SlideShare a Scribd company logo
1 of 7
Download to read offline
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013
DOI : 10.5121/ijaia.2013.4414 157
AUTO-MOBILE VEHICLE DIRECTION IN
ROAD TRAFFIC USING
ARTIFICIAL NEURAL NETWORKS.
1
M.Rathinakumar ,2
B.SankaraSubramanian, 3
R.Vasanth Kumar Mehta and
4
N. Kumaran
1
Professor and Head, EEE Department , SCSVMV University , kanchipuram,
Tamil Nadu,India
rathinamari@rediffmail.com , 9942085320
2
Department of CSE, SCSVMV University, kanchipuram, Tamil Nadu,India.
coolsankara@gmail.com, 919486118617
3
Department of CSE, SCSVMV University, kanchipuram, Tamil Nadu,India.
vasanthmehta@gmail.com, 919095984004
4
Department of IT, SCSVMV University, kanchipuram, Tamil Nadu,India.
natarajankumn@rediffmaill.com, 919894744597
ABSTRACT
So far Most of the current work on this area deals with traffic volume prediction during peak hours and the
reasons behind accidents only. This work presents the analysis of automobile vehicle directing in various
traffic flow conditions using Artificial neural network architecture. Now a days, due to unprecedented
increase in automobile vehicular traffic especially in metro-Politian cities, it has become highly imperative
that we must choose an optimum road route in accordance with our requirements. The requirements are :
volume of the traffic, Distance between source and destination, no of signals in between the source and
destination, the nature of the road condition , fuel consumption and Travel Timing. Artificial Neural
networks, a soft computing technique, modeled after brain biological neuron functioning, helps to obtain
the required road way or route as per the training given to it. Here we make use of Back propagation
network, which changes the weights value of the hidden layers, thereby activation function value which
fires the neuron to get the required output.
KEYWORDS:
Vehicle route selection and direction, Artificial neural network, Road Traffic Analysis, Back Propagation
network.
1.INTRODUCTION
The daily mess that a commuter faces during his travel to office is felt a lot. People get stranded
and become weird while passing through a heavy traffic condition. Though the Government plans
and ideas like diverting the traffic during peak hours, change in timing between school-college
goers and company workers, laying by-pass road and etc., to reduce the complexity in road
traffic, it has not yielded a much expected result. As this is the case, the total burden lies on the
shoulder of the commuters. They need some intelligent method by which they can avoid this
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013
158
difficult condition and make their journey a pleasant one The main constraints felt by them are :
traffic volume, no of signals they have to wait for clearance, road condition and fuel
consumption, distance they have to travel if they divert their journey in various alternative routes
to reach the destination. So, naturally, our aim is to select the best route that satisfies the user
requirements during normal working days. But in some special days, like holidays or strike call,
we can intuitively and easily judge the viable route to take up.
The paper is organized as follows. Section 1 is the Introduction. Section 2 deals with the basics of
Artificial neural networks and back propagation network. Section 3 describes about the related
work in this area. Section 4 describes the basic idea lying behind this work. and the architecture.
Section 5 discusses about the performance evaluation and result details about performance and
results. Section 6 finally concludes.
2. ARTIFICIAL NEURAL NETWORK.
Artificial Neural Network [1] is a mimic of biological brain neuron for processing information
given to it.The large number of neurons interconnected among themselves work altogether to
solve a specific problem. The inputs given to it are classified into two types: Training data, which
makes the network to learn to give the required output for a given set of inputs, Testing data,
which tests the prediction accuracy of the network for randomly incoming data. It can be used for
applications such as character and digit recognization or classification of data. It has got input
layers , hidden layers and output layers. The function of the hidden layers is to fire an activation
function like sigmoidal function to bring out the required output. The weight value, assigned
between input and hidden layers changes themselves ,helps to minimize the error while getting
the desired output.
2.1 Back Propagation Network.
A single layer network can accomplish very limited number of tasks. Minsky and Papert(1969)
[2] showed that a two-layer feed forward network can have many advantages but they question
remained unanswered was “ how the weights from the input to hidden layers can be adjusted?”
The answer was given by Rumelhart, Hinton and Williams in 1986. They reasoned that by
propagating errors of the output layers back into the units of the hidden layers, we can adjust the
weight values thereby making the network more adaptive and accurate . This method is also
called “Back Propagation Learning Rule”. It is a generalization of delta rules for non-linear
activation functions and multi-layer networks and a systematic method of training the networks.
A Back propagation network[2] consists of at least three layers of units:
1. An input layer
2. At least one intermediate layer called hidden layer.
3. An output layer.
The units are connected in feed-forward fashion with input units are fully connected to the hidden
layers and hidden layers are fully connected to the output layers. With back propagation
networks, learning occurs during learning phase. The patterns are applied to the input units and
propagated forward. The output layer pattern of activation is compared with the expected Pattern
to calculate the error signal. The error signal at the output pattern is then propagated back to the
input units in order to appropriately adjust the weights in each layer of the network. Once the
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013
159
back propagation network has learnt to classify correctly for a set of inputs, a second set of inputs
can be given to see how well it classify the untrained inputs. The important point is to see how
well the network generalizes.
3. THE RELATED WORK
a) Konjicija.S, Avdagic . Z and Meier.G, Wurmthaler.C in their paper [4] have shown a simple
ability of using neural networks in longitudinal vehicle guidance. Here neural networks learn
from acquired real driver data, and also the driver behaviour styles for both ends ie., extremely
comfort to extremely sportive ones. This scenario is shown as a simulated model based on
longitudinal trajectory generation. In this an adjustable comfort parameter is used for different
sorts of driver behaviour.
b) In their paper Lioing Fua and L.R.Rilettba [5] presents an artificial neural network (ANN)
based method for estimating route travel times between individual locations in an urban traffic
network.. The methodology developed in this paper assumes that route travel times are time-
dependent and stochastic and their means and standard deviations need to be estimated. Three
feed-forward neural networks are developed to model the travel time behaviour during different
time periods of the day the AM peak, the PM peak, and the off-peak. These models are
subsequently trained and tested using data simulated on the road network for the City of
Edmonton, Alberta. The ANN model is compared with a distance-based model and a shortest
path algorithm. The practical implication of the ANN method is subsequently demonstrated
within a dial-a- ride para-transit vehicle routing and scheduling problem. The computational
results show that the ANN-based route travel time estimation model is appropriate, with respect
to accuracy and speed, for use in real applications.
c) Baluja, S presents [6] creation of an artificial neural network based autonomous land
vehicle controller. The performance of evolved controllers is better in unseen situations than
those trained with an error back propagation learning algorithm . An overview of the previous
connectionist based approaches is described and the exploration of methods for reducing the high
computational costs of training ANN with evolutionary algorithms is done. The evolutionary
algorithms guided by error metrics shows improved performance over those guided by the
standard sum-squared error metric. Both g evolutionary search and error back propagation are
integrated in this work.
d) In his paper, Dean A,Pomelleau [7] in The ALVINN (Autonomous Land Vehicle In a
