SlideShare a Scribd company logo
1 of 55
Download to read offline
Are you sure about that!?
Uncertainty Quantification in AI
Florian Wilhelm Berlin, October 10th 2019
2
Dr. Florian Wilhelm
Principal Data Scientist @ inovex
@FlorianWilhelm
FlorianWilhelm
florianwilhelm.info
Mathematical Modelling
Data Science to Production
Recommender Systems
Uncertainty Quantification & Causality
Python Data Stack
Maintainer PyScaffold
3
Simon Bachstein
Data Scientist @ inovex
2018/07 – 2019/01 Master Thesis at inovex:
Uncertainty Quantification in Deep Learning
• Blogpost:
http://inovex.de/blog/uncertainty-quantification-deep-learning
• Master Thesis:
https://sbachstein.de/master_thesis.pdf
@simonbachstein
sbachstein
sbachstein.de
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
4
Deep Networks cannot look beyond their horizon
Motivation
5
90% cat
10% dog
Deep Networks cannot look beyond their horizon
Motivation
6
40% cat
60% dog
Deep Networks cannot look beyond their horizon
Motivation
7
?
Boult, T. E., Cruz, S., Dhamija, A., Gunther, M., Henrydoss, J., & Scheirer, W. (2019). Learning and the Unknown: Surveying
Steps Toward Open World Recognition. Aaai, 1–8. Retrieved from www.aaai.org
Learning and the Unknown
8
Simple Regression Problem
Interpolation
9
Simple Regression Problem
Deep Networks don’t extrapolate
Neural Arithmetic Logic Units, NIPS'18, Andrew Trask et. al.10
Simple Regression Problem
Deep Networks don’t extrapolate
11
Simple Regression Problem
Uncertainty about interpolation and extrapolation
12
Types of Uncertainty
13
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
14
Methods for Uncertainty Quantification
16
Relaxation of mathematical assumptions about data
Gaussian
Processes
Deep Ensembles / Dropout
Ensembles
Quantile
Regression
Monte Carlo
Dropout
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
17
A Gaussian Process can be thought of as a random function
which is defined by its mean and covariance functions
Gaussian Processes
18
Definition
Gaussian Processes
19
Example
Gaussian Processes
20
Inference
Gaussian Processes
21
Inference
Gaussian Processes
22
Inference with perfect interpolation
Gaussian Processes
23
Inference with noisy observations
Gaussian Processes
24
Inference
Inference using given data points can be done analytically. For
example, when assuming the (prior) mean function to be zero
everywhere, we get:
Good introduction:
Bayesian Non-parametric Models for Data Science using PyMC by Christopher Fonnesbeck
• https://www.youtube.com/watch?v=-sIOMs4MSuA
• https://de.slideshare.net/mlreview/bayesian-nonparametric-models-for-data-science-using-pymc
computationally intense
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
25
MC Dropout
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, ICML 2016, Yarin Gal et. al.
26
...
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
27
Deep Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017, Balaji Lakshminarayanan et. al28
Custom loss function:
Capture uncertainty directly at training time
Deep Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017, Balaji Lakshminarayanan et. al29
Combine an ensemble of networks
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
30
Dropout Ensembles
31
The best of both worlds?
...
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
32
Using the cumulative distribution function (cdf) of a random variable Y, we
define the quantile:
Loss function to estimate quantile:
Quantile Regression
33
Intuition behind Quantile Regression
