SlideShare a Scribd company logo
1 of 31
Download to read offline
CONCEPT OF & CELL
SECTORING AND MICRO
CELL
By Kundan Kumar
Shape of Cells
 Square
 Width d cell has four neighbors at distance d and four at distance
d
 Better if all adjacent antennas equidistant
 Simplifies choosing and switching to new antenna
 Hexagon
 Provides equidistant antennas
 Radius defined as radius of circum-circle
 Distance from center to vertex equals length of side
 Distance between centers of cells radius R is R
 Not always precise hexagons
 Topographical limitations
 Local signal propagation conditions
 Location of antennas
2
3
Cellular Geometries
Frequency Reuse
 Power of base transceiver controlled
 Allow communications within cell on given frequency
 Limit escaping power to adjacent cells
 Allow re-use of frequencies in nearby cells
 Use same frequency for multiple conversations
 10 – 50 frequencies per cell
 E.g.
 N cells all using same number of frequencies
 K total number of frequencies used in systems
 Each cell has K/N frequencies
 Advanced Mobile Phone Service (AMPS) K=395, N=7 giving 57
frequencies per cell on average
Characterizing Frequency
Reuse
 D = minimum distance between centers of cells that use the same
band of frequencies (called cochannels)
 R = radius of a cell
 d = distance between centers of adjacent cells (d = R)
 N = number of cells in repetitious pattern
 Reuse factor
 Each cell in pattern uses unique band of frequencies
 Hexagonal cell pattern, following values of N possible
 N = I2 + J2 + (I x J), I, J = 0, 1, 2, 3, …
 Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, …
 D/R=
 D/d =
N3
N
Frequency Reuse Patterns
Frequency Reuse Patterns
Principles of Cellular Frequency Reuse
 Typical frequency reuse plan for 7 different radio
frequencies, based on hexagonal cells.
 In fact some problems in cellular frequency
assignment are solved using map coloring
theory.
Principles of Cellular Frequency Reuse
(con’t)
 Frequency 're-use' distance is the closest
distance between the centers of two cells using
the same frequency (in different clusters) is
determined by the choice of the cluster size C
and the lay-out of the cell cluster.
Co-Channel Interference (CCI)
 CCI arises in cellular systems where the available
frequency channels are divided into different sets.
 Each set being assigned to a specific cell and with
several cells in the system using the same set of
frequencies.
 CCI limits the system capacity
 This interference generally happens in places where
population is high.
The Capacity of Cellular
Network
 Why do we need more capacity?
 Reach more users at the same time
 Share more information throughout the network.
 New technologies will require more complex
solutions and these solutions can be achieved
with maximum space available.
The Capacity of Cellular Network
(con’t)
 The capacity of cellular systems can be
increased by;
 Frequency borrowing
 Cell splitting
 Cell sectoring
 Microcells
Frequency Borrowing
 RF bandwidth is the most important constraint
in wireless systems.
 So to increase the capacity, frequency of
Radio Signals and wireless systems shall be
increased.
 To do this, frequencies are taken from adjacent
cells by congested cells.
Cell Splitting
 The unit area of RF coverage for cellular
network is called a cell.
 In each cell, a base station transmits from a
fixed cell site location, which is often centrally
located in the cell.
 In base stations where the usage of cellular
network is high, these cells are split into
smaller cells.
Cell Splitting (con’t)
 The radio frequencies are reassigned, and
transmission power is reduced.
 A new cell site must be constructed when a cell is
split
 Cell splitting is one of the easy and less costly
solution when increasing the capacity of cellular
network.
 Splitting the cells into smaller ones also lead to a
new solution called cell sectoring.
Cell Sectoring
 Sectorization consists of dividing an
omnidirectional (360 degree) view from the cell
site into non-overlapping slices called sectors.
 When combined, sectors provide the same
coverage but they are considered to be
separate cells.
 Also considered as one of easy and
inexpensive capacity increasing solution.
Sectoring
 In basic form, antennas are omnidirectional
 Replacing a single omni-directional antenna at base station
with several directional antennas, each radiating within a
specified sector.
 achieves capacity improvement by essentially rescaling the
system.
 less co-channel interference, number of cells in a cluster can
be reduced
 Larger frequency reuse factor, larger capacity
Sectoring methods
Sectoring Examples
 Only two cochannel cell
 S/I improvement 7.2dB
 Capacity 12/7
 First type handoff
 Trunking efficiency low
 Urban area not good
 Example 3.9
DAYANANDA SAGAR
COLLEGE OF ENGINEERING,
BANGALORE
Repeater
 Extend coverage range
 Directional antenna or distributed antenna
systems
Microcells
 As the splitting of cell idea evolves, the usage
of smaller cells become efficient and it leads
the creation of microcells.
 The aim of creating microcells are increasing
the capacity of cellular network in areas where
population is high.
Microcells (con’t)
 Typical comparison can be made like this;
 Cells typically range in size from two to twenty
kilometers in diameter.
 Microcells range from about a hundred meters to
a kilometer in diameter.
Micro Cell Zone Concept
 Large control base station is replaced by
several lower powered transmitters on the
edge of the cell.
 The mobile retains the same channel and the
base station simply switches the channel to a
different zone site and the mobile moves from
zone to zone.
 Since a given channel is active only in a
particular zone in which mobile is traveling,
base station radiation is localized and
interference is reduced.
Micro Cell Zone
 Superior to sectoring, any base
station channel may be assigned to
any zone by the base station
 Same channel
 No handoff
 Only the active zone
DAYANANDA SAGAR
COLLEGE OF ENGINEERING,
BANGALORE
Example
 2.33 times
capacity gain
Questions
Question1
 How can Cellular network capacities will be
improve in the future?
 A: There are lots of solutions for improving the
capacity of the Network. But the one of the
most logical one is, using the logical solution
cell in the sector with adaptive antennas. And
using more cells where the number of
subscriber is bigger.
Question 2
 Why we need the frequency reuse? What are
the reasons?
 A: We need frequency reuse because we
have a bandwidth. If we use same frequency
in every cell, the other cells make interference.
Hence the specific frequency is trying to not
use by the other cells.
Concepts of & cell sectoring and micro cell

