SlideShare a Scribd company logo
1 of 68
Download to read offline
8장 펄스부호 변조(PCM)

디지털통신(Digital Comm.)
Contents
 PCM (pulse code modulation)
 Sampling
 Quantization
 Encoding

 PCM waves
 TDM
 Delta modulation
 정합필터 (matched filter)
 MAP (maximum A-Posteriori criterion) detection
 Error probability

디지털통신(Digital Comm.)

2
PCM (Pulse Code Modulation)
<< Advantages of PCM System >>
■ PCM system can use repeater
펄스 파형이 두 가지뿐이므로 펄스 재생이 용이하다.
재생 중계기로 잡음의 영향이 누적되는 것을 막을 수 있다.

■ stability of digital system
신뢰도와 안정성이 높은 디지털 시스템을 이용할 수 있다.
논리 회로는 IC화에 적합하다.

■ PCM system can memory device
IC 메모리 소자의 발전으로 많은 양의 데이터를 저장, 전송할 수 있다.

■ redundancy removal
특수한 부호화에 의해 신호의 용장을 크게 줄일 수 있다
(Data compression)

■ error check & correction
신호의 용장을 늘려 수신기의 비트 오판 확률을 줄일 수 있다
(Channel coding)

디지털통신(Digital Comm.)

3
PCM (Pulse Code Modulation)
펄스의 부호화
Quantization

L levels

디지털통신(Digital Comm.)

4
PCM (Pulse Code Modulation)
■ Sampling
■ Quantization
■ binary encoding

L  2n or n  log2 L

L=quantization levels,
n=bits

■ 양자화 잡음
(Quantization noise)

디지털통신(Digital Comm.)

5
PCM

- Quantization

Example)

8 levels  23bits

Binary encoding

Quantization noise

디지털통신(Digital Comm.)

6
PCM

- Quantization

Quantization levels : 256 = 28

bits

디지털통신(Digital Comm.)

levels

7
SNR for quantized pulses
 Quantization noise
Distortion introduced by the need to approximate the analog waveform
with quantized samples

 SNR for quantized pulses
Vp
Vp -q/2
Vp -3q/2

MSE  

↕ q volts

Quantized
values

q / 2 2
e
q / 2


-Vp+3q/2
-Vp+q/2
-Vp
디지털통신(Digital Comm.)


L levels Vpp

-q/2
-3q/2
-5q/2

q / 2

q / 2


5q/2
3q/2
q/2

e  x(nT )  xq (nT )

e 2 p(e) de

q2
1
de 
→ 양자화잡음
q
12

2

2
 V pp 
Lq 
L2 q 2

2
Vp  
 2   2   4

 



L2 q 2 4
S
 3L2
   2
 N q
q 12
8
Quantization
 균일 양자화 (uniform quantization)
Quantization steps are uniform in size
SNR is worse for low-level signals than high-level signals

 불균일 양자화 (non-uniform quantization)
Fine quantization of the weak signals
Coarse quantization of the strong signals
Quantization noise can be made proportional to signal noise
압신 (companding) = 압축 (compression) + 신장 (expanding)

디지털통신(Digital Comm.)

9
Quantization
Quantizing levels
15

15
14

14

13

Strong signal

13

12

12

11

11

10
9

Week signal

10
9

8

8

7
6
5
4
3
2

6

7

5
4
3
2
1

1
0

Uniform quantization

디지털통신(Digital Comm.)

0

Non-uniform quantization

10
Quantization
y  ymax

 압신 (companding)
-  -law 압축 : 북미에서 사용 (표준값 255)
- A -law 압축 : 유럽 표준으로 사용 (표준값 87.6)
 -law charateristic curves

1

A-law charateristic curves

A  100

0.9

0.8

0.8

0.7

0.7

  100

0.6

Output,|y|/y max

Output,|y|/y max

 1 for x  0
sgn x  
1 for x  0

1

  255

0.9

log e [1   ( x / xmax )]
sgn x
log e (1   )

 5

0.5
0.4

 1

0.5

A5

0.4

A2

0.3

0.3

 0

0.2

0.2

A 1

0.1

0.1
0

A  87.6

0.6

0

0.2

0.4
0.6
Input,|x|/x max

디지털통신(Digital Comm.)

0.8

1

0

0

0.2

0.4
0.6
Input, |x|/x max

0.8

1

11
Non-uniform quantization
 비선형 양자기와 비선형 복호기에 의한 비선형 양자화 방식


아날로그 부품을 이용, 정의된 레벨의 임계치를 정확하게 유지하는 것이 다소 어려움.
하지만 설계 기술의 발전으로 문제점이 극복되고 있다.

 Companding에 의한 비직선 양자화 방식


Companding (Compressing + expanding) 방식
: 송신기의 압축기능과 수신기의 신장기능을 합친 복합어



현재 대부분의 PCM 시스템에서 적용

디지털통신(Digital Comm.)

12
A/D & D/A system
PCM System

(Channel)

디지털통신(Digital Comm.)

13
기저대역 디지털 전송

PCM
 펄스 부호 변조 (PCM)
sampling → quantization → encoding

(a) PCM sequence (b) PCM pulse (c) pulse waves
디지털통신(Digital Comm.)

14
다중화(Multiplexing)
 다중화 개념
 다중화 종류






주파수분할 다중화(FDM)
시분할 다중화(TDM)
통계적 시분할 다중화(Statistical TDM)
코드분할 다중화(CDM)
파장분할 다중화(WDM)

정보통신경영연구실디지털통신(Digital
Comm.)

15
Multiplexing
 FDM (Frequency Division Multiplexing)

 TDM (Time Division Multiplexing)

디지털통신(Digital Comm.)

16
시분할다중화(Time Division Multiplexing; TDM)
Ex) phone voice 0~3.4KHz

f m  4 Hz

f s  2  f m  8 Hz
N개 채널을 TDM할경우 각 채
널 sampling pulse의 폭 (τ) :

PAM signals



1
N  fs

Total BW of TDM signal:



BT 

1



 2 Nf m  Nf s Hz

(in PAM signal transmission)

디지털통신(Digital Comm.)

17
시분할다중화(Time Division Multiplexing; TDM)
8 KHz  (24 ch  8 bits  1 sync bit)  1.544 Mbps

■ PCM T1 frame

fs

= 193 bits

193bits/frame
CH 1

CH 2

CH 24

Frame sync bit

디지털통신(Digital Comm.)

18
Digital hierarchy (TDM)

Service
DS-1

Line Rate(Mbps)
1.544
T-1

Voice Ch.
24

DS-2

디지털통신(Digital Comm.)

6.312

96

DS-3

T-3

44.736

672

DS-4

 DS(Digital Signal) service in NAS

T-2

T-4

274.176

4032

19
Digital hierarchy (TDM)
 Digital hierarchy (TDM) - 비동기식 디지털 다중화 계위
ITU-T

NAS

Korea

Europe

3.2kbps
6.4kbps
12.8kbps

Bearer군
전송속도

5차군

1

1

1

1

1.544Mbps

1.544Mbps

2.048Mbps

2.048Mbps

CH수

24

24

30

30

6.312Mbps

6.312Mbps

6.312Mbps

8.448Mbps

CH수

24 x 4 = 96

24 x 4 = 96

30 x 3 = 90

30 x 4 =120

32.064Mbps

44.736Mbps

44.736Mbps

34.368Mbps

CH수

96 x 5 = 480

96 x 7 = 672

90 x 7 =630

120 x 4 =480

97.728Mbps

274.176Mbps

139.264Mbps

139.264Mbps

CH수

480 x 3 = 1,440

672 x 6 = 4,032

630 x 3 = 1,890

480 x 4 =1,920

전송속도

4차군

CH수

전송속도

3차군

64Kbps

전송속도

2차군

64Kbps

전송속도

1차군

64Kbps

전송속도

0차군

64Kbps

397.2Mbps

564.992Mbps

139.264Mbps

CH수

1,440 x 4 = 5,760

1,890 x 4 =7,560

1,920 x 4 =7,680

계위 구조
∙ITU-T:4×5×3×4, NAS:4×7×6, Europe:4×4×4×4, Korea:3×7×3×4
디지털통신(Digital Comm.)

20
Pulse distortion in filter

HPF
NRZ
(NonReturn to Zero)

Distorted signal
디지털통신(Digital Comm.)

21
PCM waves for baseband transmission
 PCM waves
 NRZ (nonreturn-to-zero)
 RZ (return-to-zero)
 위상 부호화 (phase encoded)
 다치 2진수 (multilevel binary)

디지털통신(Digital Comm.)

22
PCM waves for baseband transmission

0

PCM waves
디지털통신(Digital Comm.)

23
Synchronization Problem

Self-clocking
• Manchester code has a transition in the middle of every bit interval
whether a one or a zero is being sent
• This guaranteed transition provides a clocking signal
디지털통신(Digital Comm.)

24
NRZ coding
 T 
S ( )  A 2Tb sinc 2  b 
 2 

대역폭 면에서
유리하다

디지털통신(Digital Comm.)

