SlideShare a Scribd company logo
1 of 42
Digital to Analog
Converters (DAC)
   Adam Fleming
   Mark Hunkele
     3/11/2005
Outline
 Purpose
 Types
 Performance Characteristics
 Applications




                                2
Purpose
   To convert digital values to analog voltages
   Performs inverse operation of the Analog-to-
    Digital Converter (ADC)

    VOUT ∝ Digital Value

                    Reference Voltage



    Digital Value        DAC            Analog Voltage


                                        3
DACs
   Types
     Binary Weighted Resistor
     R-2R Ladder
     Multiplier DAC
          The reference voltage is constant and is set by the manufacturer.
     Non-Multiplier      DAC
          The reference voltage can be changed during operation.
   Characteristics
     Comprised   of switches, op-amps, and resistors
     Provides resistance inversely proportion to
      significance of bit

                                                            4
Binary Weighted Resistor
                                     Rf = R

                            ∑I   i




         R   2R   4R   8R                     Vo
   MSB



                                     LSB

-VREF

                                       5
Binary Representation
                                              Rf = R

                                     ∑I   i




                  R   2R   4R   8R                              Vo
Most
Significant Bit


                                              Least
                                              Significant Bit
       -VREF

                                                6
Binary Representation
                            SET       CLEARED
Most
Significant Bit


                                                Least
  -VREF                                         Significant Bit




                  ( 1   1         1    1 )2 = ( 15 )10


                                            7
Binary Weighted Resistor
   “Weighted                                             Rf = R
    Resistors”
    based on bit                                 ∑I   i

   Reduces
    current by a              R   2R   4R   8R                     Vo
    factor of 2 for     MSB
    each bit
                                                          LSB

                      -VREF

                                                 8
Binary Weighted Resistor
   Result:
                         B3 B2 B1 B0 
             ∑ I = VREF  R + 2R + 4 R + 8R 
                                           
                                      B2 B1 B0 
      VOUT     = I ⋅ R f = VREF  B3 +   + + 
                                      2  4  8 
     Bi =   Value of Bit i


                                            9
Binary Weighted Resistor
   More Generally:
                               Bi
             VOUT = VREF ∑     n −i −1
                               2
                    = VREF ⋅ Digital Value ⋅ Resolution
     Bi =   Value of Bit i
    n   = Number of Bits



                                             10
R-2R Ladder
VREF
         MSB




       LSB




                             11
R-2R Ladder
 Same input switch setup as Binary
  Weighted Resistor DAC
 All bits pass through resistance of 2R

          VREF
    MSB




    LSB

                                  12
R-2R Ladder
   The less significant the bit, the more resistors the signal
    muss pass through before reaching the op-amp
   The current is divided by a factor of 2 at each node

                LSB           MSB




                                                 13
R-2R Ladder
   The current is divided by a factor of 2 at each node
   Analysis for current from (001)2 shown below
                      I0        I0          I0
                      2         4           8
              R            R         R           2R
     R                2R        2R          2R

                 I0
                                                      Op-Amp input
            VREF
                           B1        B2               “Ground”

                                   − VREF      VREF
            B0             I0 =              =
                                2 R + 2 R 2 R 14 R
                                                3
R-2R Ladder
   Result:     VREF  B2 B1 B0 
             I=       + + 
                 3R  2      4   8 
                Rf       B2 B1 B0 
         VOUT =    VREF  + + 
                R        2    4   8 
     Bi =   Value of Bit i
                                     Rf




                                          15
R-2R Ladder
   If Rf = 6R, VOUT is same as Binary Weighted:
                          VREF      Bi
                       I=
                           3R
                                 ∑ 2 n −i
                                          Bi
                   VOUT = VREF ∑          n −i −1
                                      2
     Bi =   Value of Bit i




                                                    16
R-2R Ladder
       Example:                                − VREF         VREF
                                        I0 =                 =         = −1.67 mA
          Input = (101)2                    2 R + 2 R 2 R 3R
          VREF = 10 V                                       I0 I0
                                                 I op − amp = + = −1.04 mA
         R=2Ω                                               8 2
          Rf = 2R                                 VOUT = − I op − amp R f = 4.17 V

          R          R            R            2R
R               2R          2R            2R
           I0                      I0
                                               Op-Amp input
         VREF                    VREF
                                               “Ground”
          B0                     B2
                                                              17
Pros & Cons
         Binary Weighted                  R-2R
                              Only 2 resistor values
                              Easier implementation
Pros   Easily understood
                              Easier to manufacture
                              Faster response time

       Limited to ~ 8 bits
       Large # of resistors
Cons   Susceptible to noise   More confusing analysis
       Expensive
       Greater Error
                                            18
Digital to Analog Converters


  Performance   Specifications

  Common   Applications




         Presented by: Mark Hunkele
                                      19
Digital to Analog Converters
      -Performance Specifications

           Resolution
           Reference Voltages
           Settling Time
           Linearity
           Speed
           Errors



                                    20
Digital to Analog Converters
        -Performance Specifications
                -Resolution

 Resolution: is the amount of variance in
  output voltage for every change of the LSB
  in the digital input.
 How closely can we approximate the
  desired output signal(Higher Res. = finer
  detail=smaller Voltage divisions)
 A common DAC has a 8 - 12 bit Resolution

