SlideShare a Scribd company logo
1 of 4
Download to read offline
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 
www.ijtra.com Volume 1, Issue 3 (july-August 2013), PP. 56-59 
56 | P a g e 
UTILIZATION OF THRUST REVERSER MECHANISM IN TURBOFAN ENGINES – A REVIEW 
Mohd Anees Siddiqui 
Department of Mechanical Engineering, 
Lucknow Institute of Technology, Lucknow, INDIA 
Abstract- Through this paper an attempt is made to focus on a special technology based on application of thrust reverser in turbofan engine which is common to the aviation industries but an uncommon in general. The airlines accept that thrust reverser is necessary for safe operations because it provides an added margin of safety for transport aircraft operations. In this technology, forward thrust produced by turbofan engine of aircraft is diverged to reverse direction so as to provide an additional deceleration effect during landing and power back effect. This technique is employed for improving aircraft runway performance and it is observed that by using thrust reverser especially in wet runway there is considerable reduction in landing run which is responsible for safety of passenger aircraft. Different mechanisms for thrust reverser are Cascade system, Clamshell door system and Bucket target system. Technical aspects such as engine power reverse thrust characteristics, modes of operation and speed limits of thrust reverser mechanism along with technical problems are discussed. As this mechanism is crucial for safety of aircraft therefore thrust reverser & engine maintenance-schedule is also discussed further. 
Keywords—Landing run, Turbofan engine, Thrust reverser 
I. INTRODUCTION 
Thrust reversers on turbofan aircraft provide a significant way of increasing the rate of deceleration from high speed during the initial stages of both a landing and rejected takeoff. Thrust reversers are used by many turbofan engine aircraft to slow down just after touch-down, reducing brake wear and enabling shorter landing distances. Reverse thrust is typically applied immediately after touchdown to improve deceleration early in the landing [1]. 
Fig.1 Thrust reversers deployed on turbofan of an Air India Boeing 747-400 landing at Indira Gandhi International Airport, New Delhi (left), Air India Airbus A319 with thrust reversers deployed on turbofan engine for pushback i.e."Power Back" (right). [5] 
One common misconception about thrust reversing is that the engine itself actually runs in reverse, but this is not the case. In other words, air does not come in through the nozzle of the engine and exhausted through the inlet to "reverse" the thrust. The engine itself still operates in the same manner, but the thrust it generates is redirected to reverse direction to produce drag. 
Fig. 2 Different decelerating devices installed on current commercial aircrafts including thrust reversers in turbofan engine (left) and wheel brakes in landing gears (right). 
A. Necessity of thrust reverser mechanism 
Thrust reverser mechanism are required by an aircraft to reverse maximum amount of thrust available, to reduce brake wear, to reduce taxi distance, to reduce certified landing field lengths, to provide additional stopping force on wet, slushy and icy runways, for refused takeoffs, to reverse maximum thrust for power back and in addition to wheel brakes, the engine can also be used to stop an aircraft. 
II. AIRCRAFT RUNWAY PERFORMANCE 
Application of thrust reverser mechanism results in reduction of landing run which directly effects aircraft runway performance in positive manner.
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 
www.ijtra.com Volume 1, Issue 3 (july-August 2013), PP. 56-59 
57 | P a g e 
Fig. 3 Comparative landing runs with and without thrust reversal and it is seen that by using thrust reversers, landing is reduced up to an extent and this effect is more in slippery and icy runways. [1] 
Fig. 4 Graph shows relation b/w Work done and Landing run with respect to use of Thrust reversers in Dry Runways. [2] 
Fig. 5 Graph shows relation b/w work done and landing run with respect to use of thrust reversers in icy/wet runways, and it is seen that landing run is reduced about 2.5 Kms. [2] 
The airlines accept that thrust reversers are necessary for safe operations. In general, the airlines feel that thrust reversers provide an added margin of safety for transport aircraft operations. [2] 
III. TYPES OF THRUST REVERSER MECHANISM INSTALLED IN A TURBOFAN ENGINE 
Fig. 6 Animated cross-section of turbofan engine showing different parts and arrows show ways of reversing thrust.[7] 
Thrust of turbofan engine can be reverser in three different ways [1] 
A. Cascade type reverser system (cold stream) 
The cold stream reverser system can be actuated by an air motor, the output of which is converted to mechanical movement by a series of flexible drives, gearboxes and screw- jacks, or by a system using hydraulic rams. When the engine is operating in forward thrust, the cold stream final nozzle is ’open’ because the cascade vanes are internally covered by the blocker doors (flaps) and externally by the movable (translating) cowl; the latter item also serves to reduce drag. On selection of reverse thrust, the actuation system moves the translating cowl rearwards and at the same time folds the blocker doors to blank off the cold stream final nozzle, thus diverting the airflow through the cascade vanes. 
Fig. 7 Cascade type thrust reverser system using cold fan stream for reverser of thrust of a turbofan engine. 
B. Clamshell door system (hot stream) 
The clamshell door system is a pneumatically operated system. On the selection of reverse thrust, the doors rotate to uncover the ducts and close the normal gas stream exit. Cascade vanes then direct the gas stream in a forward direction so that the jet thrust opposes the aircraft motion. The clamshell doors are operated by pneumatic rams through
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 
www.ijtra.com Volume 1, Issue 3 (july-August 2013), PP. 56-59 
58 | P a g e 
levers that give the maximum load to the doors in the forward thrust position; this ensures effective sealing at the door edges, so preventing gas leakage. The door bearing and operating linkage operate without lubrication at temperatures of up to 600ºC. 
Fig. 8 Thrust reverser system using clamshell doors which are installed after turbine but before nozzle of a turbofan engine. 
C. Bucket target system (hot stream) 
The bucket target system is hydraulically actuated and uses bucket-type doors to reverse the hot gas stream. The thrust reverser doors are actuated by means of a conventional pushrod system. A single hydraulic powered actuator is connected to a drive idler, actuating the doors through a pair of pushrods (one for each door). The reverser doors are kept in synchronization through the drive idler. The hydraulic actuator incorporates a mechanical lock in the stowed position. In the forward thrust mode the thrust reverser doors form the convergent-divergent final nozzle for the engine. 
Fig. 9 Bucket target type thrust reverser system using deflector doors which are installed after nozzle of a turbofan engine. 
IV. TECHNICAL ASPECTS REGARDING THRUST REVERSER MECHANISM 
A. Engine power reverse thrust characteristics 
Engine power reverse thrust characteristics can be drawn as per the rated rpm and % of rated thrust, it is observed that Reverse thrust is max. at higher speeds of Engine. So, Thrust reversers are more efficient at higher engine rpm. 
Fig. 10 Graph for a turbofan engine of reverse thrust data versus engine power level for the reverser geometry of an embodiment of the bucket target type thrust reverser in the deployed position. [4] 
B. Modes of operation of thrust reverser mechanism 
Thrust reverser is used in three positions after landing of an aircraft which are as follows: 
1. Forward thrust (no reverse) 
2. Idle thrust reverse (partial reverse) 
3. Normal thrust reverser (full reverse) 
Fig. 11 Different modes of deployment of thrust reverser mechanism at forward, idle, normal positions (from left to right). [6] 
C. Speed limits for different modes of thrust reverser 
Reverse thrust is most effective when used at high runway speeds i.e. 190 Km/h to 130 Km/h and less effective at low speeds; therefore early selection of Normal reverse thrust is desirable. Use of reverse thrust at speeds below approximately 130 Km/h to 110 Km/h can cause engine damage through sand, stones and other foreign objects entering the intake having been initially lifted off the runway by the forward flowing air. Engine surging is also a possibility as the hot exhaust air is re-ingested at the intake. So, Idle Reverse mode should be used from 120 Km/h to reduced speed of 40 km/h.
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 
www.ijtra.com Volume 1, Issue 3 (july-August 2013), PP. 56-59 
59 | P a g e 
Fig. 12 Graph shows a relation b/w engine power levels and indicated airspeed from the speed limitation for thrust reverser deployment in normal, idle, forward modes. [2] 
D. Technical problems 
Typical problems encountered with thrust reversers are sensor or indicator problems, inability to stow or deploy due to mechanical problems, wear, leaks and acoustic treatment de- laminations. [3] 
V. THRUST REVERSER & ENGINE MAINTENANCE SCHEDULE 
The use of thrust reversers has negligible impact on airline maintenance schedules. Thrust reverser maintenance activities are performed along with routine engine and airframe inspections. The schedules used for thrust reversers such as cascade reversers for high bypass engines coincide with airframe inspections. The schedules used for engine mounted thrust reversers such as bucket target type coincide with engine inspections. Therefore, thrust reversers do not directly affect airframe or power-plant i.e. turbofan engine maintenance schedules. Engine maintenance schedules are typically based on a combination of engine hours and cycles. Engine cycles per flight are factored into the flight hour referenced maintenance schedules for each aircraft type. It should also be noted that an engine cycle is defined as a flight cycle where a takeoff and landing or rejected takeoff was made. The deployment of the thrust reverser and a change in engine power setting during landing is not considered as an additional engine cycle. An engine run-up for maintenance checkout would also not be counted as an engine cycle. This definition is used throughout the airline industry. [2] 
VI. CONCLUSION 
In the present scenario with the implementation of this technique of additional deceleration system several accidents can be avoided in wet runways and in adverse climatic conditions. This technique shows how the energy that would go in vain would be utilized in a positive manner. In practice, the application of thrust reverser types depends on the engine used. This mechanism is employed for improving aircraft runway performance and it is observed that by using thrust reverser especially in wet runway there is considerable reduction in landing run which is responsible for safety of passenger aircraft. Maximum level of reversal can be achieved by using the system in specified range of speeds. Typical problems encountered with thrust reversers can be eliminated by regular inspection of the mechanism. It has been observed several times that use of thrust reverser mechanism prevents accident during ground operation mainly in slippery runways. This emphasizes the needs and benefits for a powered thrust reverser system for optimum safety and operability. For this reason proper schedule for maintenance of thrust reverser mechanism is designed along with turbofan engine maintenance schedule which is profit oriented from both time and cost point of view. Any successful landing made using thrust reversers during adverse weather conditions and wet runways demonstrates the benefits of thrust reverser. 
REFERENCES 
[1] Rolls-Royce, The Jet Engine, 5th ed., Derby, England: The Technical Publications Department, Rolls-Royce plc, 1996. 
[2] Jeffrey A. Yetter, ―Why Do Airlines Want and Use Thrust Reversers,‖ A Compilation of Airline Industry Responses to a Survey Regarding the Use of Thrust Reversers on Commercial Transport Airplanes, Tech. Rep.TM-109158, Langley Research Center, Hampton, Virginia, January 1995. 
[3] Thrust Reversing Systems, Power plant Installation HWG, Transport Airplane and Engine, Federal Aviation Administration, ARMC, FAR Std. 25.933, 1992. 
[4] William K. Great house, New York, ―Thrust Reverser Nozzle,‖ U.S. Patent 4 147 027, April 1979. 
[5] The Wikipedia website. Available: 
http://en.wikipedia.org/wiki/Air_India 
[6] The Wolfram website. Available: http://demonstrations.wolfram.com/ThrustReverser/ 
[7] Turbofan Labelled.gif. Available: http://en.wikipedia.org/wiki/File:Turbofan_Labelled.gif