25
RZ coding
 A, 0  t  Tb 2
x1 (t )  
0, Tb 2  t  Tb

x 0 (t )  0

ATb
 T 
sinc b  exp(  j Tb 4), X 0 ( )  0
2
 4 
1
 
2
2
X 1 ( k b )  (  k b )
S ( ) 
X 1 ( ) 
4Tb
2Tb2 k  
X 1 ( ) 



A 2Tb
A 2
2  Tb 
sinc 


16
4 
8


디지털통신(Digital Comm.)



k
sinc 2   (  k b ).
2
k  



26
AMI 방식
A 2Tb
2  Tb 
2  Tb 
sinc 
S ( ) 

 sin 
4
 2 
 4 

DC 성분=0

디지털통신(Digital Comm.)

27
Manchestor coding
 A, 0  t  Tb 2
x1 (t )   x0 (t )  
Tb 2  t  Tb
 A,

X 1 ( )   X 0 ( ) 

ATb
 T 
sinc b [exp( j 3 Tb 4)  exp( j Tb 4)]
2
 4 

 T 
 T 
S ( )  A 2Tb sinc 2  b  sin 2  b 
 4 
 4 
DC 성분=0:
전송시 AC coupling이 가능

디지털통신(Digital Comm.)

28
델타 변조 (Delta modulation; DM)

근사적인 양자화
(1 bit PCM)

Quantization step size

디지털통신(Digital Comm.)

29
델타 변조 (DM)
 V , x(t )  xq (t )

(t )  
 V , x(t )  xq (t ).


근사적인 양자화
(Ts와 S에 의존)

1 bit PCM

디지털통신(Digital Comm.)

30
델타 변조 (DM)


Quantization noise depends on step size

Quantization noise

 (nTs )  x(nTs )  xq (nTs )

(a) Small step size

(b) big step size

To resolve the unmatched signal magnitude problem
• increase f s → bandwidth increased
• enlarge step size → quantization noise increased

디지털통신(Digital Comm.)

31
Adaptive delta modulation (ADM)
신호가 급격히 변하는
부분에 감쇠 진동 발생

If) current bit ≠ previous bit
→ decrease quantization
step size

If) current bit =
previous bit
→ Increase
quantization
step size

디지털통신(Digital Comm.)

32
차동 펄스부호변조 (Differential PCM)

Encoding this
prediction error

■ linear prediction

ˆ
x ( nTs )  a1 x[( n  1)Ts ]  a2 x[(n  2)Ts ]    a N x[( n  N )Ts ]
■ prediction error

ˆ
e( nTs )  x ( nTs )  x ( nTs )
디지털통신(Digital Comm.)

33
Quantization noise
■ DM
2
nq (t )

M: quantization levels
S : step size

■ PCM

S2  B 
 
 
3  fs 
 

p( x) 

2
n

S o x (t ) 3  f s  2


  x (t )
2
N o nq (t ) S 2  B 
(최악의 상황)

x 2 (t )  0.5 A2
 2A 
 2A 
f s  f m 
  B

 S 
 S 

MS
MS
x
2
2



MS 2



2

MS 2

x 2 (t ) ( MS ) 2
So  2 
Ts
12Ts2
S o ( MS ) 2 12Ts2

 2  M 2  (2 N ) 2  22 N .
2
N o 12Ts
S
BT  2 NB

(경사과부하가 없을 조건)

x 2 (t ) 



x2
( MS ) 2
x (t ) 
x p ( x) dx 
dx 
.
 MS 2
 MS 2 MS
12
2

2

x(t )  A sin 2Bt

1
,
MS

(B=x(t)의 최대 주파수, N=비트수, BT=전송 대역폭)

2

f s2
2 2

S
8 B

3

So
3 f 
3 B 
 2 s  2 T
N o 8  B  8  B 
(BT=전송 대역폭)

디지털통신(Digital Comm.)

3

So
 2 2 N  2( BT
No

B)

.

If) 8bits/sample → BT/B = 2N = 16
PCM : 216=48 dB (성능 우수)
DM : 155.6 = 22 dB
34
Quantization noise
2

신호 대 잡음 비
BT의 자승에 비례
신호 대 잡음 비
BT의 자승에 비례
신호 대 양자화 잡음 비
BT에 지수적으로 비례
신호 대 양자화 잡음 비
BT의 3승에 비례

디지털통신(Digital Comm.)

So  BT  Si
 
No  B  N B
2

So  BT 
 
No  B 
So
 2( BT B )
No

(광대역 FM)

 Si 
  (PPM)
N 
 i
(PCM)

So
3  BT 
 2 
N o 8  B 

3

(DM)

35
기저대역 디지털 전송

Digital receiver
 Signal demodulation & detection
1 단계
파형에서 샘플로의
변환

사전검출점
(Predetection point)

detect

demodulation & sample
AWGN

si t 



2 단계
결정

Sample at

t T

r t 

Freq. down
conversion

Receiving
filter

Threshold
comparision

Equalizing filter

Transmitted
waveform

z T 

z t 
For bandpass signal

Received waveform

Baseband pulse

r t   si t   hc t   nt 
optional
Essential

디지털통신(Digital Comm.)

z T 

H1

>
<

ˆ
mi



H2

Compensation for
channel-induced ISI

Baseband pulse

z t  
a i t   n 0 t 

sample
(test statistic)

Message Symbol
ˆ
mi

z T  
ai T   n0 T 
36
기저대역 디지털 전송

Digital receiver
 주파수 하향변환 (down-conversion)

 수신기 필터 (receiving filter)
- 정합필터(matched filter)
- 상관기(correlator)

 등화 필터 (equalizing filter)
- 등화기(equalizer)

디지털통신(Digital Comm.)

37
Digital signal distorted by channel noise
Digital receiver

Rectangular
pulse with noise

Band-limited
rectangular pulse

Heavily band-limited
rectangular pulse

•SNR is max, when t=Tb.
•Sampling time in receiver
디지털통신(Digital Comm.)

38
Eye pattern

•Band-limited
•No additive noise

•No bandlimit
•No additive noise

최적 표본화 시간
시간 오류에
대한 민감도

•Band-limited
•Noise added
시간 지터
(timing jitter)의
측정값

잡음 마진
(noise margin)

심볼 간 간섭에
의한 왜곡
심볼 간 간섭에 의한 아이 패턴

디지털통신(Digital Comm.)

39
Linear filter designed to provide the maximum SNR at its
output for a given transmitted symbol waveform

Matched filter (MF)

1
so (t ) 
2



1
so (Tb ) 
2

SNR



H ( ) S ( ) exp( jt )d








S ( ) : FT of s (t )

H ( ) S ( ) exp( jTb )d



2
so (Tb )
2
o

n (Tb )

디지털통신(Digital Comm.)








S n ( ) : power spectral density of n(t )
2

S n ( ) H ( ) : power spectral density of no (t )

H ( ) S ( ) exp( jTb )d 

2 




2

2

H ( ) S n ( )d 



 [watts/Hz]
2
40
Matched filter (MF)
2



2
2
X ( )Y ( )d     X ( ) d    Y ( ) d 
 
 
  




X ( )  KY *( )


Schwartz’s inequality

SNR



2
so (Tb )
2
no (Tb )





f (t )  F ( w)
f (t )  F* ( w)
f (t  Tb ) exp( jwTb )F( w)




H ( ) S ( ) exp( jTb )d 

 




2

2

H ( ) d 








X ( )Y ( )d 

 




2

X ( ) d 

X ( )  H ( ), Y ( )  S ( ) exp( jTb )

 max 

1

 




2

S ( ) d 

2E




1

1



  


  

2

Y ( ) d 

2

S ( ) d 

Signal energy



 H ( )  KS  ( ) exp( jTb )


h(t )  Ks (Tb  t )

디지털통신(Digital Comm.)

2

Mirror image of the message signal s(t),
delayed by the symbol time duration Tb.
41
Matched filter (MF)

Impulse response of matched filter
디지털통신(Digital Comm.)

causality

•SNR is max, when t=Tb.
•Sampling time in receiver
42
Matched filter (MF)

 The mathematical operation of MF is convolution

so (t )  no (t )  [ s (t )  n(t )]  h(t )
• The process of convolving two signals reverses one of them in time
• The impulse response of an MF is defined in terms of a signal
that is reversed in time
Convolution in the MF results in a second time-reversal (correlation)
디지털통신(Digital Comm.)

43
상관기 (correlator)

• MF를 구현하는 것보다 correlator가 용이
• MF : convolution을 이용, correlator : correlation 이용

so (t )  no (t )  [ s (t )  n(t )]  h(t ) 

 [s( )  n( )]s(T
t

0

b

 t   )d .

Output of MF
Tb

  [ s ( )  n( )]s ( ) d
0

디지털통신(Digital Comm.)

at sampling time Tb

44
2진 정합필터 수신기(Binary MF receiver)

-V

+V

디지털통신(Digital Comm.)

Antipodal signals, s0(t)=-s1(t)

45
Performance of digital receiver
기저대역 디지털 통신

디지털통신(Digital Comm.)

46
Example of matched filter in digital communications

 Imagine we want to send the sequence "0101100100" coded in
non polar NRZ through a certain channel.
 If we model our noisy channel as an AWGN channel, white Gauss
ian noise is added to the signal
 To increase our signal-to-noise ratio, we pass the received sign
al through a matched filter.