34
0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0
Assume median is here (𝜏 = 0.5)
𝑦 > )𝑞+(𝑥)
𝑦 ≤ )𝑞+(𝑥)
0.1
0.2
0.5
0.8
Error: 0.0 + 1.6 = 1.6
Intuition behind Quantile Regression
35
0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0
Assume median is here (𝜏 = 0.5)
𝑦 > )𝑞+(𝑥)
𝑦 ≤ )𝑞+(𝑥)
0.1
0.4
0.7
Error: 0.0 + 1.2 = 1.2
0.0
Intuition behind Quantile Regression
36
0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0
Assume median is here (𝜏 = 0.5)
𝑦 > )𝑞+(𝑥)
𝑦 ≤ )𝑞+(𝑥)
0.1
0.3
0.6
Error: 0.1 + 0.9 = 1.0
0.0
Intuition behind Quantile Regression
37
0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0
Assume median is here (𝜏 = 0.5)
𝑦 > )𝑞+(𝑥)
𝑦 ≤ )𝑞+(𝑥)
0.2
0.2
0.5
Error: 0.3 + 0.7 = 1.0
0.1
No change due to the linearity of the error!
+0.1
+0.1
-0.1
-0.1
Now the 0.75th Quantile
38
0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0
Assume 𝜏 = 0.75 is here
𝑦 > )𝑞+(𝑥)
𝑦 ≤ )𝑞+(𝑥)
0.2
0.2
0.5
0.1
Error: (1 − 0.75) ⋅ 0.3 + 0.75 ⋅ 0.7 = 0.6
Right-side error weights 3 times as much as
the left-side error
Now the 0.75th Quantile
39
0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0
𝜏 = 0.75
𝑦 > )𝑞+(𝑥)
𝑦 ≤ )𝑞+(𝑥)
0.5
0.1
0.2
Error: (1 − 0.75) ⋅ 1.0 + 0.75 ⋅ 0.2 = 0.4
0.4
Change in the right-side error also weights
3 times as much as the left-side error
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
40
According to the function
Samples are generated as follows:
Experiments
Uncertainty in Deep Learning (Phd thesis), Yarin Gal, http://mlg.eng.cam.ac.uk/yarin/blog_2248.html41
Dataset
Experiments
42
Dataset
Neural networks
› 2 hidden layers with 20 ReLU neurons each
› 5 networks for Deep Ensembles
› 100 iterations for Dropout predictions
› Adam optimizer with batch size of 128
› LR, weight decay, dropout probability are optimized
Gaussian Processes
› squared exponential covariance and zero mean function prior
› covariance function parameters and aleatory noise are optimized
Experiments
43
Network setup and hyperparameters
Mean squared error (MSE)
Mean negative log likelihood (MNLL)
Mean Kullback-Leibler (KL) divergence
Experiments
44
Measures for generalization quality
Experiments
45
Interpolation
Experiments
46
They still don’t extrapolate and they don’t quite realize
Experiments
47
Gaussian Process
Experiments
Convergence
48
Experiments
49
Heteroscedastic noise
Experiments
50
Non-Gaussian noise
Experiments
51
Uncertainty split
aleatoric epistemic
Summary
52
GP MCD DeepE DropoutE QR
Homoscedastic
noise
++ o + o o
Heteroscedastic
noise
-- - ++ + +
Non-Gaussian
noise
+ o + + -
Convergence ++ - + - +
Speed (--) + - / (+) + ++
Uncertainty split yes no yes yes no
1. Motivation
2. Methods
a. Gaussian Processes
b. Monte-Carlo Dropout
c. Deep Ensembles
d. Dropout Ensembles
e. Quantile Regression
3. Experiments
4. Conclusion & Outlook
Agenda
53
› Neural network approaches discussed here are very aware of
aleatory uncertainty, however, not capable of correctly estimating
epistemic uncertainty
› Gaussian Processes give clear signals about ignorance but do not
scale
A combined solution needs to be developed because
uncertainty estimation is needed in critical applications
Conclusion
54
There is work to be done
› Bayesian Neural Networks (e.g. with PyMC)
› Sparse Gaussian Process approximations
› Gaussian Processes on top of neural networks
Outlook
55
Other approaches
Thank You!
Florian Wilhelm
Principal Data Scientist
inovex GmbH
Schanzenstraße 6-20
Kupferhütte 1.13
51063 Köln
florian.wilhelm@inovex.de

