SlideShare a Scribd company logo
1 of 50
Download to read offline
Engr.Tehseen Ahsan 
Lecturer, Electrical Engineering Department 
EE-307 Electronic Systems Design 
HITEC University Taxila Cantt, Pakistan 
Amplifier Frequency Response (Part 2)
The Bode Plot 
AplotofdBvoltagegainversusfrequencyonsemilogpaperiscalledaBodePlot. 
AgeneralizedBodeplotforanRCcircuitlikethatshowninfigure10-23(a)appearsinpart(b) 
2
The Bode Plot continue… 
Theidealresponsecurveisshowninblue.Noticethatitisflat(0dB)downtocriticalfrequencyatwhichpointthegaindropsat-20dB/decade. 
Abovefcarethemidrangefrequencies.Theactualresponsecurveisshowninred. 
Theactualresponsecurvedecreasesgraduallyinmidrangeandisdownto-3dBatthecriticalfrequency. 
Often,theidealresponseisusedtosimplifyamplifieranalysis 
Thecriticalfrequencyatwhichthecurvebreaksintoa-20dB/decadedropissometimescalledthelowerbreakfrequency. 
3
Total Low-Frequency Response of an Amplifier 
Let’slookatthecombinedeffectofthethreeHigh-passRCcircuitsinaBJTamplifier. 
EachcircuithasacriticalfrequencydeterminedbyRandCvalues. 
ThecriticalfrequenciesofthethreeRCcircuitsarenotnecessarilyallequal. 
IfoneoftheRCcircuitshasacritical(break)frequencyhigherthantheothertwothenitisthedominantRCcircuit. 
Thedominantcircuitdeterminesthefrequencyatwhichtheoverallgainofamplifierbeginstodropat-20dB/decade. 
Theothercircuitseachcauseanadditional-20dB/decaderoll-offbelowtheirrespectivecritical(break)frequencies. 4
Total Low-Frequency Response of an Amplifier continue… 5
Total Low-Frequency Response of an Amplifier continue… 
RefertoBodeplotinfigure10-25whichshowsthesuperimposedidealresponsesforthreeRCcircuits(greenLines)ofaBJTamplifier. 
EachRCcircuithasadifferentcriticalfrequency. 
TheinputRCcircuitisdominant(highestfc)inthiscase,andthebypassRCcircuithasthelowestfc.Theoverallresponseisshownastheblueline. 6
Total Low-Frequency Response of an Amplifier continue… 7
Total Low-Frequency Response of an Amplifier continue… 
RefertotheBodeplotinfigure10-26allRCcircuitshavethesamecriticalfrequency,theresponsecurvehasonebreakpointatthatvalueoffc,andthevoltagegainrollsoffat-60dB/decadebelowthatvalue. 
Inthiscasethegainisat-9dBbelowthemidrangevoltagegain(-3dBforeachRCcircuit). 8
9
10
11
10-4 High-Frequency Amplifier Response 
Wehaveseenthecouplingandbypasscapacitorsaffectthevoltagegainofanamplifieratlowerfrequencieswherethereactancesofthecouplingandbypasscapacitorsaresignificant. 
Inmidrangeofanamplifier,theeffectsofthecapacitorsareminimalandcanbeneglected. 
Ifthefrequencyisincreasedsufficiently,apointisreachedwherethetransistor’sinternalcapacitancesbegantohaveasignificanteffectonthegain. 
12
BJT Amplifiers 
Ahigh-frequencyacequivalentcircuitfortheBJTamplifierinfig10-31(a)isshowninfig10-31(b). 
13
BJT Amplifiers continue… 
Noticethatthecouplingandbypasscapacitorsaretreatedaseffectiveshortsanddon’tappearinequivalentcircuit. 
TheinternalcapacitancesCbeandCbc,whicharesignificantonlyathighfrequencies,doappearinthediagram. 
CbeissometimescalledinputcapacitanceCib,andCbcissometimescalledoutputcapacitanceCob. 
CbeisspecifiedondatasheetsatacertainvalueofVBE. 
OftenthedatasheetwilllistCibasCiboandCobasCobo. 
Theoastheletterinthesubscriptindicatesthecapacitanceismeasuredwiththebaseopen. 14
Miller’s Theorem in High-Frequency Analysis (in BJT Amplifiers) 
Cin(Miller)=Cbc(Av+1) 
Cout(Miller)=Cbc(Av+1/Av) 
ThesetwoMillercapacitances(Cin(Miller)&Cout(Miller))createahigh-frequencyinputRCcircuitandahigh-frequencyoutputRCcircuit. 
Becausethecapacitancesgotogroundandthereforeactaslow-passfilters. 15IdealModelbecausestraycapacitancesduetocircuitinterconnectionsareneglected
The Input RC Circuit 
Athighfrequencies,theinputcircuitisshowninfig10-33(a) whereRin(base)=βacr'e16
The Input RC Circuit continue… 
Asthefrequencyincreases,thecapacitivereactancebecomessmaller.Thiscausesthesignalvoltageatbasetodecrease,sotheamplifier’svoltagegaindecreases. 
Thereasonforthisisthatthecapacitanceandresistanceactasavoltagedividerand,asthefrequencyincreases,morevoltageisdroppedacrosstheresistanceandlessacrosscapacitance. 
Atthecriticalfrequency,thegainis3dBlessthanitsmidrangevalue. 
Thecriticalhighfrequency,fc,isthefrequencyatwhichthecapacitivereactanceisequaltothetotalresistance. 
