SlideShare a Scribd company logo
1 of 39
Download to read offline
Context-aware Recommendation:
A Quick View
Yong Zheng
Center for Web Intelligence
DePaul University, Chicago
Feb 23, 2016
Outline
• Background
Recommender Systems
Evaluation
Matrix Factorization
• Context-aware Recommendation
Context
Contextual PreFiltering
Contextual Modeling
• CARSKit: A Context-aware Recommendation Library
2
Background
Recommender System (RS)
• RS: item recommendations tailored to user tastes
4
How it works
5
How it works
6
How it works
7
How it works
8
Binary FeedbackRatings Reviews Behaviors
• User Preferences
Explicit Implicit
9
Task and Eval: Rating Prediction
User Item Rating
U1 T1 4
U1 T2 3
U1 T3 3
U2 T2 4
U2 T3 5
U2 T4 5
U3 T4 4
U1 T4 3
U2 T1 2
U3 T1 3
U3 T2 3
U3 T3 4
Train
Test
Task: P(U, T) in testing set
Assume a simple model: P(U, T) = Avg (T)
P(U1, T4) = Avg(T4) = (5+4)/2 = 4.5
P(U2, T1) = Avg(T1) = 4/1 = 4
P(U3, T1) = Avg(T1) = 4/1 = 4
P(U3, T2) = Avg(T2) = (3+4)/2 = 3.5
P(U3, T3) = Avg(T3) = (3+5)/2 = 4
Mean Absolute Error (MAE) =
ei = R(U, T) – P(U, T)
MAE = (|3 – 4.5| + |2 - 4| + |3 - 4| +
|3 – 3.5| + |4 - 4|) / 5 = 1
10
Task and Eval: Top-N Recommendation
User Item Rating
U1 T1 4
U1 T2 3
U1 T3 3
U2 T2 4
U2 T3 5
U2 T4 5
U3 T4 4
U1 T4 3
U2 T1 2
U3 T1 3
U3 T2 3
U3 T3 4
Train
Test
Task: Top-N Items to user U3
Assume a simple model: P(U, T) = Avg (T)
P(U3, T1) = Avg(T1) = 4/1 = 4
P(U3, T2) = Avg(T2) = (3+4)/2 = 3.5
P(U3, T3) = Avg(T3) = (3+5)/2 = 4
P(U3, T4) = Avg(T4) = (4+5)/2 = 3.5
Predicted Rank: T3, T1, T4, T2
Real Rank: T3, T2, T1
Precision@N = # of hits/N
Precision@1 = 1/1
Precision@2 = 2/2
Precision@3 = 2/3
11
More Evaluation Metrics
• There are many more evaluation metrics
Task: Rating Prediction
MAE, RMSE, MSE, MPE, etc
Task: Top-N Recommendation
Relevance: Precision, Recall, F-Measure, AUC, etc
Ranking: MAP, NDCG, MRR, etc
Business Metrics
Retention rate, response rate, purchases, etc
12
Matrix Factorization (MF)
User HarryPotter Batman Spiderman
U1 5 3 4
U2 ? 2 4
U3 4 2 ?
R P Q
13
Matrix Factorization (MF)
R P Q
R = Rating Matrix, m users, n movies;
P = User Matrix, m users, f latent factors/features;
Q = Item Matrix, n movies, f latent factors/features;
Interpretation:
pu indicates how much user likes f latent factors;
qi means how much one item obtains f latent factors;
The dot product indicates how much user likes item;
14
Matrix Factorization (MF)
minq,p S (u,i) e R ( rui - qt
i pu )2 + l (|qi|2 + |pu|2 )
Goal: Try to learn P and Q by minimizing the squared error
goodness of fit regularization
Goodness of fit: to reduce the prediction errors;
Regularization term: to alleviate the overfitting;
15
Matrix Factorization (MF)
Optimization using stochastic gradient descent (SGD)
Parameter updates based on SGD
16
MovieLens-100K, http://grouplens.org/datasets/movielens/
100K ratings given by 943 users on 1,682 movies
0.006
0.007
0.008
0.009
0.01
0.011
0.012
0.013
0.014
0.015
0.016
0.7
0.72
0.74
0.76
0.78
0.8
0.82
ItemAvg ItemKNN MF
Precision
MAE
MAE Precision@10
Matrix Factorization (MF)
Context-aware
Recommendation
Non-context vs Context
18
Companion
• Decision Making = Rational + Contextual
• Examples:
 Travel destination: in winter vs in summer
 Movie watching: with children vs with partner
 Restaurant: quick lunch vs business dinner
What is Context?
19
• “Context is any information that can be used to characterize
the situation of an entity” by Anind K. Dey, 2001
• Observed Context:
Contexts are those variables which may change when a same
activity is performed again and again.
• Examples:
Watching a movie: time, location, companion, etc
Listening to a music: time, location, emotions, occasions, etc
Context-aware RS (CARS)
20
• Traditional RS: Users × Items Ratings
• Contextual RS: Users × Items × Contexts Ratings
Example of Multi-dimensional Context-aware Data set
User Item Rating Time Location Companion
U1 T1 3 Weekend Home Kids
U1 T2 5 Weekday Home Partner
U2 T2 2 Weekend Cinema Partner
U2 T3 3 Weekday Cinema Family
U1 T3 ? Weekend Cinema Kids
21
• There are three ways to build algorithms for CARS
Context-aware RS (CARS)
Contextual PreFiltering
23
• List of Contextual PreFiltering Algorithms
Reduction-based approach, 2005
Exact and Generalized PreFiltering, 2009
Item Splitting, 2009
User Splitting, 2011
Dimension as Virtual Items, 2011
User-Item Splitting, 2014
Contextual PreFiltering
24
The underlying idea in item splitting is that the nature of an item, from the user's
point of view, may change in different contextual conditions, hence it may be
useful to consider it as two different items. (L. Baltrunas, F. Ricci, RecSys'09) – In
short, contexts are dependent with items.
Contextual PreFiltering (Item Splitting)
At Cinema At Home At Swimming Pool
25
Contextual PreFiltering (Item Splitting)
User Item Location Rating
U1 M1 Pool 5
U2 M1 Pool 5
U3 M1 Pool 5
U1 M1 Home 2
U4 M1 Home 3
U2 M1 Home 2
High Rating
Low Rating
Significant difference?
Let’s split it !!!
M11: being seen at Pool
M12: being seen at Home
M1
Same movie,
different IDs.
26
Contextual PreFiltering (Item Splitting)
User Item Loc Rating
U1 M1 Pool 5
U2 M1 Pool 5
U3 M1 Pool 5
U1 M1 Home 2
U4 M1 Home 3
U2 M1 Cinema 2
User Item Rating
U1 M11 5
U2 M11 5
U3 M11 5
U1 M12 2
U4 M12 3
U2 M12 2
Transformation
If there is qualified split,
one item will be split to
two new ones.
A binary contextual condition for
splitting:
“Pool” vs. “Non-Pool”
After transformation, we obtain a 2D User-Item rating matrix, so that any traditional
recommendation algorithms can be applied to.
27
Contextual PreFiltering (Item Splitting)
User Item Loc Rating
U1 M1 Pool 5
U2 M1 Pool 5
U3 M1 Pool 5
U1 M1 Home 2
U4 M1 Home 3
U2 M1 Cinema 2
User Item Rating
U1 M11 5
U2 M11 5
U3 M11 5
U1 M12 2
U4 M12 3
U2 M12 2
Transformation
Question: How to find such a split? Pool and Non-pool, or Home and Non-home?
We employ a t-test on two pieces of ratings,
the best choice should help obtain the
largest t value and a small p-value (e.g., < 0.05)
28
Contextual PreFiltering (Other Splitting)
29
Example of Splitting Approaches
0.76
0.78
0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
MF ItemSplitting UserSplitting UISplitting
MAE
Restaurant data: 2309 ratings given by 50 users on 40 restaurants in context Time and Location
Contextual Modeling
31
• List of Contextual Modeling Algorithms
 Tensor Factorization, 2010
 Factorization Machines, 2011
 Deviation-Based Context-aware Matrix Factorization, 2011
 Deviation-Based Contextual Sparse Linear Method, 2014
 Similarity-Based Context-aware Matrix Factorization, 2015
 Similarity-Based Contextual Sparse Linear Method, 2015
Contextual Modeling
32
• Deviation-Based Context-aware MF (CAMF)
Contextual Rating Deviation (CRD): how user’s rating is deviated?
CRD(1) = 0.5  Users’ rating in Weekday is generally higher than
users’ rating at Weekend by 0.5
CRD(2) = -0.1  Users’ rating in Cinema is generally lower than
users’ rating at Home by 0.1
Deviation-Based Context-aware MF
Context D1: Time D2: Location
c1 Weekend Home
c2 Weekday Cinema
CRD(i) 0.5 -0.1
33
Deviation-Based Context-aware MF: CAMF_C
Deviation-Based Context-aware MF
BiasedMF in Traditional RS:
CAMF_C Approach:
Global Average Rating User bias Item Bias User-Item interaction
Contextual Rating Deviation
34
Deviation-Based Context-aware MF: CAMF_CU & CAMF_CI
Deviation-Based Context-aware MF
BiasedMF in Traditional RS:
CAMF_C Approach:
Global Average Rating User bias Item Bias User-Item interaction
CAMF_CU Approach:
CAMF_CI Approach:
35
Example: CAMF
Restaurant data: 2309 ratings given by 50 users on 40 restaurants in context Time and Location
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1
MF ItemSplitting UserSplitting UISplitting CAMF_C CAMF_CI CAMF_CU
MAE
CARSKit: A Library
37
CARSKit: A Java-based Open-source
Context-aware Recommendation Library
There are many recommendation library for traditional recommendation.
Users × Items Ratings
38
CARSKit: A Java-based Open-source
Context-aware Recommendation Library
CARSKit: https://github.com/irecsys/CARSKit
Users × Items × Contexts Ratings
Yong Zheng
Center for Web Intelligence
DePaul University, Chicago
Feb 23, 2016
Context-aware Recommendation:
A Quick View

