SlideShare a Scribd company logo
1 of 51
Armaduras: Una armadura es un montaje de elementos delgados
y rectos que soportan cargas principalmente axiales ( de tensión y
compresión ) en esos elementos.
Los elementos que conforman la armadura, se unen en sus puntos
extremos por medio de pasadores lisos sin fricción localizados en
una placa llama "Placa de Unión”, o por medio de soldadura,
remaches, tornillos, clavos o pernos en el caso de armaduras de
madera, para formar un armazón rígido.
ESTÁTICA Y DINÁMICA
ESTRUCTURAS
Como los elementos o miembros son delgados e incapaces de
soportar cargas laterales, todas las cargas deben estar aplicadas en
las uniones o nodos.
Se dice que una armadura es rígida si está diseñada de modo que
no se deformará mucho o se colapsará bajo la acción de una carga
pequeña.
ESTÁTICA Y DINÁMICA
La mayoría de las estructuras reales están hechas a partir de varias
armaduras unidas entre sí para formar una armadura espacial.
Las armaduras simple, son aquellas armaduras que se obtienen a
partir de una armadura triangular rígida, agregándole dos nuevos
elementos y conectándolos en un nuevo nodo.
Si a una armadura triangular rígida le agregamos dos nuevos
elementos y los conectamos en un nuevo nodo, también se obtiene
una estructura rígida.
Las armaduras que se obtienen repitiendo este procedimiento
reciben el nombre de armaduras simples. Se puede comprobar que
en una armadura simple el número total de elementos es
m = 2 n -3, donde n es el número total de nodos.
ESTÁTICA Y DINÁMICA
ARMADURAS SIMPLES
ESTÁTICA Y DINÁMICA
ARMADURAS SIMPLES
ARMADURAS PARA PUENTES
ESTÁTICA Y DINÁMICA
ARMADURAS PARA TECHOS
ESTÁTICA Y DINÁMICA
• Todos los elementos de una armadura son rectos y se pueden
representar por medio de rectas.
• Los nodos en los extremos de los miembros se pueden
representar por medio de puntos.
• Todos los nodos se forman por pasadores sin fricción.
• El peso de cada elemento se aplica en los extremos de éste, o
bien, el peso de cada elemento es despreciable.
• A una armadura sólo se le pueden aplicar cargas concentradas,
y estas se aplican en los nodos.
ESTÁTICA Y DINÁMICA
HIPÓTESIS SOBRE UNAARMADURAS IDEAL
• A una armadura sólo se le pueden aplicar cargas concentradas,
y estas se aplican en los nodos.
• Para una armadura plana ( bidimensional), todos los elementos
y caras se encuentran en el mismo plano. Para una armadura
espacial ( tridimensional), los elementos no son coplanares y las
direcciones de las cargas son arbitrarias.
• Se asume que sobre un elemento individual de una armadura,
pueden actuar fuerzas, como las que se muestran en la figura
ESTÁTICA Y DINÁMICA
HIPÓTESIS SOBRE UNAARMADURAS IDEAL
En el primer caso tienden a estirar al elemento y éste está en
tensión o tracción; en la segunda figura tienden a comprimir al
elemento y el mismo está en compresión.
ESTÁTICA Y DINÁMICA
El método de los nodos nos permite determinar las fuerzas en los
distintos elementos de una armadura simple. Consiste en:
1. Obtener las reacciones en los apoyos a partir del DCL de la
armadura completa.
2. Determinar las fuerzas en cada uno de los elementos haciendo
el DCL de cada uno de los nodos o uniones. Se recomienda
empezar analizando aquellos nodos que tengan no más de dos
incógnitas.
Si la fuerza ejercida por un elemento sobre un perno está
dirigida hacia el perno, dicho elemento está en compresión; si
la fuerza ejercida por un elemento sobre el perno está dirigida
hacia fuera de éste, dicho elemento está en tensión.
ESTÁTICA Y DINÁMICA
ANÁLISIS DE ARMADURAS POR EL MÉTODO DE LOS NODOS
1. Determinar las fuerzas axiales en los miembros de la armadura
e indicar si están en tensión o en compresión.
ESTÁTICA Y DINÁMICA
EJEMPLOS
Diagrama de fuerzas sobre la estructura.
ESTÁTICA Y DINÁMICA
Solución
Diagrama de fuerza para los nodos A y B.
ESTÁTICA Y DINÁMICA
Solución
2. La armadura mostrada en la figura soporta una carga de 10 kN
en C. Dibuje el diagrama de cuerpo libre de toda la armadura y
determine las reacciones en sus soportes. Determine las
fuerzas axiales en las barras e indique si se encuentran en
tensión o compresión.
ESTÁTICA Y DINÁMICA
Diagrama de fuerzas sobre la estructura.
ESTÁTICA Y DINÁMICA
Solución
Diagrama de fuerza para los nodos A y C.
ESTÁTICA Y DINÁMICA
Solución
2. Utilizar el métodos de los nodos para hallar las fuerzas en cada
uno de los miembros de la armadura mostrada en la figura
ESTÁTICA Y DINÁMICA
Diagrama de fuerzas sobre la estructura.
ESTÁTICA Y DINÁMICA
Solución
Diagrama de fuerza para los nodos C y D.
ESTÁTICA Y DINÁMICA
Solución
Resultados
ESTÁTICA Y DINÁMICA
Solución
El hecho de que TAB y TAD resulten nulas es una peculiaridad de
las cargas y no significa que los miembros AB y AD puedan
eliminarse de la armadura. En caso de cargas ligeramente
diferentes, las fuerzas en esos miembros no serían nulas.
Sucede a menudo que ciertos miembros de una armadura dada no
soportan carga. Los miembros de fuerza nula de una armadura
suelen deberse a una de dos causas generales.
La primera causa ocurre cuando dos miembros no colineales
forman un nodo y sobre este nodo no hay aplicada ninguna carga
externa ni reacción de apoyo.
La armadura mostrada en la figura es un ejemplo de esta
condición.
ESTÁTICA Y DINÁMICA
MIEMBROS DE FUERZA NULA O FUERZA CERO
Diagrama de fuerza para el nodo C.
Las ecuaciones de equilibrio para el nodo C da inmediatamente la
solución.
ESTÁTICA Y DINÁMICA
Solución
0
0
cos30 0
30 0
0 0
x BC CD
y CD
CD BC
F T T
F T sen
T y T
   