Neural Network) project describes about real-time training of ANN to perform difficult
perception tasks. It is a back propagation network modeled to drive the CMU Navlab, a modified
Chevy van. He describes the training techniques for ALVINN to learn in under 5 minutes to
autonomously control the Navlab by observing the human driver reactions r. This enables the
ALVINN to drive in a variety of conditions including single-lane paved and unpaved roads, and
multilane lined and unlined roads, at speeds of up to 20 miles per hour.
4. THE PROPOSED WORK
We take source to destination distance (categorized as Lengthy, Medium and Short),Volume of
Traffic(categorized as Peak or Heavy, Medium and Mild), No of Signals( categorized as High,
Medium and Low), Road Condition(Categorized as Smooth, Good and Bad), Travel
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013
160
Timing(Categorized as High, Normal and Low) as input parameters as shown in fig 2(Neural
Network Back Propagation Architecture) We eliminate fuel consumption just because it is
indicated by the source and destination distance and Travel Timing selection categories. So there
are five input parameters and each have three categories, thus giving a total of 243(35)
combinations. Here we consider 5 alternative routes as the output nodes. They are :
S-X1-Y1-Z1-D,
S-W2-X2-Y2-Z2,
S-X3-Y3-Z3-D,
S-V4-W4-X4-Y4-Z4-D,
S-X5-Y5-Z5-D
where V, W, X, Y and Z intermediate nodes along the routes.
3
2
DESTINA1
SOURCE TION
4
5
Fig.1 Main Route with
Alternatives
1 Main route
2,3,4,5 Alternative routes
Signal point
So there are 15 input nodes and 5 output nodes . The hidden layers nodes are fixed as 10 , the
mean value of input and output nodes as per thumb rule. The Sigmoid function is selected as the
activation function in the hidden layer. Each input node is assigned a weight and fully connected
to the hidden layer and in turn hidden layer nodes are again fully connected to output nodes. Out
of total 243 combinations, we take any 180 as the training data sets. These inputs are used to train
the network to produce the actual result.
For example , if we choose
Source to Destination distance as Medium (0,1,0),
Volume of Traffic as Mild (0,0,1)
No of Signals as Medium(0,1,0)
Road Condition as Smooth(1,0,0)
Travel Timing as Low(0,0,1)
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013
161
Then network is trained, say, to choose Route 5 (the route with higher output layer
value) Similarly for other input conditions the network is trained and we obtain Route
information as follows(only few samples are shown)
Now the testing data is fed into the network from unforeseen inputs. The error value , if any , in
output layer is fed back by the back propagation network and weight values of hidden layers are
changed accordingly to get the desired output. This is the usual practice for any working
day/Normal day. But for holidays or strike call we can choose always the shortest route(Default
route) to reach the destination.
Figure.2 Neural Network Back Propagation Architecture
Input Hidden Output
Layer Layer Layer
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013
162
VT – Volume of Traffic
DIS – Distance between source and destination
SIG -- No of Signals
RC -- Road Condition
TT – Travel Timing
H1, H2, …..H10 – Hidden layer Units
R3 -- Main (Default) Route
R1, R2, R4, R5 – Alternative routes
5. PERFORMANCE EVALUATION AND RESULT
We considered the Koyambedu-Broadway route in Chennai,TamilNadu, India as the source and
destination pair and we put one route as the normal and selected other 4 routes(left-side 2 and
right-side 2 to the normal route,see fig 1) through various road links. Initially we tested
manually about the outcome of the best route among the five alternative route chosen for
various input parameters and these outcomes are used to train the network for various
combinations of input conditions. Then the testing data are given and the results obtained are
summarized as follows
Table 1, Percentage Accuracy Of Selection And Rmse
Parameters Network
tested
manually
Network tested
without Back-
Propagation
Network tested
with Back-
Propagation
%
Accuracy 95.40% 84.90% 91.20%
of Selection
Root-Mean
Square 0.28 0.42 0.12
Error
Equation : RMS for a Neural Network [3]
(1)
So we can conclude that the network with back propagation performs better than without it. The
reason behind the higher error value in case of without back propagation network is the curse of
dimensionality. Here there are 15 inputs and the categorical division(each 3) of it results in 243
combinations. The no of inputs can be reduced if we consider ANY CONDITION , say, Road
condition ANY or No of Signals ANY Numbers. Then the input reduces to 27 (3 to power 3)
from 243(3 to power 5) and the network performs more efficiently than with higher inputs.
6. CONCLUSION.
This paper presents the novel approach of neural network based analysis of best route selection
for Automobile vehicle travel and is the first of its kind. There are certain assumptions like : The
road condition remain same independent of time, the no of alternate routes remain fixed ,no of
signals are fixed, Volume of traffic remain same throughout the route during the time period
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013
163
considered and the regulation over the movement of different vehicle types such as Heavy,
Medium and Light. But these assumptions are changeable and dynamic in nature. Hence the
results obtained may not hold good and give only approximate measures. In Future work, we are
proposing to analyze these dynamic nature of traffic flow conditions.
ACKNOWLEDGEMENT
We sincerely thank, University management, for giving constant support and Mr.L.Ganesh for
his valuable help in publishing this manuscript.
REFERENCES
[1] www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/ report.html :
[2] http://www.myreaders.info/03_Back_Propagation_ Network.pdf
[3] www.heatonresearch.com › ... › Chapter 4: How a Mac hine Learns
[4] Konjicija, S.; Avdagic,Z.; Meier,G.;Wurmthaler, “Longitudinal vehicle guidance using neural
networks Computational Intelligence in Robotics and Automation”,. CIRA 2005.
Proceedings.2005 IEEE International symposium.Page(s): 685 – 688
[5] “Estimation of Time-Dependent, Stochastic Route Travel Times Using Artificial Neural Networks”.
LIPING FUa'*and L.R.RILETTba 1Department of Civil Engineering,University of Waterloo,
Canada,; 2Department of Civil Engineering and Texas Transportation Institute, Texas A&M
University, Texas, , USA
[6] Baluja, S.Sch. “Evolution of an artificial neural network based autonomous land vehicle controller
Systems, Man, and Cybernetics”, Part B: Cybernetics, IEEE Transactions on Date of Publication:
June 1996 Author(s): of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA Volume: 26 , Issue:
3Page(s): 450 – 463
[7] Dean A. Pomerleau, “Efficient training of artificial neural networks for autonomous navigation”
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA , Neural
Computation journal Volume 3 Issue 1, Spring 1991 Pages 88-97,MIT Press Cambridge, MA, US
Authors
Short Biography.
B.Sankara Subramanian. B.E(EEE), M.E(CSE), (Ph.D) He was born and brought-up
in Madurai, a small town in southern Peninsular India famous for temples. He graduated
B.E(EEE) in First Class from Madurai Kamaraj University in 1997 and his Post
Graduate M.E(CSE) in 2007 from Anna University, Chennai. He has around 10 years of
teaching experience in Electrical and Computer Science Departments. His area of
interest includes Information and Database Systems, Data warehousing and Data mining, Algorithms,
Fuzzy Logic, Rough set Theory and Knowledge Retrieval. He is currently doing his Ph.d in Soft
Computing area in SCSVMV University , Kanchipuram where he is presently employed.
R.Vasanth Kumar Mehta. M.S., (Ph.d), He completed his graduate studies from BITS,
Pilani and is presently pursuing Ph.D. from Sri Chandrasekharendra Saraswathi Viswa
Mahavidyalaya(SCSVMV University), Kanchipuram, where he is working as Assistant
Professor in the Department of Computer Science and Engineering. Areas of interest
include Data Mining and Highperformance Computing
N.Kumaran did B.E(CSE), M.Tech(IT), (Ph.D)
He did his B.E(Computer science and Engineering) in CIT, Coimbatore, Tamil Nadu, India
in the year 1998. And M.Tech(IT) Sathyabama University, Chennai in 2007. Currently he
is pursing Ph.D(Computer networks) in NIT, Trichy. His areas of interest include
Computer Networks, Neural networks, Network Security and cryptography. He has got
around12 years of teaching experience various engineering colleges.