More Related Content

What's hot

What's hot (20)

Landing gear
Landing gearLanding gear
Landing gear
 
Landing gear
Landing gear Landing gear
Landing gear
 
railway wagon breaking system
railway wagon breaking systemrailway wagon breaking system
railway wagon breaking system
 
Brakes and its Application in Trains
Brakes and its Application in TrainsBrakes and its Application in Trains
Brakes and its Application in Trains
 
Electro Pneaumatic Breaking system
Electro Pneaumatic Breaking systemElectro Pneaumatic Breaking system
Electro Pneaumatic Breaking system
 
Aircraft propulsion
Aircraft propulsion Aircraft propulsion
Aircraft propulsion
 
Landing Gear
Landing GearLanding Gear
Landing Gear
 
Air brake system
Air brake systemAir brake system
Air brake system
 
Air braking system of railways
Air braking system of railwaysAir braking system of railways
Air braking system of railways
 
Railway wagon braking system pdf by salim malik
Railway wagon braking system pdf by salim malikRailway wagon braking system pdf by salim malik
Railway wagon braking system pdf by salim malik
 
TURBO SHAFT ENGINE
TURBO SHAFT ENGINETURBO SHAFT ENGINE
TURBO SHAFT ENGINE
 
Air suspension ppt (3)
Air suspension ppt (3)Air suspension ppt (3)
Air suspension ppt (3)
 
Apache Helicopter
Apache HelicopterApache Helicopter
Apache Helicopter
 
Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...
Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...
Design and Analysis of Hydraulic Actuator in a Typical Aerospace vehicle | J4...
 