More Related Content

What's hot

An introduction to Recommender Systems
An introduction to Recommender SystemsAn introduction to Recommender Systems
An introduction to Recommender SystemsDavid Zibriczky
 
Movie lens recommender systems
Movie lens recommender systemsMovie lens recommender systems
Movie lens recommender systemsKapil Garg
 
Tutorial on sequence aware recommender systems - UMAP 2018
Tutorial on sequence aware recommender systems - UMAP 2018Tutorial on sequence aware recommender systems - UMAP 2018
Tutorial on sequence aware recommender systems - UMAP 2018Paolo Cremonesi
 
[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systemsFalitokiniaina Rabearison
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringViet-Trung TRAN
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender SystemsT212
 
Collaborative Filtering using KNN
Collaborative Filtering using KNNCollaborative Filtering using KNN
Collaborative Filtering using KNNŞeyda Hatipoğlu
 
Recommendation system
Recommendation systemRecommendation system
Recommendation systemAkshat Thakar
 
Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized HomepageJustin Basilico
 
Matrix Factorization Techniques For Recommender Systems
Matrix Factorization Techniques For Recommender SystemsMatrix Factorization Techniques For Recommender Systems
Matrix Factorization Techniques For Recommender SystemsLei Guo
 
Item Based Collaborative Filtering Recommendation Algorithms
Item Based Collaborative Filtering Recommendation AlgorithmsItem Based Collaborative Filtering Recommendation Algorithms
Item Based Collaborative Filtering Recommendation Algorithmsnextlib
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyChris Johnson
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated RecommendationsHarald Steck
 
Tutorial: Context In Recommender Systems
Tutorial: Context In Recommender SystemsTutorial: Context In Recommender Systems
Tutorial: Context In Recommender SystemsYONG ZHENG
 
