SlideShare a Scribd company logo
1 of 31
MVNO 與 NP

系統介接 與 服務啟 動
   規劃案
MVNO / HNO 整體架構示意圖
多家 MVNO 租用單一 HNO 整體架構
多家 MVNO 批發轉售 單一 HNO 的
        號碼(區塊集合)




                                   號碼(區塊)
                                    批發轉售
                         號碼(區塊)
                          批發轉售

單一 HNO Number   號碼(區塊)
    Blocks       批發轉售




                Lease      Lease      Lease
                Number    Number     Number
                 Set       Set        Set
                 Three     two        one
製作 MVNO Gate 匯整 單一 HNO 的
      ERP 、 CRM 、號碼(區塊集合)資訊




                                號碼(區塊)
                                 批發轉售
                          號碼(區塊)
                           批發轉售

單一 HNO Number    號碼(區塊)
    Blocks        批發轉售




                  Lease      Lease    Lease
                 Number      Number   Number
                  Set         Set      Set
                  Three       two      one
採用 MVNO Gate 執行不同 HNO 的
                  號碼可攜任務


                          號碼(區塊)
                           批發轉售
                    號碼(區塊)
                     批發轉售

單一HNO Number     號碼(區塊)
   Blocks         批發轉售




               HNO A
                                                                   號碼(區塊)
                                                                    批發轉售


                                   NPAC                      號碼(區塊)
                                                              批發轉售

                                          單一HNO Number    號碼(區塊)
                                             Blocks        批發轉售




                                                         HNO B
法規說 明
 爰行政院 96 年 12 月 7 日院臺經字第 0960052089 號函核示,由交通
 部(以下簡稱本部)訂定「電信網路編碼計畫」及其說明書。

   說明書第 9 頁
     • 技術面:現有電信網路技術上必須能支持該類配號方式。
       – 例如:
          (1) 當第二類電信事業欲更換提供其網路服務之第一類電信事
            業時,第一類電信事業間需具備號碼可攜之功能才有可能配
            合。
          (2) 當第二類電信事業欲同時租用多家第一類電信事業之設施
            以建構其服務網路時 ( 全區統一撥接碼 ) ,第一類電信事業
            間需具有該類業務之共同資料庫方能判別連接路由。
MNVO 的業務管理 (Ⅰ)
MNVO 的業務管理 (Ⅱ )

•   業務管理要點
•   門號:自有核配門號 vs 批發轉售門號
•   SIM 卡 (生產 / 後勤運送 ) 的安排
•   網路基礎設施 / 系統 / 位置與介面整合
•   帳務 / 帳單 / 報表
•   軟體開發與軟體管理
•   MVNO 服務方案(基礎 / 選項)
MNVO 的業務管理 (Ⅲ )

•   銷售與技術支援
•   銷售通路 / SIM 卡的後勤供應
•   顧客維護系統
•   MVNO 生命周期管理
•   MVNO 服務組合的改變與優化
•   通訊協議的升版 / 擴充 / 世代交替
•   MVNO 的公司消滅 / 既有客戶移轉
MVNO 設備工程 設定 / 啟 動

• 建置 MVNO 設備工程 啟 動 / 設定 專案
• MVNO 與 MNO 兩端均需進行機房建置與設備
  部署
MVNO Clint 的設定
MVNO Gate 應有功能

– 用戶端接取介面的資通安全性
– 網路元件介面
– 外部系統的 API
– 服務層資源供應能量
– 系統功能平台
MVNO Gateway 供應的服務 (Ⅰ)

•   接取介面的資通訊安全設計
•   網路基礎介面
•   與外部相關系統互聯的 APIs
•   Enablers 負責維運服務層 (Service Layer)
    與
    相關系統設備建置
MVNO Gateway 供應的服務   (Ⅱ )

• MVNO 加入營運的承包管理
• ( 互聯 ) 帳務清算
• 商務報告
MVNO Gatway 服務啟 動方式
• 以隱藏的 MVNO Gate way 方式啟 動

• 號碼可攜的進行
• 可允許
• 如果是 MVNO 的用戶要移轉到原獲核配業者,
  (原獲核配業者的號碼用戶到 MVNO 進行註冊登
  記) (新用戶進行登記行程為 subscriber ->
  call center ), MVNO 業者可經資料庫查得用戶
  資訊與位置 ( 應指網路所在位置 HLR... 以便帳務
  處理 ) 。
MVNO 與 外部網路的服務機制探討
• 撥出電話流程分析

•   MVNO 沒有 Radio Accesss Network
•   用戶撥出電話-> HNO 網路首先接收訊號並啟動通訊服務-> HNO


                                          a. CAMEL
•   通知 MVNO 加值服務平台-> 兩種電信協定
                                          b. INAP

•    VLR 經由 HLR 得到 Originating CAMEL Subscription
    Information
    ( O-CSI ) 。
Home Call Scenario
( ScenarioⅠ ) Making outgoing calls
       from the Host network
• A-party 為 HNO
• 撥出電話的信令傳遞
  – Subscriber 所在地的 VLR 從 MVNE 的 HLR 取得
    Originating CAMEL Subscription Information (O-
    CSI) 。
  – O-CSI 內部應有的資訊為 「 SS7 address 」或是「
    MVNE 所有的 Global Title (GT) 」 。
  – 根據此機制, HNO 的 MSC 中的 Service Switching
    Functionality 將建立與傳遞訊息給 Home Network 的
    IN Platform 。
( ScenarioⅡ ) Making outgoing calls
       from a visited network
( ScenarioⅡ ) Making outgoing calls
       from a visited network
• A-party 為 HNO
• 撥出電話的信令傳遞
   – Subscriber 所在地的 Visited MSC ( V-MSC, 負責控制介接
     過程)經由 CAMEL 協定與 「 MVNE 的 IN Platform 」建
     立與傳遞訊息。
   – 本例中 IN Platform 由 VLR 會異動更新用戶的 O-CSI , V-
     MSC 所驅動。
   – CAMEL 有不同的層級,類似子集與母集的關係。如第一層
     的狀態所具備的功能在第二層也有的話,即第一層的功能包
     含於第二層時,「建立與傳遞訊息」的功能將由第一層執行
     ,也就是最小的那一層。
   – 根據此機制,當 MVNE 用戶漫遊至外部網路, Visited MSC
     可從 MVNE 的 IN Platform 接取 GT 訊號,這時 VLR 知道
     如何控制話務。
Remark

