master - sad pandas ● Or checkout JuJu Charms (from Canonical) - https://jujucharms.com/ ○ Makes it easy to deploy a bunch of docker containers together & configured in a reasonable way.
  • 60. Setting up integration on Yarn/Mesos ● So lucky! ● You can write your tests in the same way as before - just read from your test data sources ● Missing a data source? ○ Can you sample it or fake it using the techniques from before? ○ If so - do that and save the result to your integration enviroment ○ If not… well good luck ● Need streaming integration? ○ You will probably need a second Spark (or other) job to generate the test data
  • 61. “Business logic” only test w/kontextfrei import com.danielwestheide.kontextfrei.DCollectionOps trait UsersByPopularityProperties[DColl[_]] extends BaseSpec[DColl] { import DCollectionOps.Imports._ property("Each user appears only once") { forAll { starredEvents: List[RepoStarred] => val result = logic.usersByPopularity(unit(starredEvents)).collect().toList result.distinct mustEqual result } } … (continued in example/src/test/scala/com/danielwestheide/kontextfrei/example/)
  • 62. Generating Data with Spark import org.apache.spark.mllib.random.RandomRDDs ... RandomRDDs.exponentialRDD(sc, mean = 1000, size = rows) RandomRDDs.normalVectorRDD(sc, numRows = rows, numCols = numCols)