Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
LinkedIn’s Kafka deployment is nearing 1300 brokers that move close to 1.3 trillion messages a day. While operating Kafka smoothly even at this scale is testament to both Kafka’s scalability and the operational expertise of LinkedIn SREs we occasionally run into some very interesting bugs at this scale. In this talk I will dive into a production issue that we recently encountered as an example of how even a subtle bug can suddenly manifest at scale and cause a near meltdown of the cluster. We will go over how we detected and responded to the situation, investigated it after the fact and summarize some lessons learned and best-practices from this incident.
Login to see the comments