More Related Content

Similar to Are you sure about that?! Uncertainty Quantification in AI

Robustness Metrics for ML Models based on Deep Learning Methods
Robustness Metrics for ML Models based on Deep Learning MethodsRobustness Metrics for ML Models based on Deep Learning Methods
Robustness Metrics for ML Models based on Deep Learning MethodsData Science Milan
 
Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016Christian Robert
 
November, 2006 CCKM'06 1
November, 2006 CCKM'06 1 November, 2006 CCKM'06 1
November, 2006 CCKM'06 1 butest
 
A practical Introduction to Machine(s) Learning
A practical Introduction to Machine(s) LearningA practical Introduction to Machine(s) Learning
A practical Introduction to Machine(s) LearningBruno Gonçalves
 
Experiments in genetic programming
Experiments in genetic programmingExperiments in genetic programming
Experiments in genetic programmingLars Marius Garshol
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Julien SIMON
 
Practical Ai Class 3
Practical Ai Class 3Practical Ai Class 3
Practical Ai Class 3Oliver Zhang
 
Is ignorance bliss
Is ignorance blissIs ignorance bliss
Is ignorance blissStephen Senn
 
Machine learning in the life sciences with knime
Machine learning in the life sciences with knimeMachine learning in the life sciences with knime
Machine learning in the life sciences with knimeGreg Landrum
 
An Introduction to Deep Learning (May 2018)
An Introduction to Deep Learning (May 2018)An Introduction to Deep Learning (May 2018)
An Introduction to Deep Learning (May 2018)Julien SIMON
 
Machine learning for_finance
Machine learning for_financeMachine learning for_finance
Machine learning for_financeStefan Duprey
 
Maxwell W Libbrecht - pomegranate: fast and flexible probabilistic modeling i...
Maxwell W Libbrecht - pomegranate: fast and flexible probabilistic modeling i...Maxwell W Libbrecht - pomegranate: fast and flexible probabilistic modeling i...
Maxwell W Libbrecht - pomegranate: fast and flexible probabilistic modeling i...PyData
 
캡슐 네트워크를 이용한 엔드투엔드 음성 단어 인식, 배재성(KAIST 석사과정)
캡슐 네트워크를 이용한 엔드투엔드 음성 단어 인식, 배재성(KAIST 석사과정)캡슐 네트워크를 이용한 엔드투엔드 음성 단어 인식, 배재성(KAIST 석사과정)
캡슐 네트워크를 이용한 엔드투엔드 음성 단어 인식, 배재성(KAIST 석사과정)NAVER Engineering
 
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...Ricardo Guerrero Gómez-Olmedo
 
. An introduction to machine learning and probabilistic ...
. An introduction to machine learning and probabilistic .... An introduction to machine learning and probabilistic ...
. An introduction to machine learning and probabilistic ...butest
 
Data-driven hypothesis generation using deep neural nets
Data-driven hypothesis generation using deep neural netsData-driven hypothesis generation using deep neural nets
Data-driven hypothesis generation using deep neural netsBalázs Kégl
 
Deep Learning for Computer Vision - ExecutiveML
Deep Learning for Computer Vision - ExecutiveMLDeep Learning for Computer Vision - ExecutiveML
Deep Learning for Computer Vision - ExecutiveMLAlex Conway
 
Barga Data Science lecture 4
Barga Data Science lecture 4Barga Data Science lecture 4
Barga Data Science lecture 4Roger Barga
 
Finding needles in haystacks with deep neural networks
Finding needles in haystacks with deep neural networksFinding needles in haystacks with deep neural networks
Finding needles in haystacks with deep neural networksCalvin Giles
 

Similar to Are you sure about that?! Uncertainty Quantification in AI (20)

Robustness Metrics for ML Models based on Deep Learning Methods
Robustness Metrics for ML Models based on Deep Learning MethodsRobustness Metrics for ML Models based on Deep Learning Methods
Robustness Metrics for ML Models based on Deep Learning Methods
 
Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016Discussion of Persi Diaconis' lecture at ISBA 2016
Discussion of Persi Diaconis' lecture at ISBA 2016
 
November, 2006 CCKM'06 1
November, 2006 CCKM'06 1 November, 2006 CCKM'06 1
November, 2006 CCKM'06 1
 
A practical Introduction to Machine(s) Learning
A practical Introduction to Machine(s) LearningA practical Introduction to Machine(s) Learning
A practical Introduction to Machine(s) Learning
 
Experiments in genetic programming
Experiments in genetic programmingExperiments in genetic programming
Experiments in genetic programming
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)
 
Practical Ai Class 3
Practical Ai Class 3Practical Ai Class 3
Practical Ai Class 3
 
Is ignorance bliss
Is ignorance blissIs ignorance bliss
Is ignorance bliss
 
Machine learning in the life sciences with knime
Machine learning in the life sciences with knimeMachine learning in the life sciences with knime
Machine learning in the life sciences with knime
 
An Introduction to Deep Learning (May 2018)
An Introduction to Deep Learning (May 2018)An Introduction to Deep Learning (May 2018)
An Introduction to Deep Learning (May 2018)
 
Machine learning for_finance
Machine learning for_financeMachine learning for_finance
Machine learning for_finance
 
Maxwell W Libbrecht - pomegranate: fast and flexible probabilistic modeling i...
Maxwell W Libbrecht - pomegranate: fast and flexible probabilistic modeling i...Maxwell W Libbrecht - pomegranate: fast and flexible probabilistic modeling i...
Maxwell W Libbrecht - pomegranate: fast and flexible probabilistic modeling i...
 