More Related Content

What's hot

EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...ijfls
 
A comprehensive review on hybrid network traffic prediction model
A comprehensive review on hybrid network traffic prediction model A comprehensive review on hybrid network traffic prediction model
A comprehensive review on hybrid network traffic prediction model IJECEIAES
 
Kinematic control with singularity avoidance for teaching-playback robot mani...
Kinematic control with singularity avoidance for teaching-playback robot mani...Kinematic control with singularity avoidance for teaching-playback robot mani...
Kinematic control with singularity avoidance for teaching-playback robot mani...Baron Y.S. Yong
 
24ESV-000453 Mitigating Drowsiness Linking Detection to Mitigation
24ESV-000453 Mitigating Drowsiness Linking Detection to Mitigation24ESV-000453 Mitigating Drowsiness Linking Detection to Mitigation
24ESV-000453 Mitigating Drowsiness Linking Detection to MitigationJulie J. Kang, Ph.D.
 
Recognition and classification of human motion
Recognition and classification of human motionRecognition and classification of human motion
Recognition and classification of human motionHutami Endang
 
A CLUSTER BASED STABLE ROUTING PROTOCOL USING BINARY PARTICLE SWARM OPTIMIZAT...
A CLUSTER BASED STABLE ROUTING PROTOCOL USING BINARY PARTICLE SWARM OPTIMIZAT...A CLUSTER BASED STABLE ROUTING PROTOCOL USING BINARY PARTICLE SWARM OPTIMIZAT...
A CLUSTER BASED STABLE ROUTING PROTOCOL USING BINARY PARTICLE SWARM OPTIMIZAT...ijmnct
 
Handover Algorithm based VLP using Mobility Prediction Database for Vehicular...
Handover Algorithm based VLP using Mobility Prediction Database for Vehicular...Handover Algorithm based VLP using Mobility Prediction Database for Vehicular...
Handover Algorithm based VLP using Mobility Prediction Database for Vehicular...IJECEIAES
 
Autonomous system to control a mobile robot
Autonomous system to control a mobile robotAutonomous system to control a mobile robot
Autonomous system to control a mobile robotjournalBEEI
 
Artificial Neural Network based Mobile Robot Navigation
Artificial Neural Network based Mobile Robot NavigationArtificial Neural Network based Mobile Robot Navigation
Artificial Neural Network based Mobile Robot NavigationMithun Chowdhury
 
Semi-Autonomous Control of a Multi-Agent Robotic System for Multi-Target Oper...
Semi-Autonomous Control of a Multi-Agent Robotic System for Multi-Target Oper...Semi-Autonomous Control of a Multi-Agent Robotic System for Multi-Target Oper...
Semi-Autonomous Control of a Multi-Agent Robotic System for Multi-Target Oper...Waqas Tariq
 
Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...
Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...
Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...khalil IBRAHIM
 
Rate adaptive resource allocation in ofdma using bees algorithm
Rate adaptive resource allocation in ofdma using bees algorithmRate adaptive resource allocation in ofdma using bees algorithm
Rate adaptive resource allocation in ofdma using bees algorithmeSAT Publishing House
 
Neural Network Model Development with Soft Computing Techniques for Membrane ...
Neural Network Model Development with Soft Computing Techniques for Membrane ...Neural Network Model Development with Soft Computing Techniques for Membrane ...
Neural Network Model Development with Soft Computing Techniques for Membrane ...IJECEIAES
 
Mobile robot controller using novel hybrid system
Mobile robot controller using novel hybrid system  Mobile robot controller using novel hybrid system
Mobile robot controller using novel hybrid system IJECEIAES
 
Soft Computing based Learning for Cognitive Radio
Soft Computing based Learning for Cognitive RadioSoft Computing based Learning for Cognitive Radio
Soft Computing based Learning for Cognitive Radioidescitation
 
Learning of robot navigation tasks by
Learning of robot navigation tasks byLearning of robot navigation tasks by
Learning of robot navigation tasks bycsandit
 

What's hot (20)

EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
EFFECTIVE REDIRECTING OF THE MOBILE ROBOT IN A MESSED ENVIRONMENT BASED ON TH...
 
Jf3515881595
Jf3515881595Jf3515881595
Jf3515881595
 
A comprehensive review on hybrid network traffic prediction model
A comprehensive review on hybrid network traffic prediction model A comprehensive review on hybrid network traffic prediction model
A comprehensive review on hybrid network traffic prediction model
 
Kinematic control with singularity avoidance for teaching-playback robot mani...
Kinematic control with singularity avoidance for teaching-playback robot mani...Kinematic control with singularity avoidance for teaching-playback robot mani...
Kinematic control with singularity avoidance for teaching-playback robot mani...
 
