SlideShare a Scribd company logo
1 of 4
Procedure of Simplex Method
The steps for the computation of an optimum solution are as follows:
Step-1: Check whether the objective function of the given L.P.P is to be maximized or
minimized. If it is to be minimized then we convert it into a problem of maximizing it by using
the result
        Minimum Z = - Maximum(-z)
Step-2: Check whether all right hand side values of the constrains are non-negative. If any one
of values is negative then multiply the           corresponding inequation of the constraints by -1,
so as to get all values are non-negative.
Step-3: Convert all the inequations of the constraints into equations by introducing
slack/surplus variables in the constraints. Put the costs of these variables equal to zero.
Step-4: Obtain an initial basic feasible solution to the problem and put it in the first column of
the simplex table.
Step-5: Compute the net evolutions Δj= Zj – Cj (j=1,2,…..n) by using the         relation Zj – Cj = CB Xj
– Cj .
Examine the sign
        (i)      If all net evolutions are non negative, then the initial basic feasible
        solution is an optimum solution.
        (ii)     If at least one net evolution is negative, proceed on to the next step.
Step-6: If there are more than one negative net evolutions, then choose the most
        negative of them. The corresponding column is called entering            column.
        (i)      If all values in this column are ≤ 0, then there is an unbounded solution to the
given problem.
        (ii)     If at least one value is > 0, then the corresponding variable enters the         basis.


Step-7:Compute the ratio {XB / Entering column} and choose the minimum of     these ratios.
The row which is corresponding to this minimum ratio is called leaving row. The common
element which is in both entering column and leaving row is known as the leading element
or key element        or pivotal element of the table.

Step-8:Convert the key element to unity by dividing its row by the leading      element itself
and all other elements in its column to zeros by using     elementary row transformations.

Step-9:         Go to step-5 and repeat the computational procedure until either an
          optimum solution is obtained or there is an indication of an unbounded solution.
Artificial Variable Technique
– Big M-method

If in a starting simplex table, we don’t have an identity sub matrix (i.e. an obvious starting BFS), then we
introduce artificial variables to have a starting BFS. This is known as artificial variable technique. There is
one method to find the starting BFS and solve the problem i.e., Big M method.

Suppose a constraint equation i does not have a slack variable. i.e. there is no ith unit vector column in
the LHS of the constraint equations. (This happens for example when the ith constraint in the original
LPP is either ≥ or = .) Then we augment the equation with an artificial variable Ai to form the ith unit
vector column. However as the artificial variable is extraneous to the given LPP, we use a feedback
mechanism in which the optimization process automatically attempts to force these variables to zero
level. This is achieved by giving a large penalty to the coefficient of the artificial variable in the objective
function as follows:

Artificial variable objective coefficient

= - M in a maximization problem,

= M in a minimization problem

where M is a very large positive number.

Procedure of Big M-method

The following steps are involved in solving an LPP using the Big M method.

Step-1: Express the problem in the standard form.

Step-2:Add non-negative artificial variables to the left side of each of the equations corresponding to
constraints of the type ≥ or =. However, addition of these artificial variable causes violation of the
corresponding constraints. Therefore, we would like to get rid of these variables and would not allow
them to appear in the final solution. This is achieved by assigning a very large penalty (-M for
maximization and M for minimization) in the objective function.

Step-3:Solve the modified LPP by simplex method, until any one of the three cases may arise.

    1. If no artificial variable appears in the basis and the optimality conditions are satisfied, then the
       current solution is an optimal basic feasible solution.

    2. If at least one artificial variable in the basis at zero level and the optimality condition is satisfied
       then the current solution is an optimal basic feasible solution.

    3. If at least one artificial variable appears in the basis at positive level and the optimality condition
       is satisfied, then the original problem has no feasible solution. The solution satisfies the contains
but does not optimize the objective function, since it contains a very large penalty M and is
        called pseudo optimal solution.

