SlideShare a Scribd company logo
1 of 69
Download to read offline
NLTK, Gensim
( : )
PyCon Korea 2015
2015-08-29
Lucy Park ( )
1 / 69
KoNLPy
,
? !
NLTK
,
Gensim
, .
bag-of-words, document embedding
, KoNLPy, NLTK, Gensim
.
KoNLPy: http://konlpy.org
NLTK: http://nltk.org
Gensim: http://radimrehurek.com/gensim
2 / 69
(a.k.a. lucypark,
echojuliett, e9t)
.
CAVEAT: KoNLPy
Just another yak shaver...
11:49 <@sanxiyn> 또다시 yak shaving의 신비한 세계
11:51 <@sanxiyn> yak shaving이 뭔지 다 아시죠?
11:51 <디토군> 방금 찾아보고 왔음
11:51 <@mana> (조용히 설명을 기대중)
11:51 <@sanxiyn> 나무를 베려고 하는데
11:52 <@sanxiyn> 도끼질을 하다가
11:52 <@sanxiyn> 도끼가 더 잘 들면 나무를 쉽게 벨텐데 해서
11:52 <@sanxiyn> 도끼 날을 세우다가
11:52 <@sanxiyn> 도끼 가는 돌이 더 좋으면 도끼 날을 더 빨리 세울텐데 해서
11:52 <@sanxiyn> 좋은 숫돌이 있는 곳을 수소문해 보니
11:52 <@mana> …
11:52 <&홍민희> 그거 전형적인 제 행동이네요
11:52 <@sanxiyn> 저 멀이 어디에 세계 최고의 숫돌이 난다고
11:52 <@sanxiyn> 거기까지 야크를 타고 가려다가
11:52 <@mana> 항상하던 짓이라서 타이핑을 할 수 없었습니다
11:52 <@sanxiyn> 야크 털을 깎아서…
11:52 <@sanxiyn> etc.
3 / 69
/
KoNLPy, NLTK, Gensim (?)
!
Gensim ,
.
,
.
.
?
3
4 / 69
1997
20 ...
5 / 69
IBM .
6 / 69
. ,
.
.
-- Bengio et al., Deep Learning 1 , Book in preparation for MIT Press, 2015.
7 / 69
" "
Representations of text
8 / 69
?
, .
" " .
9 / 69
{ , }
≈
⊂
10 / 69
, ,
(binary)
set
one-hot vector
1-of-V
= , = , = , . . . =w
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
1
0
0
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
w ( )
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
0
1
0
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
w
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
0
0
1
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
w
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
0
0
0
⋮
1
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
wi
i
|V|
11 / 69
.
ex: " " " ", " " " " 0 .
( = ( = 0w )⊤
w w )⊤
w
* BOW (discrete) (local representation) .
(distributed representation) 12 / 69
,
bag of words(BOW)
/ ( "term existance" )
n (a.k.a. term frequency (TF))
ex: term frequency–inverse document frequency (TF-IDF)
=d1
binary
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
1
1
0
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
=d1
tf
⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎢
3
1
0
⋮
0
⎤
⎦
⎥
⎥
⎥
⎥
⎥
⎥
13 / 69
.*
.
.
" ".
* : Vincent Spruyt, The Curse of Dimensionality in classification, 2014. 14 / 69
" ?"
(WordNet) X is-a Y (hypernym)
(DAG; directed acyclic graph) . ( : .)
from nltk.corpus import wordnet as wn
wn.synsets('computer') # "computer"
#=> [Synset('computer.n.01'), Synset('calculator.n.01')]
: ( ) /
15 / 69
:
1. , .
from nltk.corpus import wordnet as wn
wn.synsets('nginx')
#=> []
2. .
wn.synsets('yolo') # : you only live once
#=> []
3. NLTK ... ( !)
wn.synsets(' ', lang='kor')
#=> WordNetError: Language is not supported.
16 / 69
.. . ?
17 / 69
.
18 / 69
.
You shall know a word by the company it keeps.
-- J.R. Firth (1957)
19 / 69
1: ?
__ .
, __ .
__ .
: [ ]
20 / 69
2: " " ?
?
21 / 69
.
?
SO .
22 / 69
;;
23 / 69
, (context)
.
(context) := (window) /
1-8 , 3-17 *
" "
ex: "PyCon" "R" "Python" ?
* Jurafsky, Martin, Speech and Language Processing 3rd Ed. 19.1 , Book in preparation, 2015. 24 / 69
"Co-occurrence"
25 / 69
Co-occurrence
documents = [[" ", " ", " ", " "],
[" ", "R", " ", " "]]
1. Term-document matrix ( ):
Computation (!)
x_td = [[1, 1], #
[1, 0], #
[0, 1], # R
[1, 1], #
[1, 1]] #
1. Term-term matrix ( ):
syntactic, semantic
( ==5):
x_tt = [[0, 1, 1, 2, 0], #
[1, 0, 0, 1, 1], #
[1, 0, 0, 1, 1], # R
[2, 1, 1, 0, 2], #
[0, 1, 1, 2, 0]] #
∈Xtd ℝ|V|×M
M
∈Xtt ℝ|V|×|V|
26 / 69
Co-occurrence matrix
.
import math
def dot_product(v1, v2):
return sum(map(lambda x: x[0] * x[1], zip(v1, v2)))
def cosine_measure(v1, v2):
prod = dot_product(v1, v2)
len1 = math.sqrt(dot_product(v1, v1))
len2 = math.sqrt(dot_product(v2, v2))
return prod / (len1 * len2)
:
skewed ( , )
discriminative (ex: list(' '))
?
27 / 69
Neural embeddings
: !
(language model)
ex: [" ", " ", " ", " "] ? (ex: "!", "." "?")
, .
Neural network language model (NNLM)*
* Bengio, Ducharme, Vincent, A Neural Probabilistic Language Model, {NIPS, 2000; JMLR, 2003}. 28 / 69
word2vec *
T. Mikolov word2vec neural embedding
! (n -> m )
* Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of NIPS, 2013. 29 / 69
: word2vec *
* , , , (1946-2015) , 49 2 , 2015. 30 / 69
neural embedding ?
31 / 69
doc2vec *
: ( ) !
.
.
|V|
* Le, Mikolov, Distributed Representations of Sentences and Documents, ICML, 2014. ( doc2vec paragraph vector
) 32 / 69
: Term frequency -> . .
documents = [
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' ']
]
words = set(sum(documents, []))
print(words)
# => {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '}
def term_frequency(document):
# do something
return vector
vectors = [term_frequency(doc) for doc in documents]
print(vectors)
# => {
# 'S1': [1, 1, 0, 1, 0, 0, 1, 1],
# 'S2': [1, 1, 0, 1, 0, 0, 1, 1],
# 'S3': [1, 0, 0, 1, 1, 1, 1, 0],
# 'S4': [1, 1, 0, 1, 1, 1, 0, 0],
# 'S5': [1, 0, 1, 1, 1, 0, 1, 0],
# 'S6': [1, 1, 1, 1, 1, 0, 0, 0]
# }
|V|
33 / 69
: doc2vec -> . .
documents = [
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' '],
[' ', ' ', ' ', ' ', ' ']
]
words = set(sum(documents, []))
print(words)
# => {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '}
def doc2vec(document):