24ESV-000453 Mitigating Drowsiness Linking Detection to Mitigation
24ESV-000453 Mitigating Drowsiness Linking Detection to Mitigation24ESV-000453 Mitigating Drowsiness Linking Detection to Mitigation
24ESV-000453 Mitigating Drowsiness Linking Detection to Mitigation
 
Recognition and classification of human motion
Recognition and classification of human motionRecognition and classification of human motion
Recognition and classification of human motion
 
0234
02340234
0234
 
A CLUSTER BASED STABLE ROUTING PROTOCOL USING BINARY PARTICLE SWARM OPTIMIZAT...
A CLUSTER BASED STABLE ROUTING PROTOCOL USING BINARY PARTICLE SWARM OPTIMIZAT...A CLUSTER BASED STABLE ROUTING PROTOCOL USING BINARY PARTICLE SWARM OPTIMIZAT...
A CLUSTER BASED STABLE ROUTING PROTOCOL USING BINARY PARTICLE SWARM OPTIMIZAT...
 
Handover Algorithm based VLP using Mobility Prediction Database for Vehicular...
Handover Algorithm based VLP using Mobility Prediction Database for Vehicular...Handover Algorithm based VLP using Mobility Prediction Database for Vehicular...
Handover Algorithm based VLP using Mobility Prediction Database for Vehicular...
 
Autonomous system to control a mobile robot
Autonomous system to control a mobile robotAutonomous system to control a mobile robot
Autonomous system to control a mobile robot
 
Artificial Neural Network based Mobile Robot Navigation
Artificial Neural Network based Mobile Robot NavigationArtificial Neural Network based Mobile Robot Navigation
Artificial Neural Network based Mobile Robot Navigation
 
Ie3514301434
Ie3514301434Ie3514301434
Ie3514301434
 
Semi-Autonomous Control of a Multi-Agent Robotic System for Multi-Target Oper...
Semi-Autonomous Control of a Multi-Agent Robotic System for Multi-Target Oper...Semi-Autonomous Control of a Multi-Agent Robotic System for Multi-Target Oper...
Semi-Autonomous Control of a Multi-Agent Robotic System for Multi-Target Oper...
 
Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...
Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...
Hybrid multi objectives genetic algorithms and immigrants scheme for dynamic ...
 
Rate adaptive resource allocation in ofdma using bees algorithm
Rate adaptive resource allocation in ofdma using bees algorithmRate adaptive resource allocation in ofdma using bees algorithm
Rate adaptive resource allocation in ofdma using bees algorithm
 
Neural Network Model Development with Soft Computing Techniques for Membrane ...
Neural Network Model Development with Soft Computing Techniques for Membrane ...Neural Network Model Development with Soft Computing Techniques for Membrane ...
Neural Network Model Development with Soft Computing Techniques for Membrane ...
 
D0931621
D0931621D0931621
D0931621
 
Mobile robot controller using novel hybrid system
Mobile robot controller using novel hybrid system  Mobile robot controller using novel hybrid system
Mobile robot controller using novel hybrid system
 
Soft Computing based Learning for Cognitive Radio
Soft Computing based Learning for Cognitive RadioSoft Computing based Learning for Cognitive Radio
Soft Computing based Learning for Cognitive Radio
 
Learning of robot navigation tasks by
Learning of robot navigation tasks byLearning of robot navigation tasks by
Learning of robot navigation tasks by
 

Viewers also liked

Otitoaleke gideon-akinola-resume
Otitoaleke gideon-akinola-resumeOtitoaleke gideon-akinola-resume
Otitoaleke gideon-akinola-resumeOtitoaleke Akinola
 
An Artificial Neural Network Model for Neonatal Disease Diagnosis
An Artificial Neural Network Model for Neonatal Disease DiagnosisAn Artificial Neural Network Model for Neonatal Disease Diagnosis
An Artificial Neural Network Model for Neonatal Disease DiagnosisWaqas Tariq
 
Some empirical evaluations of a temperature forecasting module based on Art...
Some empirical evaluations of a temperature forecasting module   based on Art...Some empirical evaluations of a temperature forecasting module   based on Art...
Some empirical evaluations of a temperature forecasting module based on Art...Francisco Zamora-Martinez
 
Conferencia inteligencia artificial en cerebros cuanticos
Conferencia inteligencia artificial en cerebros cuanticosConferencia inteligencia artificial en cerebros cuanticos
Conferencia inteligencia artificial en cerebros cuanticosMartin Manco
 
Case study presentation
Case study presentationCase study presentation
Case study presentationRamesh Maniam
 
Kohls Innovation Contest
Kohls Innovation ContestKohls Innovation Contest
Kohls Innovation Contestpgerman46
 
ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)
ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)
ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)iimpunya3
 
Automobile technologies in 2020
Automobile technologies in 2020Automobile technologies in 2020
Automobile technologies in 2020mazen mohamad
 
Intelligent Machines
Intelligent MachinesIntelligent Machines
Intelligent MachinesAnu Priya
 
An Intuitive Navigation System: Augmented Reality on the Car Windshield
An Intuitive Navigation System: Augmented Reality on the Car WindshieldAn Intuitive Navigation System: Augmented Reality on the Car Windshield
An Intuitive Navigation System: Augmented Reality on the Car WindshieldWaldir Pimenta
 
Artificial Neural Networks on a Tic Tac Toe console application
Artificial Neural Networks on a Tic Tac Toe console applicationArtificial Neural Networks on a Tic Tac Toe console application
Artificial Neural Networks on a Tic Tac Toe console applicationEduardo Gulias Davis
 
Augmented reality in future cars
Augmented reality in future carsAugmented reality in future cars
Augmented reality in future carsPrathamesh Barah
 
Autonomous Driver Assistance System Using Swarm Intelligence
Autonomous Driver Assistance System Using Swarm IntelligenceAutonomous Driver Assistance System Using Swarm Intelligence
Autonomous Driver Assistance System Using Swarm IntelligenceMadura Pradeep
 
Augmented Reality for Marketers: Mapping the Future of Consumer Interactions
Augmented Reality for Marketers: Mapping the Future of Consumer InteractionsAugmented Reality for Marketers: Mapping the Future of Consumer Interactions
Augmented Reality for Marketers: Mapping the Future of Consumer InteractionsLynne d Johnson
 
Jurnal kecerdasan buatan
Jurnal kecerdasan buatanJurnal kecerdasan buatan
Jurnal kecerdasan buatanNasri Nasri
 
14. mohsin dalvi artificial neural networks presentation
14. mohsin dalvi   artificial neural networks presentation14. mohsin dalvi   artificial neural networks presentation
14. mohsin dalvi artificial neural networks presentationPurnesh Aloni
 
Homogenous charge combustion ignition
Homogenous charge combustion ignitionHomogenous charge combustion ignition
Homogenous charge combustion ignitionCesario Mendez
 

Viewers also liked (20)

Otitoaleke gideon-akinola-resume
Otitoaleke gideon-akinola-resumeOtitoaleke gideon-akinola-resume
Otitoaleke gideon-akinola-resume
 
An Artificial Neural Network Model for Neonatal Disease Diagnosis
An Artificial Neural Network Model for Neonatal Disease DiagnosisAn Artificial Neural Network Model for Neonatal Disease Diagnosis
An Artificial Neural Network Model for Neonatal Disease Diagnosis
 
Some empirical evaluations of a temperature forecasting module based on Art...
Some empirical evaluations of a temperature forecasting module   based on Art...Some empirical evaluations of a temperature forecasting module   based on Art...
Some empirical evaluations of a temperature forecasting module based on Art...
 