CAMEL 的缺點

1. 並非所有的 Roaming Partner 都建置 CAMEL

2. 並非所有的 CAMEL 都處於正確狀態,例如 CAMEL phase 1 不可能
   play announcements. 結果是當 V-MSC 僅有 Phase 1 時,以本籍網
   路設備控制話務為宜。

3. 問題重點:本籍網路設備如含控制話務需如何運作 ?



( Please see next page. )
Camel Rerounting (Ⅰ )

考慮 V-MSC 提供 CAMEL Phase One ,
本籍網路提供話務控制

1.V-MSC 控制所有撥出通話
2.因為 VLR 內的用戶資料同步於 O-CSI (MVNE 的 HLR) 的用戶
資料
3.當用戶撥出電話時
4.V-MSC 知道如何驅動 IN Platform 產生服務
5.當 ISUP Initial Address Message ( IAM message ) 建立話務,本
籍網路的 G-MSC 能夠再度啟動 MVNE 的
  IN Platform 。
6.在第二次啟動 IN Platform 的狀況, G-MSC 可選擇使用
INAP ,不一定要再使用 CAMEL 。
Camel Rerounting (Ⅱ )
7. a routing scenerio
   Steps :
   First :

Host Network               Home Network
                 trigger
Camel Rerounting (Ⅲ )
Second :

G-MSC                IN Platform ( with first time message )
           Trigger
Camel Rerounting (Ⅳ )
Receiving Calls (Ⅰ )
Receiving Calls

MVNE
A subscirber of MVNE is called

     Called Party

     B – Party

  G-MSC of the interrogating network 需建立與 B – Party 的聯繫並從 MVNE 的 HLR 得到用戶資訊。

2. 此時用戶資訊為接收端 Terminating CAMEL Subscription Information ( T-CSI )
   而非啟始端,並且 MVNE 的 GT 資訊也包含在 T-CSI 之內。

4. G-MSC of Interrogating network    CAMEL dialogue          IN Platform



  ( Please see next page. )
Receiving Calls (Ⅱ )
Receiving Calls (Ⅲ )

• Equivalent solution subject to Figure 4

• Avoiding CAMEL Compatibility issue:

• 1. Disable T-CSI in the HLR

• 2. G-MSC of the MVNE                            IN Platform
                                 trigger

                          Incoming ISUP message
Receiving Calls (Ⅳ)
Conclusion

• Traditional :
                                                      Interaction
  – home network                                      (known field)
  – visited network


• IP Multimedia Subsystem architecture :
                             monitor
  – Service trigger                            call session



  – Service platform are within home network
    ( also the roaming case )

More Related Content

Similar to Mvno 與 np 系統介接設計 與 服務啟動 規劃

杰龙科技的企业通信解决方案
杰龙科技的企业通信解决方案杰龙科技的企业通信解决方案
杰龙科技的企业通信解决方案
jielongkeji
 
移动智能应答业务
移动智能应答业务移动智能应答业务
移动智能应答业务
Bob Huang
 
Mobi Link整合
Mobi Link整合Mobi Link整合
Mobi Link整合
Aiken Lin
 
Cisco uc(统一通信)培训资料
Cisco uc(统一通信)培训资料Cisco uc(统一通信)培训资料
Cisco uc(统一通信)培训资料
abcd098123
 
20070906103501 软交换核心网交流材料
20070906103501 软交换核心网交流材料20070906103501 软交换核心网交流材料
20070906103501 软交换核心网交流材料
xmws1355
 
5G產業趨勢暨B5G關鍵議題分析_會員下載精華版.pdf
5G產業趨勢暨B5G關鍵議題分析_會員下載精華版.pdf5G產業趨勢暨B5G關鍵議題分析_會員下載精華版.pdf
5G產業趨勢暨B5G關鍵議題分析_會員下載精華版.pdf
JTLai1
 
监控通 手机视频监控方案
监控通  手机视频监控方案监控通  手机视频监控方案
监控通 手机视频监控方案
siugen
 
MyPBX_Standard_UserManual_tw
MyPBX_Standard_UserManual_twMyPBX_Standard_UserManual_tw
MyPBX_Standard_UserManual_tw
diymyweb
 
Alibaba server-zhangxuseng-qcon
Alibaba server-zhangxuseng-qconAlibaba server-zhangxuseng-qcon
Alibaba server-zhangxuseng-qcon
Yiwei Ma
 
☆5. 大哥大整合功能(一碼通) v4 rev07_中文
☆5. 大哥大整合功能(一碼通) v4 rev07_中文☆5. 大哥大整合功能(一碼通) v4 rev07_中文
☆5. 大哥大整合功能(一碼通) v4 rev07_中文
skyers
 