디지털통신(Digital Comm.)

47
Equalizer
 등화기(equalizer)
Input
data

Transmitting
filter

Ht  f 

Channel

Hc  f 

+

Receiving
filter

Hr  f 

Equalizer

T0 detector

He  f 

Noise
n(t )

[System block diagram with equalizer]

 Channel = band-limited filter

H c ( f )  H c ( f ) e j ( f )
 In ideal channel,
H c  f  : constant value

  f  : linear value according to f
디지털통신(Digital Comm.)

48
Equalizer
 Total system frequency response without equalizer

H ( f )  Ht ( f )Hc ( f )H r ( f )
여기서, H ( f ) 는 송수신간 equivalent transfer function

 In real, H c  f  , Intersymbol interference (ISI) is generated by the variable   f
0.9

0

0

-3T

0.1

0.2

-2T

0

-0.3

0

2T

3T

t

[Received pulse exhibiting distortion]

 Total system frequency response with equalizer

H ( f )  Ht ( f )Hc ( f )Hr ( f )He ( f )
He ( f ) 
디지털통신(Digital Comm.)

1
1

e j ( 
Hc ( f ) | Hc ( f ) |

C

( f ))

49


Equalizer

Transversal filter
(linear equalizer)

 Equalizer compensates for channel-induced ISI
 Inverse transfer function of channel
N

h(t ) 

 a  (t  nT )
n

n 0

H ( ) 

N

a

n

exp( jnT ).

n 0

Tap coefficient
디지털통신(Digital Comm.)

50
Equalizer
Transversal filter
xk

T

c N

T



T

T

c N 1

c N 1

cN




zk

계수조정을 위한 알고리즘

트랜스버설 필터

z (k ) 

N

 x ( k  n )c

n N

n

k  2 N , , 2 N , n   N , , N

z  xc

[Tap coefficient]
1. 제로 포싱 해법
(zero-forcing solution)
2. 최소 평균 자승 오차
(minimum mean-square error : MMSE)

c  x 1 z
디지털통신(Digital Comm.)

51
ZF equalizer was developed by Lucky, 1965, for wireline
communication. Not often used for wireless links. However, it
performs well for static channels with high SNR, such as local
wired telephone lines.

Equalizer

 제로 포싱 등화기 (zero-forcing (ZF) equalizer)

0.9

1.0

0.2
0
-3T

0.1

0
-2T

0

0

-3T

0

-2T

Time

0

2T

3T

0
0

Time
2T

3T

-0.3

제로 포싱에 의한 등화기를 사용한 경우

c  x 1 z

디지털통신(Digital Comm.)

52
Zero-forcing equalizer
 Use a zero-forcing solution to find the weights (c-1, c0, c1)
 3 taps(c-1, c0, c1)
 received distorted set of pulse samples {x(k)}, with voltage values
0.0, 0.2, 0.9 -0.3, 0.1.
 Calculate the ISI values of the equalized pulse at the sample times
k=-3,-2,-1,0,1,2,3
Z=XC

Z=XC
0   x(0) x(1)
1    x(1) x(0)
  
0   x(2) x(1)
  
0   0.9 0.2
1    0.3 0.9
  
0   0.1 0.3
  
C1   0.2140 
 C    0.9631 
 0 

 C1   0.3448 
  

디지털통신(Digital Comm.)

x(2)  C1 
x(1)   C0 
 
x(0)   C1 
 
0  C1 
0.2   C0 
 
0.9   C1 
 

 Z 3   0.0 0.0 0.0 
 Z   0.2 0.0 0.0 
 2  

 Z 1   0.9 0.2 0.0   0.2140 
  


 Z 0    0.3 0.9 0.2   0.9631 
 Z1   0.1 0.3 0.9   0.3448 


  

 Z 2   0.0 0.1 0.3
 Z   0.0 0.0 0.1 

 3 
0.0, -0.0428, 0.0, 1.0, 0.0 -0.0071, 0.0345
53
Equalizer
 사전 설정(preset) 등화기/적응(adaptive) 등화기
: 계산 자동 성질(the automatic nature of operation)에 따른 분류.
사전 설정(preset) equalizer

적응(adaptive) equalizer

channel
environment

• Known channel frequency
response
• time-invariant channel

• slow time-varying channel

Characteristics

• fixed tap coefficient duration
data transmission

• Tap coefficients are adaptive to
the channel response

method

• Tap coefficients is determined
by using training sequence(학습
스퀀스)
• 보편적으로 알고 있는 채널에 대하
여 탭 가중치 설정

• Preamble
• 학습 시퀀스를 사용 주기적으로 탭
가중치 값을 바꿈

operation

대부분의 경우 데이터 전송 시작 전
에 끝냄

데이터 전송과 동시에 동작

디지털통신(Digital Comm.)

54
Equalizer
 등화기의 종류
기준

기준에 따라 분류

설명

트랜스버설 등화기
선형성

제로 포싱 등화기
최소 평균 자승 오차 등화기

결정 궤환 등화기
사전 설정(preset) 등화기
계산 자동 성질
(the automatic
nature of operation) 적응(adaptive) 등화기

필터의 업데이트 속
도(rate)

디지털통신(Digital Comm.)

순방향 원소들로 구성.

궤환(feedback)
원소도 포함.
계수값을 처음에 결정함.
상황에 따라 적응적으로
계수값을 바꿈.

심볼 간격(symbol-spaced) 등화기

1 심볼당 1 샘플

부분 간격(fractionally spaced) 등화기

1 심볼당 다수 샘플

55
검출 과정 (Detection process)
판정 이론 : (Maximum A-Posteriori) MAP criterion
Hypothesis H0 and H1 :
The signal source at the transmitter consists of s0(t)and s1(t) waveforms

사전확률(A-priori probability ) : P( H 0 ), P( H1 )
사후확률(A-posteriori probability ) : P( H 0 y ), P( H1 y )
MAP criterion

If)

(최소에러조건)

P ( H1 y )  P ( H 0 y )
or

P ( H1 y )
1 ,
P( H 0 y )

→ choose hypothesis H1, otherwise choose hypothesis H0
디지털통신(Digital Comm.)

56
검출 과정 (Detection process)
Likelihood (conditional probability )

p ( y ) P( H 0 )
P( H 0 y )  0
,
p( y )
p ( y ) P ( H1 )
P ( H1 y )  1
.
p( y )
If)
가능성비
(likelihood
ratio)

p0 ( y )  P( y H 0 ) : 0이 전송될때 y의 확률밀도
p1 ( y )  P( y H1 ) : 1이 전송될때 y의 확률밀도

(likelihood ratio test)
Likelihood of s0

Likelihood of s1

p1 ( y ) P( H 0 )
 ( y) 

p0 ( y ) P( H1 )
p1 ( y ) P( H1 )  p0 ( y ) P( H 0 )
MAP chooses H1.
If P( H 0 ) and P( H1 ) are equally likely, the MAP criterion is known as
the maximum likelihood criterion.

 ( y) 
디지털통신(Digital Comm.)

p1 ( y )
1
p0 ( y )
57
검출 과정 (Detection process)
가능성비(likelihood ratio)

 ( y) 

p1 ( y )

p0 ( y )

Likelihood of s0

Likelihood of s1

 ( y  S1 ) 2 
exp 

2
2
2
 2

2
 ( y  S 0 ) 
1
exp 

2
2 2
 2

1

 S12 
 y2 
 2 yS1 
exp   2  exp   2  exp 
2 
 y ( S1  S0 ) S12  S0 2  P( H 0 )
 2 
 2 
 2 

 exp 


2
2 2  P( H1 )
 S0 2 
 y2 
2 yS0 


exp   2  exp   2  exp 
2 
 2 
 2 
 2 
if ) P( H 0 ) and P( H1 )are equally likey
y ( S1  S0 )

S12  S0 2

2

2 2
S S
y 1 0
2
if ) S0  V , S1  V (antipodal signals)

maximum likelihood criterion

Threshold =0

 y  0, S1 (V ) is chosen
y  0, S0 (V ) is chosen
디지털통신(Digital Comm.)

58
에러 확률 (Error probability)
Simple receiver without MF
sin(t Tb ) B  1 (transmission BW)
s (t )  V
2Tb
t T
b

Pe 

1
2 B




0

Likelihood of s0

Likelihood of s1

 ( y  V ) 2 
exp 
dy, ( PFA  PM )
2 B 



( y의 신호성분은 s (0)  V )
y V
dy


 x  2 B , y  2 Bx  V , dx  2 B 




2 
erfc( x ) 
exp(u 2 )du


 x





2 B

2

2 2 B 

Pe 




V
2 B

 V
1
erfc 
 2 B
2


exp( x) 2 dx

 1
 S
 erfc 

 2N
 2



디지털통신(Digital Comm.)





59
Error probability of receiver without MF
Co-error function

 S
1
Pe  erfc
 2N
2







x

erfc(x)

x

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1.000
0.777
0.572
0.396
0.258
0.157
8.97102
4.77102
2.37102
1.09102
4.38103

2.2
2.4
2.6
2.8
3.0
3.3
3.7
4.0
5.0

erfc(x)
1.86103
6.9104
2.4104
7.5105
2.2105
3.06106
1.67107
1.54108
1.541012

erfc(0)  1
erfc()  0

디지털통신(Digital Comm.)