  
 


La segunda condición de fuerza cero ocurre cuando tres miembros
formen un nodo en el cual dos de los miembros sean colineales y
el tercero forme ángulo con ellos, el miembro no colineal será de
fuerza cero si en el nodo no hay aplicada fuerza externa ni
reacción de apoyo.
Los dos miembros colineales soportan cargas iguales ( ambos
están sometidos a tensión o compresión).
La armadura mostrada en la figura es un ejemplo de esta
condición.
ESTÁTICA Y DINÁMICA
Diagrama de fuerza para el nodo B.
Las ecuaciones de equilibrio para el nodo B son:
ESTÁTICA Y DINÁMICA
Solución
0
0
0
x AB BC
y BD
BD
F T T
F T
T
   
  



Diagrama de fuerza para el nodo D.
Las ecuaciones de equilibrio para el nodo D son:
Pero como TBD=0, entonces se tendrá además que:
ESTÁTICA Y DINÁMICA
Solución
0 0
0 0
cos60 cos60 0
60 60 0
x DE AD BD CD
y AD BD
F T T T T
F T sen T sen
     
  


0AD DE CDT y T T 
1. En la armadura simple Fink de la figura, hallar los miembros
de fuerza cero.
Diagrama de fuerza para el nodo E.
De donde se tiene que:
ESTÁTICA Y DINÁMICA
0
0
y BE
BE
F T sen
T
 


2. Identificar los miembros de fuerza cero de la armadura en
tijera de la figura.
ESTÁTICA Y DINÁMICA
Diagrama de fuerza para el nodo B
El razonamiento aplicado para el nodo B no es aplicable al nodo
D, ya que éste tiene aplicada una carga exterior.
Por lo tanto, los miembros de fuerza nula para el estado de carga
mostrado en la figura dado son BG, BH y DF.
ESTÁTICA Y DINÁMICA
0
0
x BH BG
BG
F T sen T sen
T
    


El método de las secciones para el análisis de armaduras se basa
en el equilibrio de cuerpo rígido de una parte de la armadura.
Pasos para analizar una armadura por el método de las secciones.
1. Realizar un diagrama de cuerpo libre sobre la armadura
completa. Escribir las ecuaciones de equilibrio y resolver estas
ecuaciones para determinar las reacciones en los apoyos.
2. Localice los miembros de la armadura para los cuales se
desean encontrar las fuerzas. Marque cada uno de ellos con
dos trazos cortos como se muestra en la figura.
ESTÁTICA Y DINÁMICA
MÉTODO DE LAS SECCIONES
3. Trace una línea ( corte) a través de la armadura para separarla
en dos partes. No es necesario que la línea sea recta, sino que
debe separar a la armadura en dos partes apropiadas. Así
mismo, se debe tener en cuenta que cada una de las partes de la
armadura debe contener por lo menos un miembro completo
( sin cortar).
4. Seleccione una de las partes de la armadura seccionadas en el
paso 3 y dibuje un diagrama de cuerpo libre de ella. A menos
que se tenga otra información, suponga que las fuerzas
desconocidas en los miembros son de tensión.
ESTÁTICA Y DINÁMICA
MÉTODO DE LAS SECCIONES
5. Escriba las ecuaciones de equilibrio para las partes
seleccionadas en el paso 4. Si en el paso 3 fue necesario cortar
más de tres miembros con fuerzas desconocidas en ellos, es
posible que se tenga que considerar partes adicionales de la
armadura o nodos por separados. Para determinar las
incógnitas.
6. Resuelva el conjunto de ecuaciones obtenidas en el paso 5
para determinar las fuerzas desconocidas.
7. Repita los pasos 3 a 6, según se requiera, para completar el
análisis.
ESTÁTICA Y DINÁMICA
MÉTODO DE LAS SECCIONES
5. Escriba las ecuaciones de equilibrio para las partes
seleccionadas en el paso 4. Si en el paso 3 fue necesario cortar
más de tres miembros con fuerzas desconocidas en ellos, es
posible que se tenga que considerar partes adicionales de la
armadura o nodos por separados. Para determinar las
incógnitas.
6. Resuelva el conjunto de ecuaciones obtenidas en el paso 5
para determinar las fuerzas desconocidas.
7. Repita los pasos 3 a 6, según se requiera, para completar el
análisis.
ESTÁTICA Y DINÁMICA
MÉTODO DE LAS SECCIONES
1. Determinar las fuerzas en los elementos FH, GH y GI, de la
siguiente armadura:
ESTÁTICA Y DINÁMICA
EJEMPLOS
Diagrama de fuerza para toda la armadura
De (2) en (1) se tiene que:
ESTÁTICA Y DINÁMICA
Solución
0 20 0
20 (1)
yF Ay Ly kN
Ay Ly kN
    