Conferencia inteligencia artificial en cerebros cuanticos
Conferencia inteligencia artificial en cerebros cuanticosConferencia inteligencia artificial en cerebros cuanticos
Conferencia inteligencia artificial en cerebros cuanticos
 
Case study presentation
Case study presentationCase study presentation
Case study presentation
 
Artificial Intelligence
Artificial IntelligenceArtificial Intelligence
Artificial Intelligence
 
Kohls Innovation Contest
Kohls Innovation ContestKohls Innovation Contest
Kohls Innovation Contest
 
ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)
ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)
ARTIFICIAL INTELLIGENCE / AI (Kecerdasan Buatan)
 
Automobile technologies in 2020
Automobile technologies in 2020Automobile technologies in 2020
Automobile technologies in 2020
 
Intelligent Machines
Intelligent MachinesIntelligent Machines
Intelligent Machines
 
An Intuitive Navigation System: Augmented Reality on the Car Windshield
An Intuitive Navigation System: Augmented Reality on the Car WindshieldAn Intuitive Navigation System: Augmented Reality on the Car Windshield
An Intuitive Navigation System: Augmented Reality on the Car Windshield
 
Artificial Neural Networks on a Tic Tac Toe console application
Artificial Neural Networks on a Tic Tac Toe console applicationArtificial Neural Networks on a Tic Tac Toe console application
Artificial Neural Networks on a Tic Tac Toe console application
 
Augmented reality in future cars
Augmented reality in future carsAugmented reality in future cars
Augmented reality in future cars
 
Autonomous Driver Assistance System Using Swarm Intelligence
Autonomous Driver Assistance System Using Swarm IntelligenceAutonomous Driver Assistance System Using Swarm Intelligence
Autonomous Driver Assistance System Using Swarm Intelligence
 
Augmented Reality for Marketers: Mapping the Future of Consumer Interactions
Augmented Reality for Marketers: Mapping the Future of Consumer InteractionsAugmented Reality for Marketers: Mapping the Future of Consumer Interactions
Augmented Reality for Marketers: Mapping the Future of Consumer Interactions
 
Jurnal kecerdasan buatan
Jurnal kecerdasan buatanJurnal kecerdasan buatan
Jurnal kecerdasan buatan
 
Augmented reality
Augmented realityAugmented reality
Augmented reality
 
14. mohsin dalvi artificial neural networks presentation
14. mohsin dalvi   artificial neural networks presentation14. mohsin dalvi   artificial neural networks presentation
14. mohsin dalvi artificial neural networks presentation
 
Homogenous charge combustion ignition
Homogenous charge combustion ignitionHomogenous charge combustion ignition
Homogenous charge combustion ignition
 
HCCI engine
HCCI engineHCCI engine
HCCI engine
 

Similar to AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS.

AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS
AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS
AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS cscpconf
 
Simulation of Route Optimization with load balancing Using AntNet System
Simulation of Route Optimization with load balancing Using AntNet SystemSimulation of Route Optimization with load balancing Using AntNet System
Simulation of Route Optimization with load balancing Using AntNet SystemIOSR Journals
 
TRAFFIC FORECAST FOR INTELLECTUAL TRANSPORTATION SYSTEM USING MACHINE LEARNING
TRAFFIC FORECAST FOR INTELLECTUAL TRANSPORTATION SYSTEM USING MACHINE LEARNINGTRAFFIC FORECAST FOR INTELLECTUAL TRANSPORTATION SYSTEM USING MACHINE LEARNING
TRAFFIC FORECAST FOR INTELLECTUAL TRANSPORTATION SYSTEM USING MACHINE LEARNINGIRJET Journal
 
Traffic Congestion Prediction using Deep Reinforcement Learning in Vehicular ...
Traffic Congestion Prediction using Deep Reinforcement Learning in Vehicular ...Traffic Congestion Prediction using Deep Reinforcement Learning in Vehicular ...
Traffic Congestion Prediction using Deep Reinforcement Learning in Vehicular ...IJCNCJournal
 
TRAFFIC CONGESTION PREDICTION USING DEEP REINFORCEMENT LEARNING IN VEHICULAR ...
TRAFFIC CONGESTION PREDICTION USING DEEP REINFORCEMENT LEARNING IN VEHICULAR ...TRAFFIC CONGESTION PREDICTION USING DEEP REINFORCEMENT LEARNING IN VEHICULAR ...
TRAFFIC CONGESTION PREDICTION USING DEEP REINFORCEMENT LEARNING IN VEHICULAR ...IJCNCJournal
 
Simulation Based Analysis of Bee Swarm Inspired Hybrid Routing Protocol Param...
Simulation Based Analysis of Bee Swarm Inspired Hybrid Routing Protocol Param...Simulation Based Analysis of Bee Swarm Inspired Hybrid Routing Protocol Param...
Simulation Based Analysis of Bee Swarm Inspired Hybrid Routing Protocol Param...Editor IJCATR
 
IRJET- Efficient and Secure Communication In Vehicular AD HOC Network
IRJET-	 Efficient and Secure Communication In Vehicular AD HOC NetworkIRJET-	 Efficient and Secure Communication In Vehicular AD HOC Network
IRJET- Efficient and Secure Communication In Vehicular AD HOC NetworkIRJET Journal
 
Vehicle Traffic Analysis using CNN Algorithm
Vehicle Traffic Analysis using CNN AlgorithmVehicle Traffic Analysis using CNN Algorithm
Vehicle Traffic Analysis using CNN AlgorithmIRJET Journal
 
Neural network training for serial multisensor of autonomous vehicle system
Neural network training for serial multisensor of autonomous  vehicle systemNeural network training for serial multisensor of autonomous  vehicle system
Neural network training for serial multisensor of autonomous vehicle systemIJECEIAES
 
Design of intelligent traffic light controller using gsm & embedded system
Design of intelligent traffic light controller using gsm & embedded systemDesign of intelligent traffic light controller using gsm & embedded system
Design of intelligent traffic light controller using gsm & embedded systemYakkali Kiran
 
Route optimization in manets with aco and ga
Route optimization in manets with aco and ga Route optimization in manets with aco and ga
Route optimization in manets with aco and ga eSAT Journals
 