Building a Recommendation Engine - An example of a product recommendation engine
Building a Recommendation Engine - An example of a product recommendation engineBuilding a Recommendation Engine - An example of a product recommendation engine
Building a Recommendation Engine - An example of a product recommendation engineNYC Predictive Analytics
 
Recommender Systems! @ASAI 2011
Recommender Systems! @ASAI 2011Recommender Systems! @ASAI 2011
Recommender Systems! @ASAI 2011Ernesto Mislej
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at SpotifyOguz Semerci
 

What's hot (20)

An introduction to Recommender Systems
An introduction to Recommender SystemsAn introduction to Recommender Systems
An introduction to Recommender Systems
 
Movie lens recommender systems
Movie lens recommender systemsMovie lens recommender systems
Movie lens recommender systems
 
Tutorial on sequence aware recommender systems - UMAP 2018
Tutorial on sequence aware recommender systems - UMAP 2018Tutorial on sequence aware recommender systems - UMAP 2018
Tutorial on sequence aware recommender systems - UMAP 2018
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems[Final]collaborative filtering and recommender systems
[Final]collaborative filtering and recommender systems
 
Recommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filteringRecommender systems: Content-based and collaborative filtering
Recommender systems: Content-based and collaborative filtering
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Recommendation system
Recommendation systemRecommendation system
Recommendation system
 
Collaborative Filtering using KNN
Collaborative Filtering using KNNCollaborative Filtering using KNN
Collaborative Filtering using KNN
 
Recommendation system
Recommendation systemRecommendation system
Recommendation system
 
Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized Homepage
 
Matrix Factorization Techniques For Recommender Systems
Matrix Factorization Techniques For Recommender SystemsMatrix Factorization Techniques For Recommender Systems
Matrix Factorization Techniques For Recommender Systems
 
Item Based Collaborative Filtering Recommendation Algorithms
Item Based Collaborative Filtering Recommendation AlgorithmsItem Based Collaborative Filtering Recommendation Algorithms
Item Based Collaborative Filtering Recommendation Algorithms
 
Interactive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and SpotifyInteractive Recommender Systems with Netflix and Spotify
Interactive Recommender Systems with Netflix and Spotify
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated Recommendations
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 
Tutorial: Context In Recommender Systems
Tutorial: Context In Recommender SystemsTutorial: Context In Recommender Systems
Tutorial: Context In Recommender Systems
 
Building a Recommendation Engine - An example of a product recommendation engine
Building a Recommendation Engine - An example of a product recommendation engineBuilding a Recommendation Engine - An example of a product recommendation engine
Building a Recommendation Engine - An example of a product recommendation engine
 
Recommender Systems! @ASAI 2011
Recommender Systems! @ASAI 2011Recommender Systems! @ASAI 2011
Recommender Systems! @ASAI 2011
 
Homepage Personalization at Spotify
Homepage Personalization at SpotifyHomepage Personalization at Spotify
Homepage Personalization at Spotify
 

Viewers also liked

[RIIT 2017] Identifying Grey Sheep Users By The Distribution of User Similari...
[RIIT 2017] Identifying Grey Sheep Users By The Distribution of User Similari...[RIIT 2017] Identifying Grey Sheep Users By The Distribution of User Similari...
[RIIT 2017] Identifying Grey Sheep Users By The Distribution of User Similari...YONG ZHENG
 
[UMAP 2016] User-Oriented Context Suggestion
[UMAP 2016] User-Oriented Context Suggestion[UMAP 2016] User-Oriented Context Suggestion
[UMAP 2016] User-Oriented Context SuggestionYONG ZHENG
 
[ADMA 2017] Identification of Grey Sheep Users By Histogram Intersection In R...
[ADMA 2017] Identification of Grey Sheep Users By Histogram Intersection In R...[ADMA 2017] Identification of Grey Sheep Users By Histogram Intersection In R...
[ADMA 2017] Identification of Grey Sheep Users By Histogram Intersection In R...YONG ZHENG
 
[WI 2017] Affective Prediction By Collaborative Chains In Movie Recommendation
[WI 2017] Affective Prediction By Collaborative Chains In Movie Recommendation[WI 2017] Affective Prediction By Collaborative Chains In Movie Recommendation
[WI 2017] Affective Prediction By Collaborative Chains In Movie RecommendationYONG ZHENG
 
[WISE 2015] Similarity-Based Context-aware Recommendation
[WISE 2015] Similarity-Based Context-aware Recommendation[WISE 2015] Similarity-Based Context-aware Recommendation
[WISE 2015] Similarity-Based Context-aware RecommendationYONG ZHENG
 
[WI 2017] Context Suggestion: Empirical Evaluations vs User Studies
[WI 2017] Context Suggestion: Empirical Evaluations vs User Studies[WI 2017] Context Suggestion: Empirical Evaluations vs User Studies
[WI 2017] Context Suggestion: Empirical Evaluations vs User StudiesYONG ZHENG
 
[Decisions2013@RecSys]The Role of Emotions in Context-aware Recommendation
[Decisions2013@RecSys]The Role of Emotions in Context-aware Recommendation[Decisions2013@RecSys]The Role of Emotions in Context-aware Recommendation
[Decisions2013@RecSys]The Role of Emotions in Context-aware RecommendationYONG ZHENG
 
[EMPIRE 2016] Adapt to Emotional Reactions In Context-aware Personalization
[EMPIRE 2016] Adapt to Emotional Reactions In Context-aware Personalization[EMPIRE 2016] Adapt to Emotional Reactions In Context-aware Personalization
[EMPIRE 2016] Adapt to Emotional Reactions In Context-aware PersonalizationYONG ZHENG
 
[SAC2014]Splitting Approaches for Context-Aware Recommendation: An Empirical ...
[SAC2014]Splitting Approaches for Context-Aware Recommendation: An Empirical ...[SAC2014]Splitting Approaches for Context-Aware Recommendation: An Empirical ...
[SAC2014]Splitting Approaches for Context-Aware Recommendation: An Empirical ...YONG ZHENG
 