XCtot=Rth=Rout=Rs∥R1∥R2∥βacr'e 
17
The Input RC Circuit continue… 
 18Upper critical Frequency
19
20
21
Phase Shift of the Input RC Circuit 
Becausetheoutputvoltageofahigh-frequencyinputRCcircuitisacrossthecapacitor,theoutputvoltagelagstheinput.Thephaseangleisexpressedas 
Atthecriticalfrequencyfc,thephaseangleis45˚withthebase(output)voltagelaggingtheinputsignal. 
Asthefrequencyincreasesabove,thephaseangleincreasesabove45˚andapproaches90˚whenthefrequencyissufficientlyhigh. 22
The Output RC circuit 
Thehigh-frequencyoutputRCcircuitisformedbytheMilleroutputcapacitanceandtheresistancelookinginatthecollectorasshowninfigure10-36(a). 
23
The Output RC circuit continue… 
Cout(Miller)=Cbc(Av+1/Av) 
Ifthevoltagegainisatleast10,thenCout(Miller)≈Cbc. 
Thecriticalfrequencyisdeterminedas 
JustlikeinputRCcircuit,theoutputRCcircuitreducesthegainby3dBatthecriticalfrequency.Whenthefrequencygoesabovethecriticalvalue,thegaindropsat-20dB/decaderate.ThephaseangleintroducedbyoutputRCcircuitis 
24Where Rc = RC ∥RL
25
26
FET Amplifiers 
Theapproachtothehigh-frequencyanalysisofaFETamplifierissimilartothatofaBJT. 
ThebasicdifferencesarethespecificationsoftheinternalFETcapacitancesandthedeterminationoftheinputresistance.Figure10-39(a)showsaJFETcommon-sourceamplifierusedtoillustratehigh-frequencyanalysis. 27
FET Amplifiers Continue… 
Ahigh-frequencyequivalentcircuitfortheamplifierisshowninfigure10-39(b). 
Thecouplingandbypasscapacitorsareassumedtohavenegligiblereactancesandareconsideredtobeshorts. 
TheinternalcapacitancesCgsandCgdappearintheequivalentcircuitbecausetheirreactancesaresignificantathighfrequencies. 28
Values of Cgs, Cgd, and Cds 
FETdatasheetsdonotnormallyprovidevaluesforCgs,Cgd, orCds. 
InsteadthreeothervaluesareusuallyspecifiedwiththehelpofthemyoucaneasilycalculateCgs,Cgd,andCds. 
Cgd=Crss 
Cgs=Ciss-Crss 
Cds=Coss-Crss 
Cossisnotspecifiedasoftenastheothervaluesondatasheets. IncaseswhereCossisnotavailable,youmusteitherassumeavalueorneglectCds. 29Ciss = the input capacitanceCrss = the reverse transfer capacitanceCoss= the output capacitance
Miller’s Theorem in High-Frequency Analysis (in FET Amplifiers) 
Cin(Miller)=Cgd(Av+1) 
Cout(Miller)=Cgd(Av+1/Av) 
ThesetwoMillercapacitances(Cin(Miller)&Cout(Miller))createahigh-frequencyinputRCcircuitandahigh-frequencyoutputRCcircuit. 
Botharelow-passfilterswhichproducephaselag. 30
The Input RC Circuit 
Thehigh-frequencyinputcircuitformsalow-passtypeoffilterandisshowninfig-10-41(a). 
31
The Input RC Circuit Continue… 
SincebothRGandRin(gate)ofFETsareextremelyhigh, thereforecontrollingresistancefortheinputcircuitistheresistanceoftheinputsourceRsaslongasRs<<Rin. 
ThisisbecauseRsappearsinparallelwithRinwhenThevenin’stheoremisapplied. 
ThesimplifiedinputRCcircuitappearsinfigure10-41(b). 
Thecriticalfrequencyis: 32
33
34
The Output RC circuit 
Thehigh-frequencyoutputRCcircuitisformedbytheMilleroutputcapacitanceandtheresistancelookinginatthedrainasshowninfigure10-43(a). 35
The Output RC circuit continue… 
Cout(Miller)=Cgd(Av+1/Av) 
Ifthevoltagegainisatleast10,thenCout(Miller)≈Cgd. 
Thecriticalfrequencyisdeterminedas 
Theoutputcircuitproducesaphaseshiftof36Where Rd = RD ∥RL
37
Total High-Frequency Response of an Amplifier 
Wehavealreadyseenthat,twoRCcircuits(Cin(Miller)& Cout(Miller))createdbytheinternaltransistorcapacitancesinfluencethehigh-frequencyresponseofbothBJTandFET. 
Asthefrequencyincreasesandreachesthehighendofitsmidrangevalues,oneoftheRCcircuitwillcausetheamplifier’sgaintobegindroppingoff. 
Thefrequencyatwhichthisoccursisthedominantcriticalfrequency;itisthelowerofthetwocriticalfrequencies. 
Anidealhigh-frequencyBodeplotisshowninfigure10- 44(a)nextslide.Itshowsthefirstbreakpointatfcu(input) wherethevoltagegainbeginstorolloffat-20dB/decade.Atfcu(output),thegainbeginsdroppingat-40dB/decadebecauseeachRCcircuitisaddinga-20dB/decaderoll-off38
Total High-Frequency Response of an Amplifier continue… 
Figure10-44(b)showsanon-idealBodeplotwherethevoltagegainisactually-3dBbelowmidrangeatfcu(input). OtherpossibilitiesarethattheoutputRCcircuitisdominantorbothcircuitshavethesamecriticalfrequency. 39
10-5 Total Amplifier Frequency Response 
