Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Linking data without common identifiers

Talk about the

Related Books

Free with a 30 day trial from Scribd

See all
  • Be the first to comment

Linking data without common identifiers

  1. 1. Linking data without common identifiers<br />Semantic Web Meetup, 2011-08-23<br />Lars Marius Garshol, <larsga@bouvet.no><br />http://twitter.com/larsga<br />
  2. 2. About me<br />Lars Marius Garshol, Bouvet consultant<br />Worked with semantic technologies since 1999<br />mostly Topic Maps<br />Before that I worked with XML<br />Also background from<br />Opera Software (Unicode support)<br />open source development (Java/Python)<br />
  3. 3. Agenda<br />Linking data – the problem<br />Record linkage theory<br />Duke<br />A real-world example<br />Usage at Hafslund<br />
  4. 4. The problem<br />Data sets from different sources generally don’t share identifiers<br />names tend to be spelled every which way<br />So how can they be linked?<br />
  5. 5. A real-world example<br />
  6. 6. A difficult problem<br />It requires n2 comparisons for n records<br />a million comparisons for 1000 records, 100 million for 10,000, ...<br />Exact string comparison is not enough<br />must handle misspellings, name variants, etc<br />Interpreting the data can be difficult even for a human being<br />is the address different because there are two different people, or because the person moved?<br />...<br />
  7. 7. Help from an unexpected quarter<br />Statisticians to the rescue!<br />
  8. 8. Record linkage<br />Statisticians very often must connect data sets from different sources<br />They call it “record linkage”<br />term coined in 19461)<br />mathematical foundations laid in 19592)<br />formalized in 1969 as “Fellegi-Sunter” model3)<br />A whole subject area has been developed with well-known techniques, methods, and tools<br />these can of course be applied outside of statistics<br />http://ajph.aphapublications.org/cgi/reprint/36/12/1412<br />http://www.sciencemag.org/content/130/3381/954.citation<br />http://www.jstor.org/pss/2286061<br />
  9. 9. Other terms for the same thing<br />Has been independently invented many times<br />Under many names<br />entity resolution<br />identity resolution<br />merge/purge<br />deduplication<br />...<br />This makes Googling for information an absolute nightmare<br />
  10. 10. Application areas<br />Statistics (obviously)<br />Data cleaning<br />Data integration<br />Conversion<br />Fraud detection / intelligence / surveillance<br />
  11. 11. Mathematical model<br />
  12. 12. Model, simplified<br />We work with records, each of which has fields with values<br />before doing record linkage we’ve processed the data so that they have the same set of fields<br />(fields which exist in only one of the sources get discarded, as they are no help to us)<br />We compare values for the same fields one by one, then estimate the probability that records represent the same entity given these values<br />probability depends on which field and what values<br />estimation can be very complex<br />Finally, we can compute overall probability<br />
  13. 13. Example<br />
  14. 14. String comparisons<br />Must handle spelling errors and name variants<br />must estimate probability that values belong to same entity despite differences<br />Examples<br />John Smith ≈ Jonh Smith<br />J. Random Hacker ≈ James Random Hacker<br />...<br />Many well-known algorithms have been developed<br />no one best choice, unfortunately<br />some are eager to merge, others less so<br />Many are computationally expensive<br />O(n2) where n is length of string is common<br />this gets very costly when number of record pairs to compare is already high<br />
  15. 15. Examples of algorithms<br />Levenshtein<br />edit distance<br />ie: number of edits needed to change string 1 into 2<br />not so eager to merge<br />Jaro-Winkler<br />specifically for short person names<br />very promiscuous<br />Soundex<br />essentially a phonetic hashing algorithm<br />very fast, but also very crude<br />Longest common subsequence / q-grams<br />haven’t tried this yet<br />Monge-Elkan<br />one of the best, but computationally expensive<br />TFIDF<br />based on term frequency<br />studies often find this performs best, but it’s expensive<br />
  16. 16. Existing record linkage tools<br />Commercial tools<br />big, sophisticated, and expensive<br />have found little information on what they actually do<br />presumably also effective<br />Open source tools<br />generally made by and for statisticians<br />nice user interfaces and rich configurability<br />architecture often not as flexible as it could be<br />
  17. 17. Standard algorithm<br />n2comparisons for n records is unacceptable<br />must reduce number of direct comparisons<br />Solution<br />produce a key from field values,<br />sort records by the key,<br />for each record, compare with n nearest neighbours<br />sometimes several different keys are produced, to increase chances of finding matches<br />Downsides<br />requires coming up with a key<br />difficult to apply incrementally<br />sorting is expensive<br />
  18. 18. Good research papers<br />Threat and Fraud Intelligence, Las Vegas Style, Jeff Jonas<br />http://jeffjonas.typepad.com/IEEE.Identity.Resolution.pdf<br />Real-world data is dirty: Data Cleansing and the Merge/Purge Problem, Hernandez & Stolfo<br />http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.3496&rep=rep1&type=pdf<br />Swoosh: a generic approach to entity resolution, Benjelloun, Garcia-Molina et al<br />http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.5696&rep=rep1&type=pdf<br />
  19. 19. DUplicate KillEr<br />Duke<br />
  20. 20. Context<br />Doing a project for Hafslund where we integrate data from many sources<br />Entities are duplicated both inside systems and across systems<br />Suppliers<br />Customers<br />Customers<br />Customers<br />Companies<br />CRM<br />Billing<br />ERP<br />
  21. 21. Requirements<br />Must be flexible and configurable<br />no way to know in advance exactly what data we will need to deduplicate<br />Must scale to large data sets<br />CRM alone has 1.4 million customer records<br />that’s 2 trillion comparisons with naïve approach<br />Must have an API<br />project uses SDshare protocol everywhere<br />must therefore be able to build connectors<br />Must be able to work incrementally<br />process data as it changes and update conclusions on the fly<br />