[IUI2015] A Revisit to The Identification of Contexts in Recommender Systems
[IUI2015] A Revisit to The Identification of Contexts in Recommender Systems[IUI2015] A Revisit to The Identification of Contexts in Recommender Systems
[IUI2015] A Revisit to The Identification of Contexts in Recommender SystemsYONG ZHENG
 
[IUI 2017] Criteria Chains: A Novel Multi-Criteria Recommendation Approach
[IUI 2017] Criteria Chains: A Novel Multi-Criteria Recommendation Approach[IUI 2017] Criteria Chains: A Novel Multi-Criteria Recommendation Approach
[IUI 2017] Criteria Chains: A Novel Multi-Criteria Recommendation ApproachYONG ZHENG
 
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...YONG ZHENG
 
[RecSys 2014] Deviation-Based and Similarity-Based Contextual SLIM Recommenda...
[RecSys 2014] Deviation-Based and Similarity-Based Contextual SLIM Recommenda...[RecSys 2014] Deviation-Based and Similarity-Based Contextual SLIM Recommenda...
[RecSys 2014] Deviation-Based and Similarity-Based Contextual SLIM Recommenda...YONG ZHENG
 
[SAC 2015] Improve General Contextual SLIM Recommendation Algorithms By Facto...
[SAC 2015] Improve General Contextual SLIM Recommendation Algorithms By Facto...[SAC 2015] Improve General Contextual SLIM Recommendation Algorithms By Facto...
[SAC 2015] Improve General Contextual SLIM Recommendation Algorithms By Facto...YONG ZHENG
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM RecommendersYONG ZHENG
 
Tutorial: Context-awareness In Information Retrieval and Recommender Systems
Tutorial: Context-awareness In Information Retrieval and Recommender SystemsTutorial: Context-awareness In Information Retrieval and Recommender Systems
Tutorial: Context-awareness In Information Retrieval and Recommender SystemsYONG ZHENG
 

Viewers also liked (16)

[RIIT 2017] Identifying Grey Sheep Users By The Distribution of User Similari...
[RIIT 2017] Identifying Grey Sheep Users By The Distribution of User Similari...[RIIT 2017] Identifying Grey Sheep Users By The Distribution of User Similari...
[RIIT 2017] Identifying Grey Sheep Users By The Distribution of User Similari...
 
[UMAP 2016] User-Oriented Context Suggestion
[UMAP 2016] User-Oriented Context Suggestion[UMAP 2016] User-Oriented Context Suggestion
[UMAP 2016] User-Oriented Context Suggestion
 
[ADMA 2017] Identification of Grey Sheep Users By Histogram Intersection In R...
[ADMA 2017] Identification of Grey Sheep Users By Histogram Intersection In R...[ADMA 2017] Identification of Grey Sheep Users By Histogram Intersection In R...
[ADMA 2017] Identification of Grey Sheep Users By Histogram Intersection In R...
 
[WI 2017] Affective Prediction By Collaborative Chains In Movie Recommendation
[WI 2017] Affective Prediction By Collaborative Chains In Movie Recommendation[WI 2017] Affective Prediction By Collaborative Chains In Movie Recommendation
[WI 2017] Affective Prediction By Collaborative Chains In Movie Recommendation
 
[WISE 2015] Similarity-Based Context-aware Recommendation
[WISE 2015] Similarity-Based Context-aware Recommendation[WISE 2015] Similarity-Based Context-aware Recommendation
[WISE 2015] Similarity-Based Context-aware Recommendation
 
[WI 2017] Context Suggestion: Empirical Evaluations vs User Studies
[WI 2017] Context Suggestion: Empirical Evaluations vs User Studies[WI 2017] Context Suggestion: Empirical Evaluations vs User Studies
[WI 2017] Context Suggestion: Empirical Evaluations vs User Studies
 
[Decisions2013@RecSys]The Role of Emotions in Context-aware Recommendation
[Decisions2013@RecSys]The Role of Emotions in Context-aware Recommendation[Decisions2013@RecSys]The Role of Emotions in Context-aware Recommendation
[Decisions2013@RecSys]The Role of Emotions in Context-aware Recommendation
 
[EMPIRE 2016] Adapt to Emotional Reactions In Context-aware Personalization
[EMPIRE 2016] Adapt to Emotional Reactions In Context-aware Personalization[EMPIRE 2016] Adapt to Emotional Reactions In Context-aware Personalization
[EMPIRE 2016] Adapt to Emotional Reactions In Context-aware Personalization
 
[SAC2014]Splitting Approaches for Context-Aware Recommendation: An Empirical ...
[SAC2014]Splitting Approaches for Context-Aware Recommendation: An Empirical ...[SAC2014]Splitting Approaches for Context-Aware Recommendation: An Empirical ...
[SAC2014]Splitting Approaches for Context-Aware Recommendation: An Empirical ...
 
[IUI2015] A Revisit to The Identification of Contexts in Recommender Systems
[IUI2015] A Revisit to The Identification of Contexts in Recommender Systems[IUI2015] A Revisit to The Identification of Contexts in Recommender Systems
[IUI2015] A Revisit to The Identification of Contexts in Recommender Systems
 
[IUI 2017] Criteria Chains: A Novel Multi-Criteria Recommendation Approach
[IUI 2017] Criteria Chains: A Novel Multi-Criteria Recommendation Approach[IUI 2017] Criteria Chains: A Novel Multi-Criteria Recommendation Approach
[IUI 2017] Criteria Chains: A Novel Multi-Criteria Recommendation Approach
 
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
[UMAP 2015] Integrating Context Similarity with Sparse Linear Recommendation ...
 
[RecSys 2014] Deviation-Based and Similarity-Based Contextual SLIM Recommenda...
[RecSys 2014] Deviation-Based and Similarity-Based Contextual SLIM Recommenda...[RecSys 2014] Deviation-Based and Similarity-Based Contextual SLIM Recommenda...
[RecSys 2014] Deviation-Based and Similarity-Based Contextual SLIM Recommenda...
 