캡슐 네트워크를 이용한 엔드투엔드 음성 단어 인식, 배재성(KAIST 석사과정)
캡슐 네트워크를 이용한 엔드투엔드 음성 단어 인식, 배재성(KAIST 석사과정)캡슐 네트워크를 이용한 엔드투엔드 음성 단어 인식, 배재성(KAIST 석사과정)
캡슐 네트워크를 이용한 엔드투엔드 음성 단어 인식, 배재성(KAIST 석사과정)
 
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
Meetup Python Madrid 2018: ¿Segmentación semántica? ¿Pero de qué me estás hab...
 
Phylogenetics2
Phylogenetics2Phylogenetics2
Phylogenetics2
 
. An introduction to machine learning and probabilistic ...
. An introduction to machine learning and probabilistic .... An introduction to machine learning and probabilistic ...
. An introduction to machine learning and probabilistic ...
 
Data-driven hypothesis generation using deep neural nets
Data-driven hypothesis generation using deep neural netsData-driven hypothesis generation using deep neural nets
Data-driven hypothesis generation using deep neural nets
 
Deep Learning for Computer Vision - ExecutiveML
Deep Learning for Computer Vision - ExecutiveMLDeep Learning for Computer Vision - ExecutiveML
Deep Learning for Computer Vision - ExecutiveML
 
Barga Data Science lecture 4
Barga Data Science lecture 4Barga Data Science lecture 4
Barga Data Science lecture 4
 
Finding needles in haystacks with deep neural networks
Finding needles in haystacks with deep neural networksFinding needles in haystacks with deep neural networks
Finding needles in haystacks with deep neural networks
 

More from inovex GmbH

lldb – Debugger auf Abwegen
lldb – Debugger auf Abwegenlldb – Debugger auf Abwegen
lldb – Debugger auf Abwegeninovex GmbH
 
Why natural language is next step in the AI evolution
Why natural language is next step in the AI evolutionWhy natural language is next step in the AI evolution
Why natural language is next step in the AI evolutioninovex GmbH
 
Network Policies
Network PoliciesNetwork Policies
Network Policiesinovex GmbH
 
Interpretable Machine Learning
Interpretable Machine LearningInterpretable Machine Learning
Interpretable Machine Learninginovex GmbH
 
Jenkins X – CI/CD in wolkigen Umgebungen
Jenkins X – CI/CD in wolkigen UmgebungenJenkins X – CI/CD in wolkigen Umgebungen
Jenkins X – CI/CD in wolkigen Umgebungeninovex GmbH
 
AI auf Edge-Geraeten
AI auf Edge-GeraetenAI auf Edge-Geraeten
AI auf Edge-Geraeteninovex GmbH
 
Prometheus on Kubernetes
Prometheus on KubernetesPrometheus on Kubernetes
Prometheus on Kubernetesinovex GmbH
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systemsinovex GmbH
 
Representation Learning von Zeitreihen
Representation Learning von ZeitreihenRepresentation Learning von Zeitreihen
Representation Learning von Zeitreiheninovex GmbH
 
Talk to me – Chatbots und digitale Assistenten
Talk to me – Chatbots und digitale AssistentenTalk to me – Chatbots und digitale Assistenten
Talk to me – Chatbots und digitale Assistenteninovex GmbH
 
Künstlich intelligent?
Künstlich intelligent?Künstlich intelligent?
Künstlich intelligent?inovex GmbH
 
Das Android Open Source Project
Das Android Open Source ProjectDas Android Open Source Project
Das Android Open Source Projectinovex GmbH
 
Machine Learning Interpretability
Machine Learning InterpretabilityMachine Learning Interpretability
Machine Learning Interpretabilityinovex GmbH
 
Performance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use casePerformance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use caseinovex GmbH
 