# do something else ( Gensim !)
return vector
vectors = [doc2vec(doc) for doc in documents]
print(vectors)
# => {
# 'S1': [-0.01599941, 0.02135301, 0.0927715],
# 'S2': [0.02333261, 0.00211833, 0.00254255],
# 'S3': [-0.00117272, -0.02043504, 0.00593186],
# 'S4': [0.0089237, -0.00397806, -0.13199195],
# 'S5': [0.02555059, 0.01561624, 0.03603476],
# 'S6': [-0.02114407, -0.01552016, 0.01289922]
# }
|V|
34 / 69
.
:
Sparse, long vectors Dense, short vectors
1-hot-vectors word2vec
bag-of-words
(term existance, TF, TF-IDF )
doc2vec
.
35 / 69
Sentiment analysis for Korean movie reviews
36 / 69
, ?
37 / 69
!
38 / 69
Naver sentiment movie corpus v1.0
Maas et al., 2011
:
100 140 ( ' ')
20 ( 64 )
ratings_train.txt: 15 , ratings_test.txt: 5
/ (i.e., random guess yields 50%
accuracy)
: 19MB
URL: http://github.com/e9t/nsmc/
39 / 69
README coming soon
40 / 69
$ cat ratings_train.txt | head -n 25
id document label
9976970 .. 0
3819312 ... .... 1
10265843 0
9045019 .. .. 0
6483659 !
5403919 3 1 8 . ... . 0
7797314 . 0
9443947 ..
7156791 1
5912145 ? .. ?
9008700 . ♥ 1
10217543 90 !! ~
5957425 0
8628627 . . .
9864035
6852435 1
9143163 .
4891476 0
7465483 !!♥
3989148 , . . 1
4581211 . 1
2718894 1
9705777 . ....
471131 . 1
41 / 69
, ?
1. KoNLPy
2. NLTK
3. Bag-of-words(term existence) classify
4. Gensim doc2vec classify
42 / 69
1. Data preprocessing (feat. KoNLPy)
def read_data(filename):
with open(filename, 'r') as f:
data = [line.split('t') for line in f.read().splitlines()]
data = data[1:] # header
return data
train_data = read_data('ratings_train.txt')
test_data = read_data('ratings_test.txt')
NOTE: pandas.read_csv() quoting parameter
csv.QUOTE_NONE (3) (ex:
)
43 / 69
1. Data preprocessing (feat. KoNLPy)
# row, column
print(len(train_data)) # nrows: 150000
print(len(train_data[0])) # ncols: 3
print(len(test_data)) # nrows: 50000
print(len(test_data[0])) # ncols: 3
44 / 69
1. Data preprocessing (feat. KoNLPy)
from konlpy.tag import Twitter
pos_tagger = Twitter()
def tokenize(doc):
# norm, stem optional
return ['/'.join(t) for t in pos_tagger.pos(doc, norm=True, stem=True)]
train_docs = [(tokenize(row[1]), row[2]) for row in train_data]
test_docs = [(tokenize(row[1]), row[2]) for row in test_data]
#
from pprint import pprint
pprint(train_docs[0])
# => [([' /Exclamation',
# ' /Noun',
# '../Punctuation',
# ' /Noun',
# ' /Noun',
# ' /Verb',
# ' /Noun'],
# '0')]
NOTE:
. 45 / 69
1. Data preprocessing (feat. KoNLPy)
" ?"
, x
*
" (POS) ?"
ex: ' /Josa' vs ' /Noun'
* https://github.com/karpathy/char-rnn 46 / 69
2. Data exploration (feat. NLTK)
!
Training data token
tokens = [t for d in train_docs for t in d[0]]
print(len(tokens))
# => 2194536
47 / 69
2. Data exploration (feat. NLTK)
nltk.Text() ! (Exploration )
document ,
.
import nltk
text = nltk.Text(tokens, name='NMSC')
print(text)
# => <Text: NMSC>
48 / 69
2. Data exploration (feat. NLTK)
Count tokens
print(len(text.tokens)) # returns number of tokens
# => 2194536
print(len(set(text.tokens))) # returns number of unique tokens
# => 48765
pprint(text.vocab().most_common(10)) # returns frequency distribution
# => [('./Punctuation', 68630),
# (' /Noun', 51365),
# (' /Verb', 50281),
# (' /Josa', 39123),
# (' /Verb', 34764),
# (' /Josa', 30480),
# ('../Punctuation', 29055),
# (' /Josa', 27108),
# (' /Josa', 26696),
# (' /Josa', 23481)]
49 / 69
2. Data exploration (feat. NLTK)
Plot tokens by frequency
text.plot(50) # Plot sorted frequency of top 50 tokens
;;
50 / 69
2. Data exploration (feat. NLTK)
!
Troubleshooting: For those who see rectangles instead of letters in the saved plot file,
include the following configurations before drawing the plot:
Some example fonts:
Mac OS: /Library/Fonts/AppleGothic.ttf
from matplotlib import font_manager, rc
font_fname = 'c:/windows/fonts/gulim.ttc' # A font of your choice
font_name = font_manager.FontProperties(fname=font_fname).get_name()
rc('font', family=font_name)
51 / 69
2. Data exploration (feat. NLTK)
. .
.
52 / 69
2. Data exploration (feat. NLTK)
Collocations ( ): (ex: "text" + "mining")
text.collocations() #
# => /Determiner /Noun; /Suffix /Josa; /Determiner /Noun; /Noun
# /Verb; /Noun /Josa; 10/Number /Noun; /Noun /Suffix; /Noun
# /Adjective; /Noun /Josa; /Noun /Josa; /Noun /Josa; /Suffix
# /Josa; /Noun /Noun; /Noun /Josa; /Suffix /Josa; /Noun
# /Josa; /Noun /Josa; /Suffix /Josa; /Noun /Suffix; /Noun
# /Josa
NOTE: nltk.Text() , source code API .
.
53 / 69
3. Sentiment classification with term-existance*
term .
# 2000
# WARNING: time/memory efficient
selected_words = [f[0] for f in text.vocab().most_common(2000)]
def term_exists(doc):
return {'exists({})'.format(word): (word in set(doc)) for word in selected_words}
# training corpus
train_docs = train_docs[:10000]
train_xy = [(term_exists(d), c) for d, c in train_docs]
test_xy = [(term_exists(d), c) for d, c in test_docs]
Try this:
. 50 ?
TF, TF-IDF ?
(sparse matrix) or scikit-learn TfidfVectorizer() !
* Natural Language Processing with Python Chapter 6. Learning to classify text 54 / 69
3. Sentiment classification with term-existance
. !
.
NLTK :
Naive Bayes Classifiers
Decision Tree Classifiers
Maximum Entropy Classifiers
.
scikit-learn .
NLTK Naive Bayes Classifier !
55 / 69
3. Sentiment classification with term-existance
Naive Bayes classifier