[SAC 2015] Improve General Contextual SLIM Recommendation Algorithms By Facto...
[SAC 2015] Improve General Contextual SLIM Recommendation Algorithms By Facto...[SAC 2015] Improve General Contextual SLIM Recommendation Algorithms By Facto...
[SAC 2015] Improve General Contextual SLIM Recommendation Algorithms By Facto...
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
 
Tutorial: Context-awareness In Information Retrieval and Recommender Systems
Tutorial: Context-awareness In Information Retrieval and Recommender SystemsTutorial: Context-awareness In Information Retrieval and Recommender Systems
Tutorial: Context-awareness In Information Retrieval and Recommender Systems
 

Similar to Context-aware Recommendation: A Quick View

Hybridisation Techniques for Cold-Starting Context-Aware Recommender Systems
Hybridisation Techniques for Cold-Starting Context-Aware Recommender SystemsHybridisation Techniques for Cold-Starting Context-Aware Recommender Systems
Hybridisation Techniques for Cold-Starting Context-Aware Recommender SystemsMatthias Braunhofer
 
Recommender Systems from A to Z – The Right Dataset
Recommender Systems from A to Z – The Right DatasetRecommender Systems from A to Z – The Right Dataset
Recommender Systems from A to Z – The Right DatasetCrossing Minds
 
[UMAP2013] Recommendation with Differential Context Weighting
[UMAP2013] Recommendation with Differential Context Weighting[UMAP2013] Recommendation with Differential Context Weighting
[UMAP2013] Recommendation with Differential Context WeightingYONG ZHENG
 
Contextual Information Elicitation in Travel Recommender Systems
Contextual Information Elicitation in Travel Recommender SystemsContextual Information Elicitation in Travel Recommender Systems
Contextual Information Elicitation in Travel Recommender SystemsMatthias Braunhofer
 
[SOCRS2013]Differential Context Modeling in Collaborative Filtering
[SOCRS2013]Differential Context Modeling in Collaborative Filtering[SOCRS2013]Differential Context Modeling in Collaborative Filtering
[SOCRS2013]Differential Context Modeling in Collaborative FilteringYONG ZHENG
 
Context-Aware Points of Interest Suggestion with Dynamic Weather Data Management
Context-Aware Points of Interest Suggestion with Dynamic Weather Data ManagementContext-Aware Points of Interest Suggestion with Dynamic Weather Data Management
Context-Aware Points of Interest Suggestion with Dynamic Weather Data ManagementMatthias Braunhofer
 
Lessons learnt at building recommendation services at industry scale
Lessons learnt at building recommendation services at industry scaleLessons learnt at building recommendation services at industry scale
Lessons learnt at building recommendation services at industry scaleDomonkos Tikk
 
Recommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringRecommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringChangsung Moon
 
[系列活動] 人工智慧與機器學習在推薦系統上的應用
[系列活動] 人工智慧與機器學習在推薦系統上的應用[系列活動] 人工智慧與機器學習在推薦系統上的應用
[系列活動] 人工智慧與機器學習在推薦系統上的應用台灣資料科學年會
 
Collaborative Filtering Survey
Collaborative Filtering SurveyCollaborative Filtering Survey
Collaborative Filtering Surveymobilizer1000
 
Recommender Systems from A to Z – Model Evaluation
Recommender Systems from A to Z – Model EvaluationRecommender Systems from A to Z – Model Evaluation
Recommender Systems from A to Z – Model EvaluationCrossing Minds
 
Real-world News Recommender Systems
Real-world News Recommender SystemsReal-world News Recommender Systems
Real-world News Recommender Systemskib_83
 
Entity Summarization with User Feedback (ESWC 2020)
Entity Summarization with User Feedback (ESWC 2020)Entity Summarization with User Feedback (ESWC 2020)
Entity Summarization with User Feedback (ESWC 2020)Qingxia Liu
 
acmsigtalkshare-121023190142-phpapp01.pptx
acmsigtalkshare-121023190142-phpapp01.pptxacmsigtalkshare-121023190142-phpapp01.pptx
acmsigtalkshare-121023190142-phpapp01.pptxdongchangim30
 
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...Mladen Jovanovic
 
Recommending Sequences RecTour 2017
Recommending Sequences RecTour 2017Recommending Sequences RecTour 2017
Recommending Sequences RecTour 2017Gunjan Kumar
 
Collaborative Metric Learning (WWW'17)
Collaborative Metric Learning (WWW'17)Collaborative Metric Learning (WWW'17)
Collaborative Metric Learning (WWW'17)承剛 謝
 

Similar to Context-aware Recommendation: A Quick View (20)

Hybridisation Techniques for Cold-Starting Context-Aware Recommender Systems
Hybridisation Techniques for Cold-Starting Context-Aware Recommender SystemsHybridisation Techniques for Cold-Starting Context-Aware Recommender Systems
Hybridisation Techniques for Cold-Starting Context-Aware Recommender Systems
 
South Tyrol Suggests - STS
South Tyrol Suggests - STSSouth Tyrol Suggests - STS
South Tyrol Suggests - STS
 
Recommender Systems from A to Z – The Right Dataset
Recommender Systems from A to Z – The Right DatasetRecommender Systems from A to Z – The Right Dataset
Recommender Systems from A to Z – The Right Dataset
 
[UMAP2013] Recommendation with Differential Context Weighting
[UMAP2013] Recommendation with Differential Context Weighting[UMAP2013] Recommendation with Differential Context Weighting
[UMAP2013] Recommendation with Differential Context Weighting
 
Contextual information elicitation in travel recommender systems
Contextual information elicitation in travel recommender systemsContextual information elicitation in travel recommender systems
Contextual information elicitation in travel recommender systems
 