Route optimization in manets with aco and ga
Route optimization in manets with aco and gaRoute optimization in manets with aco and ga
Route optimization in manets with aco and gaeSAT Publishing House
 
IRJET - A Review on Pedestrian Behavior Prediction for Intelligent Transport ...
IRJET - A Review on Pedestrian Behavior Prediction for Intelligent Transport ...IRJET - A Review on Pedestrian Behavior Prediction for Intelligent Transport ...
IRJET - A Review on Pedestrian Behavior Prediction for Intelligent Transport ...IRJET Journal
 
Automatism System Using Faster R-CNN and SVM
Automatism System Using Faster R-CNN and SVMAutomatism System Using Faster R-CNN and SVM
Automatism System Using Faster R-CNN and SVMIRJET Journal
 
Predicting Steering Angle for Self Driving Vehicles
Predicting Steering Angle for Self Driving VehiclesPredicting Steering Angle for Self Driving Vehicles
Predicting Steering Angle for Self Driving VehiclesIRJET Journal
 

Similar to AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS. (20)

AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS
AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS
AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS
 
Simulation of Route Optimization with load balancing Using AntNet System
Simulation of Route Optimization with load balancing Using AntNet SystemSimulation of Route Optimization with load balancing Using AntNet System
Simulation of Route Optimization with load balancing Using AntNet System
 
TRAFFIC FORECAST FOR INTELLECTUAL TRANSPORTATION SYSTEM USING MACHINE LEARNING
TRAFFIC FORECAST FOR INTELLECTUAL TRANSPORTATION SYSTEM USING MACHINE LEARNINGTRAFFIC FORECAST FOR INTELLECTUAL TRANSPORTATION SYSTEM USING MACHINE LEARNING
TRAFFIC FORECAST FOR INTELLECTUAL TRANSPORTATION SYSTEM USING MACHINE LEARNING
 
Traffic Congestion Prediction using Deep Reinforcement Learning in Vehicular ...
Traffic Congestion Prediction using Deep Reinforcement Learning in Vehicular ...Traffic Congestion Prediction using Deep Reinforcement Learning in Vehicular ...
Traffic Congestion Prediction using Deep Reinforcement Learning in Vehicular ...
 
TRAFFIC CONGESTION PREDICTION USING DEEP REINFORCEMENT LEARNING IN VEHICULAR ...
TRAFFIC CONGESTION PREDICTION USING DEEP REINFORCEMENT LEARNING IN VEHICULAR ...TRAFFIC CONGESTION PREDICTION USING DEEP REINFORCEMENT LEARNING IN VEHICULAR ...
TRAFFIC CONGESTION PREDICTION USING DEEP REINFORCEMENT LEARNING IN VEHICULAR ...
 
Iv3515241527
Iv3515241527Iv3515241527
Iv3515241527
 
Simulation Based Analysis of Bee Swarm Inspired Hybrid Routing Protocol Param...
Simulation Based Analysis of Bee Swarm Inspired Hybrid Routing Protocol Param...Simulation Based Analysis of Bee Swarm Inspired Hybrid Routing Protocol Param...
Simulation Based Analysis of Bee Swarm Inspired Hybrid Routing Protocol Param...
 
A044030110
A044030110A044030110
A044030110
 
IRJET- Efficient and Secure Communication In Vehicular AD HOC Network
IRJET-	 Efficient and Secure Communication In Vehicular AD HOC NetworkIRJET-	 Efficient and Secure Communication In Vehicular AD HOC Network
IRJET- Efficient and Secure Communication In Vehicular AD HOC Network
 
Vehicle Traffic Analysis using CNN Algorithm
Vehicle Traffic Analysis using CNN AlgorithmVehicle Traffic Analysis using CNN Algorithm
Vehicle Traffic Analysis using CNN Algorithm
 
Neural network training for serial multisensor of autonomous vehicle system
Neural network training for serial multisensor of autonomous  vehicle systemNeural network training for serial multisensor of autonomous  vehicle system
Neural network training for serial multisensor of autonomous vehicle system
 
Design of intelligent traffic light controller using gsm & embedded system
Design of intelligent traffic light controller using gsm & embedded systemDesign of intelligent traffic light controller using gsm & embedded system
Design of intelligent traffic light controller using gsm & embedded system
 
A040101001006
A040101001006A040101001006
A040101001006
 
Route optimization in manets with aco and ga
Route optimization in manets with aco and ga Route optimization in manets with aco and ga
Route optimization in manets with aco and ga
 
Route optimization in manets with aco and ga
Route optimization in manets with aco and gaRoute optimization in manets with aco and ga
Route optimization in manets with aco and ga
 
IRJET - A Review on Pedestrian Behavior Prediction for Intelligent Transport ...
IRJET - A Review on Pedestrian Behavior Prediction for Intelligent Transport ...IRJET - A Review on Pedestrian Behavior Prediction for Intelligent Transport ...
IRJET - A Review on Pedestrian Behavior Prediction for Intelligent Transport ...
 
Automatism System Using Faster R-CNN and SVM
Automatism System Using Faster R-CNN and SVMAutomatism System Using Faster R-CNN and SVM
Automatism System Using Faster R-CNN and SVM
 
Y4502158163
Y4502158163Y4502158163
Y4502158163
 
A Review paper on Artificial Neural Network: Intelligent Traffic Management S...
A Review paper on Artificial Neural Network: Intelligent Traffic Management S...A Review paper on Artificial Neural Network: Intelligent Traffic Management S...
A Review paper on Artificial Neural Network: Intelligent Traffic Management S...
 
Predicting Steering Angle for Self Driving Vehicles
Predicting Steering Angle for Self Driving VehiclesPredicting Steering Angle for Self Driving Vehicles
Predicting Steering Angle for Self Driving Vehicles
 

Recently uploaded

The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 

Recently uploaded (20)

DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 

AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS.