 

(30 ) (6 )(5 ) (6 )(10 ) (6 )(15 ) (1 )(20 ) (1 )(25 ) 0
7.5 (2)
AM m Ly kN m kN m kN m kN m kN m
Ly kN
      


12.5Ay kN
Fuerza en el elemento GI. Se pasa la sección nn a través de la
armadura como se muestra en la figura. Utilizando la porción HLI
de la armadura como cuerpo libre, se puede obtener el valor de
FGI.
ESTÁTICA Y DINÁMICA
0 (7.5 )(10 ) (1 )(5 ) (5.33 ) 0
13.13
H GI
GI
M kN m kN m F m
F kN
    


Fuerza en el elemento FH. Se mueve FFH a lo largo de su línea de
acción hasta que actué en el punto F y se calcula el momento para
la sección de la armadura con respecto a G.
ESTÁTICA Y DINÁMICA
 0 (7.5 )(15 ) (1 )(10 ) (1 )(5 ) cos (8 ) 0
13.81 13.81
G FH
FH FH
M kN m kN m kN m F m
F kN F kN
     
   

Fuerza en el elemento GH. Se mueve FGH a lo largo de su línea de
acción hasta que actué en el punto G y se calcula el momento para
la sección de la armadura con respecto a L.
ESTÁTICA Y DINÁMICA
 0 (1 )(10 ) (1 )(5 ) cos (15 ) 0
1.371 1.371
L GH
GH FH
M kN m kN m F m
F kN F kN
    
   

2. Una armadura Fink para techo se carga como se indica en la
figura. Determine la fuerza presente en los elementos BD, CD y
CE.
ESTÁTICA Y DINÁMICA
Diagrama de fuerza para toda la armadura.
Al resolver éste sistema de ecuaciones se tiene que:
ESTÁTICA Y DINÁMICA
 0 3 6 6 6 6 6 3 0
(9 ) (9 )(3 ) (6 )(7.5 ) (6 )(6 ) (6 )(4.5 ) (6 )(3 ) (6 )(1.5 ) 0
y
A
F Ay Ky kN
M m Ky m kN kN m kN m kN m kN m kN m
          
       


kNKyykNAy 1818 
A continuación se toma la sección aa que corte los miembros BD,
CD y CE y se dibuja el Diagrama de Fuerzas de la parte izquierda
de la armadura.
ESTÁTICA Y DINÁMICA
Figura para determinar los ángulos en la armadura.
ESTÁTICA Y DINÁMICA
2
2.1
cos;
2
6.1
;
2.1
6.1
tan
6.1
5.4
4.2
)3(tan
1.5
5.4
cos;
1.5
4.2
;
5.4
4.2
tan












sen
mmDADD
sen
Sumando momento respecto al punto D.
ESTÁTICA Y DINÁMICA
2
2.1
cos;
2
6.1
;
2.1
6.1
tan
6.1
5.4
4.2
)3(tan
1.5
5.4
cos;
1.5
4.2
;
5.4
4.2
tan












sen
mmDADD
sen
kNT
TmkNmkNmkNmM
CE
CED
5.22
0)6.1()6)(5.1()18)(3()3)(3(0


Sumando momento respecto al punto C.
ESTÁTICA Y DINÁMICA
2
2.1
cos;
2
6.1
;
2.1
6.1
tan
6.1
5.4
4.2
)3(tan
1.5
5.4
cos;
1.5
4.2
;
5.4
4.2
tan












sen
mmDADD
sen
kNT
TmkNmkNmkNmM
senTmkNmkNmkNmM
BD
BDC
BDC
75.29
0
1.5
4.2
)8.1()6)(3.0()18)(8.1()3)(8.1(0
0)8.1()6)(3.0()18)(8.1()3)(8.1(0










 
Sumando momento respecto al punto A.
ESTÁTICA Y DINÁMICA
0 (1.8 ) (1.5 )(6 ) 0
1.6
0 (1.8 ) (1.5 )(6 ) 0
2
6.25
A CD
A CD
CD
M m T sen m kN
M m T m kN
T kN
   
 
    
 



2
2.1
cos;
2
6.1
;
2.1
6.1
tan
6.1
5.4
4.2
)3(tan
1.5
5.4
cos;
1.5
4.2
;
5.4
4.2
tan












sen
mmDADD
sen
Así tenemos que las respuestas buscadas son:
ESTÁTICA Y DINÁMICA
)(5.22
)(25.6
)(75.29
TkNT
TkNT
CkNT
CE
CD
BD



3. Determinar las fuerzas en los miembros BC y BG de la
armadura mostrada en la figura.
ESTÁTICA Y DINÁMICA
Diagrama de fuerza para toda la armadura
Al resolver éste sistema de ecuaciones se tiene que:
ESTÁTICA Y DINÁMICA
 
 
0
0
0 15 30 30 30 15 30 0
0 15 30 30 30 15 cos30 0
(41057 ) (6 )(5 ) (6 )(10 ) (12 )(30 ) (18 )(30 ) (24 )(15 ) 0
x
y
A
F Ax sen
F Ay E
M m E m kN kN m kN m kN m kN m
       