People & Products – Lessons learned from the daily IT madness
People & Products – Lessons learned from the daily IT madnessPeople & Products – Lessons learned from the daily IT madness
People & Products – Lessons learned from the daily IT madnessinovex GmbH
 
Infrastructure as (real) Code – Manage your K8s resources with Pulumi
Infrastructure as (real) Code – Manage your K8s resources with PulumiInfrastructure as (real) Code – Manage your K8s resources with Pulumi
Infrastructure as (real) Code – Manage your K8s resources with Pulumiinovex GmbH
 
Remote First – Der Arbeitsplatz in der Cloud
Remote First – Der Arbeitsplatz in der CloudRemote First – Der Arbeitsplatz in der Cloud
Remote First – Der Arbeitsplatz in der Cloudinovex GmbH
 

More from inovex GmbH (20)

lldb – Debugger auf Abwegen
lldb – Debugger auf Abwegenlldb – Debugger auf Abwegen
lldb – Debugger auf Abwegen
 
Why natural language is next step in the AI evolution
Why natural language is next step in the AI evolutionWhy natural language is next step in the AI evolution
Why natural language is next step in the AI evolution
 
WWDC 2019 Recap
WWDC 2019 RecapWWDC 2019 Recap
WWDC 2019 Recap
 
Network Policies
Network PoliciesNetwork Policies
Network Policies
 
Interpretable Machine Learning
Interpretable Machine LearningInterpretable Machine Learning
Interpretable Machine Learning
 
Jenkins X – CI/CD in wolkigen Umgebungen
Jenkins X – CI/CD in wolkigen UmgebungenJenkins X – CI/CD in wolkigen Umgebungen
Jenkins X – CI/CD in wolkigen Umgebungen
 
AI auf Edge-Geraeten
AI auf Edge-GeraetenAI auf Edge-Geraeten
AI auf Edge-Geraeten
 
Prometheus on Kubernetes
Prometheus on KubernetesPrometheus on Kubernetes
Prometheus on Kubernetes
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
 
Azure IoT Edge
Azure IoT EdgeAzure IoT Edge
Azure IoT Edge
 
Representation Learning von Zeitreihen
Representation Learning von ZeitreihenRepresentation Learning von Zeitreihen
Representation Learning von Zeitreihen
 
Talk to me – Chatbots und digitale Assistenten
Talk to me – Chatbots und digitale AssistentenTalk to me – Chatbots und digitale Assistenten
Talk to me – Chatbots und digitale Assistenten
 
Künstlich intelligent?
Künstlich intelligent?Künstlich intelligent?
Künstlich intelligent?
 
Dev + Ops = Go
Dev + Ops = GoDev + Ops = Go
Dev + Ops = Go
 
Das Android Open Source Project
Das Android Open Source ProjectDas Android Open Source Project
Das Android Open Source Project
 
Machine Learning Interpretability
Machine Learning InterpretabilityMachine Learning Interpretability
Machine Learning Interpretability
 
Performance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use casePerformance evaluation of GANs in a semisupervised OCR use case
Performance evaluation of GANs in a semisupervised OCR use case
 
People & Products – Lessons learned from the daily IT madness
People & Products – Lessons learned from the daily IT madnessPeople & Products – Lessons learned from the daily IT madness
People & Products – Lessons learned from the daily IT madness
 
Infrastructure as (real) Code – Manage your K8s resources with Pulumi
Infrastructure as (real) Code – Manage your K8s resources with PulumiInfrastructure as (real) Code – Manage your K8s resources with Pulumi
Infrastructure as (real) Code – Manage your K8s resources with Pulumi
 
Remote First – Der Arbeitsplatz in der Cloud
Remote First – Der Arbeitsplatz in der CloudRemote First – Der Arbeitsplatz in der Cloud
Remote First – Der Arbeitsplatz in der Cloud
 

Recently uploaded

Sending Calendar Invites on SES and Calendarsnack.pdf
Sending Calendar Invites on SES and Calendarsnack.pdfSending Calendar Invites on SES and Calendarsnack.pdf
Sending Calendar Invites on SES and Calendarsnack.pdf31events.com
 
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...OnePlan Solutions
 
Unveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsUnveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsAhmed Mohamed
 
Intelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmIntelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmSujith Sukumaran
 
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024StefanoLambiase
 
Introduction Computer Science - Software Design.pdf
Introduction Computer Science - Software Design.pdfIntroduction Computer Science - Software Design.pdf
Introduction Computer Science - Software Design.pdfFerryKemperman
 