aircraft characteristics
aircraft characteristicsaircraft characteristics
aircraft characteristics
 
6 air brake system
6 air brake system6 air brake system
6 air brake system
 
Pneumatic actuator
Pneumatic actuatorPneumatic actuator
Pneumatic actuator
 
Aircraft characteristics
Aircraft characteristicsAircraft characteristics
Aircraft characteristics
 
Aiaa Ncsu
Aiaa NcsuAiaa Ncsu
Aiaa Ncsu
 
Fluid Coupling
Fluid CouplingFluid Coupling
Fluid Coupling
 

Viewers also liked

палац потоцьких
палац потоцькихпалац потоцьких
палац потоцькихOlgaVladychko
 
Providing incentives
Providing incentivesProviding incentives
Providing incentivesJoseph Grabel
 
Jaringan Nirkabel
Jaringan NirkabelJaringan Nirkabel
Jaringan NirkabelAri Yandi
 
Jaringan Nirkabel
Jaringan NirkabelJaringan Nirkabel
Jaringan NirkabelAri Yandi
 
Keamanan Jaringan Komputer
Keamanan Jaringan KomputerKeamanan Jaringan Komputer
Keamanan Jaringan KomputerAri Yandi
 
Swedish Fashion Council
Swedish Fashion CouncilSwedish Fashion Council
Swedish Fashion Councilohadsan
 
Providing incentives
Providing incentivesProviding incentives
Providing incentivesJoseph Grabel
 
Swedish Fashion Council.
Swedish Fashion Council.Swedish Fashion Council.
Swedish Fashion Council.ohadsan
 

Viewers also liked (20)

YMCA Convention Itinerary
YMCA Convention ItineraryYMCA Convention Itinerary
YMCA Convention Itinerary
 
палац потоцьких
палац потоцькихпалац потоцьких
палац потоцьких
 
A NEW CODING METHOD IN PATTERN RECOGNITION FINGERPRINT IMAGE USING VECTOR QUA...
A NEW CODING METHOD IN PATTERN RECOGNITION FINGERPRINT IMAGE USING VECTOR QUA...A NEW CODING METHOD IN PATTERN RECOGNITION FINGERPRINT IMAGE USING VECTOR QUA...
A NEW CODING METHOD IN PATTERN RECOGNITION FINGERPRINT IMAGE USING VECTOR QUA...
 
Providing incentives
Providing incentivesProviding incentives
Providing incentives
 
ANALYSIS OF ECG WITH DB10 WAVELET USING VERILOG HDL
ANALYSIS OF ECG WITH DB10 WAVELET USING VERILOG HDLANALYSIS OF ECG WITH DB10 WAVELET USING VERILOG HDL
ANALYSIS OF ECG WITH DB10 WAVELET USING VERILOG HDL
 
Jaringan Nirkabel
Jaringan NirkabelJaringan Nirkabel
Jaringan Nirkabel
 
Jaringan Nirkabel
Jaringan NirkabelJaringan Nirkabel
Jaringan Nirkabel
 
Keamanan Jaringan Komputer
Keamanan Jaringan KomputerKeamanan Jaringan Komputer
Keamanan Jaringan Komputer
 
UNIVERSIDAD METROPOLITANA
UNIVERSIDAD METROPOLITANAUNIVERSIDAD METROPOLITANA
UNIVERSIDAD METROPOLITANA
 
SKILLS AND BEHAVIOR IN EFFECTIVE CLASSROOM TEACHING
SKILLS AND BEHAVIOR IN EFFECTIVE CLASSROOM TEACHINGSKILLS AND BEHAVIOR IN EFFECTIVE CLASSROOM TEACHING
SKILLS AND BEHAVIOR IN EFFECTIVE CLASSROOM TEACHING
 
Swedish Fashion Council
Swedish Fashion CouncilSwedish Fashion Council
Swedish Fashion Council
 
Providing incentives
Providing incentivesProviding incentives
Providing incentives
 
COLOR FILTER ARRAY DEMOSAICING USING DIRECTIONAL COLOR DIFFERENCE AND GRADIEN...
COLOR FILTER ARRAY DEMOSAICING USING DIRECTIONAL COLOR DIFFERENCE AND GRADIEN...COLOR FILTER ARRAY DEMOSAICING USING DIRECTIONAL COLOR DIFFERENCE AND GRADIEN...
COLOR FILTER ARRAY DEMOSAICING USING DIRECTIONAL COLOR DIFFERENCE AND GRADIEN...
 
DEVELOPMENT OF A SOFTWARE MAINTENANCE COST ESTIMATION MODEL: 4 TH GL PERSPECTIVE
DEVELOPMENT OF A SOFTWARE MAINTENANCE COST ESTIMATION MODEL: 4 TH GL PERSPECTIVEDEVELOPMENT OF A SOFTWARE MAINTENANCE COST ESTIMATION MODEL: 4 TH GL PERSPECTIVE
DEVELOPMENT OF A SOFTWARE MAINTENANCE COST ESTIMATION MODEL: 4 TH GL PERSPECTIVE
 
Ijtra130513
Ijtra130513Ijtra130513
Ijtra130513
 
Odes-i
Odes-iOdes-i
Odes-i
 
ASSESSMENT OF HEAVY METALS CONCENTRATION IN INDIAN AND PAKISTANI VEGETABLES
ASSESSMENT OF HEAVY METALS CONCENTRATION IN INDIAN AND PAKISTANI VEGETABLESASSESSMENT OF HEAVY METALS CONCENTRATION IN INDIAN AND PAKISTANI VEGETABLES
ASSESSMENT OF HEAVY METALS CONCENTRATION IN INDIAN AND PAKISTANI VEGETABLES
 
ONE HIDDEN LAYER ANFIS MODEL FOR OOS DEVELOPMENT EFFORT ESTIMATION
ONE HIDDEN LAYER ANFIS MODEL FOR OOS DEVELOPMENT EFFORT ESTIMATIONONE HIDDEN LAYER ANFIS MODEL FOR OOS DEVELOPMENT EFFORT ESTIMATION
ONE HIDDEN LAYER ANFIS MODEL FOR OOS DEVELOPMENT EFFORT ESTIMATION
 
Swedish Fashion Council.
Swedish Fashion Council.Swedish Fashion Council.
Swedish Fashion Council.
 