More Related Content

What's hot

Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)asadkhan1327
 
Diversity Techniques in Wireless Communication
Diversity Techniques in Wireless CommunicationDiversity Techniques in Wireless Communication
Diversity Techniques in Wireless CommunicationSahar Foroughi
 
4.4 diversity combining techniques
4.4   diversity combining techniques4.4   diversity combining techniques
4.4 diversity combining techniquesJAIGANESH SEKAR
 
The cellular concept
The cellular conceptThe cellular concept
The cellular conceptZunAib Ali
 
cell splitting and sectoring
cell splitting and sectoringcell splitting and sectoring
cell splitting and sectoringShwetanshu Gupta
 
Small Scale Multi path measurements
Small Scale Multi path measurements Small Scale Multi path measurements
Small Scale Multi path measurements Siva Ganesan
 
Cdma system
Cdma systemCdma system
Cdma systemtrimba
 
3. free space path loss model part 1
3. free space path loss model   part 13. free space path loss model   part 1
3. free space path loss model part 1JAIGANESH SEKAR
 
frequency re use nb
frequency re use nbfrequency re use nb
frequency re use nbAJAL A J
 
Multichannel fading
Multichannel fadingMultichannel fading
Multichannel fadingShree Krupa
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)asadkhan1327
 
Diversity Techniques in mobile communications
Diversity Techniques in mobile communicationsDiversity Techniques in mobile communications
Diversity Techniques in mobile communicationsDiwaker Pant
 
2. wireless propagation models free space propagation
2. wireless propagation models   free space propagation2. wireless propagation models   free space propagation
2. wireless propagation models free space propagationJAIGANESH SEKAR
 

What's hot (20)

Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)
 
Diversity Techniques in Wireless Communication
Diversity Techniques in Wireless CommunicationDiversity Techniques in Wireless Communication
Diversity Techniques in Wireless Communication
 
4.4 diversity combining techniques
4.4   diversity combining techniques4.4   diversity combining techniques
4.4 diversity combining techniques
 
Wireless channels
Wireless channels Wireless channels
Wireless channels
 
The cellular concept
The cellular conceptThe cellular concept
The cellular concept
 
cell splitting and sectoring
cell splitting and sectoringcell splitting and sectoring
cell splitting and sectoring
 
Small Scale Multi path measurements
Small Scale Multi path measurements Small Scale Multi path measurements
Small Scale Multi path measurements
 
Cdma system
Cdma systemCdma system
Cdma system
 
TDMA
TDMATDMA
TDMA
 
Fading Seminar
Fading SeminarFading Seminar
Fading Seminar
 
3. free space path loss model part 1
3. free space path loss model   part 13. free space path loss model   part 1
3. free space path loss model part 1
 
Gsm channels concept
Gsm channels conceptGsm channels concept
Gsm channels concept
 
Multiple access techniques for wireless communications
Multiple access techniques for wireless communicationsMultiple access techniques for wireless communications
Multiple access techniques for wireless communications
 