60
에러 확률 (Error probability)
정합필터 수신기(receiver with MF)

s  V 2Tb

n(t)의 분산

n



2

 E 


 E V 2





Vn ( t ) dt 



Tb
0

Tb

Tb

0

0

 

 

V

2

Tb

Tb

0

V

2

0

V 2

2

Tb



0

0

2



Tb
0

0

Vn(t )dt

(출력 잡음)

2

n ( t ) n ( ) dtd  .



R n ( t   ) dtd 

Tb

 



Tb

(출력 신호)

 ( t   ) dtd 

(1) dt

V 2 Tb

.
2

V 4Tb2
2V 2Tb
S


N V 2Tb 2

디지털통신(Digital Comm.)

[참고] F

1

[ S n ( )]  R n ( t )

R n (t )  F
 F

1

[ S n ( )]

1  

 
 2   2  ( t ).
 

61
에러 확률 (Error probability)
Pe  


0

 ( y  V 2Tb ) 2 
1
exp 
 dy, ( PM  PFA )
2
2
2




y  V 2Tb
dy
 2 
, y  2 x  V 2Tb,
x
dx
2





2
2
erfc( x) 


 x exp(u )du




Pe 

1







V 2Tb

2

 V 2Tb
1
 erfc 
2
 2

exp( x 2 )dx
 2V 2T
 1
b
  erfc 


 2







 S 
1
 erfc 
 N

2


※error probability of receiver w/o MF
디지털통신(Digital Comm.)

Pe 

 S
1
erfc 
 2N
2






62
에러 확률 (Error probability)
2진 정합필터 수신기

디지털통신(Digital Comm.)

63
에러 확률 (Error probability)

E[ y ]  E 










f (t ){s1 (t )  s0 (t )}dt   E 



Tb

0

Tb

0



Tb

0


{si (t )  n(t )}{s1 (t )  s0 (t )}dt 


si (t ){s1 (t )  s0 (t )}dt  mi

y의 분산 : f (t )  n(t )



Tb

 E



Tb

Tb

0

0

E[n(t )]  0



 2  E   f (t ){s1 (t )  s0 (t )}dt  E  f (t ){s1 (t )  s0 (t )}dt 
 0



 0




 

Tb

Tb

0

0

 

2

Tb



Tb
0

2

n(t )n( ){s1 (t )  s0 (t )}{s1 ( )  s0 ( )}dtd 





 (t   ){s1 (t )  s0 (t )}{s1 ( )  s0 ( )} dtd
2



{s1 (t )  s0 (t )}2 dt.

디지털통신(Digital Comm.)

64
에러 확률 (Error probability)

 ( y) 

p1 ( y )

p0 ( y )

 ( y  m1 ) 2 
1
exp 

 ( y  m1 ) 2 ( y  m0 ) 2 
2 2 
2 

 exp 


2
2
 ( y  m0 ) 
2
2 2 
1

exp 

2
2
2 



다음의 경우에 가정 H1을 선택한다.
 ( y  m1 )
( y  m0 ) 

  o
2
2
2
2



 ( y )  exp 
또는

2

2

2
 y (m1  m0 ) 2 m0  m12 
 ( y )  exp 

  o
2
2

2



만일

m1  m0  2 ln o

y
2
m1  m0
가정 H1을 선택하고
그렇지 않으면 H0을 선택

if ) o  1
Threshold
(문턱값)

디지털통신(Digital Comm.)

이면

y

m1  m 0
2
65
에러 확률 (Error probability)

m1  m0  2 ln o m1  m0


y
m1  m0
2
2
디지털통신(Digital Comm.)

(o  1)

66
에러 확률 (Error probability)
Average energy of S0(t) and S1(t)

1
E
2






Tb

Tb

0

0

Pe  PFA  P( z  0 H 0 )

2
{s0 (t )  s12 (t )}dt

 {z  E[ z ]}2 
1
exp  

 dz
2
0
2
2


 E (1   ) 
1
 erfc 

2
2  E (1   ) 



 E (1   ) 
1
 erfc 
.
2
2 



s0 (t ) s1 (t )dt
E

Correlation
coefficient

m1  m0
2
( z  0이면 가정 H1 )

z  y

m  m0
E[ z ]   1
  E (1   )
2

Z  y 
2

2





2

Tb
0



2

Tb
0

  0, E[ z ]   E
  1, E[ z ]  2 E

{s1 (t )  s0 (t )} dt
2

2
{s12 (t )  s0 (t )  2 s1 (t ) s0 (t )}dt

  E (1   ).
디지털통신(Digital Comm.)

m1  m0
y의 threshold
2
1 Tb

[ s1 (t )  s0 (t )][ s1 (t )  s0 (t )]dt
2 0
E  E0
1 Tb 2
2

[ s1 (t )  s0 (t )]dt  1
2 0
2

yo 





67
에러 확률 (Error probability)
 E (1   ) 
1
Pe  erfc

2
2 




1
Pe  erfc 
2


,E 

, 

E (1   ) 

2



E 0  E1
1

2
2



Tb
0

0

2
{ s 0 ( t )  s12 ( t )} dt

s 0 ( t ) s1 ( t ) dt

E
E  E0
, yo  1
2

디지털통신(Digital Comm.)



Tb

(  o  1)

68

More Related Content

What's hot

Fundamentals of RF Systems
Fundamentals of RF SystemsFundamentals of RF Systems
Fundamentals of RF SystemsYong Heui Cho
 
Multirate
MultirateMultirate
MultirateaiQUANT
 
LTE introduction part1
LTE introduction part1LTE introduction part1
LTE introduction part1Pei-Che Chang
 
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationRelationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationPei-Che Chang
 
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter PartPerformance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Partcriterion123
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifierscriterion123
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureSimen Li
 
ABCs of Carrier Aggregation
ABCs of Carrier Aggregation ABCs of Carrier Aggregation
ABCs of Carrier Aggregation criterion123
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesSimen Li
 
Signal modelling
Signal modellingSignal modelling
Signal modellingDebangi_G
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIcriterion123
 
Mw links fundamentals
Mw links   fundamentalsMw links   fundamentals
Mw links fundamentalsIrfan Aziz
 
TRANSITIONAL BUTTERWORTH-CHEBYSHEV FILTERS
TRANSITIONALBUTTERWORTH-CHEBYSHEV FILTERSTRANSITIONALBUTTERWORTH-CHEBYSHEV FILTERS
TRANSITIONAL BUTTERWORTH-CHEBYSHEV FILTERSNITHIN KALLE PALLY
 
IIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset ReceiversIIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset Receiverscriterion123
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
1 survey system design_and_engg
1 survey system design_and_engg1 survey system design_and_engg
1 survey system design_and_enggMuhammad Yahya
 

What's hot (20)

Fundamentals of RF Systems
Fundamentals of RF SystemsFundamentals of RF Systems
Fundamentals of RF Systems
 
Multirate
MultirateMultirate
Multirate
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
LTE introduction part1
LTE introduction part1LTE introduction part1
LTE introduction part1
 
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR considerationRelationships Among EVM, BER and SNR + WiFi minimum SNR consideration
Relationships Among EVM, BER and SNR + WiFi minimum SNR consideration
 
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter PartPerformance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
Performance Requirement and Lessons Learnt of LTE Terminal_Transmitter Part
 
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power AmplifiersChallenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
Challenges In Designing 5 GHz 802.11 ac WIFI Power Amplifiers
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
ABCs of Carrier Aggregation
ABCs of Carrier Aggregation ABCs of Carrier Aggregation
ABCs of Carrier Aggregation
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
Signal modelling
Signal modellingSignal modelling
Signal modelling
 
Mimo
MimoMimo
Mimo
 
RF Matching Guidelines for WIFI
RF Matching Guidelines for WIFIRF Matching Guidelines for WIFI
RF Matching Guidelines for WIFI
 
Mw links fundamentals
Mw links   fundamentalsMw links   fundamentals
Mw links fundamentals
 
TRANSITIONAL BUTTERWORTH-CHEBYSHEV FILTERS
TRANSITIONALBUTTERWORTH-CHEBYSHEV FILTERSTRANSITIONALBUTTERWORTH-CHEBYSHEV FILTERS
TRANSITIONAL BUTTERWORTH-CHEBYSHEV FILTERS
 
LTE Evolution: From Release 8 to Release 10
LTE Evolution: From Release 8 to Release 10LTE Evolution: From Release 8 to Release 10
LTE Evolution: From Release 8 to Release 10
 
IIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset ReceiversIIP2 requirements in 4G LTE Handset Receivers
IIP2 requirements in 4G LTE Handset Receivers
 
Mimo
MimoMimo
Mimo
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
1 survey system design_and_engg
1 survey system design_and_engg1 survey system design_and_engg
1 survey system design_and_engg
 

Similar to 디지털통신 8

디지털통신 9
디지털통신 9디지털통신 9
디지털통신 9KengTe Liao
 
Slides2 The Communication System midterm Slides
Slides2  The Communication System midterm SlidesSlides2  The Communication System midterm Slides
Slides2 The Communication System midterm SlidesNoctorous Jamal
 