#
classifier = nltk.NaiveBayesClassifier.train(train_xy)
print(nltk.classify.accuracy(classifier, test_xy))
# => 0.80418
classifier.show_most_informative_features(10)
# => Most Informative Features
# exists( /Noun) = True 1 : 0 = 38.0 : 1.0
# exists( /Noun) = True 0 : 1 = 30.1 : 1.0
# exists(♥/Foreign) = True 1 : 0 = 24.5 : 1.0
# exists( /Noun) = True 0 : 1 = 22.1 : 1.0
# exists( /Noun) = True 0 : 1 = 19.5 : 1.0
# exists( /Noun) = True 0 : 1 = 19.4 : 1.0
# exists( /Noun) = True 1 : 0 = 18.9 : 1.0
# exists( /Noun) = True 0 : 1 = 16.9 : 1.0
# exists( /Noun) = True 1 : 0 = 16.9 : 1.0
# exists( /Noun) = True 1 : 0 = 15.9 : 1.0
/ baseline accuracy 0.50
1 accuracy 0.80 .
?
56 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
doc2vec / .
Gensim . *
: Radim Rehureck
* Gensim 0.12.0 . ! 57 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
!!!
Gensim ...
58 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
doc2vec .
doc2vec
from gensim.models.doc2vec import TaggedDocument OK
from collections import namedtuple
TaggedDocument = namedtuple('TaggedDocument', 'words tags')
# 15 training documents
tagged_train_docs = [TaggedDocument(d, [c]) for d, c in train_docs]
tagged_test_docs = [TaggedDocument(d, [c]) for d, c in test_docs]
59 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
from gensim.models import doc2vec
#
doc_vectorizer = doc2vec.Doc2Vec(size=300, alpha=0.025, min_alpha=0.025, seed=1234)
doc_vectorizer.build_vocab(tagged_train_docs)
# Train document vectors!
for epoch in range(10):
doc_vectorizer.train(tagged_train_docs)
doc_vectorizer.alpha -= 0.002 # decrease the learning rate
doc_vectorizer.min_alpha = doc_vectorizer.alpha # fix the learning rate, no decay
# To save
# doc_vectorizer.save('doc2vec.model')
Try this:
Vector size, epoch
60 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
! (1/3)
pprint(doc_vectorizer.most_similar(' /Noun'))
# => [(' /Noun', 0.5669919848442078),
# (' /Noun', 0.5522832274436951),
# (' /Noun', 0.5021427869796753),
# (' /Noun', 0.5000861287117004),
# (' /Noun', 0.4368450343608856),
# (' /Noun', 0.42848479747772217),
# (' /Noun', 0.42714330554008484),
# (' /Noun', 0.41590073704719543),
# (' /Noun', 0.41056352853775024),
# (' /Noun', 0.4052993059158325)]
... .
61 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
! (2/3)
pprint(doc_vectorizer.most_similar(' /KoreanParticle'))
# => [(' /KoreanParticle', 0.5768033862113953),
# (' /KoreanParticle', 0.4822016954421997),
# ('!!!!/Punctuation', 0.4395076632499695),
# ('!!!/Punctuation', 0.4077949523925781),
# ('!!/Punctuation', 0.4026390314102173),
# ('~/Punctuation', 0.40038347244262695),
# ('~~/Punctuation', 0.39946430921554565),
# ('!/Punctuation', 0.3899948000907898),
# ('^^/Punctuation', 0.3852730989456177),
# ('~^^/Punctuation', 0.3797937035560608)]
! .
62 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
, v(KING) – v(MAN) + v(WOMAN) = v(QUEEN)
?
63 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
! (3/3)
pprint(doc_vectorizer.most_similar(positive=[' /Noun', ' /Noun'], negative=[' /Noun']))
# => [(' /Noun', 0.32974398136138916),
# (' /Noun', 0.305545836687088),
# (' /Noun', 0.2899821400642395),
# (' /Noun', 0.2856029272079468),
# (' /Noun', 0.2840743064880371),
# (' /Noun', 0.28247544169425964),
# (' /Noun', 0.2795347571372986),
# (' /Noun', 0.2794691324234009),
# (' /Noun', 0.27567577362060547),
# (' /Noun', 0.2734225392341614)]
...? ?
64 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
, ;;
, . ? *
text.concordance(' /Noun', lines=10)
# => Displaying 10 of 145 matches:
# Josa /Noun /Josa ,,/Punctuation /Noun /Noun ...../Punctuation /Noun
# /Noun /Noun ../Punctuation /Noun /Noun /Noun /Noun /Noun /Josa /Nou
# nction /Noun /Josa /Adjective /Noun /Verb /Verb /Noun /Josa
# /Noun /Noun /Noun ?/Punctuation /Noun /Noun ./Punctuation /Noun /No
# b /Noun /Noun /KoreanParticle /Noun /Noun /Adjective ./Punctuation
# osa /Noun /Josa /Noun /Josa /Noun /Josa /Noun /Noun /Josa /Nou
# /Noun /Josa /Noun ./Punctuation /Noun ,/Punctuation /Noun /Noun /Suf
# Josa /Noun /Noun /Noun /Noun /Noun /Josa /Noun /Suffix /Josa /
# /Verb ./Punctuation /Adjective /Noun /Noun .../Punctuation /Noun
# tive /Noun /Noun .../Punctuation /Noun /Noun ../Punctuation /Noun /J
* Huang, Socher, Improving Word Representations via Global Context and Multiple Word Prototypes, ACL, 2012. 65 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
. .
train_x = [doc_vectorizer.infer_vector(doc.words) for doc in tagged_train_docs]
train_y = [doc.tags[0] for doc in tagged_train_docs]
len(train_x) # term existance
# => 150000
len(train_x[0])
# => 300
test_x = [doc_vectorizer.infer_vector(doc.words) for doc in tagged_test_docs]
test_y = [doc.tags[0] for doc in tagged_test_docs]
len(test_x)
# => 50000
len(test_x[0])
# => 300
66 / 69
4. Sentiment classification with doc2vec (feat. Gensim)
scikit-learn LogisticRegression() .
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state=1234)
classifier.fit(train_x, train_y)
classifier.score(test_x, test_y)
# => 0.78246000000000004
! Accuracy 0.78 .
Term existance accuracy 2% , .
, term existance , doc2vec
!
67 / 69
.
KoNLPy , NLTK , Gensim
.
Term existance document vector .
task apply
!
/ *
/
!
* , , , : , SNUDM Technical Reports, Apr 14,
2015. 68 / 69
:D
http://lucypark.kr
@echojuliett
69 / 69