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxKnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxTier1 app
 
Software Project Health Check: Best Practices and Techniques for Your Product...
Software Project Health Check: Best Practices and Techniques for Your Product...Software Project Health Check: Best Practices and Techniques for Your Product...
Software Project Health Check: Best Practices and Techniques for Your Product...Velvetech LLC
 
A healthy diet for your Java application Devoxx France.pdf
A healthy diet for your Java application Devoxx France.pdfA healthy diet for your Java application Devoxx France.pdf
A healthy diet for your Java application Devoxx France.pdfMarharyta Nedzelska
 
Implementing Zero Trust strategy with Azure
Implementing Zero Trust strategy with AzureImplementing Zero Trust strategy with Azure
Implementing Zero Trust strategy with AzureDinusha Kumarasiri
 
React Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaReact Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaHanief Utama
 
CRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceCRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceBrainSell Technologies
 
cpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptcpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptrcbcrtm
 
MYjobs Presentation Django-based project
MYjobs Presentation Django-based projectMYjobs Presentation Django-based project
MYjobs Presentation Django-based projectAnoyGreter
 
Machine Learning Software Engineering Patterns and Their Engineering
Machine Learning Software Engineering Patterns and Their EngineeringMachine Learning Software Engineering Patterns and Their Engineering
Machine Learning Software Engineering Patterns and Their EngineeringHironori Washizaki
 
Odoo 14 - eLearning Module In Odoo 14 Enterprise
Odoo 14 - eLearning Module In Odoo 14 EnterpriseOdoo 14 - eLearning Module In Odoo 14 Enterprise
Odoo 14 - eLearning Module In Odoo 14 Enterprisepreethippts
 
英国UN学位证,北安普顿大学毕业证书1:1制作
英国UN学位证,北安普顿大学毕业证书1:1制作英国UN学位证,北安普顿大学毕业证书1:1制作
英国UN学位证,北安普顿大学毕业证书1:1制作qr0udbr0
 
Cyber security and its impact on E commerce
Cyber security and its impact on E commerceCyber security and its impact on E commerce
Cyber security and its impact on E commercemanigoyal112
 
Powering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsPowering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsSafe Software
 
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Angel Borroy López
 

Recently uploaded (20)

Sending Calendar Invites on SES and Calendarsnack.pdf
Sending Calendar Invites on SES and Calendarsnack.pdfSending Calendar Invites on SES and Calendarsnack.pdf
Sending Calendar Invites on SES and Calendarsnack.pdf
 
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
Tech Tuesday - Mastering Time Management Unlock the Power of OnePlan's Timesh...
 
Unveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML DiagramsUnveiling Design Patterns: A Visual Guide with UML Diagrams
Unveiling Design Patterns: A Visual Guide with UML Diagrams
 
Intelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalmIntelligent Home Wi-Fi Solutions | ThinkPalm
Intelligent Home Wi-Fi Solutions | ThinkPalm
 
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
Dealing with Cultural Dispersion — Stefano Lambiase — ICSE-SEIS 2024
 
Introduction Computer Science - Software Design.pdf
Introduction Computer Science - Software Design.pdfIntroduction Computer Science - Software Design.pdf
Introduction Computer Science - Software Design.pdf
 
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxKnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
 
Software Project Health Check: Best Practices and Techniques for Your Product...
Software Project Health Check: Best Practices and Techniques for Your Product...Software Project Health Check: Best Practices and Techniques for Your Product...
Software Project Health Check: Best Practices and Techniques for Your Product...
 
A healthy diet for your Java application Devoxx France.pdf
A healthy diet for your Java application Devoxx France.pdfA healthy diet for your Java application Devoxx France.pdf
A healthy diet for your Java application Devoxx France.pdf
 
Implementing Zero Trust strategy with Azure
Implementing Zero Trust strategy with AzureImplementing Zero Trust strategy with Azure
Implementing Zero Trust strategy with Azure
 
React Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief UtamaReact Server Component in Next.js by Hanief Utama
React Server Component in Next.js by Hanief Utama
 
CRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. SalesforceCRM Contender Series: HubSpot vs. Salesforce
CRM Contender Series: HubSpot vs. Salesforce
 
cpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.pptcpct NetworkING BASICS AND NETWORK TOOL.ppt
cpct NetworkING BASICS AND NETWORK TOOL.ppt
 