Lecture3 signal encoding_in_wireless
Lecture3  signal encoding_in_wirelessLecture3  signal encoding_in_wireless
Lecture3 signal encoding_in_wirelessYahya Alzidi
 
Chapter5DigitalPulseModulation-PulseCodeModulationPCMpart1.pptx.pptx
Chapter5DigitalPulseModulation-PulseCodeModulationPCMpart1.pptx.pptxChapter5DigitalPulseModulation-PulseCodeModulationPCMpart1.pptx.pptx
Chapter5DigitalPulseModulation-PulseCodeModulationPCMpart1.pptx.pptxudithaisur
 
Digital modulation
Digital modulationDigital modulation
Digital modulationumair khan
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulationstk_gpg
 
Signal and image processing on satellite communication using MATLAB
Signal and image processing on satellite communication using MATLABSignal and image processing on satellite communication using MATLAB
Signal and image processing on satellite communication using MATLABEmbedded Plus Trichy
 
L 1 5 sampling quantizing encoding pcm
L 1 5 sampling quantizing encoding pcmL 1 5 sampling quantizing encoding pcm
L 1 5 sampling quantizing encoding pcmDEEPIKA KAMBOJ
 
Analog to Digital Converters and Data Acquisition Systems
Analog to Digital Converters and Data Acquisition SystemsAnalog to Digital Converters and Data Acquisition Systems
Analog to Digital Converters and Data Acquisition SystemsMathivanan Natarajan
 
Digital communication
Digital communicationDigital communication
Digital communicationmeashi
 
Digital data transmission
Digital data transmissionDigital data transmission
Digital data transmissionBZU lahore
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Rimple Mahey
 
Delta Modulation & Adaptive Delta M.pptx
Delta Modulation & Adaptive Delta M.pptxDelta Modulation & Adaptive Delta M.pptx
Delta Modulation & Adaptive Delta M.pptxrubini Rubini
 
Digital communications 1
Digital communications 1Digital communications 1
Digital communications 1Jojie Cepeda
 
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdfpcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdfNahshonMObiri
 

Similar to 디지털통신 8 (20)

디지털통신 9
디지털통신 9디지털통신 9
디지털통신 9
 
Slides2 The Communication System midterm Slides
Slides2  The Communication System midterm SlidesSlides2  The Communication System midterm Slides
Slides2 The Communication System midterm Slides
 
Lecture3 signal encoding_in_wireless
Lecture3  signal encoding_in_wirelessLecture3  signal encoding_in_wireless
Lecture3 signal encoding_in_wireless
 
Chapter5DigitalPulseModulation-PulseCodeModulationPCMpart1.pptx.pptx
Chapter5DigitalPulseModulation-PulseCodeModulationPCMpart1.pptx.pptxChapter5DigitalPulseModulation-PulseCodeModulationPCMpart1.pptx.pptx
Chapter5DigitalPulseModulation-PulseCodeModulationPCMpart1.pptx.pptx
 
Digital modulation
Digital modulationDigital modulation
Digital modulation
 
Pulse modulation
Pulse modulationPulse modulation
Pulse modulation
 
Dsp&amp;a
Dsp&amp;aDsp&amp;a
Dsp&amp;a
 
Analog to-digital conversion
Analog to-digital conversionAnalog to-digital conversion
Analog to-digital conversion
 
Signal and image processing on satellite communication using MATLAB
Signal and image processing on satellite communication using MATLABSignal and image processing on satellite communication using MATLAB
Signal and image processing on satellite communication using MATLAB
 
L 1 5 sampling quantizing encoding pcm
L 1 5 sampling quantizing encoding pcmL 1 5 sampling quantizing encoding pcm
L 1 5 sampling quantizing encoding pcm
 
Analog to Digital Converters and Data Acquisition Systems
Analog to Digital Converters and Data Acquisition SystemsAnalog to Digital Converters and Data Acquisition Systems
Analog to Digital Converters and Data Acquisition Systems
 
GPS Signals (1)
GPS Signals (1)GPS Signals (1)
GPS Signals (1)
 
Digital communication
Digital communicationDigital communication
Digital communication
 
Digital data transmission
Digital data transmissionDigital data transmission
Digital data transmission
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01
 
Delta Modulation & Adaptive Delta M.pptx
Delta Modulation & Adaptive Delta M.pptxDelta Modulation & Adaptive Delta M.pptx
Delta Modulation & Adaptive Delta M.pptx
 
Digital communications 1
Digital communications 1Digital communications 1
Digital communications 1
 
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdfpcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
pcm-march-2020_1_5e71b8ff9c7ad_1584511231641.pdf
 
DSP-UNIT-V-PPT-1.pptx
DSP-UNIT-V-PPT-1.pptxDSP-UNIT-V-PPT-1.pptx
DSP-UNIT-V-PPT-1.pptx
 