                                 VRef
            Resolution = VLSB   = N     N = Number of bits
                                  2        21
Digital to Analog Converters
                        -Performance Specifications
                              -Resolution

                 Poor Resolution(1 bit)                                       Better Resolution(3 bit)

         Vout                                                    Vout
                                 Desired Analog                                                               Desired Analog signal
                                 signal
                                                                                                        111

                                                                                                  110          110




                                                       8 Volt. Levels
2 Volt. Levels




                             1
                                                                                            101                      101

                                                                                          100                              100

                                                                                    011                                          011

                                                                                010                                                    010

                                                                              001                                                            001

                    0                     0                             000
                                                                                                                                                   000

                                       Digital Input                                Approximate                            Digital Input
                   Approximate
                                                                                    output 22
                   output
Digital to Analog Converters
        -Performance Specifications
                -Reference Voltage

 Reference Voltage: A specified voltage
  used to determine how each digital input
  will be assigned to each voltage division.
 Types:
     Non-multiplier:      internal, fixed, and defined by
      manufacturer
     Multiplier: external, variable, user specified



                                              23
Digital to Analog Converters
           -Performance Specifications
                     -Reference Voltage


      Non-Multiplier: (Vref = C)                              Multiplier: (Vref = Asin(wt))
 Voltage                                       Voltage
3C                                                                   11
                                               3A
 4
                     11                         4
 C                                              A               10         10
 2              10        10                    2
 C                                              A        01                     01
 4         01                  01               4

  0                                             0
      00                             00             00                                00
                               Digital Input                                         Digital Input


                                    Assume 2 bit DAC                 24
Digital to Analog Converters
        -Performance Specifications
                -Settling Time

 Settling Time: The time required for the
  input signal voltage to settle to the
  expected output voltage(within +/- V LSB).
 Any change in the input state will not be
  reflected in the output state immediately.
  There is a time lag, between the two
  events.

                                      25
Digital to Analog Converters
           -Performance Specifications
                    -Settling Time

      Analog Output Voltage



            +VLSB
Expected
Voltage     -VLSB




                                               Time
                          Settling time
                                          26
Digital to Analog Converters
        -Performance Specifications
                -Linearity

 Linearity: is the difference between the desired
  analog output and the actual output over the
  full range of expected values.
 Ideally, a DAC should produce a linear
  relationship between a digital input and the
  analog output, this is not always the case.



                                      27
Digital to Analog Converters
                                -Performance Specifications
                                        -Linearity

                        Linearity(Ideal Case)                                      NON-Linearity(Real World)




                                                               Analog Output Voltage
Analog Output Voltage




                                  Desired/Approximate Output                                         Desired Output


                                                                                                       Approximate
                                                                                                       output




                                            Digital Input                                            Digital Input

                          Perfect Agreement                                            Miss-alignment
                                                                                                28
Digital to Analog Converters
        -Performance Specifications
                -Speed

 Speed: Rate of conversion of a single
  digital input to its analog equivalent
 Conversion Rate
     Depends on clock speed of input signal
     Depends on settling time of converter




                                      29
Digital to Analog Converters
        -Performance Specifications
                -Errors

   Non-linearity
     Differential
     Integral
 Gain
 Offset
 Non-monotonicity



                                      30
Digital to Analog Converters
        -Performance Specifications
                                         -Errors: Differential Non-Linearity
   Differential Non-Linearity: Difference in voltage step size
    from the previous DAC output (Ideally All DLN’s = 1
    VLSB)
          Analog Output Voltage




                                                     Ideal Output




                                          2VLSB              Diff. Non-Linearity = 2VLSB

                                  VLSB



                                                    Digital Input           31
Digital to Analog Converters
        -Performance Specifications
                                 -Errors: Integral Non-Linearity
   Integral Non-Linearity: Deviation of the actual
    DAC output from the ideal (Ideally all INL’s = 0)

                                               Ideal Output
         Analog Output Voltage




                                 1VLSB                        Int. Non-Linearity = 1VLSB




                                           Digital Input
                                                                       32
Digital to Analog Converters
         -Performance Specifications
                  -Errors: Gain
   Gain Error: Difference in slope of the ideal
    curve and the actual DAC output
                                                   High Gain


High Gain Error: Actual    Analog Output Voltage         Desired/Ideal Output
slope greater than ideal



Low Gain Error: Actual                                                 Low Gain
slope less than ideal



                                                       Digital Input
                                                               33
Digital to Analog Converters
        -Performance Specifications
              -Errors: Offset
   Offset Error: A constant voltage difference
    between the ideal DAC output and the actual.
     The  voltage axis intercept of the DAC output curve is
      different than the ideal.
                  Output Voltage            Desired/Ideal Output




            Positive Offset

                                      Digital Input
            Negative Offset
                                                  34
Digital to Analog Converters
        -Performance Specifications
                 -Errors: Non-Monotonicity

   Non-Monotonic: A decrease in output
    voltage with an increase in the digital input
                Analog Output Voltage



                                                        Desired Output
                                        Non-Monotonic

                                                                         Monotonic




                                                        Digital Input
                                                                         35
Digital to Analog Converters
      -Common Applications


  Generic use
  Circuit Components
  Digital Audio
  Function Generators/Oscilloscopes
  Motor Controllers