Pex Ip Pbx 6 12
Pex Ip Pbx  6 12Pex Ip Pbx  6 12
Pex Ip Pbx 6 12
ng8
 
网管会 一些基础知识
网管会 一些基础知识网管会 一些基础知识
网管会 一些基础知识
Jammy Wang
 
杜嵩 Arch summit2012 dusong@freewheel
杜嵩 Arch summit2012 dusong@freewheel杜嵩 Arch summit2012 dusong@freewheel
杜嵩 Arch summit2012 dusong@freewheel
drewz lin
 
AI/ML O-RAN Cloud-Native Automation
AI/ML O-RAN Cloud-Native AutomationAI/ML O-RAN Cloud-Native Automation
AI/ML O-RAN Cloud-Native Automation
National Yang Ming Chiao Tung University
 

Similar to Mvno 與 np 系統介接設計 與 服務啟動 規劃 (20)

杰龙科技的企业通信解决方案
杰龙科技的企业通信解决方案杰龙科技的企业通信解决方案
杰龙科技的企业通信解决方案
 
移动互联网开发基础
移动互联网开发基础移动互联网开发基础
移动互联网开发基础
 
移动智能应答业务
移动智能应答业务移动智能应答业务
移动智能应答业务
 
Mobi Link整合
Mobi Link整合Mobi Link整合
Mobi Link整合
 
Cisco uc(统一通信)培训资料
Cisco uc(统一通信)培训资料Cisco uc(统一通信)培训资料
Cisco uc(统一通信)培训资料
 
20070906103501 软交换核心网交流材料
20070906103501 软交换核心网交流材料20070906103501 软交换核心网交流材料
20070906103501 软交换核心网交流材料
 
5G產業趨勢暨B5G關鍵議題分析_會員下載精華版.pdf
5G產業趨勢暨B5G關鍵議題分析_會員下載精華版.pdf5G產業趨勢暨B5G關鍵議題分析_會員下載精華版.pdf
5G產業趨勢暨B5G關鍵議題分析_會員下載精華版.pdf
 
监控通 手机视频监控方案
监控通  手机视频监控方案监控通  手机视频监控方案
监控通 手机视频监控方案
 
Tcpip
TcpipTcpip
Tcpip
 
我們與 M-CORD Release 的距離
我們與 M-CORD Release 的距離我們與 M-CORD Release 的距離
我們與 M-CORD Release 的距離
 
MyPBX_Standard_UserManual_tw
MyPBX_Standard_UserManual_twMyPBX_Standard_UserManual_tw
MyPBX_Standard_UserManual_tw
 
新世代寬頻通訊 方案教材-詹翔霖教授
新世代寬頻通訊 方案教材-詹翔霖教授新世代寬頻通訊 方案教材-詹翔霖教授
新世代寬頻通訊 方案教材-詹翔霖教授
 
Alibaba server-zhangxuseng-qcon
Alibaba server-zhangxuseng-qconAlibaba server-zhangxuseng-qcon
Alibaba server-zhangxuseng-qcon
 
☆5. 大哥大整合功能(一碼通) v4 rev07_中文
☆5. 大哥大整合功能(一碼通) v4 rev07_中文☆5. 大哥大整合功能(一碼通) v4 rev07_中文
☆5. 大哥大整合功能(一碼通) v4 rev07_中文
 
Pex Ip Pbx 6 12
Pex Ip Pbx  6 12Pex Ip Pbx  6 12
Pex Ip Pbx 6 12
 
2018 kingtel solution
2018 kingtel  solution2018 kingtel  solution
2018 kingtel solution
 
网管会 一些基础知识
网管会 一些基础知识网管会 一些基础知识
网管会 一些基础知识
 
杜嵩 Arch summit2012 dusong@freewheel
杜嵩 Arch summit2012 dusong@freewheel杜嵩 Arch summit2012 dusong@freewheel
杜嵩 Arch summit2012 dusong@freewheel
 
Awt CHTF IPtrade Chinese
Awt CHTF IPtrade ChineseAwt CHTF IPtrade Chinese
Awt CHTF IPtrade Chinese
 
AI/ML O-RAN Cloud-Native Automation
AI/ML O-RAN Cloud-Native AutomationAI/ML O-RAN Cloud-Native Automation
AI/ML O-RAN Cloud-Native Automation
 