More Related Content

Similar to KoNLPy, NLTK, Gensim for Sentiment Analysis of Korean Movie Reviews

CS4200 2019 | Lecture 5 | Transformation by Term Rewriting
CS4200 2019 | Lecture 5 | Transformation by Term RewritingCS4200 2019 | Lecture 5 | Transformation by Term Rewriting
CS4200 2019 | Lecture 5 | Transformation by Term RewritingEelco Visser
 
Python memory management_v2
Python memory management_v2Python memory management_v2
Python memory management_v2Jeffrey Clark
 
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary dataKernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary dataAnne Nicolas
 
Scala eXchange opening
Scala eXchange openingScala eXchange opening
Scala eXchange openingMartin Odersky
 
Yoyak ScalaDays 2015
Yoyak ScalaDays 2015Yoyak ScalaDays 2015
Yoyak ScalaDays 2015ihji
 
RNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq ModelsRNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq ModelsEmory NLP
 
python chapter 1
python chapter 1python chapter 1
python chapter 1Raghu nath
 
Python chapter 2
Python chapter 2Python chapter 2
Python chapter 2Raghu nath
 
Gpu programming with java
Gpu programming with javaGpu programming with java
Gpu programming with javaGary Sieling
 
Data Exploration and Visualization with R
Data Exploration and Visualization with RData Exploration and Visualization with R
Data Exploration and Visualization with RYanchang Zhao
 
Class 31: Deanonymizing
Class 31: DeanonymizingClass 31: Deanonymizing
Class 31: DeanonymizingDavid Evans
 
Declare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingDeclare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingEelco Visser
 
Super Advanced Python –act1
Super Advanced Python –act1Super Advanced Python –act1
Super Advanced Python –act1Ke Wei Louis
 
Lies, Damned Lies, and Substrings
Lies, Damned Lies, and SubstringsLies, Damned Lies, and Substrings
Lies, Damned Lies, and SubstringsHaseeb Qureshi
 
Textrank algorithm
Textrank algorithmTextrank algorithm
Textrank algorithmAndrew Koo
 

Similar to KoNLPy, NLTK, Gensim for Sentiment Analysis of Korean Movie Reviews (20)

CS4200 2019 | Lecture 5 | Transformation by Term Rewriting
CS4200 2019 | Lecture 5 | Transformation by Term RewritingCS4200 2019 | Lecture 5 | Transformation by Term Rewriting
CS4200 2019 | Lecture 5 | Transformation by Term Rewriting
 
Python memory management_v2
Python memory management_v2Python memory management_v2
Python memory management_v2
 
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary dataKernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
Kernel Recipes 2019 - GNU poke, an extensible editor for structured binary data
 
Scala eXchange opening
Scala eXchange openingScala eXchange opening
Scala eXchange opening
 
Yoyak ScalaDays 2015
Yoyak ScalaDays 2015Yoyak ScalaDays 2015
Yoyak ScalaDays 2015
 
RNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq ModelsRNN, LSTM and Seq-2-Seq Models
RNN, LSTM and Seq-2-Seq Models
 
Music as data
Music as dataMusic as data
Music as data
 
Alastair Butler - 2015 - Round trips with meaning stopovers
Alastair Butler - 2015 - Round trips with meaning stopoversAlastair Butler - 2015 - Round trips with meaning stopovers
Alastair Butler - 2015 - Round trips with meaning stopovers
 
python chapter 1
python chapter 1python chapter 1
python chapter 1
 
Python chapter 2
Python chapter 2Python chapter 2
Python chapter 2
 
Gpu programming with java
Gpu programming with javaGpu programming with java
Gpu programming with java
 
Python
PythonPython
Python
 
Python lecture 05
Python lecture 05Python lecture 05
Python lecture 05
 
Data Exploration and Visualization with R
Data Exploration and Visualization with RData Exploration and Visualization with R
Data Exploration and Visualization with R
 
Class 31: Deanonymizing
Class 31: DeanonymizingClass 31: Deanonymizing
Class 31: Deanonymizing
 
Declare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term RewritingDeclare Your Language: Transformation by Strategic Term Rewriting
Declare Your Language: Transformation by Strategic Term Rewriting
 
Super Advanced Python –act1
Super Advanced Python –act1Super Advanced Python –act1
Super Advanced Python –act1
 
Lies, Damned Lies, and Substrings
Lies, Damned Lies, and SubstringsLies, Damned Lies, and Substrings
Lies, Damned Lies, and Substrings
 