                               36
Digital to Analog Converters
                    -Common Applications
                                -Generic
     Used when a continuous analog signal is
      required.
     Signal from DAC can be smoothed by a
      Low pass filter
                                                  Piece-wise                    Analog
Digital Input                                  Continuous Output            Continuous Output
                        0 bit

011010010101010100101
101010101011111100101
000010101010111110011
010101010101010101010
                                   n bit DAC                       Filter
111010101011110011000
100101010101010001111


                         nth bit

                                                                    37
Digital to Analog Converters
        -Common Applications
                  -Circuit Components
   Voltage controlled Amplifier
     digital   input, External Reference Voltage as control


   Digitally operated attenuator
     External    Reference Voltage as input, digital control


   Programmable Filters
     Digitally   controlled cutoff frequencies

                                                  38
Digital to Analog Converters
                  -Common Applications
                               -Digital Audio

       CD Players
       MP3 Players
       Digital Telephone/Answering Machines

        1                                          2                                 3




1. http://electronics.howstuffworks.com/cd.htm
2. http://accessories.us.dell.com/sna/sna.aspx?c=us&cs=19&l=en&s=dhs&~topic=odg_dj       39
3. http://www.toshiba.com/taistsd/pages/prd_dtc_digphones.html
Digital to Analog Converters
                   -Common Applications
                                -Function Generators
            Digital Oscilloscopes                                  Signal Generators
              Digital
                     Input                                            Sine wave generation
                                                                      Square wave generation
              Analog Ouput
                                                                      Triangle wave generation
                                                                      Random noise generation




         1                                                                 2




1. http://www.electrorent.com/products/search/General_Purpose_Oscilloscopes.html
                                                                                   40
2. http://www.bkprecision.com/power_supplies_supply_generators.htm
Digital to Analog Converters
                    -Common Applications
                                  -Motor Controllers

                               Cruise Control
                               Valve Control
                               Motor Control


         1                                              2             3




1. http://auto.howstuffworks.com/cruise-control.htm
2. http://www.emersonprocess.com/fisher/products/fieldvue/dvc/   41
3. http://www.thermionics.com/smc.htm
References
   Cogdell, J.R. Foundations of Electrical Engineering. 2nd ed. Upper Saddle River, NJ:
    Prentice Hall, 1996.
   “Simplified DAC/ADC Lecture Notes,” http://www-personal.engin.umd.umich.edu/
    ~fmeral/ELECTRONICS II/ElectronicII.html
   “Digital-Analog Conversion,” http://www.allaboutcircuits.com.
   Barton, Kim, and Neel. “Digital to Analog Converters.” Lecture, March 21, 2001.
    http://www.me.gatech.edu/charles.ume/me4447Spring01/ClassNotes/dac.ppt.

   Chacko, Deliou, Holst, “ME6465 DAC Lecture” Lecture, 10/ 23/2003,
    http://www.me.gatech.edu/mechatronics_course/
   Lee, Jeelani, Beckwith, “Digital to Analog Converter” Lecture, Spring 2004,
    http://www.me.gatech.edu/mechatronics_course/




                                                                   42

More Related Content

What's hot

ADC - Analog to Digital Conversion on AVR microcontroller Atmega16
ADC - Analog to Digital  Conversion on AVR microcontroller Atmega16ADC - Analog to Digital  Conversion on AVR microcontroller Atmega16
ADC - Analog to Digital Conversion on AVR microcontroller Atmega16Robo India
 
8051 Microcontroller PPT's By Er. Swapnil Kaware
8051 Microcontroller PPT's By Er. Swapnil Kaware8051 Microcontroller PPT's By Er. Swapnil Kaware
8051 Microcontroller PPT's By Er. Swapnil KawareProf. Swapnil V. Kaware
 
Three phase half wave controlled converter
Three phase half wave controlled converterThree phase half wave controlled converter
Three phase half wave controlled converterraviarmugam
 
BJT Input and Output Characteristics in Common-Base Configuration
BJT  Input and Output Characteristics in Common-Base ConfigurationBJT  Input and Output Characteristics in Common-Base Configuration
BJT Input and Output Characteristics in Common-Base ConfigurationSelf employed
 
Module4: opamp as a V-I & I-V Converter
Module4:  opamp as a V-I & I-V ConverterModule4:  opamp as a V-I & I-V Converter
Module4: opamp as a V-I & I-V Converterchandrakant shinde
 
Resonance in R-L-C circuit
Resonance in R-L-C circuitResonance in R-L-C circuit
Resonance in R-L-C circuitSiddhi Shrivas
 
Multiplexer & de multiplexer
Multiplexer & de multiplexerMultiplexer & de multiplexer
Multiplexer & de multiplexervishalgohel12195
 
INTERFACING ANALAOG TO DIGITAL CONVERTER (ADC0808/09) TO 8051 MICROCONTROLLER
 INTERFACING ANALAOG TO DIGITAL CONVERTER (ADC0808/09) TO 8051 MICROCONTROLLER   INTERFACING ANALAOG TO DIGITAL CONVERTER (ADC0808/09) TO 8051 MICROCONTROLLER
INTERFACING ANALAOG TO DIGITAL CONVERTER (ADC0808/09) TO 8051 MICROCONTROLLER SIRILsam
 