Lecture_ch6.pptx
Lecture_ch6.pptxLecture_ch6.pptx
Lecture_ch6.pptx
 

디지털통신 8

  • 2. Contents  PCM (pulse code modulation)  Sampling  Quantization  Encoding  PCM waves  TDM  Delta modulation  정합필터 (matched filter)  MAP (maximum A-Posteriori criterion) detection  Error probability 디지털통신(Digital Comm.) 2
  • 3. PCM (Pulse Code Modulation) << Advantages of PCM System >> ■ PCM system can use repeater 펄스 파형이 두 가지뿐이므로 펄스 재생이 용이하다. 재생 중계기로 잡음의 영향이 누적되는 것을 막을 수 있다. ■ stability of digital system 신뢰도와 안정성이 높은 디지털 시스템을 이용할 수 있다. 논리 회로는 IC화에 적합하다. ■ PCM system can memory device IC 메모리 소자의 발전으로 많은 양의 데이터를 저장, 전송할 수 있다. ■ redundancy removal 특수한 부호화에 의해 신호의 용장을 크게 줄일 수 있다 (Data compression) ■ error check & correction 신호의 용장을 늘려 수신기의 비트 오판 확률을 줄일 수 있다 (Channel coding) 디지털통신(Digital Comm.) 3
  • 4. PCM (Pulse Code Modulation) 펄스의 부호화 Quantization L levels 디지털통신(Digital Comm.) 4
  • 5. PCM (Pulse Code Modulation) ■ Sampling ■ Quantization ■ binary encoding L  2n or n  log2 L L=quantization levels, n=bits ■ 양자화 잡음 (Quantization noise) 디지털통신(Digital Comm.) 5
  • 6. PCM - Quantization Example) 8 levels  23bits Binary encoding Quantization noise 디지털통신(Digital Comm.) 6
  • 7. PCM - Quantization Quantization levels : 256 = 28 bits 디지털통신(Digital Comm.) levels 7
  • 8. SNR for quantized pulses  Quantization noise Distortion introduced by the need to approximate the analog waveform with quantized samples  SNR for quantized pulses Vp Vp -q/2 Vp -3q/2 MSE   ↕ q volts Quantized values q / 2 2 e q / 2  -Vp+3q/2 -Vp+q/2 -Vp 디지털통신(Digital Comm.)  L levels Vpp -q/2 -3q/2 -5q/2 q / 2 q / 2  5q/2 3q/2 q/2 e  x(nT )  xq (nT ) e 2 p(e) de q2 1 de  → 양자화잡음 q 12 2 2  V pp  Lq  L2 q 2  2 Vp    2   2   4      L2 q 2 4 S  3L2    2  N q q 12 8
  • 9. Quantization  균일 양자화 (uniform quantization) Quantization steps are uniform in size SNR is worse for low-level signals than high-level signals  불균일 양자화 (non-uniform quantization) Fine quantization of the weak signals Coarse quantization of the strong signals Quantization noise can be made proportional to signal noise 압신 (companding) = 압축 (compression) + 신장 (expanding) 디지털통신(Digital Comm.) 9
  • 10. Quantization Quantizing levels 15 15 14 14 13 Strong signal 13 12 12 11 11 10 9 Week signal 10 9 8 8 7 6 5 4 3 2 6 7 5 4 3 2 1 1 0 Uniform quantization 디지털통신(Digital Comm.) 0 Non-uniform quantization 10
  • 11. Quantization y  ymax  압신 (companding) -  -law 압축 : 북미에서 사용 (표준값 255) - A -law 압축 : 유럽 표준으로 사용 (표준값 87.6)  -law charateristic curves 1 A-law charateristic curves A  100 0.9 0.8 0.8 0.7 0.7   100 0.6 Output,|y|/y max Output,|y|/y max  1 for x  0 sgn x   1 for x  0 1   255 0.9 log e [1   ( x / xmax )] sgn x log e (1   )  5 0.5 0.4  1 0.5 A5 0.4 A2 0.3 0.3  0 0.2 0.2 A 1 0.1 0.1 0 A  87.6 0.6 0 0.2 0.4 0.6 Input,|x|/x max 디지털통신(Digital Comm.) 0.8 1 0 0 0.2 0.4 0.6 Input, |x|/x max 0.8 1 11
  • 12. Non-uniform quantization  비선형 양자기와 비선형 복호기에 의한 비선형 양자화 방식  아날로그 부품을 이용, 정의된 레벨의 임계치를 정확하게 유지하는 것이 다소 어려움. 하지만 설계 기술의 발전으로 문제점이 극복되고 있다.  Companding에 의한 비직선 양자화 방식  Companding (Compressing + expanding) 방식 : 송신기의 압축기능과 수신기의 신장기능을 합친 복합어  현재 대부분의 PCM 시스템에서 적용 디지털통신(Digital Comm.) 12
  • 13. A/D & D/A system PCM System (Channel) 디지털통신(Digital Comm.) 13
  • 14. 기저대역 디지털 전송 PCM  펄스 부호 변조 (PCM) sampling → quantization → encoding (a) PCM sequence (b) PCM pulse (c) pulse waves 디지털통신(Digital Comm.) 14
  • 15. 다중화(Multiplexing)  다중화 개념  다중화 종류      주파수분할 다중화(FDM) 시분할 다중화(TDM) 통계적 시분할 다중화(Statistical TDM) 코드분할 다중화(CDM) 파장분할 다중화(WDM) 정보통신경영연구실디지털통신(Digital Comm.) 15
  • 16. Multiplexing  FDM (Frequency Division Multiplexing)  TDM (Time Division Multiplexing) 디지털통신(Digital Comm.) 16
  • 17. 시분할다중화(Time Division Multiplexing; TDM) Ex) phone voice 0~3.4KHz f m  4 Hz f s  2  f m  8 Hz N개 채널을 TDM할경우 각 채 널 sampling pulse의 폭 (τ) : PAM signals  1 N  fs Total BW of TDM signal:  BT  1   2 Nf m  Nf s Hz (in PAM signal transmission) 디지털통신(Digital Comm.) 17
  • 18. 시분할다중화(Time Division Multiplexing; TDM) 8 KHz  (24 ch  8 bits  1 sync bit)  1.544 Mbps ■ PCM T1 frame fs = 193 bits 193bits/frame CH 1 CH 2 CH 24 Frame sync bit 디지털통신(Digital Comm.) 18
  • 19. Digital hierarchy (TDM) Service DS-1 Line Rate(Mbps) 1.544 T-1 Voice Ch. 24 DS-2 디지털통신(Digital Comm.) 6.312 96 DS-3 T-3 44.736 672 DS-4  DS(Digital Signal) service in NAS T-2 T-4 274.176 4032 19
  • 20. Digital hierarchy (TDM)  Digital hierarchy (TDM) - 비동기식 디지털 다중화 계위 ITU-T NAS Korea Europe 3.2kbps 6.4kbps 12.8kbps Bearer군 전송속도 5차군 1 1 1 1 1.544Mbps 1.544Mbps 2.048Mbps 2.048Mbps CH수 24 24 30 30 6.312Mbps 6.312Mbps 6.312Mbps 8.448Mbps CH수 24 x 4 = 96 24 x 4 = 96 30 x 3 = 90 30 x 4 =120 32.064Mbps 44.736Mbps 44.736Mbps 34.368Mbps CH수 96 x 5 = 480 96 x 7 = 672 90 x 7 =630 120 x 4 =480 97.728Mbps 274.176Mbps 139.264Mbps 139.264Mbps CH수 480 x 3 = 1,440 672 x 6 = 4,032 630 x 3 = 1,890 480 x 4 =1,920 전송속도 4차군 CH수 전송속도 3차군 64Kbps 전송속도 2차군 64Kbps 전송속도 1차군 64Kbps 전송속도 0차군 64Kbps 397.2Mbps 564.992Mbps 139.264Mbps CH수 1,440 x 4 = 5,760 1,890 x 4 =7,560 1,920 x 4 =7,680 계위 구조 ∙ITU-T:4×5×3×4, NAS:4×7×6, Europe:4×4×4×4, Korea:3×7×3×4 디지털통신(Digital Comm.) 20
  • 21. Pulse distortion in filter HPF NRZ (NonReturn to Zero) Distorted signal 디지털통신(Digital Comm.) 21
  • 22. PCM waves for baseband transmission  PCM waves  NRZ (nonreturn-to-zero)  RZ (return-to-zero)  위상 부호화 (phase encoded)  다치 2진수 (multilevel binary) 디지털통신(Digital Comm.) 22
  • 23. PCM waves for baseband transmission 0 PCM waves 디지털통신(Digital Comm.) 23
  • 24. Synchronization Problem Self-clocking • Manchester code has a transition in the middle of every bit interval whether a one or a zero is being sent • This guaranteed transition provides a clocking signal 디지털통신(Digital Comm.) 24
  • 25. NRZ coding  T  S ( )  A 2Tb sinc 2  b   2  대역폭 면에서 유리하다 디지털통신(Digital Comm.) 25
  • 26. RZ coding  A, 0  t  Tb 2 x1 (t )   0, Tb 2  t  Tb x 0 (t )  0 ATb  T  sinc b  exp(  j Tb 4), X 0 ( )  0 2  4  1   2 2 X 1 ( k b )  (  k b ) S ( )  X 1 ( )  4Tb 2Tb2 k   X 1 ( )   A 2Tb A 2 2  Tb  sinc    16 4  8  디지털통신(Digital Comm.)  k sinc 2   (  k b ). 2 k    26
  • 27. AMI 방식 A 2Tb 2  Tb  2  Tb  sinc  S ( )    sin  4  2   4  DC 성분=0 디지털통신(Digital Comm.) 27
  • 28. Manchestor coding  A, 0  t  Tb 2 x1 (t )   x0 (t )   Tb 2  t  Tb  A, X 1 ( )   X 0 ( )  ATb  T  sinc b [exp( j 3 Tb 4)  exp( j Tb 4)] 2  4   T   T  S ( )  A 2Tb sinc 2  b  sin 2  b   4   4  DC 성분=0: 전송시 AC coupling이 가능 디지털통신(Digital Comm.) 28
  • 29. 델타 변조 (Delta modulation; DM) 근사적인 양자화 (1 bit PCM) Quantization step size 디지털통신(Digital Comm.) 29
  • 30. 델타 변조 (DM)  V , x(t )  xq (t )  (t )    V , x(t )  xq (t ).  근사적인 양자화 (Ts와 S에 의존) 1 bit PCM 디지털통신(Digital Comm.) 30
  • 31. 델타 변조 (DM)  Quantization noise depends on step size Quantization noise  (nTs )  x(nTs )  xq (nTs ) (a) Small step size (b) big step size To resolve the unmatched signal magnitude problem • increase f s → bandwidth increased • enlarge step size → quantization noise increased 디지털통신(Digital Comm.) 31