OPTIMIZATION OF SCALE FACTORS IN SHRINKAGE COMPENSATIONS IN SLS USING PATTERN...
OPTIMIZATION OF SCALE FACTORS IN SHRINKAGE COMPENSATIONS IN SLS USING PATTERN...OPTIMIZATION OF SCALE FACTORS IN SHRINKAGE COMPENSATIONS IN SLS USING PATTERN...
OPTIMIZATION OF SCALE FACTORS IN SHRINKAGE COMPENSATIONS IN SLS USING PATTERN...
 

Similar to Ijtra130519

Concept Study for Adaptive Gas Turbine Rotor Blade
Concept Study for Adaptive Gas Turbine Rotor BladeConcept Study for Adaptive Gas Turbine Rotor Blade
Concept Study for Adaptive Gas Turbine Rotor Bladetheijes
 
Aerodynamic Performance Analysis of a Co-Flow Jet Aerofoil using CFD
Aerodynamic Performance Analysis of a Co-Flow Jet Aerofoil using CFDAerodynamic Performance Analysis of a Co-Flow Jet Aerofoil using CFD
Aerodynamic Performance Analysis of a Co-Flow Jet Aerofoil using CFDIRJET Journal
 
Experimental investigation of stepped aerofoil using propeller test rig
Experimental investigation of stepped aerofoil using propeller test rigExperimental investigation of stepped aerofoil using propeller test rig
Experimental investigation of stepped aerofoil using propeller test rigeSAT Publishing House
 
Aerodynamic analysis and optimization of wind deflector in a Commercial load ...
Aerodynamic analysis and optimization of wind deflector in a Commercial load ...Aerodynamic analysis and optimization of wind deflector in a Commercial load ...
Aerodynamic analysis and optimization of wind deflector in a Commercial load ...AM Publications
 
212SE_Research activity 2
212SE_Research activity 2212SE_Research activity 2
212SE_Research activity 2Michael Etienne
 
CFD Based Investigation on Effects of Compression Surface At Fighter Aircraft...
CFD Based Investigation on Effects of Compression Surface At Fighter Aircraft...CFD Based Investigation on Effects of Compression Surface At Fighter Aircraft...
CFD Based Investigation on Effects of Compression Surface At Fighter Aircraft...IJERA Editor
 
IRJET- Pneumatic Conveyer with Bottle Filling and Placing Machine
IRJET-  	  Pneumatic Conveyer with Bottle Filling and Placing MachineIRJET-  	  Pneumatic Conveyer with Bottle Filling and Placing Machine
IRJET- Pneumatic Conveyer with Bottle Filling and Placing MachineIRJET Journal
 
Proulsion I - SOLVED QUESTION BANK - RAMJET ENGINE
Proulsion  I - SOLVED QUESTION BANK - RAMJET ENGINEProulsion  I - SOLVED QUESTION BANK - RAMJET ENGINE
Proulsion I - SOLVED QUESTION BANK - RAMJET ENGINESanjay Singh
 
A Novel Design and Computational Fluid Dynamics of Swirl Flow Enhancing Devic...
A Novel Design and Computational Fluid Dynamics of Swirl Flow Enhancing Devic...A Novel Design and Computational Fluid Dynamics of Swirl Flow Enhancing Devic...
A Novel Design and Computational Fluid Dynamics of Swirl Flow Enhancing Devic...IJSRD
 
IRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making MachineIRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making MachineIRJET Journal
 
Design & Fabrication of Automatic Pneumatic Vehicle
Design & Fabrication of Automatic Pneumatic VehicleDesign & Fabrication of Automatic Pneumatic Vehicle
Design & Fabrication of Automatic Pneumatic VehicleIRJET Journal
 
IRJET- A Review on Improving Performance and Development of Two Stage Recipro...
IRJET- A Review on Improving Performance and Development of Two Stage Recipro...IRJET- A Review on Improving Performance and Development of Two Stage Recipro...
IRJET- A Review on Improving Performance and Development of Two Stage Recipro...IRJET Journal
 
Design and Analysis of Air Intake Manifold for Formula Student Cars
Design and Analysis of Air Intake Manifold for Formula Student CarsDesign and Analysis of Air Intake Manifold for Formula Student Cars
Design and Analysis of Air Intake Manifold for Formula Student CarsIRJET Journal
 
Knowledge Based Design of Axial Flow Compressor
Knowledge Based Design of Axial Flow CompressorKnowledge Based Design of Axial Flow Compressor
Knowledge Based Design of Axial Flow CompressorIJERA Editor
 
Knowledge Based Design of Axial Flow Compressor
Knowledge Based Design of Axial Flow CompressorKnowledge Based Design of Axial Flow Compressor
Knowledge Based Design of Axial Flow CompressorIJERA Editor
 
286541 633956506764058750
286541 633956506764058750286541 633956506764058750
286541 633956506764058750guestc757a4e
 

Similar to Ijtra130519 (20)

Concept Study for Adaptive Gas Turbine Rotor Blade
Concept Study for Adaptive Gas Turbine Rotor BladeConcept Study for Adaptive Gas Turbine Rotor Blade
Concept Study for Adaptive Gas Turbine Rotor Blade
 
Aerodynamic Performance Analysis of a Co-Flow Jet Aerofoil using CFD
Aerodynamic Performance Analysis of a Co-Flow Jet Aerofoil using CFDAerodynamic Performance Analysis of a Co-Flow Jet Aerofoil using CFD
Aerodynamic Performance Analysis of a Co-Flow Jet Aerofoil using CFD
 
Experimental investigation of stepped aerofoil using propeller test rig
Experimental investigation of stepped aerofoil using propeller test rigExperimental investigation of stepped aerofoil using propeller test rig
Experimental investigation of stepped aerofoil using propeller test rig
 
Aerodynamic analysis and optimization of wind deflector in a Commercial load ...
Aerodynamic analysis and optimization of wind deflector in a Commercial load ...Aerodynamic analysis and optimization of wind deflector in a Commercial load ...
Aerodynamic analysis and optimization of wind deflector in a Commercial load ...
 
D1303032730
D1303032730D1303032730
D1303032730
 
212SE_Research activity 2
212SE_Research activity 2212SE_Research activity 2
212SE_Research activity 2
 
CFD Based Investigation on Effects of Compression Surface At Fighter Aircraft...
CFD Based Investigation on Effects of Compression Surface At Fighter Aircraft...CFD Based Investigation on Effects of Compression Surface At Fighter Aircraft...
CFD Based Investigation on Effects of Compression Surface At Fighter Aircraft...
 