Electronic circuit design lab manual
Electronic circuit design lab manualElectronic circuit design lab manual
Electronic circuit design lab manualawais ahmad
 
Presentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumarPresentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumarSourabh Kumar
 
rms value
rms valuerms value
rms value2461998
 
Load line analysis
Load line analysisLoad line analysis
Load line analysissarunkutti
 
Schmitt trigger circuit
Schmitt trigger circuitSchmitt trigger circuit
Schmitt trigger circuittaranjeet10
 
Origin of Microprocessor and Classification of Microprocessor
Origin of Microprocessor and  Classification of Microprocessor Origin of Microprocessor and  Classification of Microprocessor
Origin of Microprocessor and Classification of Microprocessor Vijay Kumar
 
Microcontroller 8051
Microcontroller 8051Microcontroller 8051
Microcontroller 8051Rashmi
 
Successive approximation adc
Successive approximation adcSuccessive approximation adc
Successive approximation adcMaria Roshan
 

What's hot (20)

ADC - Analog to Digital Conversion on AVR microcontroller Atmega16
ADC - Analog to Digital  Conversion on AVR microcontroller Atmega16ADC - Analog to Digital  Conversion on AVR microcontroller Atmega16
ADC - Analog to Digital Conversion on AVR microcontroller Atmega16
 
Computer architecture
Computer architectureComputer architecture
Computer architecture
 
8051 Microcontroller PPT's By Er. Swapnil Kaware
8051 Microcontroller PPT's By Er. Swapnil Kaware8051 Microcontroller PPT's By Er. Swapnil Kaware
8051 Microcontroller PPT's By Er. Swapnil Kaware
 
Counters
CountersCounters
Counters
 
Arduino Uno Pin Description
Arduino Uno Pin DescriptionArduino Uno Pin Description
Arduino Uno Pin Description
 
Three phase half wave controlled converter
Three phase half wave controlled converterThree phase half wave controlled converter
Three phase half wave controlled converter
 
BJT Input and Output Characteristics in Common-Base Configuration
BJT  Input and Output Characteristics in Common-Base ConfigurationBJT  Input and Output Characteristics in Common-Base Configuration
BJT Input and Output Characteristics in Common-Base Configuration
 
Module4: opamp as a V-I & I-V Converter
Module4:  opamp as a V-I & I-V ConverterModule4:  opamp as a V-I & I-V Converter
Module4: opamp as a V-I & I-V Converter
 
Resonance in R-L-C circuit
Resonance in R-L-C circuitResonance in R-L-C circuit
Resonance in R-L-C circuit
 
Multiplexer & de multiplexer
Multiplexer & de multiplexerMultiplexer & de multiplexer
Multiplexer & de multiplexer
 
INTERFACING ANALAOG TO DIGITAL CONVERTER (ADC0808/09) TO 8051 MICROCONTROLLER
 INTERFACING ANALAOG TO DIGITAL CONVERTER (ADC0808/09) TO 8051 MICROCONTROLLER   INTERFACING ANALAOG TO DIGITAL CONVERTER (ADC0808/09) TO 8051 MICROCONTROLLER
INTERFACING ANALAOG TO DIGITAL CONVERTER (ADC0808/09) TO 8051 MICROCONTROLLER
 
Electronic circuit design lab manual
Electronic circuit design lab manualElectronic circuit design lab manual
Electronic circuit design lab manual
 
Presentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumarPresentation on Op-amp by Sourabh kumar
Presentation on Op-amp by Sourabh kumar
 
logical 8051
logical 8051logical 8051
logical 8051
 
rms value
rms valuerms value
rms value
 
Load line analysis
Load line analysisLoad line analysis
Load line analysis
 
Schmitt trigger circuit
Schmitt trigger circuitSchmitt trigger circuit
Schmitt trigger circuit
 
Origin of Microprocessor and Classification of Microprocessor
Origin of Microprocessor and  Classification of Microprocessor Origin of Microprocessor and  Classification of Microprocessor
Origin of Microprocessor and Classification of Microprocessor
 
Microcontroller 8051
Microcontroller 8051Microcontroller 8051
Microcontroller 8051
 
Successive approximation adc
Successive approximation adcSuccessive approximation adc
Successive approximation adc
 

Viewers also liked

Investigación documental 3 u
Investigación documental 3 uInvestigación documental 3 u
Investigación documental 3 uIrving Che
 
Il congiuntivo imperfetto e trapassato
Il congiuntivo imperfetto e trapassatoIl congiuntivo imperfetto e trapassato
Il congiuntivo imperfetto e trapassatoDanilo Buccarello
 
Manual para-realizar-estudios-de-prefactibilidad-y-factibilidad
Manual para-realizar-estudios-de-prefactibilidad-y-factibilidadManual para-realizar-estudios-de-prefactibilidad-y-factibilidad
Manual para-realizar-estudios-de-prefactibilidad-y-factibilidadAlicia Quispe
 
Gestor de proyectos alcira
Gestor de proyectos alciraGestor de proyectos alcira
Gestor de proyectos alciraCarlos Toro
 
The checklist for preparing your Exchange 2010 infrastructure for Exchange 20...
The checklist for preparing your Exchange 2010 infrastructure for Exchange 20...The checklist for preparing your Exchange 2010 infrastructure for Exchange 20...
The checklist for preparing your Exchange 2010 infrastructure for Exchange 20...Eyal Doron
 