Contextual Information Elicitation in Travel Recommender Systems
Contextual Information Elicitation in Travel Recommender SystemsContextual Information Elicitation in Travel Recommender Systems
Contextual Information Elicitation in Travel Recommender Systems
 
[SOCRS2013]Differential Context Modeling in Collaborative Filtering
[SOCRS2013]Differential Context Modeling in Collaborative Filtering[SOCRS2013]Differential Context Modeling in Collaborative Filtering
[SOCRS2013]Differential Context Modeling in Collaborative Filtering
 
Context-Aware Points of Interest Suggestion with Dynamic Weather Data Management
Context-Aware Points of Interest Suggestion with Dynamic Weather Data ManagementContext-Aware Points of Interest Suggestion with Dynamic Weather Data Management
Context-Aware Points of Interest Suggestion with Dynamic Weather Data Management
 
Context-Aware Points of Interest Suggestion with Dynamic Weather Data Management
Context-Aware Points of Interest Suggestion with Dynamic Weather Data ManagementContext-Aware Points of Interest Suggestion with Dynamic Weather Data Management
Context-Aware Points of Interest Suggestion with Dynamic Weather Data Management
 
Lessons learnt at building recommendation services at industry scale
Lessons learnt at building recommendation services at industry scaleLessons learnt at building recommendation services at industry scale
Lessons learnt at building recommendation services at industry scale
 
Recommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringRecommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative Filtering
 
[系列活動] 人工智慧與機器學習在推薦系統上的應用
[系列活動] 人工智慧與機器學習在推薦系統上的應用[系列活動] 人工智慧與機器學習在推薦系統上的應用
[系列活動] 人工智慧與機器學習在推薦系統上的應用
 
Collaborative Filtering Survey
Collaborative Filtering SurveyCollaborative Filtering Survey
Collaborative Filtering Survey
 
Recommender Systems from A to Z – Model Evaluation
Recommender Systems from A to Z – Model EvaluationRecommender Systems from A to Z – Model Evaluation
Recommender Systems from A to Z – Model Evaluation
 
Real-world News Recommender Systems
Real-world News Recommender SystemsReal-world News Recommender Systems
Real-world News Recommender Systems
 
Entity Summarization with User Feedback (ESWC 2020)
Entity Summarization with User Feedback (ESWC 2020)Entity Summarization with User Feedback (ESWC 2020)
Entity Summarization with User Feedback (ESWC 2020)
 
acmsigtalkshare-121023190142-phpapp01.pptx
acmsigtalkshare-121023190142-phpapp01.pptxacmsigtalkshare-121023190142-phpapp01.pptx
acmsigtalkshare-121023190142-phpapp01.pptx
 
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
 
Recommending Sequences RecTour 2017
Recommending Sequences RecTour 2017Recommending Sequences RecTour 2017
Recommending Sequences RecTour 2017
 
Collaborative Metric Learning (WWW'17)
Collaborative Metric Learning (WWW'17)Collaborative Metric Learning (WWW'17)
Collaborative Metric Learning (WWW'17)
 

More from YONG ZHENG

[WI 2014]Context Recommendation Using Multi-label Classification
[WI 2014]Context Recommendation Using Multi-label Classification[WI 2014]Context Recommendation Using Multi-label Classification
[WI 2014]Context Recommendation Using Multi-label ClassificationYONG ZHENG
 
[UMAP2013]Tutorial on Context-Aware User Modeling for Recommendation by Bamsh...
[UMAP2013]Tutorial on Context-Aware User Modeling for Recommendation by Bamsh...[UMAP2013]Tutorial on Context-Aware User Modeling for Recommendation by Bamsh...
[UMAP2013]Tutorial on Context-Aware User Modeling for Recommendation by Bamsh...YONG ZHENG
 
Slope one recommender on hadoop
Slope one recommender on hadoopSlope one recommender on hadoop
Slope one recommender on hadoopYONG ZHENG
 
A manual for Ph.D dissertation
A manual for Ph.D dissertationA manual for Ph.D dissertation
A manual for Ph.D dissertationYONG ZHENG
 
Attention flow by tagging prediction
Attention flow by tagging predictionAttention flow by tagging prediction
Attention flow by tagging predictionYONG ZHENG
 
[CARS2012@RecSys]Optimal Feature Selection for Context-Aware Recommendation u...
[CARS2012@RecSys]Optimal Feature Selection for Context-Aware Recommendation u...[CARS2012@RecSys]Optimal Feature Selection for Context-Aware Recommendation u...
[CARS2012@RecSys]Optimal Feature Selection for Context-Aware Recommendation u...YONG ZHENG
 
[ECWEB2012]Differential Context Relaxation for Context-Aware Travel Recommend...
[ECWEB2012]Differential Context Relaxation for Context-Aware Travel Recommend...[ECWEB2012]Differential Context Relaxation for Context-Aware Travel Recommend...
[ECWEB2012]Differential Context Relaxation for Context-Aware Travel Recommend...YONG ZHENG
 
[HetRec2011@RecSys]Experience Discovery: Hybrid Recommendation of Student Act...
[HetRec2011@RecSys]Experience Discovery: Hybrid Recommendation of Student Act...[HetRec2011@RecSys]Experience Discovery: Hybrid Recommendation of Student Act...
[HetRec2011@RecSys]Experience Discovery: Hybrid Recommendation of Student Act...YONG ZHENG
 

More from YONG ZHENG (8)

[WI 2014]Context Recommendation Using Multi-label Classification
[WI 2014]Context Recommendation Using Multi-label Classification[WI 2014]Context Recommendation Using Multi-label Classification
[WI 2014]Context Recommendation Using Multi-label Classification
 
[UMAP2013]Tutorial on Context-Aware User Modeling for Recommendation by Bamsh...
[UMAP2013]Tutorial on Context-Aware User Modeling for Recommendation by Bamsh...[UMAP2013]Tutorial on Context-Aware User Modeling for Recommendation by Bamsh...
[UMAP2013]Tutorial on Context-Aware User Modeling for Recommendation by Bamsh...
 