MYjobs Presentation Django-based project
MYjobs Presentation Django-based projectMYjobs Presentation Django-based project
MYjobs Presentation Django-based project
 
Machine Learning Software Engineering Patterns and Their Engineering
Machine Learning Software Engineering Patterns and Their EngineeringMachine Learning Software Engineering Patterns and Their Engineering
Machine Learning Software Engineering Patterns and Their Engineering
 
Odoo 14 - eLearning Module In Odoo 14 Enterprise
Odoo 14 - eLearning Module In Odoo 14 EnterpriseOdoo 14 - eLearning Module In Odoo 14 Enterprise
Odoo 14 - eLearning Module In Odoo 14 Enterprise
 
英国UN学位证,北安普顿大学毕业证书1:1制作
英国UN学位证,北安普顿大学毕业证书1:1制作英国UN学位证,北安普顿大学毕业证书1:1制作
英国UN学位证,北安普顿大学毕业证书1:1制作
 
Cyber security and its impact on E commerce
Cyber security and its impact on E commerceCyber security and its impact on E commerce
Cyber security and its impact on E commerce
 
Powering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data StreamsPowering Real-Time Decisions with Continuous Data Streams
Powering Real-Time Decisions with Continuous Data Streams
 
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
Alfresco TTL#157 - Troubleshooting Made Easy: Deciphering Alfresco mTLS Confi...
 