IRJET- Pneumatic Conveyer with Bottle Filling and Placing Machine
IRJET-  	  Pneumatic Conveyer with Bottle Filling and Placing MachineIRJET-  	  Pneumatic Conveyer with Bottle Filling and Placing Machine
IRJET- Pneumatic Conveyer with Bottle Filling and Placing Machine
 
Proulsion I - SOLVED QUESTION BANK - RAMJET ENGINE
Proulsion  I - SOLVED QUESTION BANK - RAMJET ENGINEProulsion  I - SOLVED QUESTION BANK - RAMJET ENGINE
Proulsion I - SOLVED QUESTION BANK - RAMJET ENGINE
 
Summer Internship at Cranfield University-Report
Summer Internship at Cranfield University-ReportSummer Internship at Cranfield University-Report
Summer Internship at Cranfield University-Report
 
A Novel Design and Computational Fluid Dynamics of Swirl Flow Enhancing Devic...
A Novel Design and Computational Fluid Dynamics of Swirl Flow Enhancing Devic...A Novel Design and Computational Fluid Dynamics of Swirl Flow Enhancing Devic...
A Novel Design and Computational Fluid Dynamics of Swirl Flow Enhancing Devic...
 
IRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making MachineIRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
 
Circular Runway
Circular RunwayCircular Runway
Circular Runway
 
Design & Fabrication of Automatic Pneumatic Vehicle
Design & Fabrication of Automatic Pneumatic VehicleDesign & Fabrication of Automatic Pneumatic Vehicle
Design & Fabrication of Automatic Pneumatic Vehicle
 
The Dimensioning of a Compressed Air Motor Dedicated to a Compressed Air Stor...
The Dimensioning of a Compressed Air Motor Dedicated to a Compressed Air Stor...The Dimensioning of a Compressed Air Motor Dedicated to a Compressed Air Stor...
The Dimensioning of a Compressed Air Motor Dedicated to a Compressed Air Stor...
 
IRJET- A Review on Improving Performance and Development of Two Stage Recipro...
IRJET- A Review on Improving Performance and Development of Two Stage Recipro...IRJET- A Review on Improving Performance and Development of Two Stage Recipro...
IRJET- A Review on Improving Performance and Development of Two Stage Recipro...
 
Design and Analysis of Air Intake Manifold for Formula Student Cars
Design and Analysis of Air Intake Manifold for Formula Student CarsDesign and Analysis of Air Intake Manifold for Formula Student Cars
Design and Analysis of Air Intake Manifold for Formula Student Cars
 
Knowledge Based Design of Axial Flow Compressor
Knowledge Based Design of Axial Flow CompressorKnowledge Based Design of Axial Flow Compressor
Knowledge Based Design of Axial Flow Compressor
 
Knowledge Based Design of Axial Flow Compressor
Knowledge Based Design of Axial Flow CompressorKnowledge Based Design of Axial Flow Compressor
Knowledge Based Design of Axial Flow Compressor
 
286541 633956506764058750
286541 633956506764058750286541 633956506764058750
286541 633956506764058750
 

More from International Journal of Technical Research & Application

More from International Journal of Technical Research & Application (20)

STUDY & PERFORMANCE OF METAL ON METAL HIP IMPLANTS: A REVIEW
STUDY & PERFORMANCE OF METAL ON METAL HIP IMPLANTS: A REVIEWSTUDY & PERFORMANCE OF METAL ON METAL HIP IMPLANTS: A REVIEW
STUDY & PERFORMANCE OF METAL ON METAL HIP IMPLANTS: A REVIEW
 
EXPONENTIAL SMOOTHING OF POSTPONEMENT RATES IN OPERATION THEATRES OF ADVANCED...
EXPONENTIAL SMOOTHING OF POSTPONEMENT RATES IN OPERATION THEATRES OF ADVANCED...EXPONENTIAL SMOOTHING OF POSTPONEMENT RATES IN OPERATION THEATRES OF ADVANCED...
EXPONENTIAL SMOOTHING OF POSTPONEMENT RATES IN OPERATION THEATRES OF ADVANCED...
 
POSTPONEMENT OF SCHEDULED GENERAL SURGERIES IN A TERTIARY CARE HOSPITAL - A T...
POSTPONEMENT OF SCHEDULED GENERAL SURGERIES IN A TERTIARY CARE HOSPITAL - A T...POSTPONEMENT OF SCHEDULED GENERAL SURGERIES IN A TERTIARY CARE HOSPITAL - A T...
POSTPONEMENT OF SCHEDULED GENERAL SURGERIES IN A TERTIARY CARE HOSPITAL - A T...
 
STUDY OF NANO-SYSTEMS FOR COMPUTER SIMULATIONS
STUDY OF NANO-SYSTEMS FOR COMPUTER SIMULATIONSSTUDY OF NANO-SYSTEMS FOR COMPUTER SIMULATIONS
STUDY OF NANO-SYSTEMS FOR COMPUTER SIMULATIONS
 
ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...
ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...
ENERGY GAP INVESTIGATION AND CHARACTERIZATION OF KESTERITE CU2ZNSNS4 THIN FIL...
 
POD-PWM BASED CAPACITOR CLAMPED MULTILEVEL INVERTER
POD-PWM BASED CAPACITOR CLAMPED MULTILEVEL INVERTERPOD-PWM BASED CAPACITOR CLAMPED MULTILEVEL INVERTER
POD-PWM BASED CAPACITOR CLAMPED MULTILEVEL INVERTER
 
DIGITAL COMPRESSING OF A BPCM SIGNAL ACCORDING TO BARKER CODE USING FPGA
DIGITAL COMPRESSING OF A BPCM SIGNAL ACCORDING TO BARKER CODE USING FPGADIGITAL COMPRESSING OF A BPCM SIGNAL ACCORDING TO BARKER CODE USING FPGA
DIGITAL COMPRESSING OF A BPCM SIGNAL ACCORDING TO BARKER CODE USING FPGA
 
MODELLING THE IMPACT OF FLOODING USING GEOGRAPHIC INFORMATION SYSTEM AND REMO...
MODELLING THE IMPACT OF FLOODING USING GEOGRAPHIC INFORMATION SYSTEM AND REMO...MODELLING THE IMPACT OF FLOODING USING GEOGRAPHIC INFORMATION SYSTEM AND REMO...
MODELLING THE IMPACT OF FLOODING USING GEOGRAPHIC INFORMATION SYSTEM AND REMO...
 