Slope one recommender on hadoop
Slope one recommender on hadoopSlope one recommender on hadoop
Slope one recommender on hadoop
 
A manual for Ph.D dissertation
A manual for Ph.D dissertationA manual for Ph.D dissertation
A manual for Ph.D dissertation
 
Attention flow by tagging prediction
Attention flow by tagging predictionAttention flow by tagging prediction
Attention flow by tagging prediction
 
[CARS2012@RecSys]Optimal Feature Selection for Context-Aware Recommendation u...
[CARS2012@RecSys]Optimal Feature Selection for Context-Aware Recommendation u...[CARS2012@RecSys]Optimal Feature Selection for Context-Aware Recommendation u...
[CARS2012@RecSys]Optimal Feature Selection for Context-Aware Recommendation u...
 
[ECWEB2012]Differential Context Relaxation for Context-Aware Travel Recommend...
[ECWEB2012]Differential Context Relaxation for Context-Aware Travel Recommend...[ECWEB2012]Differential Context Relaxation for Context-Aware Travel Recommend...
[ECWEB2012]Differential Context Relaxation for Context-Aware Travel Recommend...
 
[HetRec2011@RecSys]Experience Discovery: Hybrid Recommendation of Student Act...
[HetRec2011@RecSys]Experience Discovery: Hybrid Recommendation of Student Act...[HetRec2011@RecSys]Experience Discovery: Hybrid Recommendation of Student Act...
[HetRec2011@RecSys]Experience Discovery: Hybrid Recommendation of Student Act...
 

Recently uploaded

Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterMydbops
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Mark Goldstein
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Hiroshi SHIBATA
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentPim van der Noll
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 

Recently uploaded (20)

Scale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL RouterScale your database traffic with Read & Write split using MySQL Router
Scale your database traffic with Read & Write split using MySQL Router
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
Arizona Broadband Policy Past, Present, and Future Presentation 3/25/24
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024Long journey of Ruby standard library at RubyConf AU 2024
Long journey of Ruby standard library at RubyConf AU 2024
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 