  • 32. Adaptive delta modulation (ADM) 신호가 급격히 변하는 부분에 감쇠 진동 발생 If) current bit ≠ previous bit → decrease quantization step size If) current bit = previous bit → Increase quantization step size 디지털통신(Digital Comm.) 32
  • 33. 차동 펄스부호변조 (Differential PCM) Encoding this prediction error ■ linear prediction ˆ x ( nTs )  a1 x[( n  1)Ts ]  a2 x[(n  2)Ts ]    a N x[( n  N )Ts ] ■ prediction error ˆ e( nTs )  x ( nTs )  x ( nTs ) 디지털통신(Digital Comm.) 33
  • 34. Quantization noise ■ DM 2 nq (t ) M: quantization levels S : step size ■ PCM S2  B      3  fs    p( x)  2 n S o x (t ) 3  f s  2     x (t ) 2 N o nq (t ) S 2  B  (최악의 상황) x 2 (t )  0.5 A2  2A   2A  f s  f m    B   S   S  MS MS x 2 2  MS 2  2 MS 2 x 2 (t ) ( MS ) 2 So  2  Ts 12Ts2 S o ( MS ) 2 12Ts2   2  M 2  (2 N ) 2  22 N . 2 N o 12Ts S BT  2 NB (경사과부하가 없을 조건) x 2 (t )   x2 ( MS ) 2 x (t )  x p ( x) dx  dx  .  MS 2  MS 2 MS 12 2 2 x(t )  A sin 2Bt 1 , MS (B=x(t)의 최대 주파수, N=비트수, BT=전송 대역폭) 2 f s2 2 2 S 8 B 3 So 3 f  3 B   2 s  2 T N o 8  B  8  B  (BT=전송 대역폭) 디지털통신(Digital Comm.) 3 So  2 2 N  2( BT No B) . If) 8bits/sample → BT/B = 2N = 16 PCM : 216=48 dB (성능 우수) DM : 155.6 = 22 dB 34
  • 35. Quantization noise 2 신호 대 잡음 비 BT의 자승에 비례 신호 대 잡음 비 BT의 자승에 비례 신호 대 양자화 잡음 비 BT에 지수적으로 비례 신호 대 양자화 잡음 비 BT의 3승에 비례 디지털통신(Digital Comm.) So  BT  Si   No  B  N B 2 So  BT    No  B  So  2( BT B ) No (광대역 FM)  Si    (PPM) N   i (PCM) So 3  BT   2  N o 8  B  3 (DM) 35
  • 36. 기저대역 디지털 전송 Digital receiver  Signal demodulation & detection 1 단계 파형에서 샘플로의 변환 사전검출점 (Predetection point) detect demodulation & sample AWGN si t   2 단계 결정 Sample at t T r t  Freq. down conversion Receiving filter Threshold comparision Equalizing filter Transmitted waveform z T  z t  For bandpass signal Received waveform Baseband pulse r t   si t   hc t   nt  optional Essential 디지털통신(Digital Comm.) z T  H1 > < ˆ mi  H2 Compensation for channel-induced ISI Baseband pulse z t   a i t   n 0 t  sample (test statistic) Message Symbol ˆ mi z T   ai T   n0 T  36
  • 37. 기저대역 디지털 전송 Digital receiver  주파수 하향변환 (down-conversion)  수신기 필터 (receiving filter) - 정합필터(matched filter) - 상관기(correlator)  등화 필터 (equalizing filter) - 등화기(equalizer) 디지털통신(Digital Comm.) 37
  • 38. Digital signal distorted by channel noise Digital receiver Rectangular pulse with noise Band-limited rectangular pulse Heavily band-limited rectangular pulse •SNR is max, when t=Tb. •Sampling time in receiver 디지털통신(Digital Comm.) 38
  • 39. Eye pattern •Band-limited •No additive noise •No bandlimit •No additive noise 최적 표본화 시간 시간 오류에 대한 민감도 •Band-limited •Noise added 시간 지터 (timing jitter)의 측정값 잡음 마진 (noise margin) 심볼 간 간섭에 의한 왜곡 심볼 간 간섭에 의한 아이 패턴 디지털통신(Digital Comm.) 39
  • 40. Linear filter designed to provide the maximum SNR at its output for a given transmitted symbol waveform Matched filter (MF) 1 so (t )  2  1 so (Tb )  2 SNR  H ( ) S ( ) exp( jt )d     S ( ) : FT of s (t ) H ( ) S ( ) exp( jTb )d  2 so (Tb ) 2 o n (Tb ) 디지털통신(Digital Comm.)     S n ( ) : power spectral density of n(t ) 2 S n ( ) H ( ) : power spectral density of no (t ) H ( ) S ( ) exp( jTb )d  2    2 2 H ( ) S n ( )d    [watts/Hz] 2 40
  • 41. Matched filter (MF) 2   2 2 X ( )Y ( )d     X ( ) d    Y ( ) d             X ( )  KY *( )  Schwartz’s inequality SNR  2 so (Tb ) 2 no (Tb )   f (t )  F ( w) f (t )  F* ( w) f (t  Tb ) exp( jwTb )F( w)   H ( ) S ( ) exp( jTb )d      2 2 H ( ) d      X ( )Y ( )d      2 X ( ) d  X ( )  H ( ), Y ( )  S ( ) exp( jTb )  max  1     2 S ( ) d  2E   1 1         2 Y ( ) d  2 S ( ) d  Signal energy   H ( )  KS  ( ) exp( jTb )   h(t )  Ks (Tb  t )  디지털통신(Digital Comm.) 2 Mirror image of the message signal s(t), delayed by the symbol time duration Tb. 41
  • 42. Matched filter (MF) Impulse response of matched filter 디지털통신(Digital Comm.) causality •SNR is max, when t=Tb. •Sampling time in receiver 42
  • 43. Matched filter (MF)  The mathematical operation of MF is convolution so (t )  no (t )  [ s (t )  n(t )]  h(t ) • The process of convolving two signals reverses one of them in time • The impulse response of an MF is defined in terms of a signal that is reversed in time Convolution in the MF results in a second time-reversal (correlation) 디지털통신(Digital Comm.) 43
  • 44. 상관기 (correlator) • MF를 구현하는 것보다 correlator가 용이 • MF : convolution을 이용, correlator : correlation 이용 so (t )  no (t )  [ s (t )  n(t )]  h(t )   [s( )  n( )]s(T t 0 b  t   )d . Output of MF Tb   [ s ( )  n( )]s ( ) d 0 디지털통신(Digital Comm.) at sampling time Tb 44
  • 45. 2진 정합필터 수신기(Binary MF receiver) -V +V 디지털통신(Digital Comm.) Antipodal signals, s0(t)=-s1(t) 45
  • 46. Performance of digital receiver 기저대역 디지털 통신 디지털통신(Digital Comm.) 46
  • 47. Example of matched filter in digital communications  Imagine we want to send the sequence "0101100100" coded in non polar NRZ through a certain channel.  If we model our noisy channel as an AWGN channel, white Gauss ian noise is added to the signal  To increase our signal-to-noise ratio, we pass the received sign al through a matched filter. 디지털통신(Digital Comm.) 47
  • 48. Equalizer  등화기(equalizer) Input data Transmitting filter Ht  f  Channel Hc  f  + Receiving filter Hr  f  Equalizer T0 detector He  f  Noise n(t ) [System block diagram with equalizer]  Channel = band-limited filter H c ( f )  H c ( f ) e j ( f )  In ideal channel, H c  f  : constant value   f  : linear value according to f 디지털통신(Digital Comm.) 48
  • 49. Equalizer  Total system frequency response without equalizer H ( f )  Ht ( f )Hc ( f )H r ( f ) 여기서, H ( f ) 는 송수신간 equivalent transfer function  In real, H c  f  , Intersymbol interference (ISI) is generated by the variable   f 0.9 0 0 -3T 0.1 0.2 -2T 0 -0.3 0 2T 3T t [Received pulse exhibiting distortion]  Total system frequency response with equalizer H ( f )  Ht ( f )Hc ( f )Hr ( f )He ( f ) He ( f )  디지털통신(Digital Comm.) 1 1  e j (  Hc ( f ) | Hc ( f ) | C ( f )) 49 
  • 50. Equalizer Transversal filter (linear equalizer)  Equalizer compensates for channel-induced ISI  Inverse transfer function of channel N h(t )   a  (t  nT ) n n 0 H ( )  N a n exp( jnT ). n 0 Tap coefficient 디지털통신(Digital Comm.) 50
  • 51. Equalizer Transversal filter xk T c N T  T T c N 1 c N 1 cN   zk 계수조정을 위한 알고리즘 트랜스버설 필터 z (k )  N  x ( k  n )c n N n k  2 N , , 2 N , n   N , , N z  xc [Tap coefficient] 1. 제로 포싱 해법 (zero-forcing solution) 2. 최소 평균 자승 오차 (minimum mean-square error : MMSE) c  x 1 z 디지털통신(Digital Comm.) 51
  • 52. ZF equalizer was developed by Lucky, 1965, for wireline communication. Not often used for wireless links. However, it performs well for static channels with high SNR, such as local wired telephone lines. Equalizer  제로 포싱 등화기 (zero-forcing (ZF) equalizer) 0.9 1.0 0.2 0 -3T 0.1 0 -2T 0 0 -3T 0 -2T Time 0 2T 3T 0 0 Time 2T 3T -0.3 제로 포싱에 의한 등화기를 사용한 경우 c  x 1 z 디지털통신(Digital Comm.) 52