Figure10-45(b)nextslideshowsageneralizedidealBodeplotfortheBJTamplifierinfig10-45(a)nextslide. 
Thethreebreakpointsatthelowercriticalfrequencies(fcl1,fcl2, andfcl3)areproducedbythreelow-frequencyRCcircuitsformedbythecouplingandbypasscapacitors. 
Thetwobreakpointsatthehighercriticalfrequencies(fcu1andfcu2)areproducedbytwohigh-frequencyRCcircuitsformedbythetransistor'sinternalcapacitances. 
Thetwodominantcriticalfrequenciesfcl3(fcl(dom))andfcu1(fcu(dom)) areofourinterestinfig10-45(b). 
Thesetwofrequenciesarewherethevoltagegainoftheamplifieris3dBbelowitsmidrangevalue. 
Thesedominantfrequenciesarereferredtoasthelowercriticalfrequencyfcl(dom),andtheuppercriticalfrequency,fcu(dom).40
Total Amplifier Frequency Response Continue… 41
Total Amplifier Frequency Response Continue… 
Theupperandlowercriticalfrequenciesaresometimescalledthehalf-powerfrequencies.Thisisduetothefactthattheoutputpowerofanamplifieratitscriticalfrequenciesisone-halfofitsmidrangepower(asdiscussedpreviously). 
Alsostartingwiththefactthattheoutputvoltageis70.7%ofitsmidrangevalueatthecriticalfrequencies. 42
Bandwidth 
Anamplifiernormallyoperateswithsignalfrequenciesbetweenfcl(dom)andfcu(dom). 
Whentheinputsignalfrequencyisatfcl(dom)orfcu(dom),theoutputsignallevelis70.7%ofitsmidrangevalue. 
Ifthesignalfrequencydropsbelowfcl(dom),thegainandthustheoutputsignalleveldrops20dB/decadeuntilthenextcriticalfrequencyisreached. 
Thesameoccurswhenthesignalfrequencygoesabovefcu(dom). 
Therange(band)offrequencieslyingbetweenfcl(dom)andfcu(dom)isdefinedasthebandwidthoftheamplifierasshowninfigure10- 46nextslide. 
Onlythedominantcriticalfrequenciesappearintheresponsecurvebecausetheydeterminethebandwidth. 43
Bandwidth Continue… 
Theamplifier’sbandwidthisexpressedinunitsofhertzas 
BW=fcu(dom)-fcl(dom) 
Ideally,allsignalfrequencieslyinginamplifier’sbandwidthareamplifiedequally.i.e,ifa10mVrmssignalisappliedtoanamplifierwithavoltagegainof20,itisamplifiedto200mVrmsforallfrequenciesinthebandwidth. 44
Unity-Bandwidth Product 
Onecharacteristicofamplifiersisthattheproductofvoltagegainandbandwidthisalwaysconstantwhentherollis-20dB/decade. Thischaracteristiciscalledgain-bandwidthproduct. 
Let’sassumethatthelowercriticalfrequencyofaparticularamplifierismuchlessthantheuppercriticalfrequency. 
fcl(dom)<<fcu(dom) 
Thebandwidthcanbeapproximatedas 
BW=fcu(dom)-fcl(dom)≈fcu45
Unity-Gain Frequency 
ThesimplifiedBodeplotforthecondition(discussedinpreviousslide)isshowninfig10-4746
Unity-Gain Frequency Continue… 
Noticethatfcl(dom)isneglectedbecauseitissomuchsmallerthanfcu(dom),andthebandwidthapproximatelyequalsfcu(dom). 
Beginningatfcu(dom),thegainrollsoffuntilunitygain(0dB)isreached. 
Thefrequencyatwhichtheamplifier’sgainis1iscalledtheunity- gainfrequency,fT. 
ThesignificanceoffTisthatitalwaysequalsthemidrangevoltagegaintimesthebandwidthandisconstantforagiventransistor. 
fT=AV(mid)BW 
Forthecaseshowninfig10-47,fT=AV(mid)fcu47
10-6 Frequency Response of Multistage Amplifiers 
Whenamplifierstagesarecascadedtoformamultistageamplifier(morethanonestageamplifier),thedominantfrequencyresponseisdeterminedbytheresponsesoftheindividualstages. Therearetwocasestoconsider: 
1.Eachstagehasadifferentlowercriticalfrequencyandadifferentuppercriticalfrequency. 
2.EachStagehasthesamelowercriticalfrequencyandthesameuppercriticalfrequency. 
DifferentCriticalFrequencies 
Whenthelowercriticalfrequency,fcl(dom),ofeachamplifierstageisdifferent,thedominantlowercriticalfrequency,f'cl(dom),equalsthecriticalfrequencyofthestagewiththehighestfcl(dom). 
Whentheuppercriticalfrequency,fcu(dom),ofeachamplifierstageisdifferent,thedominantuppercriticalfrequency,f'cu(dom),equalsthecriticalfrequencyofthestagewiththelowestfcu(dom). 48
Frequency Response of Multistage Amplifiers Continue… 
OverallBandwidth 
ThebandwidthofamultistageamplifierisBW=f'cu(dom)-f'cl(dom) 
EqualCriticalFrequencies 
Wheneachamplifierstageinamultistagearrangementhasequalcriticalfrequencies,youmaythinkthatthedominantcriticalfrequencyisequaltothecriticalfrequencyofeachstage.Thisisnotthecasehowever. 
Samelowercriticalfrequencies 
SameHighercriticalfrequencies 
Where“n”isthenumberofstagesofamultistageamplifier. 49
50