OFDM
OFDMOFDM
OFDM
 
frequency re use nb
frequency re use nbfrequency re use nb
frequency re use nb
 
GSM channels
GSM channelsGSM channels
GSM channels
 
Multichannel fading
Multichannel fadingMultichannel fading
Multichannel fading
 
Chap 4 (large scale propagation)
Chap 4 (large scale propagation)Chap 4 (large scale propagation)
Chap 4 (large scale propagation)
 
Diversity Techniques in mobile communications
Diversity Techniques in mobile communicationsDiversity Techniques in mobile communications
Diversity Techniques in mobile communications
 
2. wireless propagation models free space propagation
2. wireless propagation models   free space propagation2. wireless propagation models   free space propagation
2. wireless propagation models free space propagation
 

Similar to Concepts of & cell sectoring and micro cell

Lec 3 and 4 cellular concept 1
Lec 3 and 4 cellular concept 1Lec 3 and 4 cellular concept 1
Lec 3 and 4 cellular concept 1Sidra Mallick
 
Cellular network
Cellular networkCellular network
Cellular networkMr SMAK
 
Thr cellular concept
Thr cellular conceptThr cellular concept
Thr cellular conceptSajid Marwat
 
Presentation1
Presentation1Presentation1
Presentation1tapubhai
 
Mobile communication demo
Mobile communication demoMobile communication demo
Mobile communication demoAsit Panda
 
2-frequencyreusenb-130206113258-phpapp02.pdf
2-frequencyreusenb-130206113258-phpapp02.pdf2-frequencyreusenb-130206113258-phpapp02.pdf
2-frequencyreusenb-130206113258-phpapp02.pdfKumarSaurabh314476
 
Cellular concepts and system design fundamentals
Cellular concepts and system design fundamentalsCellular concepts and system design fundamentals
Cellular concepts and system design fundamentalsKamal Sharma
 
Mobile Comm- Garima Maam
Mobile Comm- Garima MaamMobile Comm- Garima Maam
Mobile Comm- Garima MaamVarun Bansal
 
Bab 3 konsep sistem komunikasi bergerak
Bab 3 konsep sistem komunikasi bergerakBab 3 konsep sistem komunikasi bergerak
Bab 3 konsep sistem komunikasi bergerakampas03
 
2.6 cellular concepts - frequency reusing, channel assignment
2.6   cellular concepts - frequency reusing, channel assignment2.6   cellular concepts - frequency reusing, channel assignment
2.6 cellular concepts - frequency reusing, channel assignmentJAIGANESH SEKAR
 
Intorduction to cellular communication
Intorduction to cellular communicationIntorduction to cellular communication
Intorduction to cellular communicationZaahir Salam
 
Wireless communication, UNIT 3, EC students, 8th sem
Wireless communication, UNIT 3, EC students, 8th semWireless communication, UNIT 3, EC students, 8th sem
Wireless communication, UNIT 3, EC students, 8th semSURESHA V
 
T Rappaport - corrected Wireless Communications Principles and Practice-Prent...
T Rappaport - corrected Wireless Communications Principles and Practice-Prent...T Rappaport - corrected Wireless Communications Principles and Practice-Prent...
T Rappaport - corrected Wireless Communications Principles and Practice-Prent...HassanRaza595556
 
Cellular Architecture Design Concepts
Cellular Architecture Design ConceptsCellular Architecture Design Concepts
Cellular Architecture Design ConceptsT. L. Singal
 
fundamenatals of cellular enginering
fundamenatals of cellular engineringfundamenatals of cellular enginering
fundamenatals of cellular engineringMaulik Patel
 
Lec06(practical handoff and footprint)
Lec06(practical handoff and footprint)Lec06(practical handoff and footprint)
Lec06(practical handoff and footprint)Muhammad Ali Zeb
 
Researchpaper improving channel-capacity-of-a-cellular-system-using-cell-spli...
Researchpaper improving channel-capacity-of-a-cellular-system-using-cell-spli...Researchpaper improving channel-capacity-of-a-cellular-system-using-cell-spli...
Researchpaper improving channel-capacity-of-a-cellular-system-using-cell-spli...vks01ece
 

Similar to Concepts of & cell sectoring and micro cell (20)

Lec 3 and 4 cellular concept 1
Lec 3 and 4 cellular concept 1Lec 3 and 4 cellular concept 1
Lec 3 and 4 cellular concept 1
 
Cellular network
Cellular networkCellular network
Cellular network
 
Thr cellular concept
Thr cellular conceptThr cellular concept
Thr cellular concept
 
Presentation1
Presentation1Presentation1
Presentation1
 
Mobile communication demo
Mobile communication demoMobile communication demo
Mobile communication demo
 