  22. 22. Reviewed existing tools...<br />...but didn’t find anything matching the criteria<br />Therefore...<br />
  23. 23. Duke<br />Java deduplication engine<br />released as open source<br />http://code.google.com/p/duke/<br />Does not use key approach<br />instead indexes data with Lucene<br />does Lucene searches to find potential matches<br />Still a work in progress, but<br />high performance (1M records in 10 minutes),<br />several data sources and comparators,<br />being used for real in real projects,<br />flexible architecture<br />
  24. 24. How it works<br />XML configuration file defines setup<br />lists data sources, properties, probabilities, etc<br />Data sources provide streams of records<br />Steps:<br />normalize values so they are ready for comparison<br />collect a batch of records, then index it with Lucene<br />compare records one by one against Lucene index<br />do detailed comparisons against search results<br />pairs with probability above configurable threshold are considered matches<br />For now, only API and command-line<br />
  25. 25. Record comparisons in detail<br />Comparator compares field values<br />return number in range 1.0 – 0.0<br />probability for field is high probability if number is 1.0, or low probability if 0.0, otherwise in between the two<br />Probability for entire record is computed using Bayes’s formula<br />approach known as “naïve Bayes” in research literature<br />
  26. 26. Components<br />Data sources<br />CSV<br />JDBC<br />Sparql<br />NTriples<br /><plug in your own><br />Comparators<br />ExactComparator<br />NumericComparator<br />SoundexComparator<br />TokenizedComparator<br />Levenshtein<br />JaroWinkler<br />Dice coefficient<br />
  27. 27. Features<br />Fairly complete command-line tool<br />with debugging support<br />API for embedding the tool<br />Two modes:<br />deduplication (all records matched against each other)<br />linking (only matching across groups of records)<br />Pluggable data sources, comparators, and cleaners<br />Framework for composing cleaners<br />Incremental processing<br />High performance<br />
  28. 28. A real-world example<br />Matching Mondial and DBpedia<br />
  29. 29. Finding properties to match<br />Need properties providing identity evidence<br />Matching on the properties in bold below<br />Extracted data to CSV for ease of use<br />
  30. 30. Configuration – data sources<br /> <group><br /> <csv><br /> <param name="input-file" value="dbpedia.csv"/><br /> <param name="header-line" value="false"/><br /> <column name="1" property="ID"/><br /> <column name="2"<br /> cleaner="no.priv...CountryNameCleaner"<br /> property="NAME"/><br /> <column name="3"<br /> property="AREA"/><br /> <column name="4"<br /> cleaner="no.priv...CapitalCleaner"<br /> property="CAPITAL"/><br /> </csv><br /> </group><br /><group><br /> <csv><br /> <param name="input-file" value="mondial.csv"/><br /> <column name="id" property="ID"/><br /> <column name="country"<br /> cleaner="no.priv...examples.CountryNameCleaner"<br /> property="NAME"/><br /> <column name="capital"<br /> cleaner="no.priv...LowerCaseNormalizeCleaner"<br /> property="CAPITAL"/><br /> <column name="area"<br /> property="AREA"/><br /> </csv><br /> </group><br />
  31. 31. Configuration – matching<br /> <schema><br /> <threshold>0.65</threshold><br /> <property type="id"><br /> <name>ID</name><br /> </property><br /> <property><br /> <name>NAME</name> <br /> <comparator>no.priv.garshol.duke.Levenshtein</comparator><br /> <low>0.3</low><br /> <high>0.88</high><br /> </property> <br /> <property><br /> <name>AREA</name> <br /> <comparator>AreaComparator</comparator><br /> <low>0.2</low><br /> <high>0.6</high><br /> </property><br /> <property><br /> <name>CAPITAL</name> <br /> <comparator>no.priv.garshol.duke.Levenshtein</comparator><br /> <low>0.4</low><br /> <high>0.88</high><br /> </property> <br /> </schema><br />Duke analyzes this setup and decides<br />only NAME and CAPITAL need to be <br />searched on in Lucene.<br /> <object class="no.priv.garshol.duke.NumericComparator"<br /> name="AreaComparator"><br /> <param name="min-ratio" value="0.7"/><br /> </object><br />
  32. 32. Result<br />Correct links found: 206 / 217 (94.9%)<br />Wrong links found: 0 / 12 (0.0%)<br />Unknown links found: 0<br />Percent of links correct 100.0%, wrong 0.0%, unknown 0.0%<br />Records with no link: 25<br />Precision 100.0%, recall 94.9%, f-number 0.974<br />
  33. 33. Examples<br />
  34. 34. Choosing the right match<br />
  35. 35. An example of failure<br />Duke doesn’t find this match<br />no tokens matching exactly<br />Lucene search finds nothing<br />Detailed comparison gives correct result<br />so only problem is Lucene search<br />Lucene does have Levenshtein search, but<br />in Lucene 3.x it’s very slow<br />therefore not enabled now<br />thinking of adding option to enable where needed<br />Lucene 4.x will fix the performance problem<br />
  36. 36. The effects of value matching<br />
  37. 37. Duke in real life<br />Usage at Hafslund<br />
  38. 38. The SESAM project<br />Building a new archival system<br />does automatic tagging of documents based on knowledge about the data<br />knowledge extracted from backend systems<br />Search engine-based frontend<br />using Recommind for this<br />Very flexible architecture<br />extracted data stored in triple store (Virtuoso)<br />all data transfer based on SDshare protocol<br />data extracted from RDBMSs with Ontopia’s DB2TM<br />
  39. 39. The big picture<br />DUPLICATES!<br />360<br />SDshare<br />SDshare<br />Virtuoso<br />ERP<br />Recommind<br />SDshare<br />SDshare<br />CRM<br />Billing<br />Duke<br />SDshare<br />SDshare<br />contains owl:sameAs and<br />haf:possiblySameAs<br />
  40. 40. Experiences so far<br />Incremental processing works fine<br />links added and retracted as data changes<br />Performance not an issue at all<br />but then only ~50,000 records so far...<br />Matching works well, but not perfect<br />data are very noisy and messy<br />also, matching is hard<br />
  41. 41. Duke roadmap<br />0.3<br />clean up the public API and document properly<br />maybe some more comparators<br />support for writing owl:sameAs to Sparql endpoint<br />0.4<br />add a web service interface<br />0.5 and onwards<br />more comparators<br />maybe some parallelism<br />
  42. 42. Slides will appear on http://slideshare.net/larsga<br />Comments/questions?<br />