Textrank algorithm
Textrank algorithmTextrank algorithm
Textrank algorithm
 
Python tutorial
Python tutorialPython tutorial
Python tutorial
 

Recently uploaded

Biometric Authentication: The Evolution, Applications, Benefits and Challenge...
Biometric Authentication: The Evolution, Applications, Benefits and Challenge...Biometric Authentication: The Evolution, Applications, Benefits and Challenge...
Biometric Authentication: The Evolution, Applications, Benefits and Challenge...GQ Research
 
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default  Presentation : Data Analysis Project PPTPredictive Analysis for Loan Default  Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPTBoston Institute of Analytics
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]📊 Markus Baersch
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFAAndrei Kaleshka
 
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...limedy534
 
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024Timothy Spann
 
Conf42-LLM_Adding Generative AI to Real-Time Streaming Pipelines
Conf42-LLM_Adding Generative AI to Real-Time Streaming PipelinesConf42-LLM_Adding Generative AI to Real-Time Streaming Pipelines
Conf42-LLM_Adding Generative AI to Real-Time Streaming PipelinesTimothy Spann
 
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...Amil Baba Dawood bangali
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfchwongval
 
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Boston Institute of Analytics
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfgstagge
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort servicejennyeacort
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改yuu sss
 
RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.natarajan8993
 
Thiophen Mechanism khhjjjjjjjhhhhhhhhhhh
Thiophen Mechanism khhjjjjjjjhhhhhhhhhhhThiophen Mechanism khhjjjjjjjhhhhhhhhhhh
Thiophen Mechanism khhjjjjjjjhhhhhhhhhhhYasamin16
 
Advanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsAdvanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsVICTOR MAESTRE RAMIREZ
 
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝DelhiRS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhijennyeacort
 
Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Seán Kennedy
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024thyngster
 
modul pembelajaran robotic Workshop _ by Slidesgo.pptx
modul pembelajaran robotic Workshop _ by Slidesgo.pptxmodul pembelajaran robotic Workshop _ by Slidesgo.pptx
modul pembelajaran robotic Workshop _ by Slidesgo.pptxaleedritatuxx
 

Recently uploaded (20)

Biometric Authentication: The Evolution, Applications, Benefits and Challenge...
Biometric Authentication: The Evolution, Applications, Benefits and Challenge...Biometric Authentication: The Evolution, Applications, Benefits and Challenge...
Biometric Authentication: The Evolution, Applications, Benefits and Challenge...
 
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default  Presentation : Data Analysis Project PPTPredictive Analysis for Loan Default  Presentation : Data Analysis Project PPT
Predictive Analysis for Loan Default Presentation : Data Analysis Project PPT
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFA
 
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
Effects of Smartphone Addiction on the Academic Performances of Grades 9 to 1...
 
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
April 2024 - NLIT Cloudera Real-Time LLM Streaming 2024
 
Conf42-LLM_Adding Generative AI to Real-Time Streaming Pipelines
Conf42-LLM_Adding Generative AI to Real-Time Streaming PipelinesConf42-LLM_Adding Generative AI to Real-Time Streaming Pipelines
Conf42-LLM_Adding Generative AI to Real-Time Streaming Pipelines
 
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
NO1 Certified Black Magic Specialist Expert Amil baba in Lahore Islamabad Raw...
 
Multiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdfMultiple time frame trading analysis -brianshannon.pdf
Multiple time frame trading analysis -brianshannon.pdf
 
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
Data Analysis Project : Targeting the Right Customers, Presentation on Bank M...
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdf
 
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
9711147426✨Call In girls Gurgaon Sector 31. SCO 25 escort service
 
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
专业一比一美国俄亥俄大学毕业证成绩单pdf电子版制作修改
 
RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.RABBIT: A CLI tool for identifying bots based on their GitHub events.
RABBIT: A CLI tool for identifying bots based on their GitHub events.
 
Thiophen Mechanism khhjjjjjjjhhhhhhhhhhh
Thiophen Mechanism khhjjjjjjjhhhhhhhhhhhThiophen Mechanism khhjjjjjjjhhhhhhhhhhh
Thiophen Mechanism khhjjjjjjjhhhhhhhhhhh
 
Advanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsAdvanced Machine Learning for Business Professionals
Advanced Machine Learning for Business Professionals
 
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝DelhiRS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
 
Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...Student Profile Sample report on improving academic performance by uniting gr...
Student Profile Sample report on improving academic performance by uniting gr...
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
 
modul pembelajaran robotic Workshop _ by Slidesgo.pptx
modul pembelajaran robotic Workshop _ by Slidesgo.pptxmodul pembelajaran robotic Workshop _ by Slidesgo.pptx
modul pembelajaran robotic Workshop _ by Slidesgo.pptx
 