  • 1. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 DOI : 10.5121/ijaia.2013.4414 157 AUTO-MOBILE VEHICLE DIRECTION IN ROAD TRAFFIC USING ARTIFICIAL NEURAL NETWORKS. 1 M.Rathinakumar ,2 B.SankaraSubramanian, 3 R.Vasanth Kumar Mehta and 4 N. Kumaran 1 Professor and Head, EEE Department , SCSVMV University , kanchipuram, Tamil Nadu,India rathinamari@rediffmail.com , 9942085320 2 Department of CSE, SCSVMV University, kanchipuram, Tamil Nadu,India. coolsankara@gmail.com, 919486118617 3 Department of CSE, SCSVMV University, kanchipuram, Tamil Nadu,India. vasanthmehta@gmail.com, 919095984004 4 Department of IT, SCSVMV University, kanchipuram, Tamil Nadu,India. natarajankumn@rediffmaill.com, 919894744597 ABSTRACT So far Most of the current work on this area deals with traffic volume prediction during peak hours and the reasons behind accidents only. This work presents the analysis of automobile vehicle directing in various traffic flow conditions using Artificial neural network architecture. Now a days, due to unprecedented increase in automobile vehicular traffic especially in metro-Politian cities, it has become highly imperative that we must choose an optimum road route in accordance with our requirements. The requirements are : volume of the traffic, Distance between source and destination, no of signals in between the source and destination, the nature of the road condition , fuel consumption and Travel Timing. Artificial Neural networks, a soft computing technique, modeled after brain biological neuron functioning, helps to obtain the required road way or route as per the training given to it. Here we make use of Back propagation network, which changes the weights value of the hidden layers, thereby activation function value which fires the neuron to get the required output. KEYWORDS: Vehicle route selection and direction, Artificial neural network, Road Traffic Analysis, Back Propagation network. 1.INTRODUCTION The daily mess that a commuter faces during his travel to office is felt a lot. People get stranded and become weird while passing through a heavy traffic condition. Though the Government plans and ideas like diverting the traffic during peak hours, change in timing between school-college goers and company workers, laying by-pass road and etc., to reduce the complexity in road traffic, it has not yielded a much expected result. As this is the case, the total burden lies on the shoulder of the commuters. They need some intelligent method by which they can avoid this
  • 2. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 158 difficult condition and make their journey a pleasant one The main constraints felt by them are : traffic volume, no of signals they have to wait for clearance, road condition and fuel consumption, distance they have to travel if they divert their journey in various alternative routes to reach the destination. So, naturally, our aim is to select the best route that satisfies the user requirements during normal working days. But in some special days, like holidays or strike call, we can intuitively and easily judge the viable route to take up. The paper is organized as follows. Section 1 is the Introduction. Section 2 deals with the basics of Artificial neural networks and back propagation network. Section 3 describes about the related work in this area. Section 4 describes the basic idea lying behind this work. and the architecture. Section 5 discusses about the performance evaluation and result details about performance and results. Section 6 finally concludes. 2. ARTIFICIAL NEURAL NETWORK. Artificial Neural Network [1] is a mimic of biological brain neuron for processing information given to it.The large number of neurons interconnected among themselves work altogether to solve a specific problem. The inputs given to it are classified into two types: Training data, which makes the network to learn to give the required output for a given set of inputs, Testing data, which tests the prediction accuracy of the network for randomly incoming data. It can be used for applications such as character and digit recognization or classification of data. It has got input layers , hidden layers and output layers. The function of the hidden layers is to fire an activation function like sigmoidal function to bring out the required output. The weight value, assigned between input and hidden layers changes themselves ,helps to minimize the error while getting the desired output. 2.1 Back Propagation Network. A single layer network can accomplish very limited number of tasks. Minsky and Papert(1969) [2] showed that a two-layer feed forward network can have many advantages but they question remained unanswered was “ how the weights from the input to hidden layers can be adjusted?” The answer was given by Rumelhart, Hinton and Williams in 1986. They reasoned that by propagating errors of the output layers back into the units of the hidden layers, we can adjust the weight values thereby making the network more adaptive and accurate . This method is also called “Back Propagation Learning Rule”. It is a generalization of delta rules for non-linear activation functions and multi-layer networks and a systematic method of training the networks. A Back propagation network[2] consists of at least three layers of units: 1. An input layer 2. At least one intermediate layer called hidden layer. 3. An output layer. The units are connected in feed-forward fashion with input units are fully connected to the hidden layers and hidden layers are fully connected to the output layers. With back propagation networks, learning occurs during learning phase. The patterns are applied to the input units and propagated forward. The output layer pattern of activation is compared with the expected Pattern to calculate the error signal. The error signal at the output pattern is then propagated back to the input units in order to appropriately adjust the weights in each layer of the network. Once the
  • 3. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 159 back propagation network has learnt to classify correctly for a set of inputs, a second set of inputs can be given to see how well it classify the untrained inputs. The important point is to see how well the network generalizes. 3. THE RELATED WORK a) Konjicija.S, Avdagic . Z and Meier.G, Wurmthaler.C in their paper [4] have shown a simple ability of using neural networks in longitudinal vehicle guidance. Here neural networks learn from acquired real driver data, and also the driver behaviour styles for both ends ie., extremely comfort to extremely sportive ones. This scenario is shown as a simulated model based on longitudinal trajectory generation. In this an adjustable comfort parameter is used for different sorts of driver behaviour. b) In their paper Lioing Fua and L.R.Rilettba [5] presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network.. The methodology developed in this paper assumes that route travel times are time- dependent and stochastic and their means and standard deviations need to be estimated. Three feed-forward neural networks are developed to model the travel time behaviour during different time periods of the day the AM peak, the PM peak, and the off-peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. The ANN model is compared with a distance-based model and a shortest path algorithm. The practical implication of the ANN method is subsequently demonstrated within a dial-a- ride para-transit vehicle routing and scheduling problem. The computational results show that the ANN-based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications. c) Baluja, S presents [6] creation of an artificial neural network based autonomous land vehicle controller. The performance of evolved controllers is better in unseen situations than those trained with an error back propagation learning algorithm . An overview of the previous connectionist based approaches is described and the exploration of methods for reducing the high computational costs of training ANN with evolutionary algorithms is done. The evolutionary algorithms guided by error metrics shows improved performance over those guided by the standard sum-squared error metric. Both g evolutionary search and error back propagation are integrated in this work. d) In his paper, Dean A,Pomelleau [7] in The ALVINN (Autonomous Land Vehicle In a Neural Network) project describes about real-time training of ANN to perform difficult perception tasks. It is a back propagation network modeled to drive the CMU Navlab, a modified Chevy van. He describes the training techniques for ALVINN to learn in under 5 minutes to autonomously control the Navlab by observing the human driver reactions r. This enables the ALVINN to drive in a variety of conditions including single-lane paved and unpaved roads, and multilane lined and unlined roads, at speeds of up to 20 miles per hour. 4. THE PROPOSED WORK We take source to destination distance (categorized as Lengthy, Medium and Short),Volume of Traffic(categorized as Peak or Heavy, Medium and Mild), No of Signals( categorized as High, Medium and Low), Road Condition(Categorized as Smooth, Good and Bad), Travel