Artificial Variable Technique
– Big M-method

Consider the LPP:

Minimize Z = 2 x1 + x2

Subject to the constraints

       3 x 1 + x2 ≥ 9

         x1 + x2 ≥ 6

          x1, x2 ≥ 0

Putting this in the standard form, the LPP is:

Minimize Z = 2 x1 + x2

Subject to the constraints

       3 x 1 + x 2 – s1        =9

         x1 + x2        – s2 = 6

          x1, x2 ,s1 , s2 ≥ 0

Here s1 , s2 are surplus variables.

Note that we do not have a 2x2 identity sub matrix in the LHS.

Introducing the artificial variables A1, A2 in the above LPP

The modified LPP is as follows:

Minimize Z = 2 x1 + x2 + 0. s1 + 0. s2 + M.A1 + M.A2

Subject to the constraints

       3 x 1 + x 2 – s1        + A1       = 9

         x1 + x2        – s2          + A2 = 6

          x1, x2 , s1 , s2 , A1 , A2 ≥ 0

Note that we now have a 2x2 identity sub matrix in the coefficient matrix of the constraint equations.
Now we can solve the above LPP by the Simplex method.

But the above objective function is not in maximization form. Convert it into maximization form.

Max Z = -2 x1 – x2 + 0. s1 + 0. s2 – M A1 – M A2



                          Cj:        -2             -2        0        0        -M            -M

B.V     CB         XB           X1            X2         S1       S2       A1        A2            MR
                                                                                                   XB/X1



 A1      -M         9                          1          -1       0        1         0              3
         -M                                                       -1
 A2                 6            1             1          0                 0         1              6
 Zj                -15M         -4M           -2M         M        M        -M        -M




Δj                              -4M+2         -2M+1       M        M        0             0
B.V     CB         XB           X1            X2         S1       S2       A1        A2            MR

                                                                                                   XB/X1

 A1      -M         9                          1          -1       0        1         0              3

         -M                                                       -1

 A2                 6            1             1          0                 0         1              6

 Zj                -15M         -4M           -2M         M        M        -M        -M




Δj                              -4M+2         -2M+1       M        M        0             0

More Related Content

What's hot

Simplex Method
Simplex MethodSimplex Method
Simplex Method
Sachin MK
 
Formulation Lpp
Formulation  LppFormulation  Lpp
Formulation Lpp
Sachin MK
 
QUEUING THEORY
QUEUING THEORYQUEUING THEORY
QUEUING THEORY
avtarsingh
 

What's hot (20)

Big m method
Big m methodBig m method
Big m method
 
Big-M Method Presentation
Big-M Method PresentationBig-M Method Presentation
Big-M Method Presentation
 
Transportation problem ppt
Transportation problem pptTransportation problem ppt
Transportation problem ppt
 
Assignment problems
Assignment problemsAssignment problems
Assignment problems
 
Duality
DualityDuality
Duality
 
Modi method
Modi methodModi method
Modi method
 
Game theory
Game theoryGame theory
Game theory
 
Integer programming
Integer programmingInteger programming
Integer programming
 
Operation research (definition, phases)
Operation research (definition, phases)Operation research (definition, phases)
Operation research (definition, phases)
 
Assignment model
Assignment modelAssignment model
Assignment model
 
Vam
VamVam
Vam
 
Game theory (Operation Research)
Game theory (Operation Research)Game theory (Operation Research)
Game theory (Operation Research)
 
Simplex Method
Simplex MethodSimplex Method
Simplex Method
 
Operations research - an overview
Operations research -  an overviewOperations research -  an overview
Operations research - an overview
 
Replacement Theory Models in Operations Research by Dr. Rajesh Timane
Replacement Theory Models in Operations Research by Dr. Rajesh TimaneReplacement Theory Models in Operations Research by Dr. Rajesh Timane
Replacement Theory Models in Operations Research by Dr. Rajesh Timane
 
Operation research and its application
Operation research and its applicationOperation research and its application
Operation research and its application
 
Formulation Lpp
Formulation  LppFormulation  Lpp
Formulation Lpp
 
Business process re engineering
Business process re engineeringBusiness process re engineering
Business process re engineering
 
QUEUING THEORY
QUEUING THEORYQUEUING THEORY
QUEUING THEORY
 
Game Theory Operation Research
Game Theory Operation ResearchGame Theory Operation Research
Game Theory Operation Research
 