KoNLPy, NLTK, Gensim for Sentiment Analysis of Korean Movie Reviews

  • 1. NLTK, Gensim ( : ) PyCon Korea 2015 2015-08-29 Lucy Park ( ) 1 / 69
  • 2. KoNLPy , ? ! NLTK , Gensim , . bag-of-words, document embedding , KoNLPy, NLTK, Gensim . KoNLPy: http://konlpy.org NLTK: http://nltk.org Gensim: http://radimrehurek.com/gensim 2 / 69
  • 3. (a.k.a. lucypark, echojuliett, e9t) . CAVEAT: KoNLPy Just another yak shaver... 11:49 <@sanxiyn> 또다시 yak shaving의 신비한 세계 11:51 <@sanxiyn> yak shaving이 뭔지 다 아시죠? 11:51 <디토군> 방금 찾아보고 왔음 11:51 <@mana> (조용히 설명을 기대중) 11:51 <@sanxiyn> 나무를 베려고 하는데 11:52 <@sanxiyn> 도끼질을 하다가 11:52 <@sanxiyn> 도끼가 더 잘 들면 나무를 쉽게 벨텐데 해서 11:52 <@sanxiyn> 도끼 날을 세우다가 11:52 <@sanxiyn> 도끼 가는 돌이 더 좋으면 도끼 날을 더 빨리 세울텐데 해서 11:52 <@sanxiyn> 좋은 숫돌이 있는 곳을 수소문해 보니 11:52 <@mana> … 11:52 <&홍민희> 그거 전형적인 제 행동이네요 11:52 <@sanxiyn> 저 멀이 어디에 세계 최고의 숫돌이 난다고 11:52 <@sanxiyn> 거기까지 야크를 타고 가려다가 11:52 <@mana> 항상하던 짓이라서 타이핑을 할 수 없었습니다 11:52 <@sanxiyn> 야크 털을 깎아서… 11:52 <@sanxiyn> etc. 3 / 69
  • 4. / KoNLPy, NLTK, Gensim (?) ! Gensim , . , . . ? 3 4 / 69
  • 7. . , . . -- Bengio et al., Deep Learning 1 , Book in preparation for MIT Press, 2015. 7 / 69
  • 9. ? , . " " . 9 / 69
  • 11. , , (binary) set one-hot vector 1-of-V = , = , = , . . . =w ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 1 0 0 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ w ( ) ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 0 1 0 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ w ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 0 0 1 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ w ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 0 0 0 ⋮ 1 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ wi i |V| 11 / 69
  • 12. . ex: " " " ", " " " " 0 . ( = ( = 0w )⊤ w w )⊤ w * BOW (discrete) (local representation) . (distributed representation) 12 / 69
  • 13. , bag of words(BOW) / ( "term existance" ) n (a.k.a. term frequency (TF)) ex: term frequency–inverse document frequency (TF-IDF) =d1 binary ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 1 1 0 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ =d1 tf ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 3 1 0 ⋮ 0 ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 13 / 69
  • 14. .* . . " ". * : Vincent Spruyt, The Curse of Dimensionality in classification, 2014. 14 / 69
  • 15. " ?" (WordNet) X is-a Y (hypernym) (DAG; directed acyclic graph) . ( : .) from nltk.corpus import wordnet as wn wn.synsets('computer') # "computer" #=> [Synset('computer.n.01'), Synset('calculator.n.01')] : ( ) / 15 / 69
  • 16. : 1. , . from nltk.corpus import wordnet as wn wn.synsets('nginx') #=> [] 2. . wn.synsets('yolo') # : you only live once #=> [] 3. NLTK ... ( !) wn.synsets(' ', lang='kor') #=> WordNetError: Language is not supported. 16 / 69
  • 17. .. . ? 17 / 69
  • 19. . You shall know a word by the company it keeps. -- J.R. Firth (1957) 19 / 69
  • 20. 1: ? __ . , __ . __ . : [ ] 20 / 69
  • 21. 2: " " ? ? 21 / 69
  • 24. , (context) . (context) := (window) / 1-8 , 3-17 * " " ex: "PyCon" "R" "Python" ? * Jurafsky, Martin, Speech and Language Processing 3rd Ed. 19.1 , Book in preparation, 2015. 24 / 69
  • 26. Co-occurrence documents = [[" ", " ", " ", " "], [" ", "R", " ", " "]] 1. Term-document matrix ( ): Computation (!) x_td = [[1, 1], # [1, 0], # [0, 1], # R [1, 1], # [1, 1]] # 1. Term-term matrix ( ): syntactic, semantic ( ==5): x_tt = [[0, 1, 1, 2, 0], # [1, 0, 0, 1, 1], # [1, 0, 0, 1, 1], # R [2, 1, 1, 0, 2], # [0, 1, 1, 2, 0]] # ∈Xtd ℝ|V|×M M ∈Xtt ℝ|V|×|V| 26 / 69
  • 27. Co-occurrence matrix . import math def dot_product(v1, v2): return sum(map(lambda x: x[0] * x[1], zip(v1, v2))) def cosine_measure(v1, v2): prod = dot_product(v1, v2) len1 = math.sqrt(dot_product(v1, v1)) len2 = math.sqrt(dot_product(v2, v2)) return prod / (len1 * len2) : skewed ( , ) discriminative (ex: list(' ')) ? 27 / 69
  • 28. Neural embeddings : ! (language model) ex: [" ", " ", " ", " "] ? (ex: "!", "." "?") , . Neural network language model (NNLM)* * Bengio, Ducharme, Vincent, A Neural Probabilistic Language Model, {NIPS, 2000; JMLR, 2003}. 28 / 69
  • 29. word2vec * T. Mikolov word2vec neural embedding ! (n -> m ) * Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013. 29 / 69
  • 30. : word2vec * * , , , (1946-2015) , 49 2 , 2015. 30 / 69
  • 32. doc2vec * : ( ) ! . . |V| * Le, Mikolov, Distributed Representations of Sentences and Documents, ICML, 2014. ( doc2vec paragraph vector ) 32 / 69
  • 33. : Term frequency -> . . documents = [ [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '] ] words = set(sum(documents, [])) print(words) # => {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '} def term_frequency(document): # do something return vector vectors = [term_frequency(doc) for doc in documents] print(vectors) # => { # 'S1': [1, 1, 0, 1, 0, 0, 1, 1], # 'S2': [1, 1, 0, 1, 0, 0, 1, 1], # 'S3': [1, 0, 0, 1, 1, 1, 1, 0], # 'S4': [1, 1, 0, 1, 1, 1, 0, 0], # 'S5': [1, 0, 1, 1, 1, 0, 1, 0], # 'S6': [1, 1, 1, 1, 1, 0, 0, 0] # } |V| 33 / 69