Hackathon esempio di mapping addresses
Hackathon esempio di mapping addressesHackathon esempio di mapping addresses
Hackathon esempio di mapping addressessmespire
 
Enjoy Upto 50% Discounts on all computer training courses
Enjoy Upto 50% Discounts on all computer training coursesEnjoy Upto 50% Discounts on all computer training courses
Enjoy Upto 50% Discounts on all computer training coursesCMS Computer
 
In a warming climate, why do we see decreasing heat flux in the Arctic Ocean?
In a warming climate, why do we see decreasing heat flux in the Arctic Ocean?In a warming climate, why do we see decreasing heat flux in the Arctic Ocean?
In a warming climate, why do we see decreasing heat flux in the Arctic Ocean?Harsh Beria
 
Developing global marketing strategies
Developing global marketing strategiesDeveloping global marketing strategies
Developing global marketing strategiesFarhan Chishti
 
El costo real de los ataques ¿Cómo te impacta en ROI?
El costo real de los ataques ¿Cómo te impacta en ROI?El costo real de los ataques ¿Cómo te impacta en ROI?
El costo real de los ataques ¿Cómo te impacta en ROI?Grupo Smartekh
 
Activity 1
Activity 1Activity 1
Activity 1ahsuan01
 
Looking at INSPIRE from an Open Source obsessed SME
Looking at INSPIRE from an Open Source obsessed SMELooking at INSPIRE from an Open Source obsessed SME
Looking at INSPIRE from an Open Source obsessed SMEsmespire
 
Final outcome Ukraine
Final outcome UkraineFinal outcome Ukraine
Final outcome UkraineHalyna Kasyan
 
News great stable host coupon, stablehost promo code web vps - hosting server...
News great stable host coupon, stablehost promo code web vps - hosting server...News great stable host coupon, stablehost promo code web vps - hosting server...
News great stable host coupon, stablehost promo code web vps - hosting server...Đào tạo Seo
 
The engagement formula
The engagement formula The engagement formula
The engagement formula Vikas Sinhmar
 

Viewers also liked (20)

6th Semester (December; January-2014 and 2015) Electronics and Communication ...
6th Semester (December; January-2014 and 2015) Electronics and Communication ...6th Semester (December; January-2014 and 2015) Electronics and Communication ...
6th Semester (December; January-2014 and 2015) Electronics and Communication ...
 
Investigación documental 3 u
Investigación documental 3 uInvestigación documental 3 u
Investigación documental 3 u
 
فيزياء 2015
فيزياء 2015فيزياء 2015
فيزياء 2015
 
ADC and DAC Best Ever Pers
ADC and DAC Best Ever PersADC and DAC Best Ever Pers
ADC and DAC Best Ever Pers
 
Il congiuntivo imperfetto e trapassato
Il congiuntivo imperfetto e trapassatoIl congiuntivo imperfetto e trapassato
Il congiuntivo imperfetto e trapassato
 
Manual para-realizar-estudios-de-prefactibilidad-y-factibilidad
Manual para-realizar-estudios-de-prefactibilidad-y-factibilidadManual para-realizar-estudios-de-prefactibilidad-y-factibilidad
Manual para-realizar-estudios-de-prefactibilidad-y-factibilidad
 
Gestor de proyectos alcira
Gestor de proyectos alciraGestor de proyectos alcira
Gestor de proyectos alcira
 
The checklist for preparing your Exchange 2010 infrastructure for Exchange 20...
The checklist for preparing your Exchange 2010 infrastructure for Exchange 20...The checklist for preparing your Exchange 2010 infrastructure for Exchange 20...
The checklist for preparing your Exchange 2010 infrastructure for Exchange 20...
 
Hackathon esempio di mapping addresses
Hackathon esempio di mapping addressesHackathon esempio di mapping addresses
Hackathon esempio di mapping addresses
 
Enjoy Upto 50% Discounts on all computer training courses
Enjoy Upto 50% Discounts on all computer training coursesEnjoy Upto 50% Discounts on all computer training courses
Enjoy Upto 50% Discounts on all computer training courses
 
In a warming climate, why do we see decreasing heat flux in the Arctic Ocean?
In a warming climate, why do we see decreasing heat flux in the Arctic Ocean?In a warming climate, why do we see decreasing heat flux in the Arctic Ocean?
In a warming climate, why do we see decreasing heat flux in the Arctic Ocean?
 
Developing global marketing strategies
Developing global marketing strategiesDeveloping global marketing strategies
Developing global marketing strategies
 
El costo real de los ataques ¿Cómo te impacta en ROI?
El costo real de los ataques ¿Cómo te impacta en ROI?El costo real de los ataques ¿Cómo te impacta en ROI?
El costo real de los ataques ¿Cómo te impacta en ROI?
 
Supply7
Supply7Supply7
Supply7
 
Activity 1
Activity 1Activity 1
Activity 1
 
Propuesta digital v2
Propuesta digital v2Propuesta digital v2
Propuesta digital v2
 
Looking at INSPIRE from an Open Source obsessed SME
Looking at INSPIRE from an Open Source obsessed SMELooking at INSPIRE from an Open Source obsessed SME
Looking at INSPIRE from an Open Source obsessed SME
 
Final outcome Ukraine
Final outcome UkraineFinal outcome Ukraine
Final outcome Ukraine
 
News great stable host coupon, stablehost promo code web vps - hosting server...
News great stable host coupon, stablehost promo code web vps - hosting server...News great stable host coupon, stablehost promo code web vps - hosting server...
News great stable host coupon, stablehost promo code web vps - hosting server...
 