Viewers also liked

Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statistics
indu psthakur
 
Graphical Method
Graphical MethodGraphical Method
Graphical Method
Sachin MK
 
Education Stakeholders’ Perceptions of the Quality of Secondary Education Und...
Education Stakeholders’ Perceptions of the Quality of Secondary Education Und...Education Stakeholders’ Perceptions of the Quality of Secondary Education Und...
Education Stakeholders’ Perceptions of the Quality of Secondary Education Und...
Creptone I. Madunda
 
Simplex method - Maximisation Case
Simplex method - Maximisation CaseSimplex method - Maximisation Case
Simplex method - Maximisation Case
Joseph Konnully
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
misey_margarette
 

Viewers also liked (20)

Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statistics
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Bba 3274 qm week 8 linear programming
Bba 3274 qm week 8 linear programmingBba 3274 qm week 8 linear programming
Bba 3274 qm week 8 linear programming
 
North West Corner Method
North West Corner MethodNorth West Corner Method
North West Corner Method
 
Graphical Method
Graphical MethodGraphical Method
Graphical Method
 
Simplex Method
Simplex MethodSimplex Method
Simplex Method
 
Solving linear programming model by simplex method
Solving linear programming model by simplex methodSolving linear programming model by simplex method
Solving linear programming model by simplex method
 
Simplex method
Simplex methodSimplex method
Simplex method
 
Two Phase Method- Linear Programming
Two Phase Method- Linear ProgrammingTwo Phase Method- Linear Programming
Two Phase Method- Linear Programming
 
Education Stakeholders’ Perceptions of the Quality of Secondary Education Und...
Education Stakeholders’ Perceptions of the Quality of Secondary Education Und...Education Stakeholders’ Perceptions of the Quality of Secondary Education Und...
Education Stakeholders’ Perceptions of the Quality of Secondary Education Und...
 
Simplex method - Maximisation Case
Simplex method - Maximisation CaseSimplex method - Maximisation Case
Simplex method - Maximisation Case
 
Operation Research (Simplex Method)
Operation Research (Simplex Method)Operation Research (Simplex Method)
Operation Research (Simplex Method)
 
Applications of linear programming
Applications of linear programmingApplications of linear programming
Applications of linear programming
 
LINEAR PROGRAMMING
LINEAR PROGRAMMINGLINEAR PROGRAMMING
LINEAR PROGRAMMING
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
 
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...
FACTORS AFFECTING PERFORMANCE IN SCIENCE OF FOURTH YEAR STUDENTS IN THE NATIO...
 
Linear Programming
Linear ProgrammingLinear Programming
Linear Programming
 
MYP 5 Real Life linear programming
MYP 5  Real Life linear programmingMYP 5  Real Life linear programming
MYP 5 Real Life linear programming
 
A STUDY ON THE FACTOR OF STUDENT ABSENTEEISM AT FACULTY OF BUSINESS, UNISEL S...
A STUDY ON THE FACTOR OF STUDENT ABSENTEEISM AT FACULTY OF BUSINESS, UNISEL S...A STUDY ON THE FACTOR OF STUDENT ABSENTEEISM AT FACULTY OF BUSINESS, UNISEL S...
A STUDY ON THE FACTOR OF STUDENT ABSENTEEISM AT FACULTY OF BUSINESS, UNISEL S...
 
Linear programming
Linear programmingLinear programming
Linear programming
 

Similar to Procedure Of Simplex Method

Artificial Variable Technique –
Artificial Variable Technique –Artificial Variable Technique –
Artificial Variable Technique –
itsvineeth209
 
Bigm 140316004148-phpapp02
Bigm 140316004148-phpapp02Bigm 140316004148-phpapp02
Bigm 140316004148-phpapp02
kongara
 
Numerical analysis dual, primal, revised simplex
Numerical analysis  dual, primal, revised simplexNumerical analysis  dual, primal, revised simplex
Numerical analysis dual, primal, revised simplex
SHAMJITH KM
 

Similar to Procedure Of Simplex Method (20)