Mvno 與 np 系統介接設計 與 服務啟動 規劃

  • 1. MVNO 與 NP 系統介接 與 服務啟 動 規劃案
  • 2. MVNO / HNO 整體架構示意圖
  • 3. 多家 MVNO 租用單一 HNO 整體架構
  • 4. 多家 MVNO 批發轉售 單一 HNO 的 號碼(區塊集合) 號碼(區塊) 批發轉售 號碼(區塊) 批發轉售 單一 HNO Number 號碼(區塊) Blocks 批發轉售 Lease Lease Lease Number Number Number Set Set Set Three two one
  • 5. 製作 MVNO Gate 匯整 單一 HNO 的 ERP 、 CRM 、號碼(區塊集合)資訊 號碼(區塊) 批發轉售 號碼(區塊) 批發轉售 單一 HNO Number 號碼(區塊) Blocks 批發轉售 Lease Lease Lease Number Number Number Set Set Set Three two one
  • 6. 採用 MVNO Gate 執行不同 HNO 的 號碼可攜任務 號碼(區塊) 批發轉售 號碼(區塊) 批發轉售 單一HNO Number 號碼(區塊) Blocks 批發轉售 HNO A 號碼(區塊) 批發轉售 NPAC 號碼(區塊) 批發轉售 單一HNO Number 號碼(區塊) Blocks 批發轉售 HNO B
  • 7. 法規說 明  爰行政院 96 年 12 月 7 日院臺經字第 0960052089 號函核示,由交通 部(以下簡稱本部)訂定「電信網路編碼計畫」及其說明書。  說明書第 9 頁 • 技術面:現有電信網路技術上必須能支持該類配號方式。 – 例如: (1) 當第二類電信事業欲更換提供其網路服務之第一類電信事 業時,第一類電信事業間需具備號碼可攜之功能才有可能配 合。 (2) 當第二類電信事業欲同時租用多家第一類電信事業之設施 以建構其服務網路時 ( 全區統一撥接碼 ) ,第一類電信事業 間需具有該類業務之共同資料庫方能判別連接路由。
  • 9. MNVO 的業務管理 (Ⅱ ) • 業務管理要點 • 門號:自有核配門號 vs 批發轉售門號 • SIM 卡 (生產 / 後勤運送 ) 的安排 • 網路基礎設施 / 系統 / 位置與介面整合 • 帳務 / 帳單 / 報表 • 軟體開發與軟體管理 • MVNO 服務方案(基礎 / 選項)
  • 10. MNVO 的業務管理 (Ⅲ ) • 銷售與技術支援 • 銷售通路 / SIM 卡的後勤供應 • 顧客維護系統 • MVNO 生命周期管理 • MVNO 服務組合的改變與優化 • 通訊協議的升版 / 擴充 / 世代交替 • MVNO 的公司消滅 / 既有客戶移轉
  • 11. MVNO 設備工程 設定 / 啟 動 • 建置 MVNO 設備工程 啟 動 / 設定 專案 • MVNO 與 MNO 兩端均需進行機房建置與設備 部署
  • 13. MVNO Gate 應有功能 – 用戶端接取介面的資通安全性 – 網路元件介面 – 外部系統的 API – 服務層資源供應能量 – 系統功能平台
  • 14. MVNO Gateway 供應的服務 (Ⅰ) • 接取介面的資通訊安全設計 • 網路基礎介面 • 與外部相關系統互聯的 APIs • Enablers 負責維運服務層 (Service Layer) 與 相關系統設備建置
  • 15. MVNO Gateway 供應的服務 (Ⅱ ) • MVNO 加入營運的承包管理 • ( 互聯 ) 帳務清算 • 商務報告
  • 16. MVNO Gatway 服務啟 動方式 • 以隱藏的 MVNO Gate way 方式啟 動 • 號碼可攜的進行 • 可允許 • 如果是 MVNO 的用戶要移轉到原獲核配業者, (原獲核配業者的號碼用戶到 MVNO 進行註冊登 記) (新用戶進行登記行程為 subscriber -> call center ), MVNO 業者可經資料庫查得用戶 資訊與位置 ( 應指網路所在位置 HLR... 以便帳務 處理 ) 。
  • 17. MVNO 與 外部網路的服務機制探討 • 撥出電話流程分析 • MVNO 沒有 Radio Accesss Network • 用戶撥出電話-> HNO 網路首先接收訊號並啟動通訊服務-> HNO a. CAMEL • 通知 MVNO 加值服務平台-> 兩種電信協定 b. INAP • VLR 經由 HLR 得到 Originating CAMEL Subscription Information ( O-CSI ) 。
  • 19. ( ScenarioⅠ ) Making outgoing calls from the Host network • A-party 為 HNO • 撥出電話的信令傳遞 – Subscriber 所在地的 VLR 從 MVNE 的 HLR 取得 Originating CAMEL Subscription Information (O- CSI) 。 – O-CSI 內部應有的資訊為 「 SS7 address 」或是「 MVNE 所有的 Global Title (GT) 」 。 – 根據此機制, HNO 的 MSC 中的 Service Switching Functionality 將建立與傳遞訊息給 Home Network 的 IN Platform 。
  • 20. ( ScenarioⅡ ) Making outgoing calls from a visited network
  • 21. ( ScenarioⅡ ) Making outgoing calls from a visited network • A-party 為 HNO • 撥出電話的信令傳遞 – Subscriber 所在地的 Visited MSC ( V-MSC, 負責控制介接 過程)經由 CAMEL 協定與 「 MVNE 的 IN Platform 」建 立與傳遞訊息。 – 本例中 IN Platform 由 VLR 會異動更新用戶的 O-CSI , V- MSC 所驅動。 – CAMEL 有不同的層級,類似子集與母集的關係。如第一層 的狀態所具備的功能在第二層也有的話,即第一層的功能包 含於第二層時,「建立與傳遞訊息」的功能將由第一層執行 ,也就是最小的那一層。 – 根據此機制,當 MVNE 用戶漫遊至外部網路, Visited MSC 可從 MVNE 的 IN Platform 接取 GT 訊號,這時 VLR 知道 如何控制話務。
  • 22. Remark CAMEL 的缺點 1. 並非所有的 Roaming Partner 都建置 CAMEL 2. 並非所有的 CAMEL 都處於正確狀態,例如 CAMEL phase 1 不可能 play announcements. 結果是當 V-MSC 僅有 Phase 1 時,以本籍網 路設備控制話務為宜。 3. 問題重點:本籍網路設備如含控制話務需如何運作 ? ( Please see next page. )
  • 23. Camel Rerounting (Ⅰ ) 考慮 V-MSC 提供 CAMEL Phase One , 本籍網路提供話務控制 1.V-MSC 控制所有撥出通話 2.因為 VLR 內的用戶資料同步於 O-CSI (MVNE 的 HLR) 的用戶 資料 3.當用戶撥出電話時 4.V-MSC 知道如何驅動 IN Platform 產生服務 5.當 ISUP Initial Address Message ( IAM message ) 建立話務,本 籍網路的 G-MSC 能夠再度啟動 MVNE 的 IN Platform 。 6.在第二次啟動 IN Platform 的狀況, G-MSC 可選擇使用 INAP ,不一定要再使用 CAMEL 。
  • 24. Camel Rerounting (Ⅱ ) 7. a routing scenerio Steps : First : Host Network Home Network trigger
  • 25. Camel Rerounting (Ⅲ ) Second : G-MSC IN Platform ( with first time message ) Trigger
  • 27. Receiving Calls (Ⅰ ) Receiving Calls MVNE A subscirber of MVNE is called Called Party B – Party G-MSC of the interrogating network 需建立與 B – Party 的聯繫並從 MVNE 的 HLR 得到用戶資訊。 2. 此時用戶資訊為接收端 Terminating CAMEL Subscription Information ( T-CSI ) 而非啟始端,並且 MVNE 的 GT 資訊也包含在 T-CSI 之內。 4. G-MSC of Interrogating network CAMEL dialogue IN Platform ( Please see next page. )
  • 29. Receiving Calls (Ⅲ ) • Equivalent solution subject to Figure 4 • Avoiding CAMEL Compatibility issue: • 1. Disable T-CSI in the HLR • 2. G-MSC of the MVNE IN Platform trigger Incoming ISUP message
  • 31. Conclusion • Traditional : Interaction – home network (known field) – visited network • IP Multimedia Subsystem architecture : monitor – Service trigger call session – Service platform are within home network ( also the roaming case )