  • 34. : doc2vec -> . . documents = [ [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '], [' ', ' ', ' ', ' ', ' '] ] words = set(sum(documents, [])) print(words) # => {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '} def doc2vec(document): # do something else ( Gensim !) return vector vectors = [doc2vec(doc) for doc in documents] print(vectors) # => { # 'S1': [-0.01599941, 0.02135301, 0.0927715], # 'S2': [0.02333261, 0.00211833, 0.00254255], # 'S3': [-0.00117272, -0.02043504, 0.00593186], # 'S4': [0.0089237, -0.00397806, -0.13199195], # 'S5': [0.02555059, 0.01561624, 0.03603476], # 'S6': [-0.02114407, -0.01552016, 0.01289922] # } |V| 34 / 69
  • 35. . : Sparse, long vectors Dense, short vectors 1-hot-vectors word2vec bag-of-words (term existance, TF, TF-IDF ) doc2vec . 35 / 69
  • 36. Sentiment analysis for Korean movie reviews 36 / 69
  • 37. , ? 37 / 69
  • 39. Naver sentiment movie corpus v1.0 Maas et al., 2011 : 100 140 ( ' ') 20 ( 64 ) ratings_train.txt: 15 , ratings_test.txt: 5 / (i.e., random guess yields 50% accuracy) : 19MB URL: http://github.com/e9t/nsmc/ 39 / 69
  • 41. $ cat ratings_train.txt | head -n 25 id document label 9976970 .. 0 3819312 ... .... 1 10265843 0 9045019 .. .. 0 6483659 ! 5403919 3 1 8 . ... . 0 7797314 . 0 9443947 .. 7156791 1 5912145 ? .. ? 9008700 . ♥ 1 10217543 90 !! ~ 5957425 0 8628627 . . . 9864035 6852435 1 9143163 . 4891476 0 7465483 !!♥ 3989148 , . . 1 4581211 . 1 2718894 1 9705777 . .... 471131 . 1 41 / 69
  • 42. , ? 1. KoNLPy 2. NLTK 3. Bag-of-words(term existence) classify 4. Gensim doc2vec classify 42 / 69
  • 43. 1. Data preprocessing (feat. KoNLPy) def read_data(filename): with open(filename, 'r') as f: data = [line.split('t') for line in f.read().splitlines()] data = data[1:] # header return data train_data = read_data('ratings_train.txt') test_data = read_data('ratings_test.txt') NOTE: pandas.read_csv() quoting parameter csv.QUOTE_NONE (3) (ex: ) 43 / 69
  • 44. 1. Data preprocessing (feat. KoNLPy) # row, column print(len(train_data)) # nrows: 150000 print(len(train_data[0])) # ncols: 3 print(len(test_data)) # nrows: 50000 print(len(test_data[0])) # ncols: 3 44 / 69
  • 45. 1. Data preprocessing (feat. KoNLPy) from konlpy.tag import Twitter pos_tagger = Twitter() def tokenize(doc): # norm, stem optional return ['/'.join(t) for t in pos_tagger.pos(doc, norm=True, stem=True)] train_docs = [(tokenize(row[1]), row[2]) for row in train_data] test_docs = [(tokenize(row[1]), row[2]) for row in test_data] # from pprint import pprint pprint(train_docs[0]) # => [([' /Exclamation', # ' /Noun', # '../Punctuation', # ' /Noun', # ' /Noun', # ' /Verb', # ' /Noun'], # '0')] NOTE: . 45 / 69
  • 46. 1. Data preprocessing (feat. KoNLPy) " ?" , x * " (POS) ?" ex: ' /Josa' vs ' /Noun' * https://github.com/karpathy/char-rnn 46 / 69
  • 47. 2. Data exploration (feat. NLTK) ! Training data token tokens = [t for d in train_docs for t in d[0]] print(len(tokens)) # => 2194536 47 / 69
  • 48. 2. Data exploration (feat. NLTK) nltk.Text() ! (Exploration ) document , . import nltk text = nltk.Text(tokens, name='NMSC') print(text) # => <Text: NMSC> 48 / 69
  • 49. 2. Data exploration (feat. NLTK) Count tokens print(len(text.tokens)) # returns number of tokens # => 2194536 print(len(set(text.tokens))) # returns number of unique tokens # => 48765 pprint(text.vocab().most_common(10)) # returns frequency distribution # => [('./Punctuation', 68630), # (' /Noun', 51365), # (' /Verb', 50281), # (' /Josa', 39123), # (' /Verb', 34764), # (' /Josa', 30480), # ('../Punctuation', 29055), # (' /Josa', 27108), # (' /Josa', 26696), # (' /Josa', 23481)] 49 / 69
  • 50. 2. Data exploration (feat. NLTK) Plot tokens by frequency text.plot(50) # Plot sorted frequency of top 50 tokens ;; 50 / 69
  • 51. 2. Data exploration (feat. NLTK) ! Troubleshooting: For those who see rectangles instead of letters in the saved plot file, include the following configurations before drawing the plot: Some example fonts: Mac OS: /Library/Fonts/AppleGothic.ttf from matplotlib import font_manager, rc font_fname = 'c:/windows/fonts/gulim.ttc' # A font of your choice font_name = font_manager.FontProperties(fname=font_fname).get_name() rc('font', family=font_name) 51 / 69
  • 52. 2. Data exploration (feat. NLTK) . . . 52 / 69
  • 53. 2. Data exploration (feat. NLTK) Collocations ( ): (ex: "text" + "mining") text.collocations() # # => /Determiner /Noun; /Suffix /Josa; /Determiner /Noun; /Noun # /Verb; /Noun /Josa; 10/Number /Noun; /Noun /Suffix; /Noun # /Adjective; /Noun /Josa; /Noun /Josa; /Noun /Josa; /Suffix # /Josa; /Noun /Noun; /Noun /Josa; /Suffix /Josa; /Noun # /Josa; /Noun /Josa; /Suffix /Josa; /Noun /Suffix; /Noun # /Josa NOTE: nltk.Text() , source code API . . 53 / 69
  • 54. 3. Sentiment classification with term-existance* term . # 2000 # WARNING: time/memory efficient selected_words = [f[0] for f in text.vocab().most_common(2000)] def term_exists(doc): return {'exists({})'.format(word): (word in set(doc)) for word in selected_words} # training corpus train_docs = train_docs[:10000] train_xy = [(term_exists(d), c) for d, c in train_docs] test_xy = [(term_exists(d), c) for d, c in test_docs] Try this: . 50 ? TF, TF-IDF ? (sparse matrix) or scikit-learn TfidfVectorizer() ! * Natural Language Processing with Python Chapter 6. Learning to classify text 54 / 69
  • 55. 3. Sentiment classification with term-existance . ! . NLTK : Naive Bayes Classifiers Decision Tree Classifiers Maximum Entropy Classifiers . scikit-learn . NLTK Naive Bayes Classifier ! 55 / 69