        
      



60 ; 69.28 ; 34.64x yA kN A kN E kN   
Se corta una sección por la parte central de la armadura como se
muestra en la figura, se toma una sección aa que corte los
miembros CD, DG y FH y se dibuja el DF de la parte derecha de
la armadura.
Sumando momento respecto a H.
De donde se tiene que:
ESTÁTICA Y DINÁMICA
0 0
(27.72 )(34.64 ) (13.86 )(15cos30 ) (13.86 )( 30 ) 0H CDM m kN m kN m T Sen   
112.58CDT kN 
Diagrama de fuerza para el nodo C
En este caso se tiene que:
ESTÁTICA Y DINÁMICA
0 0
0 30 0
112.58 30
x CD BC
y CD
BC CD CD
F T T
F T
T T kN y T kN
   
    
    


Por último se toma una sección bb que corte los miembros BC,
BG, GH y FH y se dibuja el DF de la parte izquierda de la
armadura.
Sumando momento respecto a H.
De donde se tiene que:
ESTÁTICA Y DINÁMICA
0 0 0
0
(13.86 )(69.28 ) (13.86 )(15cos30 ) (6.93 )(30cos30 ) (13.86 )( 30 ) 6 0
H
BC BG
M
m kN m kN m kN m T sen T

     

30BGT kN
Así tenemos que las respuestas buscadas son:
ESTÁTICA Y DINÁMICA
112.6 ( )
30 ( )
BC
BG
T kN C
T kN T



More Related Content

What's hot

Análisis estructural de una armadura simple
Análisis estructural de una armadura simpleAnálisis estructural de una armadura simple
Análisis estructural de una armadura simple
Wilder Barzola
 
Teoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigasTeoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigas
Mely Mely
 
Análisis de armadura por método de nodos y método matricial
Análisis de armadura por método de nodos y método matricialAnálisis de armadura por método de nodos y método matricial
Análisis de armadura por método de nodos y método matricial
Franz Malqui
 
Centro de cortante
Centro de cortanteCentro de cortante
Centro de cortante
David Levy
 
Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)
1clemente1
 
Significado de cortante y momento flector
Significado de cortante y momento flectorSignificado de cortante y momento flector
Significado de cortante y momento flector
Guido_Arce
 

What's hot (20)

Análisis estructural de una armadura simple
Análisis estructural de una armadura simpleAnálisis estructural de una armadura simple
Análisis estructural de una armadura simple
 
Area de momento
Area de momentoArea de momento
Area de momento
 
Deformacion en vigas
Deformacion en vigasDeformacion en vigas
Deformacion en vigas
 
Centroides y momentos de inercia
Centroides y momentos de inerciaCentroides y momentos de inercia
Centroides y momentos de inercia
 
Deflexion en vigas 2
Deflexion en vigas 2Deflexion en vigas 2
Deflexion en vigas 2
 
Momento Flexionante
Momento FlexionanteMomento Flexionante
Momento Flexionante
 
Teoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigasTeoria y practica_de_resistencia_de_materiales-_vigas
Teoria y practica_de_resistencia_de_materiales-_vigas
 
Diagrama de fuerza cortante y momento flexionante
Diagrama de fuerza cortante y momento flexionanteDiagrama de fuerza cortante y momento flexionante
Diagrama de fuerza cortante y momento flexionante
 
Esfuerzo en vigas
Esfuerzo en vigas Esfuerzo en vigas
Esfuerzo en vigas
 
Análisis de armadura por método de nodos y método matricial
Análisis de armadura por método de nodos y método matricialAnálisis de armadura por método de nodos y método matricial
Análisis de armadura por método de nodos y método matricial
 
Deformaciónes y deflexiones
Deformaciónes y deflexionesDeformaciónes y deflexiones
Deformaciónes y deflexiones
 
Centro de cortante
Centro de cortanteCentro de cortante
Centro de cortante
 
Cargas estructurales
Cargas estructuralesCargas estructurales
Cargas estructurales
 
Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)Problemas resueltos resistencia(1)
Problemas resueltos resistencia(1)
 
Significado de cortante y momento flector
Significado de cortante y momento flectorSignificado de cortante y momento flector
Significado de cortante y momento flector
 
Deflexiones
DeflexionesDeflexiones
Deflexiones
 
RESISTENCIA DE MATERIALES: FUERZA CORTANTE Y MOMENTO FLECTOR
RESISTENCIA DE MATERIALES: FUERZA CORTANTE Y MOMENTO FLECTORRESISTENCIA DE MATERIALES: FUERZA CORTANTE Y MOMENTO FLECTOR
RESISTENCIA DE MATERIALES: FUERZA CORTANTE Y MOMENTO FLECTOR
 
Relación carga fuerza cortante y momento flextor
Relación carga fuerza cortante y momento flextorRelación carga fuerza cortante y momento flextor
Relación carga fuerza cortante y momento flextor
 
Esfuerzo cortante
Esfuerzo cortanteEsfuerzo cortante
Esfuerzo cortante
 
ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS
 

Similar to Armaduras

4. ed capítulo iv análisis estructural
4. ed capítulo iv análisis estructural4. ed capítulo iv análisis estructural
4. ed capítulo iv análisis estructural
julio sanchez
 