More Related Content

What's hot

Analog communications lab
Analog communications labAnalog communications lab
Analog communications lab
Vishal kakade
 

What's hot (20)

Pilot protection
Pilot protectionPilot protection
Pilot protection
 
engineering electronics project report
engineering electronics project reportengineering electronics project report
engineering electronics project report
 
Current Transformer and Potential Transformer
Current Transformer and Potential TransformerCurrent Transformer and Potential Transformer
Current Transformer and Potential Transformer
 
Electronic circuit design lab manual
Electronic circuit design lab manualElectronic circuit design lab manual
Electronic circuit design lab manual
 
POWER SWITCHING DEVICES
POWER SWITCHING DEVICESPOWER SWITCHING DEVICES
POWER SWITCHING DEVICES
 
Active filters
Active filtersActive filters
Active filters
 
Unit 4 ac voltage controller
Unit 4 ac voltage controllerUnit 4 ac voltage controller
Unit 4 ac voltage controller
 
Instrument Transformer Presentation
Instrument Transformer PresentationInstrument Transformer Presentation
Instrument Transformer Presentation
 
Mosfet power losses
Mosfet power lossesMosfet power losses
Mosfet power losses
 
capacitive ac circuits
capacitive ac circuitscapacitive ac circuits
capacitive ac circuits
 
Feedback amplifiers
Feedback amplifiersFeedback amplifiers
Feedback amplifiers
 
power amplifiers
power amplifierspower amplifiers
power amplifiers
 
Ditial to Analog Converter
Ditial to Analog ConverterDitial to Analog Converter
Ditial to Analog Converter
 
Instrumentation amplifier
Instrumentation amplifierInstrumentation amplifier
Instrumentation amplifier
 
Analog communications lab
Analog communications labAnalog communications lab
Analog communications lab
 
Power System Modelling And Simulation Lab
Power System Modelling And Simulation LabPower System Modelling And Simulation Lab
Power System Modelling And Simulation Lab
 
Ec ii lab manual
Ec ii lab manualEc ii lab manual
Ec ii lab manual
 
High-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptxHigh-Efficiency RF Power Amplifiers.pptx
High-Efficiency RF Power Amplifiers.pptx
 
Logic Families Electronics
Logic Families ElectronicsLogic Families Electronics
Logic Families Electronics
 
Diac.pptx
Diac.pptxDiac.pptx
Diac.pptx
 

Similar to Amplifier frequency response (part 2)

Exp1 (passive filter) agdon
Exp1 (passive filter)   agdonExp1 (passive filter)   agdon
Exp1 (passive filter) agdon
Sarah Krystelle
 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulation
Vishal kakade
 
Exp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filterExp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filter
Sarah Krystelle
 