The engagement formula
The engagement formula The engagement formula
The engagement formula
 

Similar to Dac s05

Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converterstaha25
 
differential amplifier for electronic
differential amplifier for electronicdifferential amplifier for electronic
differential amplifier for electronicFaiz Yun
 
BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価Tsuyoshi Horigome
 
mc_dac_agjskskskskskskssksksksksksksk.pdf
mc_dac_agjskskskskskskssksksksksksksk.pdfmc_dac_agjskskskskskskssksksksksksksk.pdf
mc_dac_agjskskskskskskssksksksksksksk.pdftenapin940
 
Class 3: The Fundamentals of Designing with Semiconductors
Class 3: The Fundamentals of Designing with Semiconductors Class 3: The Fundamentals of Designing with Semiconductors
Class 3: The Fundamentals of Designing with Semiconductors Analog Devices, Inc.
 
Concept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelConcept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelTsuyoshi Horigome
 
Acx502 bmu
Acx502 bmuAcx502 bmu
Acx502 bmuUjwal Ks
 
SPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKSPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKTsuyoshi Horigome
 
Lesson 8_et438b (2).ppsx
Lesson 8_et438b (2).ppsxLesson 8_et438b (2).ppsx
Lesson 8_et438b (2).ppsxBkannan2
 
Primary Mixer S-Functions Presentation
Primary Mixer S-Functions PresentationPrimary Mixer S-Functions Presentation
Primary Mixer S-Functions PresentationNMDG NV
 
Electrochem group 2
Electrochem group 2Electrochem group 2
Electrochem group 2Ong Hui Jin
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manualAJAL A J
 
SPICE MODEL of uPC78L10T in SPICE PARK
SPICE MODEL of uPC78L10T in SPICE PARKSPICE MODEL of uPC78L10T in SPICE PARK
SPICE MODEL of uPC78L10T in SPICE PARKTsuyoshi Horigome
 
Op Amp Revision Q3
Op Amp Revision Q3Op Amp Revision Q3
Op Amp Revision Q3ml4ml4
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 

Similar to Dac s05 (20)

Dsp U Lec02 Data Converters
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
 
differential amplifier for electronic
differential amplifier for electronicdifferential amplifier for electronic
differential amplifier for electronic
 
BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価BTS5016-1EKBのスパイスモデルの評価
BTS5016-1EKBのスパイスモデルの評価
 
Lica 3rd chapter slides
Lica 3rd chapter slidesLica 3rd chapter slides
Lica 3rd chapter slides
 
mc_dac_agjskskskskskskssksksksksksksk.pdf
mc_dac_agjskskskskskskssksksksksksksk.pdfmc_dac_agjskskskskskskssksksksksksksk.pdf
mc_dac_agjskskskskskskssksksksksksksk.pdf
 
Ec ii lab manual
Ec ii lab manualEc ii lab manual
Ec ii lab manual
 
Class 3: The Fundamentals of Designing with Semiconductors
Class 3: The Fundamentals of Designing with Semiconductors Class 3: The Fundamentals of Designing with Semiconductors
Class 3: The Fundamentals of Designing with Semiconductors
 
Concept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelConcept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients Model
 
Acx502 bmu
Acx502 bmuAcx502 bmu
Acx502 bmu
 
SPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKSPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARK
 
Lesson 8_et438b (2).ppsx
Lesson 8_et438b (2).ppsxLesson 8_et438b (2).ppsx
Lesson 8_et438b (2).ppsx
 
7449
74497449
7449
 
Primary Mixer S-Functions Presentation
Primary Mixer S-Functions PresentationPrimary Mixer S-Functions Presentation
Primary Mixer S-Functions Presentation
 
Electrochem group 2
Electrochem group 2Electrochem group 2
Electrochem group 2
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manual
 
SPICE MODEL of uPC78L10T in SPICE PARK
SPICE MODEL of uPC78L10T in SPICE PARKSPICE MODEL of uPC78L10T in SPICE PARK
SPICE MODEL of uPC78L10T in SPICE PARK
 
Op Amp Revision Q3
Op Amp Revision Q3Op Amp Revision Q3
Op Amp Revision Q3
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Bouma2
Bouma2Bouma2
Bouma2
 