Problema de armaduras anthony martinez 25260432 (2)
Problema de armaduras anthony martinez 25260432 (2)Problema de armaduras anthony martinez 25260432 (2)
Problema de armaduras anthony martinez 25260432 (2)
Anthony Martinez
 

Similar to Armaduras (20)

4. ed capítulo iv análisis estructural
4. ed capítulo iv análisis estructural4. ed capítulo iv análisis estructural
4. ed capítulo iv análisis estructural
 
7. semana 5(verano 2018) (1)
7. semana 5(verano 2018) (1)7. semana 5(verano 2018) (1)
7. semana 5(verano 2018) (1)
 
Diseño de una armadura de puente
Diseño de una armadura de puenteDiseño de una armadura de puente
Diseño de una armadura de puente
 
CLASES ESTATICA CONTENIIDO UNIVERSIDAD SALESIANA pdf
CLASES ESTATICA CONTENIIDO UNIVERSIDAD SALESIANA pdfCLASES ESTATICA CONTENIIDO UNIVERSIDAD SALESIANA pdf
CLASES ESTATICA CONTENIIDO UNIVERSIDAD SALESIANA pdf
 
Problema de armaduras anthony martinez 25260432 (2)
Problema de armaduras anthony martinez 25260432 (2)Problema de armaduras anthony martinez 25260432 (2)
Problema de armaduras anthony martinez 25260432 (2)
 
Manual diagramas-fuerzas-internas-resistencia-materiales-tecsup
Manual diagramas-fuerzas-internas-resistencia-materiales-tecsupManual diagramas-fuerzas-internas-resistencia-materiales-tecsup
Manual diagramas-fuerzas-internas-resistencia-materiales-tecsup
 
Ingenieria mecanica armaduras
Ingenieria mecanica armadurasIngenieria mecanica armaduras
Ingenieria mecanica armaduras
 
Estatica
EstaticaEstatica
Estatica
 
Trab. final armadura simple estructura a.a.o.m.
Trab. final armadura simple estructura   a.a.o.m.Trab. final armadura simple estructura   a.a.o.m.
Trab. final armadura simple estructura a.a.o.m.
 
Resistencia de los materiales
Resistencia de los materialesResistencia de los materiales
Resistencia de los materiales
 
S11 Fuerzas en vigas.pdf
S11 Fuerzas en vigas.pdfS11 Fuerzas en vigas.pdf
S11 Fuerzas en vigas.pdf
 
Tarco jonathan 4132 armaduras espaciales
Tarco jonathan 4132 armaduras espaciales Tarco jonathan 4132 armaduras espaciales
Tarco jonathan 4132 armaduras espaciales
 
Cordova Darwin_Cinematica_Elementos de Fuerza Cero
Cordova Darwin_Cinematica_Elementos de Fuerza CeroCordova Darwin_Cinematica_Elementos de Fuerza Cero
Cordova Darwin_Cinematica_Elementos de Fuerza Cero
 
VIGAS.pdf
VIGAS.pdfVIGAS.pdf
VIGAS.pdf
 
Análisis Estructural. Jesús Carrero
Análisis Estructural. Jesús Carrero Análisis Estructural. Jesús Carrero
Análisis Estructural. Jesús Carrero
 
Metodo de secciones.pptx
Metodo de secciones.pptxMetodo de secciones.pptx
Metodo de secciones.pptx
 
Capitulo 4 estructuras para Estática
Capitulo 4  estructuras para EstáticaCapitulo 4  estructuras para Estática
Capitulo 4 estructuras para Estática
 
Estructuras_Marcos y maquinas traducido.ppt
Estructuras_Marcos y maquinas traducido.pptEstructuras_Marcos y maquinas traducido.ppt
Estructuras_Marcos y maquinas traducido.ppt
 
apuntes resis.pdf
apuntes resis.pdfapuntes resis.pdf
apuntes resis.pdf
 
Apuntes usach resistencia de materiales, parte i
Apuntes usach   resistencia de materiales, parte iApuntes usach   resistencia de materiales, parte i
Apuntes usach resistencia de materiales, parte i
 

Recently uploaded

Recently uploaded (20)

Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Linea del tiempo - Filosofos Cristianos.docx
Linea del tiempo - Filosofos Cristianos.docxLinea del tiempo - Filosofos Cristianos.docx
Linea del tiempo - Filosofos Cristianos.docx
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Lecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigosLecciones 06 Esc. Sabática. Los dos testigos
Lecciones 06 Esc. Sabática. Los dos testigos
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 