  • 53. Zero-forcing equalizer  Use a zero-forcing solution to find the weights (c-1, c0, c1)  3 taps(c-1, c0, c1)  received distorted set of pulse samples {x(k)}, with voltage values 0.0, 0.2, 0.9 -0.3, 0.1.  Calculate the ISI values of the equalized pulse at the sample times k=-3,-2,-1,0,1,2,3 Z=XC Z=XC 0   x(0) x(1) 1    x(1) x(0)    0   x(2) x(1)    0   0.9 0.2 1    0.3 0.9    0   0.1 0.3    C1   0.2140   C    0.9631   0    C1   0.3448      디지털통신(Digital Comm.) x(2)  C1  x(1)   C0    x(0)   C1    0  C1  0.2   C0    0.9   C1     Z 3   0.0 0.0 0.0   Z   0.2 0.0 0.0   2     Z 1   0.9 0.2 0.0   0.2140        Z 0    0.3 0.9 0.2   0.9631   Z1   0.1 0.3 0.9   0.3448         Z 2   0.0 0.1 0.3  Z   0.0 0.0 0.1    3  0.0, -0.0428, 0.0, 1.0, 0.0 -0.0071, 0.0345 53
  • 54. Equalizer  사전 설정(preset) 등화기/적응(adaptive) 등화기 : 계산 자동 성질(the automatic nature of operation)에 따른 분류. 사전 설정(preset) equalizer 적응(adaptive) equalizer channel environment • Known channel frequency response • time-invariant channel • slow time-varying channel Characteristics • fixed tap coefficient duration data transmission • Tap coefficients are adaptive to the channel response method • Tap coefficients is determined by using training sequence(학습 스퀀스) • 보편적으로 알고 있는 채널에 대하 여 탭 가중치 설정 • Preamble • 학습 시퀀스를 사용 주기적으로 탭 가중치 값을 바꿈 operation 대부분의 경우 데이터 전송 시작 전 에 끝냄 데이터 전송과 동시에 동작 디지털통신(Digital Comm.) 54
  • 55. Equalizer  등화기의 종류 기준 기준에 따라 분류 설명 트랜스버설 등화기 선형성 제로 포싱 등화기 최소 평균 자승 오차 등화기 결정 궤환 등화기 사전 설정(preset) 등화기 계산 자동 성질 (the automatic nature of operation) 적응(adaptive) 등화기 필터의 업데이트 속 도(rate) 디지털통신(Digital Comm.) 순방향 원소들로 구성. 궤환(feedback) 원소도 포함. 계수값을 처음에 결정함. 상황에 따라 적응적으로 계수값을 바꿈. 심볼 간격(symbol-spaced) 등화기 1 심볼당 1 샘플 부분 간격(fractionally spaced) 등화기 1 심볼당 다수 샘플 55
  • 56. 검출 과정 (Detection process) 판정 이론 : (Maximum A-Posteriori) MAP criterion Hypothesis H0 and H1 : The signal source at the transmitter consists of s0(t)and s1(t) waveforms 사전확률(A-priori probability ) : P( H 0 ), P( H1 ) 사후확률(A-posteriori probability ) : P( H 0 y ), P( H1 y ) MAP criterion If) (최소에러조건) P ( H1 y )  P ( H 0 y ) or P ( H1 y ) 1 , P( H 0 y ) → choose hypothesis H1, otherwise choose hypothesis H0 디지털통신(Digital Comm.) 56
  • 57. 검출 과정 (Detection process) Likelihood (conditional probability ) p ( y ) P( H 0 ) P( H 0 y )  0 , p( y ) p ( y ) P ( H1 ) P ( H1 y )  1 . p( y ) If) 가능성비 (likelihood ratio) p0 ( y )  P( y H 0 ) : 0이 전송될때 y의 확률밀도 p1 ( y )  P( y H1 ) : 1이 전송될때 y의 확률밀도 (likelihood ratio test) Likelihood of s0 Likelihood of s1 p1 ( y ) P( H 0 )  ( y)   p0 ( y ) P( H1 ) p1 ( y ) P( H1 )  p0 ( y ) P( H 0 ) MAP chooses H1. If P( H 0 ) and P( H1 ) are equally likely, the MAP criterion is known as the maximum likelihood criterion.  ( y)  디지털통신(Digital Comm.) p1 ( y ) 1 p0 ( y ) 57
  • 58. 검출 과정 (Detection process) 가능성비(likelihood ratio)  ( y)  p1 ( y )  p0 ( y ) Likelihood of s0 Likelihood of s1  ( y  S1 ) 2  exp   2 2 2  2  2  ( y  S 0 )  1 exp   2 2 2  2  1  S12   y2   2 yS1  exp   2  exp   2  exp  2   y ( S1  S0 ) S12  S0 2  P( H 0 )  2   2   2    exp    2 2 2  P( H1 )  S0 2   y2  2 yS0    exp   2  exp   2  exp  2   2   2   2  if ) P( H 0 ) and P( H1 )are equally likey y ( S1  S0 ) S12  S0 2  2  2 2 S S y 1 0 2 if ) S0  V , S1  V (antipodal signals) maximum likelihood criterion Threshold =0  y  0, S1 (V ) is chosen y  0, S0 (V ) is chosen 디지털통신(Digital Comm.) 58
  • 59. 에러 확률 (Error probability) Simple receiver without MF sin(t Tb ) B  1 (transmission BW) s (t )  V 2Tb t T b Pe  1 2 B   0 Likelihood of s0 Likelihood of s1  ( y  V ) 2  exp  dy, ( PFA  PM ) 2 B    ( y의 신호성분은 s (0)  V ) y V dy    x  2 B , y  2 Bx  V , dx  2 B      2  erfc( x )  exp(u 2 )du    x    2 B 2 2 2 B  Pe    V 2 B  V 1 erfc   2 B 2  exp( x) 2 dx  1  S  erfc    2N  2   디지털통신(Digital Comm.)     59
  • 60. Error probability of receiver without MF Co-error function  S 1 Pe  erfc  2N 2      x erfc(x) x 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1.000 0.777 0.572 0.396 0.258 0.157 8.97102 4.77102 2.37102 1.09102 4.38103 2.2 2.4 2.6 2.8 3.0 3.3 3.7 4.0 5.0 erfc(x) 1.86103 6.9104 2.4104 7.5105 2.2105 3.06106 1.67107 1.54108 1.541012 erfc(0)  1 erfc()  0 디지털통신(Digital Comm.) 60
  • 61. 에러 확률 (Error probability) 정합필터 수신기(receiver with MF) s  V 2Tb n(t)의 분산 n  2  E     E V 2    Vn ( t ) dt    Tb 0 Tb Tb 0 0     V 2 Tb Tb 0 V 2 0 V 2  2 Tb  0 0 2  Tb 0 0 Vn(t )dt (출력 잡음) 2 n ( t ) n ( ) dtd  .   R n ( t   ) dtd  Tb    Tb (출력 신호)  ( t   ) dtd  (1) dt V 2 Tb  . 2 V 4Tb2 2V 2Tb S   N V 2Tb 2  디지털통신(Digital Comm.) [참고] F 1 [ S n ( )]  R n ( t ) R n (t )  F  F 1 [ S n ( )] 1      2   2  ( t ).   61
  • 62. 에러 확률 (Error probability) Pe    0  ( y  V 2Tb ) 2  1 exp   dy, ( PM  PFA ) 2 2 2     y  V 2Tb dy  2  , y  2 x  V 2Tb, x dx 2      2 2 erfc( x)     x exp(u )du    Pe  1    V 2Tb 2  V 2Tb 1  erfc  2  2 exp( x 2 )dx  2V 2T  1 b   erfc     2       S  1  erfc   N  2   ※error probability of receiver w/o MF 디지털통신(Digital Comm.) Pe   S 1 erfc   2N 2      62
  • 63. 에러 확률 (Error probability) 2진 정합필터 수신기 디지털통신(Digital Comm.) 63
  • 64. 에러 확률 (Error probability)  E[ y ]  E        f (t ){s1 (t )  s0 (t )}dt   E    Tb 0 Tb 0  Tb 0  {si (t )  n(t )}{s1 (t )  s0 (t )}dt   si (t ){s1 (t )  s0 (t )}dt  mi y의 분산 : f (t )  n(t )  Tb  E   Tb Tb 0 0 E[n(t )]  0   2  E   f (t ){s1 (t )  s0 (t )}dt  E  f (t ){s1 (t )  s0 (t )}dt   0     0     Tb Tb 0 0    2 Tb  Tb 0 2 n(t )n( ){s1 (t )  s0 (t )}{s1 ( )  s0 ( )}dtd       (t   ){s1 (t )  s0 (t )}{s1 ( )  s0 ( )} dtd 2   {s1 (t )  s0 (t )}2 dt. 디지털통신(Digital Comm.) 64
  • 65. 에러 확률 (Error probability)  ( y)  p1 ( y )  p0 ( y )  ( y  m1 ) 2  1 exp    ( y  m1 ) 2 ( y  m0 ) 2  2 2  2    exp    2 2  ( y  m0 )  2 2 2  1  exp   2 2 2    다음의 경우에 가정 H1을 선택한다.  ( y  m1 ) ( y  m0 )     o 2 2 2 2    ( y )  exp  또는 2 2 2  y (m1  m0 ) 2 m0  m12   ( y )  exp     o 2 2  2   만일 m1  m0  2 ln o  y 2 m1  m0 가정 H1을 선택하고 그렇지 않으면 H0을 선택 if ) o  1 Threshold (문턱값) 디지털통신(Digital Comm.) 이면 y m1  m 0 2 65
  • 66. 에러 확률 (Error probability) m1  m0  2 ln o m1  m0   y m1  m0 2 2 디지털통신(Digital Comm.) (o  1) 66
  • 67. 에러 확률 (Error probability) Average energy of S0(t) and S1(t) 1 E 2    Tb Tb 0 0 Pe  PFA  P( z  0 H 0 ) 2 {s0 (t )  s12 (t )}dt  {z  E[ z ]}2  1 exp     dz 2 0 2 2    E (1   )  1  erfc   2 2  E (1   )      E (1   )  1  erfc  . 2 2    s0 (t ) s1 (t )dt E Correlation coefficient m1  m0 2 ( z  0이면 가정 H1 ) z  y m  m0 E[ z ]   1   E (1   ) 2 Z  y  2 2   2 Tb 0  2 Tb 0   0, E[ z ]   E   1, E[ z ]  2 E {s1 (t )  s0 (t )} dt 2 2 {s12 (t )  s0 (t )  2 s1 (t ) s0 (t )}dt   E (1   ). 디지털통신(Digital Comm.) m1  m0 y의 threshold 2 1 Tb  [ s1 (t )  s0 (t )][ s1 (t )  s0 (t )]dt 2 0 E  E0 1 Tb 2 2  [ s1 (t )  s0 (t )]dt  1 2 0 2 yo    67
  • 68. 에러 확률 (Error probability)  E (1   )  1 Pe  erfc  2 2      1 Pe  erfc  2   ,E  ,  E (1   )   2   E 0  E1 1  2 2  Tb 0 0 2 { s 0 ( t )  s12 ( t )} dt s 0 ( t ) s1 ( t ) dt E E  E0 , yo  1 2 디지털통신(Digital Comm.)  Tb (  o  1) 68