2-frequencyreusenb-130206113258-phpapp02.pdf
2-frequencyreusenb-130206113258-phpapp02.pdf2-frequencyreusenb-130206113258-phpapp02.pdf
2-frequencyreusenb-130206113258-phpapp02.pdf
 
Cellular concepts and system design fundamentals
Cellular concepts and system design fundamentalsCellular concepts and system design fundamentals
Cellular concepts and system design fundamentals
 
Mobile Comm- Garima Maam
Mobile Comm- Garima MaamMobile Comm- Garima Maam
Mobile Comm- Garima Maam
 
Bab 3 konsep sistem komunikasi bergerak
Bab 3 konsep sistem komunikasi bergerakBab 3 konsep sistem komunikasi bergerak
Bab 3 konsep sistem komunikasi bergerak
 
2.6 cellular concepts - frequency reusing, channel assignment
2.6   cellular concepts - frequency reusing, channel assignment2.6   cellular concepts - frequency reusing, channel assignment
2.6 cellular concepts - frequency reusing, channel assignment
 
Wt module 2
Wt module 2Wt module 2
Wt module 2
 
Intorduction to cellular communication
Intorduction to cellular communicationIntorduction to cellular communication
Intorduction to cellular communication
 
Wireless communication, UNIT 3, EC students, 8th sem
Wireless communication, UNIT 3, EC students, 8th semWireless communication, UNIT 3, EC students, 8th sem
Wireless communication, UNIT 3, EC students, 8th sem
 
T Rappaport - corrected Wireless Communications Principles and Practice-Prent...
T Rappaport - corrected Wireless Communications Principles and Practice-Prent...T Rappaport - corrected Wireless Communications Principles and Practice-Prent...
T Rappaport - corrected Wireless Communications Principles and Practice-Prent...
 
Cellular Architecture Design Concepts
Cellular Architecture Design ConceptsCellular Architecture Design Concepts
Cellular Architecture Design Concepts
 
Cellular concepts
Cellular conceptsCellular concepts
Cellular concepts
 
fundamenatals of cellular enginering
fundamenatals of cellular engineringfundamenatals of cellular enginering
fundamenatals of cellular enginering
 
Lec06(practical handoff and footprint)
Lec06(practical handoff and footprint)Lec06(practical handoff and footprint)
Lec06(practical handoff and footprint)
 
Researchpaper improving channel-capacity-of-a-cellular-system-using-cell-spli...
Researchpaper improving channel-capacity-of-a-cellular-system-using-cell-spli...Researchpaper improving channel-capacity-of-a-cellular-system-using-cell-spli...
Researchpaper improving channel-capacity-of-a-cellular-system-using-cell-spli...
 
Mobile Communication
Mobile CommunicationMobile Communication
Mobile Communication
 

Recently uploaded

How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptxmary850239
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptxAneriPatwari
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17Celine George
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfChristalin Nelson
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6Vanessa Camilleri
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 

Recently uploaded (20)

How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
ARTERIAL BLOOD GAS ANALYSIS........pptx
ARTERIAL BLOOD  GAS ANALYSIS........pptxARTERIAL BLOOD  GAS ANALYSIS........pptx
ARTERIAL BLOOD GAS ANALYSIS........pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdf
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 