Bouma2
Bouma2Bouma2
Bouma2
 

Dac s05

  • 1. Digital to Analog Converters (DAC) Adam Fleming Mark Hunkele 3/11/2005
  • 2. Outline  Purpose  Types  Performance Characteristics  Applications 2
  • 3. Purpose  To convert digital values to analog voltages  Performs inverse operation of the Analog-to- Digital Converter (ADC)  VOUT ∝ Digital Value Reference Voltage Digital Value DAC Analog Voltage 3
  • 4. DACs  Types  Binary Weighted Resistor  R-2R Ladder  Multiplier DAC  The reference voltage is constant and is set by the manufacturer.  Non-Multiplier DAC  The reference voltage can be changed during operation.  Characteristics  Comprised of switches, op-amps, and resistors  Provides resistance inversely proportion to significance of bit 4
  • 5. Binary Weighted Resistor Rf = R ∑I i R 2R 4R 8R Vo MSB LSB -VREF 5
  • 6. Binary Representation Rf = R ∑I i R 2R 4R 8R Vo Most Significant Bit Least Significant Bit -VREF 6
  • 7. Binary Representation SET CLEARED Most Significant Bit Least -VREF Significant Bit ( 1 1 1 1 )2 = ( 15 )10 7
  • 8. Binary Weighted Resistor  “Weighted Rf = R Resistors” based on bit ∑I i  Reduces current by a R 2R 4R 8R Vo factor of 2 for MSB each bit LSB -VREF 8
  • 9. Binary Weighted Resistor  Result:  B3 B2 B1 B0  ∑ I = VREF  R + 2R + 4 R + 8R     B2 B1 B0  VOUT = I ⋅ R f = VREF  B3 + + +   2 4 8   Bi = Value of Bit i 9
  • 10. Binary Weighted Resistor  More Generally: Bi VOUT = VREF ∑ n −i −1 2 = VREF ⋅ Digital Value ⋅ Resolution  Bi = Value of Bit i n = Number of Bits 10
  • 11. R-2R Ladder VREF MSB LSB 11
  • 12. R-2R Ladder  Same input switch setup as Binary Weighted Resistor DAC  All bits pass through resistance of 2R VREF MSB LSB 12
  • 13. R-2R Ladder  The less significant the bit, the more resistors the signal muss pass through before reaching the op-amp  The current is divided by a factor of 2 at each node LSB MSB 13
  • 14. R-2R Ladder  The current is divided by a factor of 2 at each node  Analysis for current from (001)2 shown below I0 I0 I0 2 4 8 R R R 2R R 2R 2R 2R I0 Op-Amp input VREF B1 B2 “Ground” − VREF VREF B0 I0 = = 2 R + 2 R 2 R 14 R 3
  • 15. R-2R Ladder  Result: VREF  B2 B1 B0  I=  + +  3R  2 4 8  Rf  B2 B1 B0  VOUT = VREF  + +  R  2 4 8   Bi = Value of Bit i Rf 15
  • 16. R-2R Ladder  If Rf = 6R, VOUT is same as Binary Weighted: VREF Bi I= 3R ∑ 2 n −i Bi VOUT = VREF ∑ n −i −1 2  Bi = Value of Bit i 16
  • 17. R-2R Ladder  Example: − VREF VREF I0 = = = −1.67 mA  Input = (101)2 2 R + 2 R 2 R 3R  VREF = 10 V I0 I0 I op − amp = + = −1.04 mA R=2Ω 8 2  Rf = 2R VOUT = − I op − amp R f = 4.17 V R R R 2R R 2R 2R 2R I0 I0 Op-Amp input VREF VREF “Ground” B0 B2 17
  • 18. Pros & Cons Binary Weighted R-2R Only 2 resistor values Easier implementation Pros Easily understood Easier to manufacture Faster response time Limited to ~ 8 bits Large # of resistors Cons Susceptible to noise More confusing analysis Expensive Greater Error 18
  • 19. Digital to Analog Converters  Performance Specifications  Common Applications Presented by: Mark Hunkele 19
  • 20. Digital to Analog Converters -Performance Specifications  Resolution  Reference Voltages  Settling Time  Linearity  Speed  Errors 20
  • 21. Digital to Analog Converters -Performance Specifications -Resolution  Resolution: is the amount of variance in output voltage for every change of the LSB in the digital input.  How closely can we approximate the desired output signal(Higher Res. = finer detail=smaller Voltage divisions)  A common DAC has a 8 - 12 bit Resolution VRef Resolution = VLSB = N N = Number of bits 2 21
  • 22. Digital to Analog Converters -Performance Specifications -Resolution Poor Resolution(1 bit) Better Resolution(3 bit) Vout Vout Desired Analog Desired Analog signal signal 111 110 110 8 Volt. Levels 2 Volt. Levels 1 101 101 100 100 011 011 010 010 001 001 0 0 000 000 Digital Input Approximate Digital Input Approximate output 22 output
  • 23. Digital to Analog Converters -Performance Specifications -Reference Voltage  Reference Voltage: A specified voltage used to determine how each digital input will be assigned to each voltage division.  Types:  Non-multiplier: internal, fixed, and defined by manufacturer  Multiplier: external, variable, user specified 23
  • 24. Digital to Analog Converters -Performance Specifications -Reference Voltage Non-Multiplier: (Vref = C) Multiplier: (Vref = Asin(wt)) Voltage Voltage 3C 11 3A 4 11 4 C A 10 10 2 10 10 2 C A 01 01 4 01 01 4 0 0 00 00 00 00 Digital Input Digital Input Assume 2 bit DAC 24
  • 25. Digital to Analog Converters -Performance Specifications -Settling Time  Settling Time: The time required for the input signal voltage to settle to the expected output voltage(within +/- V LSB).  Any change in the input state will not be reflected in the output state immediately. There is a time lag, between the two events. 25
  • 26. Digital to Analog Converters -Performance Specifications -Settling Time Analog Output Voltage +VLSB Expected Voltage -VLSB Time Settling time 26