  • 56. 3. Sentiment classification with term-existance Naive Bayes classifier # classifier = nltk.NaiveBayesClassifier.train(train_xy) print(nltk.classify.accuracy(classifier, test_xy)) # => 0.80418 classifier.show_most_informative_features(10) # => Most Informative Features # exists( /Noun) = True 1 : 0 = 38.0 : 1.0 # exists( /Noun) = True 0 : 1 = 30.1 : 1.0 # exists(♥/Foreign) = True 1 : 0 = 24.5 : 1.0 # exists( /Noun) = True 0 : 1 = 22.1 : 1.0 # exists( /Noun) = True 0 : 1 = 19.5 : 1.0 # exists( /Noun) = True 0 : 1 = 19.4 : 1.0 # exists( /Noun) = True 1 : 0 = 18.9 : 1.0 # exists( /Noun) = True 0 : 1 = 16.9 : 1.0 # exists( /Noun) = True 1 : 0 = 16.9 : 1.0 # exists( /Noun) = True 1 : 0 = 15.9 : 1.0 / baseline accuracy 0.50 1 accuracy 0.80 . ? 56 / 69
  • 57. 4. Sentiment classification with doc2vec (feat. Gensim) doc2vec / . Gensim . * : Radim Rehureck * Gensim 0.12.0 . ! 57 / 69
  • 58. 4. Sentiment classification with doc2vec (feat. Gensim) !!! Gensim ... 58 / 69
  • 59. 4. Sentiment classification with doc2vec (feat. Gensim) doc2vec . doc2vec from gensim.models.doc2vec import TaggedDocument OK from collections import namedtuple TaggedDocument = namedtuple('TaggedDocument', 'words tags') # 15 training documents tagged_train_docs = [TaggedDocument(d, [c]) for d, c in train_docs] tagged_test_docs = [TaggedDocument(d, [c]) for d, c in test_docs] 59 / 69
  • 60. 4. Sentiment classification with doc2vec (feat. Gensim) from gensim.models import doc2vec # doc_vectorizer = doc2vec.Doc2Vec(size=300, alpha=0.025, min_alpha=0.025, seed=1234) doc_vectorizer.build_vocab(tagged_train_docs) # Train document vectors! for epoch in range(10): doc_vectorizer.train(tagged_train_docs) doc_vectorizer.alpha -= 0.002 # decrease the learning rate doc_vectorizer.min_alpha = doc_vectorizer.alpha # fix the learning rate, no decay # To save # doc_vectorizer.save('doc2vec.model') Try this: Vector size, epoch 60 / 69
  • 61. 4. Sentiment classification with doc2vec (feat. Gensim) ! (1/3) pprint(doc_vectorizer.most_similar(' /Noun')) # => [(' /Noun', 0.5669919848442078), # (' /Noun', 0.5522832274436951), # (' /Noun', 0.5021427869796753), # (' /Noun', 0.5000861287117004), # (' /Noun', 0.4368450343608856), # (' /Noun', 0.42848479747772217), # (' /Noun', 0.42714330554008484), # (' /Noun', 0.41590073704719543), # (' /Noun', 0.41056352853775024), # (' /Noun', 0.4052993059158325)] ... . 61 / 69
  • 62. 4. Sentiment classification with doc2vec (feat. Gensim) ! (2/3) pprint(doc_vectorizer.most_similar(' /KoreanParticle')) # => [(' /KoreanParticle', 0.5768033862113953), # (' /KoreanParticle', 0.4822016954421997), # ('!!!!/Punctuation', 0.4395076632499695), # ('!!!/Punctuation', 0.4077949523925781), # ('!!/Punctuation', 0.4026390314102173), # ('~/Punctuation', 0.40038347244262695), # ('~~/Punctuation', 0.39946430921554565), # ('!/Punctuation', 0.3899948000907898), # ('^^/Punctuation', 0.3852730989456177), # ('~^^/Punctuation', 0.3797937035560608)] ! . 62 / 69
  • 63. 4. Sentiment classification with doc2vec (feat. Gensim) , v(KING) – v(MAN) + v(WOMAN) = v(QUEEN) ? 63 / 69
  • 64. 4. Sentiment classification with doc2vec (feat. Gensim) ! (3/3) pprint(doc_vectorizer.most_similar(positive=[' /Noun', ' /Noun'], negative=[' /Noun'])) # => [(' /Noun', 0.32974398136138916), # (' /Noun', 0.305545836687088), # (' /Noun', 0.2899821400642395), # (' /Noun', 0.2856029272079468), # (' /Noun', 0.2840743064880371), # (' /Noun', 0.28247544169425964), # (' /Noun', 0.2795347571372986), # (' /Noun', 0.2794691324234009), # (' /Noun', 0.27567577362060547), # (' /Noun', 0.2734225392341614)] ...? ? 64 / 69
  • 65. 4. Sentiment classification with doc2vec (feat. Gensim) , ;; , . ? * text.concordance(' /Noun', lines=10) # => Displaying 10 of 145 matches: # Josa /Noun /Josa ,,/Punctuation /Noun /Noun ...../Punctuation /Noun # /Noun /Noun ../Punctuation /Noun /Noun /Noun /Noun /Noun /Josa /Nou # nction /Noun /Josa /Adjective /Noun /Verb /Verb /Noun /Josa # /Noun /Noun /Noun ?/Punctuation /Noun /Noun ./Punctuation /Noun /No # b /Noun /Noun /KoreanParticle /Noun /Noun /Adjective ./Punctuation # osa /Noun /Josa /Noun /Josa /Noun /Josa /Noun /Noun /Josa /Nou # /Noun /Josa /Noun ./Punctuation /Noun ,/Punctuation /Noun /Noun /Suf # Josa /Noun /Noun /Noun /Noun /Noun /Josa /Noun /Suffix /Josa / # /Verb ./Punctuation /Adjective /Noun /Noun .../Punctuation /Noun # tive /Noun /Noun .../Punctuation /Noun /Noun ../Punctuation /Noun /J * Huang, Socher, Improving Word Representations via Global Context and Multiple Word Prototypes, ACL, 2012. 65 / 69
  • 66. 4. Sentiment classification with doc2vec (feat. Gensim) . . train_x = [doc_vectorizer.infer_vector(doc.words) for doc in tagged_train_docs] train_y = [doc.tags[0] for doc in tagged_train_docs] len(train_x) # term existance # => 150000 len(train_x[0]) # => 300 test_x = [doc_vectorizer.infer_vector(doc.words) for doc in tagged_test_docs] test_y = [doc.tags[0] for doc in tagged_test_docs] len(test_x) # => 50000 len(test_x[0]) # => 300 66 / 69
  • 67. 4. Sentiment classification with doc2vec (feat. Gensim) scikit-learn LogisticRegression() . from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state=1234) classifier.fit(train_x, train_y) classifier.score(test_x, test_y) # => 0.78246000000000004 ! Accuracy 0.78 . Term existance accuracy 2% , . , term existance , doc2vec ! 67 / 69
  • 68. . KoNLPy , NLTK , Gensim . Term existance document vector . task apply ! / * / ! * , , , : , SNUDM Technical Reports, Apr 14, 2015. 68 / 69