Context-aware Recommendation: A Quick View

  • 1. Context-aware Recommendation: A Quick View Yong Zheng Center for Web Intelligence DePaul University, Chicago Feb 23, 2016
  • 2. Outline • Background Recommender Systems Evaluation Matrix Factorization • Context-aware Recommendation Context Contextual PreFiltering Contextual Modeling • CARSKit: A Context-aware Recommendation Library 2
  • 4. Recommender System (RS) • RS: item recommendations tailored to user tastes 4
  • 8. How it works 8 Binary FeedbackRatings Reviews Behaviors • User Preferences Explicit Implicit
  • 9. 9 Task and Eval: Rating Prediction User Item Rating U1 T1 4 U1 T2 3 U1 T3 3 U2 T2 4 U2 T3 5 U2 T4 5 U3 T4 4 U1 T4 3 U2 T1 2 U3 T1 3 U3 T2 3 U3 T3 4 Train Test Task: P(U, T) in testing set Assume a simple model: P(U, T) = Avg (T) P(U1, T4) = Avg(T4) = (5+4)/2 = 4.5 P(U2, T1) = Avg(T1) = 4/1 = 4 P(U3, T1) = Avg(T1) = 4/1 = 4 P(U3, T2) = Avg(T2) = (3+4)/2 = 3.5 P(U3, T3) = Avg(T3) = (3+5)/2 = 4 Mean Absolute Error (MAE) = ei = R(U, T) – P(U, T) MAE = (|3 – 4.5| + |2 - 4| + |3 - 4| + |3 – 3.5| + |4 - 4|) / 5 = 1
  • 10. 10 Task and Eval: Top-N Recommendation User Item Rating U1 T1 4 U1 T2 3 U1 T3 3 U2 T2 4 U2 T3 5 U2 T4 5 U3 T4 4 U1 T4 3 U2 T1 2 U3 T1 3 U3 T2 3 U3 T3 4 Train Test Task: Top-N Items to user U3 Assume a simple model: P(U, T) = Avg (T) P(U3, T1) = Avg(T1) = 4/1 = 4 P(U3, T2) = Avg(T2) = (3+4)/2 = 3.5 P(U3, T3) = Avg(T3) = (3+5)/2 = 4 P(U3, T4) = Avg(T4) = (4+5)/2 = 3.5 Predicted Rank: T3, T1, T4, T2 Real Rank: T3, T2, T1 Precision@N = # of hits/N Precision@1 = 1/1 Precision@2 = 2/2 Precision@3 = 2/3
  • 11. 11 More Evaluation Metrics • There are many more evaluation metrics Task: Rating Prediction MAE, RMSE, MSE, MPE, etc Task: Top-N Recommendation Relevance: Precision, Recall, F-Measure, AUC, etc Ranking: MAP, NDCG, MRR, etc Business Metrics Retention rate, response rate, purchases, etc
  • 12. 12 Matrix Factorization (MF) User HarryPotter Batman Spiderman U1 5 3 4 U2 ? 2 4 U3 4 2 ? R P Q
  • 13. 13 Matrix Factorization (MF) R P Q R = Rating Matrix, m users, n movies; P = User Matrix, m users, f latent factors/features; Q = Item Matrix, n movies, f latent factors/features; Interpretation: pu indicates how much user likes f latent factors; qi means how much one item obtains f latent factors; The dot product indicates how much user likes item;
  • 14. 14 Matrix Factorization (MF) minq,p S (u,i) e R ( rui - qt i pu )2 + l (|qi|2 + |pu|2 ) Goal: Try to learn P and Q by minimizing the squared error goodness of fit regularization Goodness of fit: to reduce the prediction errors; Regularization term: to alleviate the overfitting;
  • 15. 15 Matrix Factorization (MF) Optimization using stochastic gradient descent (SGD) Parameter updates based on SGD
  • 16. 16 MovieLens-100K, http://grouplens.org/datasets/movielens/ 100K ratings given by 943 users on 1,682 movies 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.7 0.72 0.74 0.76 0.78 0.8 0.82 ItemAvg ItemKNN MF Precision MAE MAE Precision@10 Matrix Factorization (MF)
  • 18. Non-context vs Context 18 Companion • Decision Making = Rational + Contextual • Examples:  Travel destination: in winter vs in summer  Movie watching: with children vs with partner  Restaurant: quick lunch vs business dinner
  • 19. What is Context? 19 • “Context is any information that can be used to characterize the situation of an entity” by Anind K. Dey, 2001 • Observed Context: Contexts are those variables which may change when a same activity is performed again and again. • Examples: Watching a movie: time, location, companion, etc Listening to a music: time, location, emotions, occasions, etc
  • 20. Context-aware RS (CARS) 20 • Traditional RS: Users × Items Ratings • Contextual RS: Users × Items × Contexts Ratings Example of Multi-dimensional Context-aware Data set User Item Rating Time Location Companion U1 T1 3 Weekend Home Kids U1 T2 5 Weekday Home Partner U2 T2 2 Weekend Cinema Partner U2 T3 3 Weekday Cinema Family U1 T3 ? Weekend Cinema Kids
  • 21. 21 • There are three ways to build algorithms for CARS Context-aware RS (CARS)
  • 23. 23 • List of Contextual PreFiltering Algorithms Reduction-based approach, 2005 Exact and Generalized PreFiltering, 2009 Item Splitting, 2009 User Splitting, 2011 Dimension as Virtual Items, 2011 User-Item Splitting, 2014 Contextual PreFiltering
  • 24. 24 The underlying idea in item splitting is that the nature of an item, from the user's point of view, may change in different contextual conditions, hence it may be useful to consider it as two different items. (L. Baltrunas, F. Ricci, RecSys'09) – In short, contexts are dependent with items. Contextual PreFiltering (Item Splitting) At Cinema At Home At Swimming Pool
  • 25. 25 Contextual PreFiltering (Item Splitting) User Item Location Rating U1 M1 Pool 5 U2 M1 Pool 5 U3 M1 Pool 5 U1 M1 Home 2 U4 M1 Home 3 U2 M1 Home 2 High Rating Low Rating Significant difference? Let’s split it !!! M11: being seen at Pool M12: being seen at Home M1 Same movie, different IDs.
  • 26. 26 Contextual PreFiltering (Item Splitting) User Item Loc Rating U1 M1 Pool 5 U2 M1 Pool 5 U3 M1 Pool 5 U1 M1 Home 2 U4 M1 Home 3 U2 M1 Cinema 2 User Item Rating U1 M11 5 U2 M11 5 U3 M11 5 U1 M12 2 U4 M12 3 U2 M12 2 Transformation If there is qualified split, one item will be split to two new ones. A binary contextual condition for splitting: “Pool” vs. “Non-Pool” After transformation, we obtain a 2D User-Item rating matrix, so that any traditional recommendation algorithms can be applied to.
  • 27. 27 Contextual PreFiltering (Item Splitting) User Item Loc Rating U1 M1 Pool 5 U2 M1 Pool 5 U3 M1 Pool 5 U1 M1 Home 2 U4 M1 Home 3 U2 M1 Cinema 2 User Item Rating U1 M11 5 U2 M11 5 U3 M11 5 U1 M12 2 U4 M12 3 U2 M12 2 Transformation Question: How to find such a split? Pool and Non-pool, or Home and Non-home? We employ a t-test on two pieces of ratings, the best choice should help obtain the largest t value and a small p-value (e.g., < 0.05)
  • 29. 29 Example of Splitting Approaches 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 MF ItemSplitting UserSplitting UISplitting MAE Restaurant data: 2309 ratings given by 50 users on 40 restaurants in context Time and Location
  • 31. 31 • List of Contextual Modeling Algorithms  Tensor Factorization, 2010  Factorization Machines, 2011  Deviation-Based Context-aware Matrix Factorization, 2011  Deviation-Based Contextual Sparse Linear Method, 2014  Similarity-Based Context-aware Matrix Factorization, 2015  Similarity-Based Contextual Sparse Linear Method, 2015 Contextual Modeling
  • 32. 32 • Deviation-Based Context-aware MF (CAMF) Contextual Rating Deviation (CRD): how user’s rating is deviated? CRD(1) = 0.5  Users’ rating in Weekday is generally higher than users’ rating at Weekend by 0.5 CRD(2) = -0.1  Users’ rating in Cinema is generally lower than users’ rating at Home by 0.1 Deviation-Based Context-aware MF Context D1: Time D2: Location c1 Weekend Home c2 Weekday Cinema CRD(i) 0.5 -0.1
  • 33. 33 Deviation-Based Context-aware MF: CAMF_C Deviation-Based Context-aware MF BiasedMF in Traditional RS: CAMF_C Approach: Global Average Rating User bias Item Bias User-Item interaction Contextual Rating Deviation
  • 34. 34 Deviation-Based Context-aware MF: CAMF_CU & CAMF_CI Deviation-Based Context-aware MF BiasedMF in Traditional RS: CAMF_C Approach: Global Average Rating User bias Item Bias User-Item interaction CAMF_CU Approach: CAMF_CI Approach:
  • 35. 35 Example: CAMF Restaurant data: 2309 ratings given by 50 users on 40 restaurants in context Time and Location 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 MF ItemSplitting UserSplitting UISplitting CAMF_C CAMF_CI CAMF_CU MAE
  • 37. 37 CARSKit: A Java-based Open-source Context-aware Recommendation Library There are many recommendation library for traditional recommendation. Users × Items Ratings
  • 38. 38 CARSKit: A Java-based Open-source Context-aware Recommendation Library CARSKit: https://github.com/irecsys/CARSKit Users × Items × Contexts Ratings
  • 39. Yong Zheng Center for Web Intelligence DePaul University, Chicago Feb 23, 2016 Context-aware Recommendation: A Quick View