  • 27. Digital to Analog Converters -Performance Specifications -Linearity  Linearity: is the difference between the desired analog output and the actual output over the full range of expected values.  Ideally, a DAC should produce a linear relationship between a digital input and the analog output, this is not always the case. 27
  • 28. Digital to Analog Converters -Performance Specifications -Linearity Linearity(Ideal Case) NON-Linearity(Real World) Analog Output Voltage Analog Output Voltage Desired/Approximate Output Desired Output Approximate output Digital Input Digital Input Perfect Agreement Miss-alignment 28
  • 29. Digital to Analog Converters -Performance Specifications -Speed  Speed: Rate of conversion of a single digital input to its analog equivalent  Conversion Rate  Depends on clock speed of input signal  Depends on settling time of converter 29
  • 30. Digital to Analog Converters -Performance Specifications -Errors  Non-linearity  Differential  Integral  Gain  Offset  Non-monotonicity 30
  • 31. Digital to Analog Converters -Performance Specifications -Errors: Differential Non-Linearity  Differential Non-Linearity: Difference in voltage step size from the previous DAC output (Ideally All DLN’s = 1 VLSB) Analog Output Voltage Ideal Output 2VLSB Diff. Non-Linearity = 2VLSB VLSB Digital Input 31
  • 32. Digital to Analog Converters -Performance Specifications -Errors: Integral Non-Linearity  Integral Non-Linearity: Deviation of the actual DAC output from the ideal (Ideally all INL’s = 0) Ideal Output Analog Output Voltage 1VLSB Int. Non-Linearity = 1VLSB Digital Input 32
  • 33. Digital to Analog Converters -Performance Specifications -Errors: Gain  Gain Error: Difference in slope of the ideal curve and the actual DAC output High Gain High Gain Error: Actual Analog Output Voltage Desired/Ideal Output slope greater than ideal Low Gain Error: Actual Low Gain slope less than ideal Digital Input 33
  • 34. Digital to Analog Converters -Performance Specifications -Errors: Offset  Offset Error: A constant voltage difference between the ideal DAC output and the actual.  The voltage axis intercept of the DAC output curve is different than the ideal. Output Voltage Desired/Ideal Output Positive Offset Digital Input Negative Offset 34
  • 35. Digital to Analog Converters -Performance Specifications -Errors: Non-Monotonicity  Non-Monotonic: A decrease in output voltage with an increase in the digital input Analog Output Voltage Desired Output Non-Monotonic Monotonic Digital Input 35
  • 36. Digital to Analog Converters -Common Applications  Generic use  Circuit Components  Digital Audio  Function Generators/Oscilloscopes  Motor Controllers 36
  • 37. Digital to Analog Converters -Common Applications -Generic  Used when a continuous analog signal is required.  Signal from DAC can be smoothed by a Low pass filter Piece-wise Analog Digital Input Continuous Output Continuous Output 0 bit 011010010101010100101 101010101011111100101 000010101010111110011 010101010101010101010 n bit DAC Filter 111010101011110011000 100101010101010001111 nth bit 37
  • 38. Digital to Analog Converters -Common Applications -Circuit Components  Voltage controlled Amplifier  digital input, External Reference Voltage as control  Digitally operated attenuator  External Reference Voltage as input, digital control  Programmable Filters  Digitally controlled cutoff frequencies 38
  • 39. Digital to Analog Converters -Common Applications -Digital Audio  CD Players  MP3 Players  Digital Telephone/Answering Machines 1 2 3 1. http://electronics.howstuffworks.com/cd.htm 2. http://accessories.us.dell.com/sna/sna.aspx?c=us&cs=19&l=en&s=dhs&~topic=odg_dj 39 3. http://www.toshiba.com/taistsd/pages/prd_dtc_digphones.html
  • 40. Digital to Analog Converters -Common Applications -Function Generators  Digital Oscilloscopes  Signal Generators  Digital Input  Sine wave generation  Square wave generation  Analog Ouput  Triangle wave generation  Random noise generation 1 2 1. http://www.electrorent.com/products/search/General_Purpose_Oscilloscopes.html 40 2. http://www.bkprecision.com/power_supplies_supply_generators.htm
  • 41. Digital to Analog Converters -Common Applications -Motor Controllers  Cruise Control  Valve Control  Motor Control 1 2 3 1. http://auto.howstuffworks.com/cruise-control.htm 2. http://www.emersonprocess.com/fisher/products/fieldvue/dvc/ 41 3. http://www.thermionics.com/smc.htm
  • 42. References  Cogdell, J.R. Foundations of Electrical Engineering. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1996.  “Simplified DAC/ADC Lecture Notes,” http://www-personal.engin.umd.umich.edu/ ~fmeral/ELECTRONICS II/ElectronicII.html  “Digital-Analog Conversion,” http://www.allaboutcircuits.com.  Barton, Kim, and Neel. “Digital to Analog Converters.” Lecture, March 21, 2001. http://www.me.gatech.edu/charles.ume/me4447Spring01/ClassNotes/dac.ppt.  Chacko, Deliou, Holst, “ME6465 DAC Lecture” Lecture, 10/ 23/2003, http://www.me.gatech.edu/mechatronics_course/  Lee, Jeelani, Beckwith, “Digital to Analog Converter” Lecture, Spring 2004, http://www.me.gatech.edu/mechatronics_course/ 42