Concepts of & cell sectoring and micro cell

  • 1. CONCEPT OF & CELL SECTORING AND MICRO CELL By Kundan Kumar
  • 2. Shape of Cells  Square  Width d cell has four neighbors at distance d and four at distance d  Better if all adjacent antennas equidistant  Simplifies choosing and switching to new antenna  Hexagon  Provides equidistant antennas  Radius defined as radius of circum-circle  Distance from center to vertex equals length of side  Distance between centers of cells radius R is R  Not always precise hexagons  Topographical limitations  Local signal propagation conditions  Location of antennas 2 3
  • 4. Frequency Reuse  Power of base transceiver controlled  Allow communications within cell on given frequency  Limit escaping power to adjacent cells  Allow re-use of frequencies in nearby cells  Use same frequency for multiple conversations  10 – 50 frequencies per cell  E.g.  N cells all using same number of frequencies  K total number of frequencies used in systems  Each cell has K/N frequencies  Advanced Mobile Phone Service (AMPS) K=395, N=7 giving 57 frequencies per cell on average
  • 5. Characterizing Frequency Reuse  D = minimum distance between centers of cells that use the same band of frequencies (called cochannels)  R = radius of a cell  d = distance between centers of adjacent cells (d = R)  N = number of cells in repetitious pattern  Reuse factor  Each cell in pattern uses unique band of frequencies  Hexagonal cell pattern, following values of N possible  N = I2 + J2 + (I x J), I, J = 0, 1, 2, 3, …  Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, …  D/R=  D/d = N3 N
  • 8. Principles of Cellular Frequency Reuse  Typical frequency reuse plan for 7 different radio frequencies, based on hexagonal cells.  In fact some problems in cellular frequency assignment are solved using map coloring theory.
  • 9. Principles of Cellular Frequency Reuse (con’t)  Frequency 're-use' distance is the closest distance between the centers of two cells using the same frequency (in different clusters) is determined by the choice of the cluster size C and the lay-out of the cell cluster.
  • 10. Co-Channel Interference (CCI)  CCI arises in cellular systems where the available frequency channels are divided into different sets.  Each set being assigned to a specific cell and with several cells in the system using the same set of frequencies.  CCI limits the system capacity  This interference generally happens in places where population is high.
  • 11. The Capacity of Cellular Network  Why do we need more capacity?  Reach more users at the same time  Share more information throughout the network.  New technologies will require more complex solutions and these solutions can be achieved with maximum space available.
  • 12. The Capacity of Cellular Network (con’t)  The capacity of cellular systems can be increased by;  Frequency borrowing  Cell splitting  Cell sectoring  Microcells
  • 13. Frequency Borrowing  RF bandwidth is the most important constraint in wireless systems.  So to increase the capacity, frequency of Radio Signals and wireless systems shall be increased.  To do this, frequencies are taken from adjacent cells by congested cells.
  • 14. Cell Splitting  The unit area of RF coverage for cellular network is called a cell.  In each cell, a base station transmits from a fixed cell site location, which is often centrally located in the cell.  In base stations where the usage of cellular network is high, these cells are split into smaller cells.
  • 15.
  • 16. Cell Splitting (con’t)  The radio frequencies are reassigned, and transmission power is reduced.  A new cell site must be constructed when a cell is split  Cell splitting is one of the easy and less costly solution when increasing the capacity of cellular network.  Splitting the cells into smaller ones also lead to a new solution called cell sectoring.
  • 17. Cell Sectoring  Sectorization consists of dividing an omnidirectional (360 degree) view from the cell site into non-overlapping slices called sectors.  When combined, sectors provide the same coverage but they are considered to be separate cells.  Also considered as one of easy and inexpensive capacity increasing solution.
  • 18. Sectoring  In basic form, antennas are omnidirectional  Replacing a single omni-directional antenna at base station with several directional antennas, each radiating within a specified sector.  achieves capacity improvement by essentially rescaling the system.  less co-channel interference, number of cells in a cluster can be reduced  Larger frequency reuse factor, larger capacity
  • 20. Sectoring Examples  Only two cochannel cell  S/I improvement 7.2dB  Capacity 12/7  First type handoff  Trunking efficiency low  Urban area not good  Example 3.9
  • 21.
  • 22. DAYANANDA SAGAR COLLEGE OF ENGINEERING, BANGALORE Repeater  Extend coverage range  Directional antenna or distributed antenna systems
  • 23. Microcells  As the splitting of cell idea evolves, the usage of smaller cells become efficient and it leads the creation of microcells.  The aim of creating microcells are increasing the capacity of cellular network in areas where population is high.
  • 24. Microcells (con’t)  Typical comparison can be made like this;  Cells typically range in size from two to twenty kilometers in diameter.  Microcells range from about a hundred meters to a kilometer in diameter.
  • 25. Micro Cell Zone Concept  Large control base station is replaced by several lower powered transmitters on the edge of the cell.  The mobile retains the same channel and the base station simply switches the channel to a different zone site and the mobile moves from zone to zone.  Since a given channel is active only in a particular zone in which mobile is traveling, base station radiation is localized and interference is reduced.
  • 26. Micro Cell Zone  Superior to sectoring, any base station channel may be assigned to any zone by the base station  Same channel  No handoff  Only the active zone
  • 27. DAYANANDA SAGAR COLLEGE OF ENGINEERING, BANGALORE Example  2.33 times capacity gain
  • 29. Question1  How can Cellular network capacities will be improve in the future?  A: There are lots of solutions for improving the capacity of the Network. But the one of the most logical one is, using the logical solution cell in the sector with adaptive antennas. And using more cells where the number of subscriber is bigger.
  • 30. Question 2  Why we need the frequency reuse? What are the reasons?  A: We need frequency reuse because we have a bandwidth. If we use same frequency in every cell, the other cells make interference. Hence the specific frequency is trying to not use by the other cells.