Editor's Notes

  1. 此時的 MVNO 1, MVNO 2, and MVNO 3 共用同一個 RN
  2. 此時的 MVNO 1, MVNO 2, and MVNO 3 共用同一個 RN
  3. 行政院 96 年 12 月 7 日院臺經字第 0960052089 號函核示,由交通部(以下簡稱本部)訂定電信網路編碼計畫及其說明書。
  4. MVNO 的公司消滅 / 既有客戶移轉 : 電信公司結束營業時 , 如何保障既有客戶權益 , 客戶原持有號碼如何移轉給新客戶 .
  5. Global Title From Wikipedia, the free encyclopedia Jump to: navigation , search A Global Title (GT) is an address used in the SCCP protocol for routing signaling messages on telecommunications networks. In theory, a global title is a unique address which refers to only one destination, though in practice destinations can change over time. Contents [hide] 1 Overview 2 Structure of the global title value 2.1 Global Title Format 2.2 Numbering Plan Indicator 2.3 Type of Number 2.4 Translation Type 3 Global title translation 3.1 Global Title Analysis 3.2 Routing Structure 3.3 Global Title Modification 4 Global Title Routing in Mobile Networks 4.1 Mobile Global Title Routing (Except North America) 4.2 IMSI Routing (North America) 4.3 Routing of mobility messages on the ANSI / ITU Boundary [ edit ] Overview The Global Title is similar in purpose on the PSTN to the host name on the internet . In design, however, global titles are quite different. The structure is usually hierarchical, the value can be of variable length, and is not necessarily a wholly numeric value -- though it often is for issues of backwards compatibility and association with regular telephone numbers . [ edit ] Structure of the global title value The structure of a global title for ITU-T applications is officially defined in ITU-T Recommendation Q.713 , and further extended in the supporting numbering plan standards. Other national variants of Signalling Connection Control Part ( SCCP ), such as the American National Standards Institute variant specified in ANSI T1.112/2000, define their own format for the Global Title. The value of a global title is comprised of a sequence of attributes which modify the address value. To summarize: [ edit ] Global Title Format A global title can be in a variety of formats, most of which are each defined in separate standards. The format parameter indicates which of the available formats are in use. Each format can include any of the subsequent parameters. [ edit ] Numbering Plan Indicator The Numbering Plan Indicator (NPI) describes which numbering plan will be used for the global title. The numbering plan chosen will aid the routing system in determining the correct network system to direct the message. [ edit ] Type of Number The Type of Number (TON) or Nature of Address Indicator (NAI) parameter, which is of relevance to E.164 (regular telephone) numbers for example, indicates the scope of the address value, such as whether it is an international number (i.e. including the country code ), a "national" or domestic number (i.e. without country code), and other formats such as "local" format (e.g. in the U.S., without an area code ). [ edit ] Translation Type The translation type (TT) parameter is used in a network to indicate the preferred method of global title analysis (see below). Normally in European networks, this parameter is set to 0 (the default) value. In North American mobile networks, different translation types are used for analysis of the IMSI and for messages between telephone systems. This parameter is valuable in complex routing problems, where the same number has to be routed differently depending on the circumstances, such as those introduced by number portability resolution. [ edit ] Global title translation Global title translation is the SS7 equivalent to IP routing. Translation examines the destination address (e.g. the number being called) and decides how to identify it over the telephone network. This process can include global title analysis , which is the act of looking up the number and finding a result address, and global title modification . It is possible for the result of Global Title Translation to be Route on SSN . This means that, instead of the Global Title routing, lower level MTP routing will be used for this message from this point on. Equivalently, in a system using SS7 over IP (for example, SIGTRAN ), the result from Global Title Translation may be a to route to an IP server, though the exact details depend greatly on which variant of SS7 over IP is being used.[ citation needed ] [ edit ] Global Title Analysis Global Title Analysis together with Global Title Translation. The situation in this case is somewhat complicated by the additional parameters possible in the global title. Each set of parameter values (TT=0 NP=E.164, TON=INT) can be treated separately from each other one (TT=0 NP=E.214, TON=INT). This means that, instead of one single table, we potentially need a separate table for each possible set of values. The variable length of the global title makes certain optimisations that can be used in IP routing are not so easy to use here. The number analysis of a Global Title is most often done in a tree structure. This allows reasonably efficient analysis to any depth which is chosen. In the end, global title analysis gives some result. The exact possibilities vary from system to system, is sometimes called an "action" or is integrated into the analysis table. The destination would typically be given as a signalling point code in an MTP network, but could also be an IP system if we are using SS7 over IP .