AN EXPERIMENTAL STUDY ON SEPARATION OF WATER FROM THE ATMOSPHERIC AIR
AN EXPERIMENTAL STUDY ON SEPARATION OF WATER FROM THE ATMOSPHERIC AIRAN EXPERIMENTAL STUDY ON SEPARATION OF WATER FROM THE ATMOSPHERIC AIR
AN EXPERIMENTAL STUDY ON SEPARATION OF WATER FROM THE ATMOSPHERIC AIR
 
LI-ION BATTERY TESTING FROM MANUFACTURING TO OPERATION PROCESS
LI-ION BATTERY TESTING FROM MANUFACTURING TO OPERATION PROCESSLI-ION BATTERY TESTING FROM MANUFACTURING TO OPERATION PROCESS
LI-ION BATTERY TESTING FROM MANUFACTURING TO OPERATION PROCESS
 
QUALITATIVE RISK ASSESSMENT AND MITIGATION MEASURES FOR REAL ESTATE PROJECTS ...
QUALITATIVE RISK ASSESSMENT AND MITIGATION MEASURES FOR REAL ESTATE PROJECTS ...QUALITATIVE RISK ASSESSMENT AND MITIGATION MEASURES FOR REAL ESTATE PROJECTS ...
QUALITATIVE RISK ASSESSMENT AND MITIGATION MEASURES FOR REAL ESTATE PROJECTS ...
 
SCOPE OF REPLACING FINE AGGREGATE WITH COPPER SLAG IN CONCRETE- A REVIEW
SCOPE OF REPLACING FINE AGGREGATE WITH COPPER SLAG IN CONCRETE- A REVIEWSCOPE OF REPLACING FINE AGGREGATE WITH COPPER SLAG IN CONCRETE- A REVIEW
SCOPE OF REPLACING FINE AGGREGATE WITH COPPER SLAG IN CONCRETE- A REVIEW
 
IMPLEMENTATION OF METHODS FOR TRANSACTION IN SECURE ONLINE BANKING
IMPLEMENTATION OF METHODS FOR TRANSACTION IN SECURE ONLINE BANKINGIMPLEMENTATION OF METHODS FOR TRANSACTION IN SECURE ONLINE BANKING
IMPLEMENTATION OF METHODS FOR TRANSACTION IN SECURE ONLINE BANKING
 
EFFECT OF TRANS-SEPTAL SUTURE TECHNIQUE VERSUS NASAL PACKING AFTER SEPTOPLASTY
EFFECT OF TRANS-SEPTAL SUTURE TECHNIQUE VERSUS NASAL PACKING AFTER SEPTOPLASTYEFFECT OF TRANS-SEPTAL SUTURE TECHNIQUE VERSUS NASAL PACKING AFTER SEPTOPLASTY
EFFECT OF TRANS-SEPTAL SUTURE TECHNIQUE VERSUS NASAL PACKING AFTER SEPTOPLASTY
 
EVALUATION OF DRAINAGE WATER QUALITY FOR IRRIGATION BY INTEGRATION BETWEEN IR...
EVALUATION OF DRAINAGE WATER QUALITY FOR IRRIGATION BY INTEGRATION BETWEEN IR...EVALUATION OF DRAINAGE WATER QUALITY FOR IRRIGATION BY INTEGRATION BETWEEN IR...
EVALUATION OF DRAINAGE WATER QUALITY FOR IRRIGATION BY INTEGRATION BETWEEN IR...
 
THE CONSTRUCTION PROCEDURE AND ADVANTAGE OF THE RAIL CABLE-LIFTING CONSTRUCTI...
THE CONSTRUCTION PROCEDURE AND ADVANTAGE OF THE RAIL CABLE-LIFTING CONSTRUCTI...THE CONSTRUCTION PROCEDURE AND ADVANTAGE OF THE RAIL CABLE-LIFTING CONSTRUCTI...
THE CONSTRUCTION PROCEDURE AND ADVANTAGE OF THE RAIL CABLE-LIFTING CONSTRUCTI...
 
TIME EFFICIENT BAYLIS-HILLMAN REACTION ON STEROIDAL NUCLEUS OF WITHAFERIN-A T...
TIME EFFICIENT BAYLIS-HILLMAN REACTION ON STEROIDAL NUCLEUS OF WITHAFERIN-A T...TIME EFFICIENT BAYLIS-HILLMAN REACTION ON STEROIDAL NUCLEUS OF WITHAFERIN-A T...
TIME EFFICIENT BAYLIS-HILLMAN REACTION ON STEROIDAL NUCLEUS OF WITHAFERIN-A T...
 
A STUDY ON THE FRESH PROPERTIES OF SCC WITH FLY ASH
A STUDY ON THE FRESH PROPERTIES OF SCC WITH FLY ASHA STUDY ON THE FRESH PROPERTIES OF SCC WITH FLY ASH
A STUDY ON THE FRESH PROPERTIES OF SCC WITH FLY ASH
 
AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...
AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...
AN INSIDE LOOK IN THE ELECTRICAL STRUCTURE OF THE BATTERY MANAGEMENT SYSTEM T...
 
OPEN LOOP ANALYSIS OF CASCADED HBRIDGE MULTILEVEL INVERTER USING PDPWM FOR PH...
OPEN LOOP ANALYSIS OF CASCADED HBRIDGE MULTILEVEL INVERTER USING PDPWM FOR PH...OPEN LOOP ANALYSIS OF CASCADED HBRIDGE MULTILEVEL INVERTER USING PDPWM FOR PH...
OPEN LOOP ANALYSIS OF CASCADED HBRIDGE MULTILEVEL INVERTER USING PDPWM FOR PH...
 