Armaduras

  • 1. Armaduras: Una armadura es un montaje de elementos delgados y rectos que soportan cargas principalmente axiales ( de tensión y compresión ) en esos elementos. Los elementos que conforman la armadura, se unen en sus puntos extremos por medio de pasadores lisos sin fricción localizados en una placa llama "Placa de Unión”, o por medio de soldadura, remaches, tornillos, clavos o pernos en el caso de armaduras de madera, para formar un armazón rígido. ESTÁTICA Y DINÁMICA ESTRUCTURAS
  • 2. Como los elementos o miembros son delgados e incapaces de soportar cargas laterales, todas las cargas deben estar aplicadas en las uniones o nodos. Se dice que una armadura es rígida si está diseñada de modo que no se deformará mucho o se colapsará bajo la acción de una carga pequeña. ESTÁTICA Y DINÁMICA
  • 3. La mayoría de las estructuras reales están hechas a partir de varias armaduras unidas entre sí para formar una armadura espacial. Las armaduras simple, son aquellas armaduras que se obtienen a partir de una armadura triangular rígida, agregándole dos nuevos elementos y conectándolos en un nuevo nodo. Si a una armadura triangular rígida le agregamos dos nuevos elementos y los conectamos en un nuevo nodo, también se obtiene una estructura rígida. Las armaduras que se obtienen repitiendo este procedimiento reciben el nombre de armaduras simples. Se puede comprobar que en una armadura simple el número total de elementos es m = 2 n -3, donde n es el número total de nodos. ESTÁTICA Y DINÁMICA ARMADURAS SIMPLES
  • 7. • Todos los elementos de una armadura son rectos y se pueden representar por medio de rectas. • Los nodos en los extremos de los miembros se pueden representar por medio de puntos. • Todos los nodos se forman por pasadores sin fricción. • El peso de cada elemento se aplica en los extremos de éste, o bien, el peso de cada elemento es despreciable. • A una armadura sólo se le pueden aplicar cargas concentradas, y estas se aplican en los nodos. ESTÁTICA Y DINÁMICA HIPÓTESIS SOBRE UNAARMADURAS IDEAL
  • 8. • A una armadura sólo se le pueden aplicar cargas concentradas, y estas se aplican en los nodos. • Para una armadura plana ( bidimensional), todos los elementos y caras se encuentran en el mismo plano. Para una armadura espacial ( tridimensional), los elementos no son coplanares y las direcciones de las cargas son arbitrarias. • Se asume que sobre un elemento individual de una armadura, pueden actuar fuerzas, como las que se muestran en la figura ESTÁTICA Y DINÁMICA HIPÓTESIS SOBRE UNAARMADURAS IDEAL
  • 9. En el primer caso tienden a estirar al elemento y éste está en tensión o tracción; en la segunda figura tienden a comprimir al elemento y el mismo está en compresión. ESTÁTICA Y DINÁMICA
  • 10. El método de los nodos nos permite determinar las fuerzas en los distintos elementos de una armadura simple. Consiste en: 1. Obtener las reacciones en los apoyos a partir del DCL de la armadura completa. 2. Determinar las fuerzas en cada uno de los elementos haciendo el DCL de cada uno de los nodos o uniones. Se recomienda empezar analizando aquellos nodos que tengan no más de dos incógnitas. Si la fuerza ejercida por un elemento sobre un perno está dirigida hacia el perno, dicho elemento está en compresión; si la fuerza ejercida por un elemento sobre el perno está dirigida hacia fuera de éste, dicho elemento está en tensión. ESTÁTICA Y DINÁMICA ANÁLISIS DE ARMADURAS POR EL MÉTODO DE LOS NODOS
  • 11. 1. Determinar las fuerzas axiales en los miembros de la armadura e indicar si están en tensión o en compresión. ESTÁTICA Y DINÁMICA EJEMPLOS
  • 12. Diagrama de fuerzas sobre la estructura. ESTÁTICA Y DINÁMICA Solución
  • 13. Diagrama de fuerza para los nodos A y B. ESTÁTICA Y DINÁMICA Solución
  • 14. 2. La armadura mostrada en la figura soporta una carga de 10 kN en C. Dibuje el diagrama de cuerpo libre de toda la armadura y determine las reacciones en sus soportes. Determine las fuerzas axiales en las barras e indique si se encuentran en tensión o compresión. ESTÁTICA Y DINÁMICA
  • 15. Diagrama de fuerzas sobre la estructura. ESTÁTICA Y DINÁMICA Solución
  • 16. Diagrama de fuerza para los nodos A y C. ESTÁTICA Y DINÁMICA Solución
  • 17. 2. Utilizar el métodos de los nodos para hallar las fuerzas en cada uno de los miembros de la armadura mostrada en la figura ESTÁTICA Y DINÁMICA
  • 18. Diagrama de fuerzas sobre la estructura. ESTÁTICA Y DINÁMICA Solución
  • 19. Diagrama de fuerza para los nodos C y D. ESTÁTICA Y DINÁMICA Solución