  • 4. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 160 Timing(Categorized as High, Normal and Low) as input parameters as shown in fig 2(Neural Network Back Propagation Architecture) We eliminate fuel consumption just because it is indicated by the source and destination distance and Travel Timing selection categories. So there are five input parameters and each have three categories, thus giving a total of 243(35) combinations. Here we consider 5 alternative routes as the output nodes. They are : S-X1-Y1-Z1-D, S-W2-X2-Y2-Z2, S-X3-Y3-Z3-D, S-V4-W4-X4-Y4-Z4-D, S-X5-Y5-Z5-D where V, W, X, Y and Z intermediate nodes along the routes. 3 2 DESTINA1 SOURCE TION 4 5 Fig.1 Main Route with Alternatives 1 Main route 2,3,4,5 Alternative routes Signal point So there are 15 input nodes and 5 output nodes . The hidden layers nodes are fixed as 10 , the mean value of input and output nodes as per thumb rule. The Sigmoid function is selected as the activation function in the hidden layer. Each input node is assigned a weight and fully connected to the hidden layer and in turn hidden layer nodes are again fully connected to output nodes. Out of total 243 combinations, we take any 180 as the training data sets. These inputs are used to train the network to produce the actual result. For example , if we choose Source to Destination distance as Medium (0,1,0), Volume of Traffic as Mild (0,0,1) No of Signals as Medium(0,1,0) Road Condition as Smooth(1,0,0) Travel Timing as Low(0,0,1)
  • 5. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 161 Then network is trained, say, to choose Route 5 (the route with higher output layer value) Similarly for other input conditions the network is trained and we obtain Route information as follows(only few samples are shown) Now the testing data is fed into the network from unforeseen inputs. The error value , if any , in output layer is fed back by the back propagation network and weight values of hidden layers are changed accordingly to get the desired output. This is the usual practice for any working day/Normal day. But for holidays or strike call we can choose always the shortest route(Default route) to reach the destination. Figure.2 Neural Network Back Propagation Architecture Input Hidden Output Layer Layer Layer
  • 6. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 162 VT – Volume of Traffic DIS – Distance between source and destination SIG -- No of Signals RC -- Road Condition TT – Travel Timing H1, H2, …..H10 – Hidden layer Units R3 -- Main (Default) Route R1, R2, R4, R5 – Alternative routes 5. PERFORMANCE EVALUATION AND RESULT We considered the Koyambedu-Broadway route in Chennai,TamilNadu, India as the source and destination pair and we put one route as the normal and selected other 4 routes(left-side 2 and right-side 2 to the normal route,see fig 1) through various road links. Initially we tested manually about the outcome of the best route among the five alternative route chosen for various input parameters and these outcomes are used to train the network for various combinations of input conditions. Then the testing data are given and the results obtained are summarized as follows Table 1, Percentage Accuracy Of Selection And Rmse Parameters Network tested manually Network tested without Back- Propagation Network tested with Back- Propagation % Accuracy 95.40% 84.90% 91.20% of Selection Root-Mean Square 0.28 0.42 0.12 Error Equation : RMS for a Neural Network [3] (1) So we can conclude that the network with back propagation performs better than without it. The reason behind the higher error value in case of without back propagation network is the curse of dimensionality. Here there are 15 inputs and the categorical division(each 3) of it results in 243 combinations. The no of inputs can be reduced if we consider ANY CONDITION , say, Road condition ANY or No of Signals ANY Numbers. Then the input reduces to 27 (3 to power 3) from 243(3 to power 5) and the network performs more efficiently than with higher inputs. 6. CONCLUSION. This paper presents the novel approach of neural network based analysis of best route selection for Automobile vehicle travel and is the first of its kind. There are certain assumptions like : The road condition remain same independent of time, the no of alternate routes remain fixed ,no of signals are fixed, Volume of traffic remain same throughout the route during the time period
  • 7. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 4, July 2013 163 considered and the regulation over the movement of different vehicle types such as Heavy, Medium and Light. But these assumptions are changeable and dynamic in nature. Hence the results obtained may not hold good and give only approximate measures. In Future work, we are proposing to analyze these dynamic nature of traffic flow conditions. ACKNOWLEDGEMENT We sincerely thank, University management, for giving constant support and Mr.L.Ganesh for his valuable help in publishing this manuscript. REFERENCES [1] www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/ report.html : [2] http://www.myreaders.info/03_Back_Propagation_ Network.pdf [3] www.heatonresearch.com › ... › Chapter 4: How a Mac hine Learns [4] Konjicija, S.; Avdagic,Z.; Meier,G.;Wurmthaler, “Longitudinal vehicle guidance using neural networks Computational Intelligence in Robotics and Automation”,. CIRA 2005. Proceedings.2005 IEEE International symposium.Page(s): 685 – 688 [5] “Estimation of Time-Dependent, Stochastic Route Travel Times Using Artificial Neural Networks”. LIPING FUa'*and L.R.RILETTba 1Department of Civil Engineering,University of Waterloo, Canada,; 2Department of Civil Engineering and Texas Transportation Institute, Texas A&M University, Texas, , USA [6] Baluja, S.Sch. “Evolution of an artificial neural network based autonomous land vehicle controller Systems, Man, and Cybernetics”, Part B: Cybernetics, IEEE Transactions on Date of Publication: June 1996 Author(s): of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA Volume: 26 , Issue: 3Page(s): 450 – 463 [7] Dean A. Pomerleau, “Efficient training of artificial neural networks for autonomous navigation” School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA , Neural Computation journal Volume 3 Issue 1, Spring 1991 Pages 88-97,MIT Press Cambridge, MA, US Authors Short Biography. B.Sankara Subramanian. B.E(EEE), M.E(CSE), (Ph.D) He was born and brought-up in Madurai, a small town in southern Peninsular India famous for temples. He graduated B.E(EEE) in First Class from Madurai Kamaraj University in 1997 and his Post Graduate M.E(CSE) in 2007 from Anna University, Chennai. He has around 10 years of teaching experience in Electrical and Computer Science Departments. His area of interest includes Information and Database Systems, Data warehousing and Data mining, Algorithms, Fuzzy Logic, Rough set Theory and Knowledge Retrieval. He is currently doing his Ph.d in Soft Computing area in SCSVMV University , Kanchipuram where he is presently employed. R.Vasanth Kumar Mehta. M.S., (Ph.d), He completed his graduate studies from BITS, Pilani and is presently pursuing Ph.D. from Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya(SCSVMV University), Kanchipuram, where he is working as Assistant Professor in the Department of Computer Science and Engineering. Areas of interest include Data Mining and Highperformance Computing N.Kumaran did B.E(CSE), M.Tech(IT), (Ph.D) He did his B.E(Computer science and Engineering) in CIT, Coimbatore, Tamil Nadu, India in the year 1998. And M.Tech(IT) Sathyabama University, Chennai in 2007. Currently he is pursing Ph.D(Computer networks) in NIT, Trichy. His areas of interest include Computer Networks, Neural networks, Network Security and cryptography. He has got around12 years of teaching experience various engineering colleges.