ECE6420 Final Project Report
ECE6420 Final Project ReportECE6420 Final Project Report
ECE6420 Final Project Report
Tianhao Li
 

Similar to Amplifier frequency response (part 2) (20)

Frequency Response.pptx
Frequency Response.pptxFrequency Response.pptx
Frequency Response.pptx
 
Linear integrated circuit
Linear integrated circuitLinear integrated circuit
Linear integrated circuit
 
Exp1 (passive filter) agdon
Exp1 (passive filter)   agdonExp1 (passive filter)   agdon
Exp1 (passive filter) agdon
 
Exp passive filter (2)
Exp passive filter (2)Exp passive filter (2)
Exp passive filter (2)
 
Exp no 3 setb118 Analog electronics
Exp no 3 setb118  Analog electronicsExp no 3 setb118  Analog electronics
Exp no 3 setb118 Analog electronics
 
Exp passive filter (3)
Exp passive filter (3)Exp passive filter (3)
Exp passive filter (3)
 
Exp passive filter (6)
Exp passive filter (6)Exp passive filter (6)
Exp passive filter (6)
 
INPUT REFERRED NOISE REDUCTION TECHNIQUE FOR TRANSCONDUCTANCE AMPLIFIERS
INPUT REFERRED NOISE REDUCTION TECHNIQUE FOR TRANSCONDUCTANCE AMPLIFIERSINPUT REFERRED NOISE REDUCTION TECHNIQUE FOR TRANSCONDUCTANCE AMPLIFIERS
INPUT REFERRED NOISE REDUCTION TECHNIQUE FOR TRANSCONDUCTANCE AMPLIFIERS
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
Exp passive filter (9)
Exp passive filter (9)Exp passive filter (9)
Exp passive filter (9)
 
Modeling and analysis of pfc with appreciable voltage ripple to achieve fast ...
Modeling and analysis of pfc with appreciable voltage ripple to achieve fast ...Modeling and analysis of pfc with appreciable voltage ripple to achieve fast ...
Modeling and analysis of pfc with appreciable voltage ripple to achieve fast ...
 
Pulse amplitude modulation
Pulse amplitude modulationPulse amplitude modulation
Pulse amplitude modulation
 
Electrical and Electronics Engineering
Electrical and Electronics EngineeringElectrical and Electronics Engineering
Electrical and Electronics Engineering
 
orca_share_media1489816591592333333333.pptx
orca_share_media1489816591592333333333.pptxorca_share_media1489816591592333333333.pptx
orca_share_media1489816591592333333333.pptx
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched Capacitor
 
Test2
Test2Test2
Test2
 
Exp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filterExp2 passive band pass and band-stop filter
Exp2 passive band pass and band-stop filter
 
IC Circuits Amplifiers
IC Circuits AmplifiersIC Circuits Amplifiers
IC Circuits Amplifiers
 
ECE6420 Final Project Report
ECE6420 Final Project ReportECE6420 Final Project Report
ECE6420 Final Project Report
 
wireless power transfer
wireless power transferwireless power transfer
wireless power transfer
 

Recently uploaded

Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
dharasingh5698
 

Recently uploaded (20)

Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 

Amplifier frequency response (part 2)