[ citation needed ] [ edit ] Routing Structure The most commonly used numbering plans for global title routing are E.164 and E.214 (although E.212 is also common in America). These simply look like telephone numbers. That is to say, in the most common, international, variant there is a country code at the start of the number and a Network Code immediately following the country code . Beyond that is the subscriber number or mobile subscriber identity number, though even that may be divided into sections. This structure allows for the use of hierarchical routing. international SCCP gateways know which systems handle each of the other countries the international SCCP gateway belonging to each country knows which SCCP gateways handle each network the SCCP gateway of each network knows the networks own internal structure In America, the limitations of the North American Number Plan mean that the destination country is not immediately obvious from the called party address . However, the fact that there is unified administration means that this can be overcome by having complete analysis at every point where it is needed. [ edit ] Global Title Modification In Global Title Translation it is quite normal that at some point the Global Title will have to be changed. This happens, for example, as GSM mobility management messages enter and leave networks in America. In America, typically most routing of mobility management messages for all mobile networks is done using the E.212 (IMSI) number. In international networks, E.214 is always used. At the boundary incoming toward America (this can mean the Signaling Transfer Point at the edge of the American operator's network), numbers routed from European networks are converted from E.214 numbers into E.212 numbers. In the outgoing direction, from America toward the rest of the world, are converted from E.212 numbers into E.214 numbers. [ edit ] Global Title Routing in Mobile Networks It has been suggested that this article or section be merged with Mobile Application Part . ( Discuss ) In mobile networks, there are database queries such as "how can I tell if this subscriber is really who he says he is" (MAP_Send_Authentication_Info) which have to be routed back to the database which holds the subscriber's information (the HLR , or in this case, the AUC ). Unfortunately, at the time the subscriber first arrives, we don't know which HLR is the subscriber's HLR. For this reason, the queries have to be routed on the subscriber's identity ( IMSI ) is used to generate the called party address in the message. How this is done depends whether we are in world area 1 (North America) or somewhere else. Mainly there are three type of GT in use in mobile networks known as E.164 (MSISDN), E.212(IMSI) and E.214(MGT).[ citation needed ] E.164(MSISDN) = CC+NDC+SN, e.g. 91-98-71405178 E.212(IMSI) = MCC+MNC+MSIN, e.g. 404-69-6600620186 (MTNL Mumbai) E.214(MGT) = combination of E.212 and E.164 [ edit ] Mobile Global Title Routing (Except North America) Everywhere in the world, except North America, the subscriber's IMSI is converted to a Mobile Global Title (MGT) E.214 number. See the entry about the IMSI for more details. The E.214 number has a structure which is similar to the E.164 number, and, except in a mobile network it can be routed identically. This means that the same routing tables can be used for both and means considerably reduced administrative overhead in maintaining the tables. Once a signalling message with an E.214 number enters a mobile network in its own country, the routing is dependent on the operator of that mobile network. In networks without number portability , it is normal that the MSIN has a structure and that, by analysing the first few digits we can further route the message to the right element. [ edit ] IMSI Routing (North America) In World Area 1 (corresponding to North America) ANSI SCCP is in use. In this case, due to North American standards, the routing of mobility related messages must be done with the E.212 number directly. This has the advantage that in it is easier to identify to which country messages should be routed based on the mobile country code. The design of the North American Number Plan means that there is not a separate country code for each country in North America . Working with E.214 numbers would not be an insurmountable challenge, as can be seen from the fact that routing of phone calls using E.164 numbers is normal, but it would mean adding full E.164 routing tables to signalling transfer points where it has never been needed before. That is the simplest way to search the destination. [ edit ] Routing of mobility messages on the ANSI / ITU Boundary Where a signalling message travels from North America to the rest of the world or from the rest of the world to North America, there must be a conversion done from E.212 based global title to E.214 based global title. This conversion is reasonably simple, well defined and fully reversible. The conversion is not totally simple since each individual network must be listed. Recommendation E.214 has been interpreted as suggesting that the analysis of the Mobile Country Code (MCC) and Mobile Network Code (MNC) should be done separately. The relationship between the MNC and the Network Code (NC), however, varies from country to country as does the length of the MNC (two or three digits). This means that the analysis of the MNC is dependent on the analysis of the MCC, or alternatively that the analysis must be done for all five or six digits at once (which is how it is done in practise across at least five separate switch vendors). Examples Outbound from America: NPI=E.212: 24801 xxxxxxxxxx (248 = Bulgaria MCC + 01 = MobilTel MNC) -> NPI=E.214: 359888 xxxxxxxxx (359 = Bulgaria country code ) Please note the truncation of the number by one digit since E.214 numbers, as with E.164 numbers have a maximum length of 15 digits. Inbound toward America: NPI=E.214: 14054 xxxxxxxxx (1 = U.S. country code ) -> NPI=E.212: 310150 xxxxxxxxx (310 = U.S. MCC + 150 = Cingular MNC) ************************* Signalling Connection Control Part From Wikipedia, the free encyclopedia Jump to: navigation , search SS7 protocol suite OSI LayerSS7 Protocols Application INAP , MAP , IS-41 ... TCAP , CAP , ISUP , ... Network MTP Level 3 + SCCP Data link MTP Level 2 Physical MTP Level 1 The Signalling Connection Control Part ( SCCP ) is a network layer [1] protocol that provides extended routing , flow control , segmentation, connection-orientation , and error correction facilities in Signaling System 7 telecommunications networks. SCCP relies on the services of MTP for basic routing and error detection. Contents [hide] 1 Published specification 2 Routing facilities