Recently uploaded

CAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxCAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxSaurabhParmar42
 
How to Use api.constrains ( ) in Odoo 17
How to Use api.constrains ( ) in Odoo 17How to Use api.constrains ( ) in Odoo 17
How to Use api.constrains ( ) in Odoo 17Celine George
 
Human-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesHuman-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesMohammad Hassany
 
Education and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxEducation and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxraviapr7
 
General views of Histopathology and step
General views of Histopathology and stepGeneral views of Histopathology and step
General views of Histopathology and stepobaje godwin sunday
 
Drug Information Services- DIC and Sources.
Drug Information Services- DIC and Sources.Drug Information Services- DIC and Sources.
Drug Information Services- DIC and Sources.raviapr7
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxAditiChauhan701637
 
The Singapore Teaching Practice document
The Singapore Teaching Practice documentThe Singapore Teaching Practice document
The Singapore Teaching Practice documentXsasf Sfdfasd
 
Prescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxPrescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxraviapr7
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptxraviapr7
 
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptxSandy Millin
 
Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.EnglishCEIPdeSigeiro
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17Celine George
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17Celine George
 
What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?TechSoup
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17Celine George
 
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfP4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfYu Kanazawa / Osaka University
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfTechSoup
 

Recently uploaded (20)

Personal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdfPersonal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
 
CAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxCAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptx
 
How to Use api.constrains ( ) in Odoo 17
How to Use api.constrains ( ) in Odoo 17How to Use api.constrains ( ) in Odoo 17
How to Use api.constrains ( ) in Odoo 17
 
Human-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesHuman-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming Classes
 
Education and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptxEducation and training program in the hospital APR.pptx
Education and training program in the hospital APR.pptx
 
General views of Histopathology and step
General views of Histopathology and stepGeneral views of Histopathology and step
General views of Histopathology and step
 
Drug Information Services- DIC and Sources.
Drug Information Services- DIC and Sources.Drug Information Services- DIC and Sources.
Drug Information Services- DIC and Sources.
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptx
 
The Singapore Teaching Practice document
The Singapore Teaching Practice documentThe Singapore Teaching Practice document
The Singapore Teaching Practice document
 
Finals of Kant get Marx 2.0 : a general politics quiz
Finals of Kant get Marx 2.0 : a general politics quizFinals of Kant get Marx 2.0 : a general politics quiz
Finals of Kant get Marx 2.0 : a general politics quiz
 
Prescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxPrescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptx
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
 
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
 
Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.Easter in the USA presentation by Chloe.
Easter in the USA presentation by Chloe.
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17
 
How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17How to Add Existing Field in One2Many Tree View in Odoo 17
How to Add Existing Field in One2Many Tree View in Odoo 17
 
What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?What is the Future of QuickBooks DeskTop?
What is the Future of QuickBooks DeskTop?
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17
 
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfP4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
 