Are you sure about that?! Uncertainty Quantification in AI

  • 1. Are you sure about that!? Uncertainty Quantification in AI Florian Wilhelm Berlin, October 10th 2019
  • 2. 2 Dr. Florian Wilhelm Principal Data Scientist @ inovex @FlorianWilhelm FlorianWilhelm florianwilhelm.info Mathematical Modelling Data Science to Production Recommender Systems Uncertainty Quantification & Causality Python Data Stack Maintainer PyScaffold
  • 3. 3 Simon Bachstein Data Scientist @ inovex 2018/07 – 2019/01 Master Thesis at inovex: Uncertainty Quantification in Deep Learning • Blogpost: http://inovex.de/blog/uncertainty-quantification-deep-learning • Master Thesis: https://sbachstein.de/master_thesis.pdf @simonbachstein sbachstein sbachstein.de
  • 4. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 4
  • 5. Deep Networks cannot look beyond their horizon Motivation 5 90% cat 10% dog
  • 6. Deep Networks cannot look beyond their horizon Motivation 6 40% cat 60% dog
  • 7. Deep Networks cannot look beyond their horizon Motivation 7 ?
  • 8. Boult, T. E., Cruz, S., Dhamija, A., Gunther, M., Henrydoss, J., & Scheirer, W. (2019). Learning and the Unknown: Surveying Steps Toward Open World Recognition. Aaai, 1–8. Retrieved from www.aaai.org Learning and the Unknown 8
  • 10. Simple Regression Problem Deep Networks don’t extrapolate Neural Arithmetic Logic Units, NIPS'18, Andrew Trask et. al.10
  • 11. Simple Regression Problem Deep Networks don’t extrapolate 11
  • 12. Simple Regression Problem Uncertainty about interpolation and extrapolation 12
  • 14. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 14
  • 15. Methods for Uncertainty Quantification 16 Relaxation of mathematical assumptions about data Gaussian Processes Deep Ensembles / Dropout Ensembles Quantile Regression Monte Carlo Dropout
  • 16. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 17
  • 17. A Gaussian Process can be thought of as a random function which is defined by its mean and covariance functions Gaussian Processes 18 Definition
  • 21. Gaussian Processes 22 Inference with perfect interpolation
  • 23. Gaussian Processes 24 Inference Inference using given data points can be done analytically. For example, when assuming the (prior) mean function to be zero everywhere, we get: Good introduction: Bayesian Non-parametric Models for Data Science using PyMC by Christopher Fonnesbeck • https://www.youtube.com/watch?v=-sIOMs4MSuA • https://de.slideshare.net/mlreview/bayesian-nonparametric-models-for-data-science-using-pymc computationally intense
  • 24. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 25
  • 25. MC Dropout Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, ICML 2016, Yarin Gal et. al. 26 ...
  • 26. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 27
  • 27. Deep Ensembles Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017, Balaji Lakshminarayanan et. al28 Custom loss function: Capture uncertainty directly at training time
  • 28. Deep Ensembles Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, NIPS 2017, Balaji Lakshminarayanan et. al29 Combine an ensemble of networks
  • 29. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 30
  • 30. Dropout Ensembles 31 The best of both worlds? ...
  • 31. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 32
  • 32. Using the cumulative distribution function (cdf) of a random variable Y, we define the quantile: Loss function to estimate quantile: Quantile Regression 33
  • 33. Intuition behind Quantile Regression 34 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume median is here (𝜏 = 0.5) 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.1 0.2 0.5 0.8 Error: 0.0 + 1.6 = 1.6
  • 34. Intuition behind Quantile Regression 35 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume median is here (𝜏 = 0.5) 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.1 0.4 0.7 Error: 0.0 + 1.2 = 1.2 0.0
  • 35. Intuition behind Quantile Regression 36 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume median is here (𝜏 = 0.5) 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.1 0.3 0.6 Error: 0.1 + 0.9 = 1.0 0.0
  • 36. Intuition behind Quantile Regression 37 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume median is here (𝜏 = 0.5) 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.2 0.2 0.5 Error: 0.3 + 0.7 = 1.0 0.1 No change due to the linearity of the error! +0.1 +0.1 -0.1 -0.1
  • 37. Now the 0.75th Quantile 38 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 Assume 𝜏 = 0.75 is here 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.2 0.2 0.5 0.1 Error: (1 − 0.75) ⋅ 0.3 + 0.75 ⋅ 0.7 = 0.6 Right-side error weights 3 times as much as the left-side error
  • 38. Now the 0.75th Quantile 39 0.0 0.1 0.2 0.90.3 0.4 0.5 0.6 0.7 0.8 1.0 𝜏 = 0.75 𝑦 > )𝑞+(𝑥) 𝑦 ≤ )𝑞+(𝑥) 0.5 0.1 0.2 Error: (1 − 0.75) ⋅ 1.0 + 0.75 ⋅ 0.2 = 0.4 0.4 Change in the right-side error also weights 3 times as much as the left-side error
  • 39. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 40
  • 40. According to the function Samples are generated as follows: Experiments Uncertainty in Deep Learning (Phd thesis), Yarin Gal, http://mlg.eng.cam.ac.uk/yarin/blog_2248.html41 Dataset
  • 42. Neural networks › 2 hidden layers with 20 ReLU neurons each › 5 networks for Deep Ensembles › 100 iterations for Dropout predictions › Adam optimizer with batch size of 128 › LR, weight decay, dropout probability are optimized Gaussian Processes › squared exponential covariance and zero mean function prior › covariance function parameters and aleatory noise are optimized Experiments 43 Network setup and hyperparameters
  • 43. Mean squared error (MSE) Mean negative log likelihood (MNLL) Mean Kullback-Leibler (KL) divergence Experiments 44 Measures for generalization quality
  • 45. Experiments 46 They still don’t extrapolate and they don’t quite realize
  • 51. Summary 52 GP MCD DeepE DropoutE QR Homoscedastic noise ++ o + o o Heteroscedastic noise -- - ++ + + Non-Gaussian noise + o + + - Convergence ++ - + - + Speed (--) + - / (+) + ++ Uncertainty split yes no yes yes no
  • 52. 1. Motivation 2. Methods a. Gaussian Processes b. Monte-Carlo Dropout c. Deep Ensembles d. Dropout Ensembles e. Quantile Regression 3. Experiments 4. Conclusion & Outlook Agenda 53
  • 53. › Neural network approaches discussed here are very aware of aleatory uncertainty, however, not capable of correctly estimating epistemic uncertainty › Gaussian Processes give clear signals about ignorance but do not scale A combined solution needs to be developed because uncertainty estimation is needed in critical applications Conclusion 54 There is work to be done
  • 54. › Bayesian Neural Networks (e.g. with PyMC) › Sparse Gaussian Process approximations › Gaussian Processes on top of neural networks Outlook 55 Other approaches
  • 55. Thank You! Florian Wilhelm Principal Data Scientist inovex GmbH Schanzenstraße 6-20 Kupferhütte 1.13 51063 Köln florian.wilhelm@inovex.de