    Be the first to comment

    Login to see the comments

  • gabrielgarciadealmeida

    May. 15, 2015
  • balajibal

    May. 27, 2015
  • sschlosser

    Jul. 14, 2015
  • YCInc

    Jul. 22, 2015
  • SmrutiranjanSahu

    Sep. 21, 2015
  • bhakthan

    Nov. 19, 2015
  • bennos

    Jan. 5, 2016
  • MajaAlic

    Apr. 4, 2016
  • tautrimaspajarskas

    Apr. 21, 2016
  • SergeSmertin

    May. 1, 2016
  • Natique

    May. 16, 2016
  • NkechiNnadi

    Oct. 5, 2016
  • sagarpatil8890

    Oct. 31, 2016
  • VictorMorilla1

    Jun. 9, 2017
  • arashjoorabchi

    Jul. 21, 2017
  • AbirKhan6

    Aug. 10, 2017
  • PabloAlenquer

    Dec. 13, 2017
  • scaredfish

    Jan. 10, 2018
  • MariaClaudiaCavalcan1

    Jan. 15, 2018
  • taylorjohnson216

    May. 18, 2020

Talk about the

Views

Total views

14,393

On Slideshare

0

From embeds

0

Number of embeds

177

Actions

Downloads

287

Shares

0

Comments

0

Likes

38

×