Ijtra130519

  • 1. International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 1, Issue 3 (july-August 2013), PP. 56-59 56 | P a g e UTILIZATION OF THRUST REVERSER MECHANISM IN TURBOFAN ENGINES – A REVIEW Mohd Anees Siddiqui Department of Mechanical Engineering, Lucknow Institute of Technology, Lucknow, INDIA Abstract- Through this paper an attempt is made to focus on a special technology based on application of thrust reverser in turbofan engine which is common to the aviation industries but an uncommon in general. The airlines accept that thrust reverser is necessary for safe operations because it provides an added margin of safety for transport aircraft operations. In this technology, forward thrust produced by turbofan engine of aircraft is diverged to reverse direction so as to provide an additional deceleration effect during landing and power back effect. This technique is employed for improving aircraft runway performance and it is observed that by using thrust reverser especially in wet runway there is considerable reduction in landing run which is responsible for safety of passenger aircraft. Different mechanisms for thrust reverser are Cascade system, Clamshell door system and Bucket target system. Technical aspects such as engine power reverse thrust characteristics, modes of operation and speed limits of thrust reverser mechanism along with technical problems are discussed. As this mechanism is crucial for safety of aircraft therefore thrust reverser & engine maintenance-schedule is also discussed further. Keywords—Landing run, Turbofan engine, Thrust reverser I. INTRODUCTION Thrust reversers on turbofan aircraft provide a significant way of increasing the rate of deceleration from high speed during the initial stages of both a landing and rejected takeoff. Thrust reversers are used by many turbofan engine aircraft to slow down just after touch-down, reducing brake wear and enabling shorter landing distances. Reverse thrust is typically applied immediately after touchdown to improve deceleration early in the landing [1]. Fig.1 Thrust reversers deployed on turbofan of an Air India Boeing 747-400 landing at Indira Gandhi International Airport, New Delhi (left), Air India Airbus A319 with thrust reversers deployed on turbofan engine for pushback i.e."Power Back" (right). [5] One common misconception about thrust reversing is that the engine itself actually runs in reverse, but this is not the case. In other words, air does not come in through the nozzle of the engine and exhausted through the inlet to "reverse" the thrust. The engine itself still operates in the same manner, but the thrust it generates is redirected to reverse direction to produce drag. Fig. 2 Different decelerating devices installed on current commercial aircrafts including thrust reversers in turbofan engine (left) and wheel brakes in landing gears (right). A. Necessity of thrust reverser mechanism Thrust reverser mechanism are required by an aircraft to reverse maximum amount of thrust available, to reduce brake wear, to reduce taxi distance, to reduce certified landing field lengths, to provide additional stopping force on wet, slushy and icy runways, for refused takeoffs, to reverse maximum thrust for power back and in addition to wheel brakes, the engine can also be used to stop an aircraft. II. AIRCRAFT RUNWAY PERFORMANCE Application of thrust reverser mechanism results in reduction of landing run which directly effects aircraft runway performance in positive manner.
  • 2. International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 1, Issue 3 (july-August 2013), PP. 56-59 57 | P a g e Fig. 3 Comparative landing runs with and without thrust reversal and it is seen that by using thrust reversers, landing is reduced up to an extent and this effect is more in slippery and icy runways. [1] Fig. 4 Graph shows relation b/w Work done and Landing run with respect to use of Thrust reversers in Dry Runways. [2] Fig. 5 Graph shows relation b/w work done and landing run with respect to use of thrust reversers in icy/wet runways, and it is seen that landing run is reduced about 2.5 Kms. [2] The airlines accept that thrust reversers are necessary for safe operations. In general, the airlines feel that thrust reversers provide an added margin of safety for transport aircraft operations. [2] III. TYPES OF THRUST REVERSER MECHANISM INSTALLED IN A TURBOFAN ENGINE Fig. 6 Animated cross-section of turbofan engine showing different parts and arrows show ways of reversing thrust.[7] Thrust of turbofan engine can be reverser in three different ways [1] A. Cascade type reverser system (cold stream) The cold stream reverser system can be actuated by an air motor, the output of which is converted to mechanical movement by a series of flexible drives, gearboxes and screw- jacks, or by a system using hydraulic rams. When the engine is operating in forward thrust, the cold stream final nozzle is ’open’ because the cascade vanes are internally covered by the blocker doors (flaps) and externally by the movable (translating) cowl; the latter item also serves to reduce drag. On selection of reverse thrust, the actuation system moves the translating cowl rearwards and at the same time folds the blocker doors to blank off the cold stream final nozzle, thus diverting the airflow through the cascade vanes. Fig. 7 Cascade type thrust reverser system using cold fan stream for reverser of thrust of a turbofan engine. B. Clamshell door system (hot stream) The clamshell door system is a pneumatically operated system. On the selection of reverse thrust, the doors rotate to uncover the ducts and close the normal gas stream exit. Cascade vanes then direct the gas stream in a forward direction so that the jet thrust opposes the aircraft motion. The clamshell doors are operated by pneumatic rams through
  • 3. International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 1, Issue 3 (july-August 2013), PP. 56-59 58 | P a g e levers that give the maximum load to the doors in the forward thrust position; this ensures effective sealing at the door edges, so preventing gas leakage. The door bearing and operating linkage operate without lubrication at temperatures of up to 600ºC. Fig. 8 Thrust reverser system using clamshell doors which are installed after turbine but before nozzle of a turbofan engine. C. Bucket target system (hot stream) The bucket target system is hydraulically actuated and uses bucket-type doors to reverse the hot gas stream. The thrust reverser doors are actuated by means of a conventional pushrod system. A single hydraulic powered actuator is connected to a drive idler, actuating the doors through a pair of pushrods (one for each door). The reverser doors are kept in synchronization through the drive idler. The hydraulic actuator incorporates a mechanical lock in the stowed position. In the forward thrust mode the thrust reverser doors form the convergent-divergent final nozzle for the engine. Fig. 9 Bucket target type thrust reverser system using deflector doors which are installed after nozzle of a turbofan engine. IV. TECHNICAL ASPECTS REGARDING THRUST REVERSER MECHANISM A. Engine power reverse thrust characteristics Engine power reverse thrust characteristics can be drawn as per the rated rpm and % of rated thrust, it is observed that Reverse thrust is max. at higher speeds of Engine. So, Thrust reversers are more efficient at higher engine rpm. Fig. 10 Graph for a turbofan engine of reverse thrust data versus engine power level for the reverser geometry of an embodiment of the bucket target type thrust reverser in the deployed position. [4] B. Modes of operation of thrust reverser mechanism Thrust reverser is used in three positions after landing of an aircraft which are as follows: 1. Forward thrust (no reverse) 2. Idle thrust reverse (partial reverse) 3. Normal thrust reverser (full reverse) Fig. 11 Different modes of deployment of thrust reverser mechanism at forward, idle, normal positions (from left to right). [6] C. Speed limits for different modes of thrust reverser Reverse thrust is most effective when used at high runway speeds i.e. 190 Km/h to 130 Km/h and less effective at low speeds; therefore early selection of Normal reverse thrust is desirable. Use of reverse thrust at speeds below approximately 130 Km/h to 110 Km/h can cause engine damage through sand, stones and other foreign objects entering the intake having been initially lifted off the runway by the forward flowing air. Engine surging is also a possibility as the hot exhaust air is re-ingested at the intake. So, Idle Reverse mode should be used from 120 Km/h to reduced speed of 40 km/h.
  • 4. International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 1, Issue 3 (july-August 2013), PP. 56-59 59 | P a g e Fig. 12 Graph shows a relation b/w engine power levels and indicated airspeed from the speed limitation for thrust reverser deployment in normal, idle, forward modes. [2] D. Technical problems Typical problems encountered with thrust reversers are sensor or indicator problems, inability to stow or deploy due to mechanical problems, wear, leaks and acoustic treatment de- laminations. [3] V. THRUST REVERSER & ENGINE MAINTENANCE SCHEDULE The use of thrust reversers has negligible impact on airline maintenance schedules. Thrust reverser maintenance activities are performed along with routine engine and airframe inspections. The schedules used for thrust reversers such as cascade reversers for high bypass engines coincide with airframe inspections. The schedules used for engine mounted thrust reversers such as bucket target type coincide with engine inspections. Therefore, thrust reversers do not directly affect airframe or power-plant i.e. turbofan engine maintenance schedules. Engine maintenance schedules are typically based on a combination of engine hours and cycles. Engine cycles per flight are factored into the flight hour referenced maintenance schedules for each aircraft type. It should also be noted that an engine cycle is defined as a flight cycle where a takeoff and landing or rejected takeoff was made. The deployment of the thrust reverser and a change in engine power setting during landing is not considered as an additional engine cycle. An engine run-up for maintenance checkout would also not be counted as an engine cycle. This definition is used throughout the airline industry. [2] VI. CONCLUSION In the present scenario with the implementation of this technique of additional deceleration system several accidents can be avoided in wet runways and in adverse climatic conditions. This technique shows how the energy that would go in vain would be utilized in a positive manner. In practice, the application of thrust reverser types depends on the engine used. This mechanism is employed for improving aircraft runway performance and it is observed that by using thrust reverser especially in wet runway there is considerable reduction in landing run which is responsible for safety of passenger aircraft. Maximum level of reversal can be achieved by using the system in specified range of speeds. Typical problems encountered with thrust reversers can be eliminated by regular inspection of the mechanism. It has been observed several times that use of thrust reverser mechanism prevents accident during ground operation mainly in slippery runways. This emphasizes the needs and benefits for a powered thrust reverser system for optimum safety and operability. For this reason proper schedule for maintenance of thrust reverser mechanism is designed along with turbofan engine maintenance schedule which is profit oriented from both time and cost point of view. Any successful landing made using thrust reversers during adverse weather conditions and wet runways demonstrates the benefits of thrust reverser. REFERENCES [1] Rolls-Royce, The Jet Engine, 5th ed., Derby, England: The Technical Publications Department, Rolls-Royce plc, 1996. [2] Jeffrey A. Yetter, ―Why Do Airlines Want and Use Thrust Reversers,‖ A Compilation of Airline Industry Responses to a Survey Regarding the Use of Thrust Reversers on Commercial Transport Airplanes, Tech. Rep.TM-109158, Langley Research Center, Hampton, Virginia, January 1995. [3] Thrust Reversing Systems, Power plant Installation HWG, Transport Airplane and Engine, Federal Aviation Administration, ARMC, FAR Std. 25.933, 1992. [4] William K. Great house, New York, ―Thrust Reverser Nozzle,‖ U.S. Patent 4 147 027, April 1979. [5] The Wikipedia website. Available: http://en.wikipedia.org/wiki/Air_India [6] The Wolfram website. Available: http://demonstrations.wolfram.com/ThrustReverser/ [7] Turbofan Labelled.gif. Available: http://en.wikipedia.org/wiki/File:Turbofan_Labelled.gif