Combined
CombinedCombined
Combined
 
Artificial Variable Technique –
Artificial Variable Technique –Artificial Variable Technique –
Artificial Variable Technique –
 
Artificial variable technique big m method (1)
Artificial variable technique big m method (1)Artificial variable technique big m method (1)
Artificial variable technique big m method (1)
 
Simplex algorithm
Simplex algorithmSimplex algorithm
Simplex algorithm
 
Big M method
Big M methodBig M method
Big M method
 
Big m method
Big   m methodBig   m method
Big m method
 
Bigm 140316004148-phpapp02
Bigm 140316004148-phpapp02Bigm 140316004148-phpapp02
Bigm 140316004148-phpapp02
 
Lp (2)
Lp (2)Lp (2)
Lp (2)
 
simplex method
simplex methodsimplex method
simplex method
 
Simplex Meathod
Simplex MeathodSimplex Meathod
Simplex Meathod
 
Simplex
SimplexSimplex
Simplex
 
2. lp iterative methods
2. lp   iterative methods2. lp   iterative methods
2. lp iterative methods
 
MFCS2-Module1.pptx
MFCS2-Module1.pptxMFCS2-Module1.pptx
MFCS2-Module1.pptx
 
Lp model, big method
Lp model, big method   Lp model, big method
Lp model, big method
 
Simplex two phase
Simplex two phaseSimplex two phase
Simplex two phase
 
Chapter 4 Simplex Method ppt
Chapter 4  Simplex Method pptChapter 4  Simplex Method ppt
Chapter 4 Simplex Method ppt
 
Simplex method material for operation .pptx
Simplex method material for operation .pptxSimplex method material for operation .pptx
Simplex method material for operation .pptx
 
Numerical analysis dual, primal, revised simplex
Numerical analysis  dual, primal, revised simplexNumerical analysis  dual, primal, revised simplex
Numerical analysis dual, primal, revised simplex
 
Digital electronics lesson 2 part 2
Digital electronics lesson 2 part 2Digital electronics lesson 2 part 2
Digital electronics lesson 2 part 2
 
Simplex part 2 of 4
Simplex part 2 of 4Simplex part 2 of 4
Simplex part 2 of 4
 

More from itsvineeth209

Evolution,Drivers Of Indian Retail
Evolution,Drivers Of Indian RetailEvolution,Drivers Of Indian Retail
Evolution,Drivers Of Indian Retail
itsvineeth209
 
Intro To Tretailing 6.2.09
Intro To Tretailing 6.2.09Intro To Tretailing 6.2.09
Intro To Tretailing 6.2.09
itsvineeth209
 
Indian Retail Sector
Indian Retail SectorIndian Retail Sector
Indian Retail Sector
itsvineeth209
 
Rm 10 Report Writing 2
Rm   10   Report Writing 2Rm   10   Report Writing 2
Rm 10 Report Writing 2
itsvineeth209
 
Rm 6 Sampling Design
Rm   6   Sampling DesignRm   6   Sampling Design
Rm 6 Sampling Design
itsvineeth209
 
Rm 1 Intro Types Research Process
Rm   1   Intro Types   Research ProcessRm   1   Intro Types   Research Process
Rm 1 Intro Types Research Process
itsvineeth209
 
Rm 5 Methods Of Data Collection
Rm   5   Methods Of Data CollectionRm   5   Methods Of Data Collection
Rm 5 Methods Of Data Collection
itsvineeth209
 
Rm 4 Research Design
Rm   4   Research DesignRm   4   Research Design
Rm 4 Research Design
itsvineeth209
 
Rm 2 Problem Identification
Rm   2   Problem IdentificationRm   2   Problem Identification
Rm 2 Problem Identification
itsvineeth209
 
Transportation Problem
Transportation ProblemTransportation Problem
Transportation Problem
itsvineeth209
 
Transportation Problem
Transportation ProblemTransportation Problem
Transportation Problem
itsvineeth209
 
North West Corner Rule
North   West Corner RuleNorth   West Corner Rule
North West Corner Rule
itsvineeth209
 