beyond MTP 3 Protocol classes 3.1 Class 0: Basic connectionless 3.2 Class 1: Sequenced connectionless 3.3 Class 2: Basic connection-oriented 3.4 Class 3: Flow control connection oriented 4 Transport over IP Networks 5 References 6 External links [ edit ] Published specification The base SCCP specification is defined by the ITU-T , in recommendations Q.711 to Q.714 , with additional information to implementors provided by Q.715 and Q.716 . [2] There are, however, regional variations defined by local standards bodies. In the United States, ANSI publishes its modifications to Q.713 as ANSI T1.112. The TTC publishes as JT-Q.711 to JT-Q.714, and Europe ETSI publishes ETSI EN 300-009-1 : both of which document their modifications to the ITU-T specifications. [ edit ] Routing facilities beyond MTP Although MTP provides routing capabilities based upon the Point Code , SCCP allows routing using a Point Code and Subsystem number or a Global Title . A Point Code is used to address a particular node on the network, whereas a Subsystem number addresses a specific application available on that node. SCCP employs a process called Global Title Translation to determine Point Codes from Global Titles so as to instruct MTP on where to route messages. SCCP messages contain parameters which describe the type of addressing used, and how the message should be routed: Address Indicator Subsystem indicator : The address includes a Subsystem Number Point Code indicator : The address includes a Point Code Global title indicator No Global Title Global Title includes Translation Type (TT), Numbering Plan Indiciator (NPI) and Type of Number (TON) Global Title includes Translation Type only Routing indicator Route using Global Title only Route using Point Code/Subsystem number Address Indicator Coding Address Indicator coded as national (the Address Indicator is treated as international if not specified) [ edit ] Protocol classes SCCP provides 5 classes of protocol to its applications: Class 0 : Basic connectionless Class 1 : Sequenced connectionless Class 2 : Basic connection-oriented Class 3 : Flow control connection oriented Class 4 : Error recovery and flow control connection oriented The connectionless protocol classes provide the capabilities needed to transfer one Network Service Data Unit (NSDU) in the "data" field of an XUDT, LUDT or UDT message. When one connectionless message is not sufficient to convey the user data contained in one NSDU, a segmenting/reassembly function for protocol classes 0 and 1 is provided. In this case, the SCCP at the originating node or in a relay node provides segmentation of the information into multiple segments prior to transfer in the "data" field of XUDT (or as a network option LUDT) messages. At the destination node, the NSDU is reassembled. The connection-oriented protocol classes (protocol classes 2 and 3) provide the means to set up signalling connections in order to exchange a number of related NSDUs. The connection-oriented protocol classes also provide a segmenting and reassembling capability. If an NSDU is longer than 255 octets, it is split into multiple segments at the originating node, prior to transfer in the "data" field of DT messages. Each segment is less than or equal to 255 octets. At the destination node, the NSDU is reassembled. [3] [ edit ] Class 0: Basic connectionless The SCCP Class 0 protocol class is the most basic of the SCCP protocol classes. Network Service Data Units passed by higher layers to the SCCP in the originating node are delivered by the SCCP to higher layers in the destination node. They are transferred independently of each other. Therefore, they may be delivered to the SCCP user out-of-sequence. Thus, this protocol class corresponds to a pure connectionless network service . As a connectionless protocol, no network connection is established between the sender and the receiver. [ edit ] Class 1: Sequenced connectionless SCCP Class 1 builds on the capabilities of Class 0, with the addition of a sequence control parameter in the NSDU which allows the SCCP User to instruct the SCCP that a given stream of messages should be delivered in sequence. Therefore, Protocol Class 1 corresponds to an enhanced connectionless protocol with assurances of in-sequence delivery. [ edit ] Class 2: Basic connection-oriented SCCP Class 2 provides the facilities of Class 1, but also allows for an entity to establish a two-way dialog with another entity using SCCP. [ edit ] Class 3: Flow control connection oriented Class 3 service builds upon Class 2, but also allows for expedited (urgent) messages to be sent and received, and for errors in sequencing (segment re-assembly) to be detected and for SCCP to restart a connection should this occur. [ edit ] Transport over IP Networks In the SIGTRAN suite of protocols, there are two primary methods of transporting SCCP applications across Internet Protocol networks: SCCP can be transported indirectly using the MTP level 3 User Adaptation protocol (M3UA) , a protocol which provides support for users of MTP-3 —including SCCP. Alternatively, SCCP applications can operate directly over the SCCP User Adaptation protocol (SUA) which is a form of modified SCCP designed specifically for use in IP networking. ITU-T also provides for the transport of SCCP users over Internet Protocol using the Generic Signalling Transport service specified in Q.2150.0 , the signalling transport converter for SCTP specified in Q.2150.3 and a specialized Transport-Independent Signalling Connection Control Part (TI-SCCP) specified in T-REC-Q.2220 . TI-SCCP can also be used with the Generic Signalling Transport adapted for MTP3 and MTP3b as described in Q.2150.1 , or adapted for SSCOP or SSCOPMCE as described in Q.2150.2 . ************************ Message Transfer Part From Wikipedia, the free encyclopedia Jump to: navigation , search SS7 protocol suite OSI LayerSS7 Protocols Application INAP , MAP , IS-41 ... TCAP , CAP , ISUP , ... Network MTP Level 3 + SCCP Data link MTP Level 2 Physical MTP Level 1 The Message Transfer Part (MTP) is