  • 20. Resultados ESTÁTICA Y DINÁMICA Solución El hecho de que TAB y TAD resulten nulas es una peculiaridad de las cargas y no significa que los miembros AB y AD puedan eliminarse de la armadura. En caso de cargas ligeramente diferentes, las fuerzas en esos miembros no serían nulas.
  • 21. Sucede a menudo que ciertos miembros de una armadura dada no soportan carga. Los miembros de fuerza nula de una armadura suelen deberse a una de dos causas generales. La primera causa ocurre cuando dos miembros no colineales forman un nodo y sobre este nodo no hay aplicada ninguna carga externa ni reacción de apoyo. La armadura mostrada en la figura es un ejemplo de esta condición. ESTÁTICA Y DINÁMICA MIEMBROS DE FUERZA NULA O FUERZA CERO
  • 22. Diagrama de fuerza para el nodo C. Las ecuaciones de equilibrio para el nodo C da inmediatamente la solución. ESTÁTICA Y DINÁMICA Solución 0 0 cos30 0 30 0 0 0 x BC CD y CD CD BC F T T F T sen T y T           
  • 23. La segunda condición de fuerza cero ocurre cuando tres miembros formen un nodo en el cual dos de los miembros sean colineales y el tercero forme ángulo con ellos, el miembro no colineal será de fuerza cero si en el nodo no hay aplicada fuerza externa ni reacción de apoyo. Los dos miembros colineales soportan cargas iguales ( ambos están sometidos a tensión o compresión). La armadura mostrada en la figura es un ejemplo de esta condición. ESTÁTICA Y DINÁMICA
  • 24. Diagrama de fuerza para el nodo B. Las ecuaciones de equilibrio para el nodo B son: ESTÁTICA Y DINÁMICA Solución 0 0 0 x AB BC y BD BD F T T F T T          
  • 25. Diagrama de fuerza para el nodo D. Las ecuaciones de equilibrio para el nodo D son: Pero como TBD=0, entonces se tendrá además que: ESTÁTICA Y DINÁMICA Solución 0 0 0 0 cos60 cos60 0 60 60 0 x DE AD BD CD y AD BD F T T T T F T sen T sen            0AD DE CDT y T T 
  • 26. 1. En la armadura simple Fink de la figura, hallar los miembros de fuerza cero. Diagrama de fuerza para el nodo E. De donde se tiene que: ESTÁTICA Y DINÁMICA 0 0 y BE BE F T sen T    
  • 27. 2. Identificar los miembros de fuerza cero de la armadura en tijera de la figura. ESTÁTICA Y DINÁMICA
  • 28. Diagrama de fuerza para el nodo B El razonamiento aplicado para el nodo B no es aplicable al nodo D, ya que éste tiene aplicada una carga exterior. Por lo tanto, los miembros de fuerza nula para el estado de carga mostrado en la figura dado son BG, BH y DF. ESTÁTICA Y DINÁMICA 0 0 x BH BG BG F T sen T sen T       
  • 29. El método de las secciones para el análisis de armaduras se basa en el equilibrio de cuerpo rígido de una parte de la armadura. Pasos para analizar una armadura por el método de las secciones. 1. Realizar un diagrama de cuerpo libre sobre la armadura completa. Escribir las ecuaciones de equilibrio y resolver estas ecuaciones para determinar las reacciones en los apoyos. 2. Localice los miembros de la armadura para los cuales se desean encontrar las fuerzas. Marque cada uno de ellos con dos trazos cortos como se muestra en la figura. ESTÁTICA Y DINÁMICA MÉTODO DE LAS SECCIONES
  • 30. 3. Trace una línea ( corte) a través de la armadura para separarla en dos partes. No es necesario que la línea sea recta, sino que debe separar a la armadura en dos partes apropiadas. Así mismo, se debe tener en cuenta que cada una de las partes de la armadura debe contener por lo menos un miembro completo ( sin cortar). 4. Seleccione una de las partes de la armadura seccionadas en el paso 3 y dibuje un diagrama de cuerpo libre de ella. A menos que se tenga otra información, suponga que las fuerzas desconocidas en los miembros son de tensión. ESTÁTICA Y DINÁMICA MÉTODO DE LAS SECCIONES
  • 31. 5. Escriba las ecuaciones de equilibrio para las partes seleccionadas en el paso 4. Si en el paso 3 fue necesario cortar más de tres miembros con fuerzas desconocidas en ellos, es posible que se tenga que considerar partes adicionales de la armadura o nodos por separados. Para determinar las incógnitas. 6. Resuelva el conjunto de ecuaciones obtenidas en el paso 5 para determinar las fuerzas desconocidas. 7. Repita los pasos 3 a 6, según se requiera, para completar el análisis. ESTÁTICA Y DINÁMICA MÉTODO DE LAS SECCIONES
  • 32. 5. Escriba las ecuaciones de equilibrio para las partes seleccionadas en el paso 4. Si en el paso 3 fue necesario cortar más de tres miembros con fuerzas desconocidas en ellos, es posible que se tenga que considerar partes adicionales de la armadura o nodos por separados. Para determinar las incógnitas. 6. Resuelva el conjunto de ecuaciones obtenidas en el paso 5 para determinar las fuerzas desconocidas. 7. Repita los pasos 3 a 6, según se requiera, para completar el análisis. ESTÁTICA Y DINÁMICA MÉTODO DE LAS SECCIONES