  • 1. Engr.Tehseen Ahsan Lecturer, Electrical Engineering Department EE-307 Electronic Systems Design HITEC University Taxila Cantt, Pakistan Amplifier Frequency Response (Part 2)
  • 2. The Bode Plot AplotofdBvoltagegainversusfrequencyonsemilogpaperiscalledaBodePlot. AgeneralizedBodeplotforanRCcircuitlikethatshowninfigure10-23(a)appearsinpart(b) 2
  • 3. The Bode Plot continue… Theidealresponsecurveisshowninblue.Noticethatitisflat(0dB)downtocriticalfrequencyatwhichpointthegaindropsat-20dB/decade. Abovefcarethemidrangefrequencies.Theactualresponsecurveisshowninred. Theactualresponsecurvedecreasesgraduallyinmidrangeandisdownto-3dBatthecriticalfrequency. Often,theidealresponseisusedtosimplifyamplifieranalysis Thecriticalfrequencyatwhichthecurvebreaksintoa-20dB/decadedropissometimescalledthelowerbreakfrequency. 3
  • 4. Total Low-Frequency Response of an Amplifier Let’slookatthecombinedeffectofthethreeHigh-passRCcircuitsinaBJTamplifier. EachcircuithasacriticalfrequencydeterminedbyRandCvalues. ThecriticalfrequenciesofthethreeRCcircuitsarenotnecessarilyallequal. IfoneoftheRCcircuitshasacritical(break)frequencyhigherthantheothertwothenitisthedominantRCcircuit. Thedominantcircuitdeterminesthefrequencyatwhichtheoverallgainofamplifierbeginstodropat-20dB/decade. Theothercircuitseachcauseanadditional-20dB/decaderoll-offbelowtheirrespectivecritical(break)frequencies. 4
  • 5. Total Low-Frequency Response of an Amplifier continue… 5
  • 6. Total Low-Frequency Response of an Amplifier continue… RefertoBodeplotinfigure10-25whichshowsthesuperimposedidealresponsesforthreeRCcircuits(greenLines)ofaBJTamplifier. EachRCcircuithasadifferentcriticalfrequency. TheinputRCcircuitisdominant(highestfc)inthiscase,andthebypassRCcircuithasthelowestfc.Theoverallresponseisshownastheblueline. 6
  • 7. Total Low-Frequency Response of an Amplifier continue… 7
  • 8. Total Low-Frequency Response of an Amplifier continue… RefertotheBodeplotinfigure10-26allRCcircuitshavethesamecriticalfrequency,theresponsecurvehasonebreakpointatthatvalueoffc,andthevoltagegainrollsoffat-60dB/decadebelowthatvalue. Inthiscasethegainisat-9dBbelowthemidrangevoltagegain(-3dBforeachRCcircuit). 8
  • 9. 9
  • 10. 10
  • 11. 11
  • 12. 10-4 High-Frequency Amplifier Response Wehaveseenthecouplingandbypasscapacitorsaffectthevoltagegainofanamplifieratlowerfrequencieswherethereactancesofthecouplingandbypasscapacitorsaresignificant. Inmidrangeofanamplifier,theeffectsofthecapacitorsareminimalandcanbeneglected. Ifthefrequencyisincreasedsufficiently,apointisreachedwherethetransistor’sinternalcapacitancesbegantohaveasignificanteffectonthegain. 12
  • 14. BJT Amplifiers continue… Noticethatthecouplingandbypasscapacitorsaretreatedaseffectiveshortsanddon’tappearinequivalentcircuit. TheinternalcapacitancesCbeandCbc,whicharesignificantonlyathighfrequencies,doappearinthediagram. CbeissometimescalledinputcapacitanceCib,andCbcissometimescalledoutputcapacitanceCob. CbeisspecifiedondatasheetsatacertainvalueofVBE. OftenthedatasheetwilllistCibasCiboandCobasCobo. Theoastheletterinthesubscriptindicatesthecapacitanceismeasuredwiththebaseopen. 14
  • 15. Miller’s Theorem in High-Frequency Analysis (in BJT Amplifiers) Cin(Miller)=Cbc(Av+1) Cout(Miller)=Cbc(Av+1/Av) ThesetwoMillercapacitances(Cin(Miller)&Cout(Miller))createahigh-frequencyinputRCcircuitandahigh-frequencyoutputRCcircuit. Becausethecapacitancesgotogroundandthereforeactaslow-passfilters. 15IdealModelbecausestraycapacitancesduetocircuitinterconnectionsareneglected
  • 16. The Input RC Circuit Athighfrequencies,theinputcircuitisshowninfig10-33(a) whereRin(base)=βacr'e16
  • 17. The Input RC Circuit continue… Asthefrequencyincreases,thecapacitivereactancebecomessmaller.Thiscausesthesignalvoltageatbasetodecrease,sotheamplifier’svoltagegaindecreases. Thereasonforthisisthatthecapacitanceandresistanceactasavoltagedividerand,asthefrequencyincreases,morevoltageisdroppedacrosstheresistanceandlessacrosscapacitance. Atthecriticalfrequency,thegainis3dBlessthanitsmidrangevalue. Thecriticalhighfrequency,fc,isthefrequencyatwhichthecapacitivereactanceisequaltothetotalresistance. XCtot=Rth=Rout=Rs∥R1∥R2∥βacr'e 17