part of the Signaling System 7 (SS7) used for communication in Public Switched Telephone Networks . MTP is responsible for reliable, unduplicated and in-sequence transport of SS7 messages between communication partners. MTP is formally defined primarily in ITU-T Recommendations Q.701 , Q.702 , Q.703 , Q.704 and Q.705 . Tests for the MTP are specified in the ITU-T Recommendations Q.781 for MTP2 and in Q.782 for MTP3. These tests are used to validate the correct implementation of the MTP protocol. Different countries use different variants of the MTP protocols. In North America, the formal standard followed is ANSI T1.111. Regional Bell Operating Companies (RBOC) usually follow the Telcordia Technologies (formerly Bellcore ) document GR-246-CORE . In Europe, national MTP protocols are based on ETSI EN 300-008-1 . Contents [hide] 1 Functional Levels 1.1 Signalling Data Link Functional Level 1.2 Signalling Link Functional Level 1.3 Signalling Network Functional Level 1.4 MTP Users 2 References 3 External links [ edit ] Functional Levels The SS7 stack can be separated into four functional levels: [1] Level 1 is the Signalling Data Link Functional Level (Data Link Level). Level 2 is the Signalling Link Functional Level (Link Level). Level 3 is the Signalling Network Functional Level (Network Level). Level 4 is the MTP User and consists of SCCP , ISDN , TUP , or any other MTP User . Level 1 through Level 3 comprise the MTP , and Level 4 the MTP user . MTP Level 3 is sometimes abbreviated MTP3 ; MTP Level 2 , MTP2 . [2] MTP and SCCP are together referred to as the Network Service Part (NSP) . [3] There is no one-to-one mapping of MTP Levels 1 through 3 onto the OSI model . [4] Instead, MTP provides the functionality of Layers 1, 2 and part of Layer 3 in the OSI model . [5] The part of Layer 3 of the OSI model that MTP does not provide, is provided by SCCP or other Level 4 parts (MTP users). [6] [7] [ edit ] Signalling Data Link Functional Level MTP Level 1 is described in ITU-T Recommendation Q.702 , and provides the Signalling Data Link functional level for narrowband signalling links. For broadband signalling links, ITU-T Recommendation Q.2110 or Q.2111 describe the signalling data link function. MTP1 represents the physical layer. That is, the layer that is responsible for the connection of SS7 Signaling Points into the transmission network over which they communicate with each other. Primarily, this involves the conversion of messaging into electrical signal and the maintenance of the physical links through which these pass. In this way, it is analogous to the Layer 1 of ISDN or other, perhaps more familiar, protocols. MTP1 normally uses a timeslot in an E-carrier or T-carrier . [ edit ] Signalling Link Functional Level MTP Level 2 is described in ITU-T Recommendation Q.703 , and provides the Signalling Link functional level for narrowband signalling links. For broadband signalling links, ITU-T Recommendation Q.2140 and Q.2210 describe the signalling link function referred to as MTP3b . The signalling link functional level may also be provided using the SIGTRAN protocol M2PA described in RFC 4165 . MTP2 provides error detection and sequence checking, and retransmits unacknowledged messages. MTP2 uses packets called signal units to transmit SS7 messages. There are three types of signal units: Fill-in Signal Unit (FISU), Link Status Signal Unit (LSSU), Message Signal Unit (MSU). Access to the signalling link functional level's service interface can be provided over SCTP by the SIGTRAN protocol M2UA , described in RFC 3331 . MTP Level 2 is tested using the protocol tester and test specifications described in Q.755 , Q.755.1 , Q.780 and Q.781 . [ edit ] Signalling Network Functional Level MTP Level 3 is described in ITU-T Recommendation Q.704 , and provides the Signalling Network functional level for narrowband signalling links and, with only minor modifications described in ITU-T Recommendation Q.2210 , for broadband signalling links. The functions of MTP Level 3 may also be replaced with the Generic Signalling Transport Service described in ITU-T Recommendation Q.2150.0 as provided by MTP3b ( Q.2150.1 ), SSCOP or SSCOPMCE ( Q.2150.2 ) or SCTP ( Q.2150.3 ). MTP Level 3 functions can also be provided by using the IETF SIGTRAN M3UA protocol, described in RFC 4666 , in IPSP mode. MTP3 provides routing functionality to transport signaling messages through the SS7 network to the requested endpoint . Each network element in the SS7 network has a unique address, the Point Code (PC). Message routing is performed according to this address. A distinction is made between a Signaling Transfer Point (STP) which only performs MTP message routing functionalities and a Signaling End Point (SEP) which uses MTP to communicate with other SEPs (that is, telecom switches). MTP3 is also responsible for network management; when the availability of MTP2 data links changes, MTP3 establishes alternative links as required and propagates information about route availability through the network. Access to the signalling network functional level's service interface (as described in Q.701 ) can be provided over SCTP by the SIGTRAN protocol M3UA , described in RFC 4666 . MTP Level 3 is tested using the protocol tester and test specifications described in Q.755 , Q.755.1, Q.780 and Q.782. [edit] MTP Users Level 4 consists of MTP Users . The remaining components of the SS7 stack are all directly, or indirectly, MTP Users . Some examples of parts at Level 4 are SCCP, ISUP and TUP.[7] The services provided to MTP Level 4 by the MTP (that is, MTP to MTP Users) is described in ITU-T Recommendation Q.701.
  6. CAMEL 是完整且標準化後 ( 代表惟一性 ) 的通訊協定; INAP 有許多種建置方式。 For that purpose, the control of the call needs to be passed over to the home network. The question is how. This is what we are going to study in chapter 4.
  7. The terminating call is monitored by the G-MSC of the MVNE itself, with instruction from the IN platform.
  8. Unless the MVNO owns only the services platform and no equipment at all in the Session layer!