The Theories Of Trade
The Theories Of TradeThe Theories Of Trade
The Theories Of Trade
itsvineeth209
 
The Theories Of Trade
The Theories Of TradeThe Theories Of Trade
The Theories Of Trade
itsvineeth209
 

More from itsvineeth209 (20)

Green Marketing
Green MarketingGreen Marketing
Green Marketing
 
Evolution,Drivers Of Indian Retail
Evolution,Drivers Of Indian RetailEvolution,Drivers Of Indian Retail
Evolution,Drivers Of Indian Retail
 
Intro To Tretailing 6.2.09
Intro To Tretailing 6.2.09Intro To Tretailing 6.2.09
Intro To Tretailing 6.2.09
 
Indian Retail Sector
Indian Retail SectorIndian Retail Sector
Indian Retail Sector
 
Sampling Design
Sampling DesignSampling Design
Sampling Design
 
Sampling Design
Sampling DesignSampling Design
Sampling Design
 
Rm 10 Report Writing 2
Rm   10   Report Writing 2Rm   10   Report Writing 2
Rm 10 Report Writing 2
 
Rm 6 Sampling Design
Rm   6   Sampling DesignRm   6   Sampling Design
Rm 6 Sampling Design
 
Rm 1 Intro Types Research Process
Rm   1   Intro Types   Research ProcessRm   1   Intro Types   Research Process
Rm 1 Intro Types Research Process
 
Rm 5 Methods Of Data Collection
Rm   5   Methods Of Data CollectionRm   5   Methods Of Data Collection
Rm 5 Methods Of Data Collection
 
Rm 3 Hypothesis
Rm   3   HypothesisRm   3   Hypothesis
Rm 3 Hypothesis
 
Research Design
Research DesignResearch Design
Research Design
 
Rm 4 Research Design
Rm   4   Research DesignRm   4   Research Design
Rm 4 Research Design
 
Rm 2 Problem Identification
Rm   2   Problem IdentificationRm   2   Problem Identification
Rm 2 Problem Identification
 
Transportation Problem
Transportation ProblemTransportation Problem
Transportation Problem
 
Transportation Problem
Transportation ProblemTransportation Problem
Transportation Problem
 
North West Corner Rule
North   West Corner RuleNorth   West Corner Rule
North West Corner Rule
 
The Theories Of Trade
The Theories Of TradeThe Theories Of Trade
The Theories Of Trade
 
The Balance Of
The Balance OfThe Balance Of
The Balance Of
 
The Theories Of Trade
The Theories Of TradeThe Theories Of Trade
The Theories Of Trade
 