  • 33. 1. Determinar las fuerzas en los elementos FH, GH y GI, de la siguiente armadura: ESTÁTICA Y DINÁMICA EJEMPLOS
  • 34. Diagrama de fuerza para toda la armadura De (2) en (1) se tiene que: ESTÁTICA Y DINÁMICA Solución 0 20 0 20 (1) yF Ay Ly kN Ay Ly kN         (30 ) (6 )(5 ) (6 )(10 ) (6 )(15 ) (1 )(20 ) (1 )(25 ) 0 7.5 (2) AM m Ly kN m kN m kN m kN m kN m Ly kN          12.5Ay kN
  • 35. Fuerza en el elemento GI. Se pasa la sección nn a través de la armadura como se muestra en la figura. Utilizando la porción HLI de la armadura como cuerpo libre, se puede obtener el valor de FGI. ESTÁTICA Y DINÁMICA 0 (7.5 )(10 ) (1 )(5 ) (5.33 ) 0 13.13 H GI GI M kN m kN m F m F kN       
  • 36. Fuerza en el elemento FH. Se mueve FFH a lo largo de su línea de acción hasta que actué en el punto F y se calcula el momento para la sección de la armadura con respecto a G. ESTÁTICA Y DINÁMICA  0 (7.5 )(15 ) (1 )(10 ) (1 )(5 ) cos (8 ) 0 13.81 13.81 G FH FH FH M kN m kN m kN m F m F kN F kN           
  • 37. Fuerza en el elemento GH. Se mueve FGH a lo largo de su línea de acción hasta que actué en el punto G y se calcula el momento para la sección de la armadura con respecto a L. ESTÁTICA Y DINÁMICA  0 (1 )(10 ) (1 )(5 ) cos (15 ) 0 1.371 1.371 L GH GH FH M kN m kN m F m F kN F kN          
  • 38. 2. Una armadura Fink para techo se carga como se indica en la figura. Determine la fuerza presente en los elementos BD, CD y CE. ESTÁTICA Y DINÁMICA
  • 39. Diagrama de fuerza para toda la armadura. Al resolver éste sistema de ecuaciones se tiene que: ESTÁTICA Y DINÁMICA  0 3 6 6 6 6 6 3 0 (9 ) (9 )(3 ) (6 )(7.5 ) (6 )(6 ) (6 )(4.5 ) (6 )(3 ) (6 )(1.5 ) 0 y A F Ay Ky kN M m Ky m kN kN m kN m kN m kN m kN m                      kNKyykNAy 1818 
  • 40. A continuación se toma la sección aa que corte los miembros BD, CD y CE y se dibuja el Diagrama de Fuerzas de la parte izquierda de la armadura. ESTÁTICA Y DINÁMICA
  • 41. Figura para determinar los ángulos en la armadura. ESTÁTICA Y DINÁMICA 2 2.1 cos; 2 6.1 ; 2.1 6.1 tan 6.1 5.4 4.2 )3(tan 1.5 5.4 cos; 1.5 4.2 ; 5.4 4.2 tan             sen mmDADD sen
  • 42. Sumando momento respecto al punto D. ESTÁTICA Y DINÁMICA 2 2.1 cos; 2 6.1 ; 2.1 6.1 tan 6.1 5.4 4.2 )3(tan 1.5 5.4 cos; 1.5 4.2 ; 5.4 4.2 tan             sen mmDADD sen kNT TmkNmkNmkNmM CE CED 5.22 0)6.1()6)(5.1()18)(3()3)(3(0  
  • 43. Sumando momento respecto al punto C. ESTÁTICA Y DINÁMICA 2 2.1 cos; 2 6.1 ; 2.1 6.1 tan 6.1 5.4 4.2 )3(tan 1.5 5.4 cos; 1.5 4.2 ; 5.4 4.2 tan             sen mmDADD sen kNT TmkNmkNmkNmM senTmkNmkNmkNmM BD BDC BDC 75.29 0 1.5 4.2 )8.1()6)(3.0()18)(8.1()3)(8.1(0 0)8.1()6)(3.0()18)(8.1()3)(8.1(0            
  • 44. Sumando momento respecto al punto A. ESTÁTICA Y DINÁMICA 0 (1.8 ) (1.5 )(6 ) 0 1.6 0 (1.8 ) (1.5 )(6 ) 0 2 6.25 A CD A CD CD M m T sen m kN M m T m kN T kN                 2 2.1 cos; 2 6.1 ; 2.1 6.1 tan 6.1 5.4 4.2 )3(tan 1.5 5.4 cos; 1.5 4.2 ; 5.4 4.2 tan             sen mmDADD sen
  • 45. Así tenemos que las respuestas buscadas son: ESTÁTICA Y DINÁMICA )(5.22 )(25.6 )(75.29 TkNT TkNT CkNT CE CD BD   
  • 46. 3. Determinar las fuerzas en los miembros BC y BG de la armadura mostrada en la figura. ESTÁTICA Y DINÁMICA
  • 47. Diagrama de fuerza para toda la armadura Al resolver éste sistema de ecuaciones se tiene que: ESTÁTICA Y DINÁMICA     0 0 0 15 30 30 30 15 30 0 0 15 30 30 30 15 cos30 0 (41057 ) (6 )(5 ) (6 )(10 ) (12 )(30 ) (18 )(30 ) (24 )(15 ) 0 x y A F Ax sen F Ay E M m E m kN kN m kN m kN m kN m                            60 ; 69.28 ; 34.64x yA kN A kN E kN   
  • 48. Se corta una sección por la parte central de la armadura como se muestra en la figura, se toma una sección aa que corte los miembros CD, DG y FH y se dibuja el DF de la parte derecha de la armadura. Sumando momento respecto a H. De donde se tiene que: ESTÁTICA Y DINÁMICA 0 0 (27.72 )(34.64 ) (13.86 )(15cos30 ) (13.86 )( 30 ) 0H CDM m kN m kN m T Sen    112.58CDT kN 
  • 49. Diagrama de fuerza para el nodo C En este caso se tiene que: ESTÁTICA Y DINÁMICA 0 0 0 30 0 112.58 30 x CD BC y CD BC CD CD F T T F T T T kN y T kN                
  • 50. Por último se toma una sección bb que corte los miembros BC, BG, GH y FH y se dibuja el DF de la parte izquierda de la armadura. Sumando momento respecto a H. De donde se tiene que: ESTÁTICA Y DINÁMICA 0 0 0 0 (13.86 )(69.28 ) (13.86 )(15cos30 ) (6.93 )(30cos30 ) (13.86 )( 30 ) 6 0 H BC BG M m kN m kN m kN m T sen T         30BGT kN
  • 51. Así tenemos que las respuestas buscadas son: ESTÁTICA Y DINÁMICA 112.6 ( ) 30 ( ) BC BG T kN C T kN T  