  • 18. The Input RC Circuit continue…  18Upper critical Frequency
  • 19. 19
  • 20. 20
  • 21. 21
  • 22. Phase Shift of the Input RC Circuit Becausetheoutputvoltageofahigh-frequencyinputRCcircuitisacrossthecapacitor,theoutputvoltagelagstheinput.Thephaseangleisexpressedas Atthecriticalfrequencyfc,thephaseangleis45˚withthebase(output)voltagelaggingtheinputsignal. Asthefrequencyincreasesabove,thephaseangleincreasesabove45˚andapproaches90˚whenthefrequencyissufficientlyhigh. 22
  • 23. The Output RC circuit Thehigh-frequencyoutputRCcircuitisformedbytheMilleroutputcapacitanceandtheresistancelookinginatthecollectorasshowninfigure10-36(a). 23
  • 24. The Output RC circuit continue… Cout(Miller)=Cbc(Av+1/Av) Ifthevoltagegainisatleast10,thenCout(Miller)≈Cbc. Thecriticalfrequencyisdeterminedas JustlikeinputRCcircuit,theoutputRCcircuitreducesthegainby3dBatthecriticalfrequency.Whenthefrequencygoesabovethecriticalvalue,thegaindropsat-20dB/decaderate.ThephaseangleintroducedbyoutputRCcircuitis 24Where Rc = RC ∥RL
  • 25. 25
  • 26. 26
  • 27. FET Amplifiers Theapproachtothehigh-frequencyanalysisofaFETamplifierissimilartothatofaBJT. ThebasicdifferencesarethespecificationsoftheinternalFETcapacitancesandthedeterminationoftheinputresistance.Figure10-39(a)showsaJFETcommon-sourceamplifierusedtoillustratehigh-frequencyanalysis. 27
  • 28. FET Amplifiers Continue… Ahigh-frequencyequivalentcircuitfortheamplifierisshowninfigure10-39(b). Thecouplingandbypasscapacitorsareassumedtohavenegligiblereactancesandareconsideredtobeshorts. TheinternalcapacitancesCgsandCgdappearintheequivalentcircuitbecausetheirreactancesaresignificantathighfrequencies. 28
  • 29. Values of Cgs, Cgd, and Cds FETdatasheetsdonotnormallyprovidevaluesforCgs,Cgd, orCds. InsteadthreeothervaluesareusuallyspecifiedwiththehelpofthemyoucaneasilycalculateCgs,Cgd,andCds. Cgd=Crss Cgs=Ciss-Crss Cds=Coss-Crss Cossisnotspecifiedasoftenastheothervaluesondatasheets. IncaseswhereCossisnotavailable,youmusteitherassumeavalueorneglectCds. 29Ciss = the input capacitanceCrss = the reverse transfer capacitanceCoss= the output capacitance
  • 30. Miller’s Theorem in High-Frequency Analysis (in FET Amplifiers) Cin(Miller)=Cgd(Av+1) Cout(Miller)=Cgd(Av+1/Av) ThesetwoMillercapacitances(Cin(Miller)&Cout(Miller))createahigh-frequencyinputRCcircuitandahigh-frequencyoutputRCcircuit. Botharelow-passfilterswhichproducephaselag. 30
  • 31. The Input RC Circuit Thehigh-frequencyinputcircuitformsalow-passtypeoffilterandisshowninfig-10-41(a). 31
  • 32. The Input RC Circuit Continue… SincebothRGandRin(gate)ofFETsareextremelyhigh, thereforecontrollingresistancefortheinputcircuitistheresistanceoftheinputsourceRsaslongasRs<<Rin. ThisisbecauseRsappearsinparallelwithRinwhenThevenin’stheoremisapplied. ThesimplifiedinputRCcircuitappearsinfigure10-41(b). Thecriticalfrequencyis: 32
  • 33. 33
  • 34. 34
  • 35. The Output RC circuit Thehigh-frequencyoutputRCcircuitisformedbytheMilleroutputcapacitanceandtheresistancelookinginatthedrainasshowninfigure10-43(a). 35
  • 36. The Output RC circuit continue… Cout(Miller)=Cgd(Av+1/Av) Ifthevoltagegainisatleast10,thenCout(Miller)≈Cgd. Thecriticalfrequencyisdeterminedas Theoutputcircuitproducesaphaseshiftof36Where Rd = RD ∥RL
  • 37. 37
  • 38. Total High-Frequency Response of an Amplifier Wehavealreadyseenthat,twoRCcircuits(Cin(Miller)& Cout(Miller))createdbytheinternaltransistorcapacitancesinfluencethehigh-frequencyresponseofbothBJTandFET. Asthefrequencyincreasesandreachesthehighendofitsmidrangevalues,oneoftheRCcircuitwillcausetheamplifier’sgaintobegindroppingoff. Thefrequencyatwhichthisoccursisthedominantcriticalfrequency;itisthelowerofthetwocriticalfrequencies. Anidealhigh-frequencyBodeplotisshowninfigure10- 44(a)nextslide.Itshowsthefirstbreakpointatfcu(input) wherethevoltagegainbeginstorolloffat-20dB/decade.Atfcu(output),thegainbeginsdroppingat-40dB/decadebecauseeachRCcircuitisaddinga-20dB/decaderoll-off38
  • 39. Total High-Frequency Response of an Amplifier continue… Figure10-44(b)showsanon-idealBodeplotwherethevoltagegainisactually-3dBbelowmidrangeatfcu(input). OtherpossibilitiesarethattheoutputRCcircuitisdominantorbothcircuitshavethesamecriticalfrequency. 39