Recently uploaded

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 

Procedure Of Simplex Method

  • 1. Procedure of Simplex Method The steps for the computation of an optimum solution are as follows: Step-1: Check whether the objective function of the given L.P.P is to be maximized or minimized. If it is to be minimized then we convert it into a problem of maximizing it by using the result Minimum Z = - Maximum(-z) Step-2: Check whether all right hand side values of the constrains are non-negative. If any one of values is negative then multiply the corresponding inequation of the constraints by -1, so as to get all values are non-negative. Step-3: Convert all the inequations of the constraints into equations by introducing slack/surplus variables in the constraints. Put the costs of these variables equal to zero. Step-4: Obtain an initial basic feasible solution to the problem and put it in the first column of the simplex table. Step-5: Compute the net evolutions Δj= Zj – Cj (j=1,2,…..n) by using the relation Zj – Cj = CB Xj – Cj . Examine the sign (i) If all net evolutions are non negative, then the initial basic feasible solution is an optimum solution. (ii) If at least one net evolution is negative, proceed on to the next step. Step-6: If there are more than one negative net evolutions, then choose the most negative of them. The corresponding column is called entering column. (i) If all values in this column are ≤ 0, then there is an unbounded solution to the given problem. (ii) If at least one value is > 0, then the corresponding variable enters the basis. Step-7:Compute the ratio {XB / Entering column} and choose the minimum of these ratios. The row which is corresponding to this minimum ratio is called leaving row. The common element which is in both entering column and leaving row is known as the leading element or key element or pivotal element of the table. Step-8:Convert the key element to unity by dividing its row by the leading element itself and all other elements in its column to zeros by using elementary row transformations. Step-9: Go to step-5 and repeat the computational procedure until either an optimum solution is obtained or there is an indication of an unbounded solution.
  • 2. Artificial Variable Technique – Big M-method If in a starting simplex table, we don’t have an identity sub matrix (i.e. an obvious starting BFS), then we introduce artificial variables to have a starting BFS. This is known as artificial variable technique. There is one method to find the starting BFS and solve the problem i.e., Big M method. Suppose a constraint equation i does not have a slack variable. i.e. there is no ith unit vector column in the LHS of the constraint equations. (This happens for example when the ith constraint in the original LPP is either ≥ or = .) Then we augment the equation with an artificial variable Ai to form the ith unit vector column. However as the artificial variable is extraneous to the given LPP, we use a feedback mechanism in which the optimization process automatically attempts to force these variables to zero level. This is achieved by giving a large penalty to the coefficient of the artificial variable in the objective function as follows: Artificial variable objective coefficient = - M in a maximization problem, = M in a minimization problem where M is a very large positive number. Procedure of Big M-method The following steps are involved in solving an LPP using the Big M method. Step-1: Express the problem in the standard form. Step-2:Add non-negative artificial variables to the left side of each of the equations corresponding to constraints of the type ≥ or =. However, addition of these artificial variable causes violation of the corresponding constraints. Therefore, we would like to get rid of these variables and would not allow them to appear in the final solution. This is achieved by assigning a very large penalty (-M for maximization and M for minimization) in the objective function. Step-3:Solve the modified LPP by simplex method, until any one of the three cases may arise. 1. If no artificial variable appears in the basis and the optimality conditions are satisfied, then the current solution is an optimal basic feasible solution. 2. If at least one artificial variable in the basis at zero level and the optimality condition is satisfied then the current solution is an optimal basic feasible solution. 3. If at least one artificial variable appears in the basis at positive level and the optimality condition is satisfied, then the original problem has no feasible solution. The solution satisfies the contains
  • 3. but does not optimize the objective function, since it contains a very large penalty M and is called pseudo optimal solution. Artificial Variable Technique – Big M-method Consider the LPP: Minimize Z = 2 x1 + x2 Subject to the constraints 3 x 1 + x2 ≥ 9 x1 + x2 ≥ 6 x1, x2 ≥ 0 Putting this in the standard form, the LPP is: Minimize Z = 2 x1 + x2 Subject to the constraints 3 x 1 + x 2 – s1 =9 x1 + x2 – s2 = 6 x1, x2 ,s1 , s2 ≥ 0 Here s1 , s2 are surplus variables. Note that we do not have a 2x2 identity sub matrix in the LHS. Introducing the artificial variables A1, A2 in the above LPP The modified LPP is as follows: Minimize Z = 2 x1 + x2 + 0. s1 + 0. s2 + M.A1 + M.A2 Subject to the constraints 3 x 1 + x 2 – s1 + A1 = 9 x1 + x2 – s2 + A2 = 6 x1, x2 , s1 , s2 , A1 , A2 ≥ 0 Note that we now have a 2x2 identity sub matrix in the coefficient matrix of the constraint equations.
  • 4. Now we can solve the above LPP by the Simplex method. But the above objective function is not in maximization form. Convert it into maximization form. Max Z = -2 x1 – x2 + 0. s1 + 0. s2 – M A1 – M A2 Cj: -2 -2 0 0 -M -M B.V CB XB X1 X2 S1 S2 A1 A2 MR XB/X1 A1 -M 9 1 -1 0 1 0 3 -M -1 A2 6 1 1 0 0 1 6 Zj -15M -4M -2M M M -M -M Δj -4M+2 -2M+1 M M 0 0 B.V CB XB X1 X2 S1 S2 A1 A2 MR XB/X1 A1 -M 9 1 -1 0 1 0 3 -M -1 A2 6 1 1 0 0 1 6 Zj -15M -4M -2M M M -M -M Δj -4M+2 -2M+1 M M 0 0