  • 40. 10-5 Total Amplifier Frequency Response Figure10-45(b)nextslideshowsageneralizedidealBodeplotfortheBJTamplifierinfig10-45(a)nextslide. Thethreebreakpointsatthelowercriticalfrequencies(fcl1,fcl2, andfcl3)areproducedbythreelow-frequencyRCcircuitsformedbythecouplingandbypasscapacitors. Thetwobreakpointsatthehighercriticalfrequencies(fcu1andfcu2)areproducedbytwohigh-frequencyRCcircuitsformedbythetransistor'sinternalcapacitances. Thetwodominantcriticalfrequenciesfcl3(fcl(dom))andfcu1(fcu(dom)) areofourinterestinfig10-45(b). Thesetwofrequenciesarewherethevoltagegainoftheamplifieris3dBbelowitsmidrangevalue. Thesedominantfrequenciesarereferredtoasthelowercriticalfrequencyfcl(dom),andtheuppercriticalfrequency,fcu(dom).40
  • 41. Total Amplifier Frequency Response Continue… 41
  • 42. Total Amplifier Frequency Response Continue… Theupperandlowercriticalfrequenciesaresometimescalledthehalf-powerfrequencies.Thisisduetothefactthattheoutputpowerofanamplifieratitscriticalfrequenciesisone-halfofitsmidrangepower(asdiscussedpreviously). Alsostartingwiththefactthattheoutputvoltageis70.7%ofitsmidrangevalueatthecriticalfrequencies. 42
  • 43. Bandwidth Anamplifiernormallyoperateswithsignalfrequenciesbetweenfcl(dom)andfcu(dom). Whentheinputsignalfrequencyisatfcl(dom)orfcu(dom),theoutputsignallevelis70.7%ofitsmidrangevalue. Ifthesignalfrequencydropsbelowfcl(dom),thegainandthustheoutputsignalleveldrops20dB/decadeuntilthenextcriticalfrequencyisreached. Thesameoccurswhenthesignalfrequencygoesabovefcu(dom). Therange(band)offrequencieslyingbetweenfcl(dom)andfcu(dom)isdefinedasthebandwidthoftheamplifierasshowninfigure10- 46nextslide. Onlythedominantcriticalfrequenciesappearintheresponsecurvebecausetheydeterminethebandwidth. 43
  • 44. Bandwidth Continue… Theamplifier’sbandwidthisexpressedinunitsofhertzas BW=fcu(dom)-fcl(dom) Ideally,allsignalfrequencieslyinginamplifier’sbandwidthareamplifiedequally.i.e,ifa10mVrmssignalisappliedtoanamplifierwithavoltagegainof20,itisamplifiedto200mVrmsforallfrequenciesinthebandwidth. 44
  • 45. Unity-Bandwidth Product Onecharacteristicofamplifiersisthattheproductofvoltagegainandbandwidthisalwaysconstantwhentherollis-20dB/decade. Thischaracteristiciscalledgain-bandwidthproduct. Let’sassumethatthelowercriticalfrequencyofaparticularamplifierismuchlessthantheuppercriticalfrequency. fcl(dom)<<fcu(dom) Thebandwidthcanbeapproximatedas BW=fcu(dom)-fcl(dom)≈fcu45
  • 47. Unity-Gain Frequency Continue… Noticethatfcl(dom)isneglectedbecauseitissomuchsmallerthanfcu(dom),andthebandwidthapproximatelyequalsfcu(dom). Beginningatfcu(dom),thegainrollsoffuntilunitygain(0dB)isreached. Thefrequencyatwhichtheamplifier’sgainis1iscalledtheunity- gainfrequency,fT. ThesignificanceoffTisthatitalwaysequalsthemidrangevoltagegaintimesthebandwidthandisconstantforagiventransistor. fT=AV(mid)BW Forthecaseshowninfig10-47,fT=AV(mid)fcu47
  • 48. 10-6 Frequency Response of Multistage Amplifiers Whenamplifierstagesarecascadedtoformamultistageamplifier(morethanonestageamplifier),thedominantfrequencyresponseisdeterminedbytheresponsesoftheindividualstages. Therearetwocasestoconsider: 1.Eachstagehasadifferentlowercriticalfrequencyandadifferentuppercriticalfrequency. 2.EachStagehasthesamelowercriticalfrequencyandthesameuppercriticalfrequency. DifferentCriticalFrequencies Whenthelowercriticalfrequency,fcl(dom),ofeachamplifierstageisdifferent,thedominantlowercriticalfrequency,f'cl(dom),equalsthecriticalfrequencyofthestagewiththehighestfcl(dom). Whentheuppercriticalfrequency,fcu(dom),ofeachamplifierstageisdifferent,thedominantuppercriticalfrequency,f'cu(dom),equalsthecriticalfrequencyofthestagewiththelowestfcu(dom). 48
  • 49. Frequency Response of Multistage Amplifiers Continue… OverallBandwidth ThebandwidthofamultistageamplifierisBW=f'cu(dom)-f'cl(dom) EqualCriticalFrequencies Wheneachamplifierstageinamultistagearrangementhasequalcriticalfrequencies,youmaythinkthatthedominantcriticalfrequencyisequaltothecriticalfrequencyofeachstage.Thisisnotthecasehowever. Samelowercriticalfrequencies SameHighercriticalfrequencies Where“n”isthenumberofstagesofamultistageamplifier. 49
  • 50. 50