SlideShare a Scribd company logo
1 of 32
Building a modern recommender system
Alex Konduforov
Data Science Competence Leader
AltexSoft
Intro to RecSys
RecSys are everywhere
Evolution
Tapestry (Xerox Lab) - emails
1992
GroupLens project (UoM) - UseNet,
MovieLens
1994
Amazon - item-based collaborative
filtering
1998
Netflix - Cinematch, Netflix Prize
2006
Spotify - uses CNNs for audio analysis
2013
Youtube
2010 - naïve recommender
2016 - Deep Neural Nets by DeepMind
2016
Types of recommendations
Product recommendations Content recommendations
• Choice overload – infinite "shelves"
• Surprising suggestions
• Higher conversion, more purchases
• Preserving customer attention
• Competitive advantage across industry
Why do we need them?
Main approaches
Recommender systems
Content-based filtering Collaborative filtering Hybrid systems
Memory-based
(neighborhood-based)
Model-based
(mix of content and collaborative
methods)
Content-based methods
Uses similarity between items to recommend items similar to what the user likes.
2 approaches:
1) Build vector for item
2) Find similar item vectors
(cosine, dot product, Euclidian, etc.)
1) Build vectors for user items
2) Derive a user vector from them
3) Find similar item vectors
Content-based filtering
Image source
User-centered modeling
Item-centered modeling
Content-based modeling
Image source
Collaborative-based methods
Uses interactions between users and items simultaneously to provide
recommendations.
Collaborative filtering
Image source
User-user CF
Neighborhood-based CF
Image source
Item-item CF
Neighborhood-based CF
Image source
User-user:
• Users have not many interactions
• KNN is sensitive to single interactions (high
variance)
• More personalized results (low bias)
Neighborhood-based CF
Item-item:
• Items have many users interacted with them
• KNN is less sensitive to single interactions (lower
variance)
• Less personalized results (higher bias)
• Works better for new users (not enough history)
• More likely to converge
General issues:
• KNN is time consuming, doesn't scale well
• Higher effect of "rich-get-richer" for popular items
Also referred as Latent factor methods
Approaches:
1. SVD
2. Matrix factorization
3. Neural Networks
Model-based CF
Model-based CF: Matrix Factorization
Image source
Matrix Factorization
Training:
• Initialize P and Q matrices with small random numbers
• Teach P and Q
• Alternating Least Squares
• Stochastic Gradient Descent
Predictions:
MF algorithm
MF example
Latent features are calculated via MF:
User-item score is the dot product:
Item-item similarity is the cosine similarity:
• MF with Biases: handling bias of some users giving higher ratings than others
• MF with Side Features: adding data to handle the cold start problem (i.e. user occupation)
• MF with Temporal Features: handling temporal changes of the data (i.e. occupation change)
• Factorization Machine: extra item features + higher order interactions
• MF with Fixture of tastes: give users several tastes
• Variational MF
MF improvements
Source article
Why?
• Collaborative filtering uses robust approach based on similarities between customer tastes
and can make cross-genre(category) recommendations
• Pure CF lacks information about items and suffer from sparsity in data
• Content-based filtering may find deep similarities between items and suggest novel and
surprising new items
• Only CBF can bring value from images, sounds, texts
• All modern implementations are hybrid
Hybrid
More info: https://www.researchgate.net/publication/263377228_Hybrid_Recommender_Systems_Survey_and_Experiments
Deep Learning for RecSys
Deep Learning revolution
• Modeling the non-linear interactions in the data
• Feature extraction directly from the content:
• Image, audio, text
• Ability to use heterogeneous data (interactions, content) in the same model
• Powerful for sequential modeling tasks (next item prediction, session-based recommendations)
• Better representation learning of users and items for CF
Deep Learning for RecSys
Bringing NNs to CF
Neural Collaborative Filtering Deep Factorization Machine
Several more NN-based improvements can be found here: https://towardsdatascience.com/recsys-series-part-5-neural-
matrix-factorization-for-collaborative-filtering-a0aebfe15883
• Prior to Deep Learning approach used Matrix Factorization
• 2 Neural Networks:
• Candidates generation: broad personalization via CF
(retrieves only couple of hundreds of videos)
• Ranking: assigns a score to each video using a rich
set of features from item and user
• Uses implicit signals (full watching is positive), not explicit
(thumbs up/down)
• Use video "age" as a feature to recommend more new
content
• Rely mostly on A/B testing results
https://research.google/pubs/pub45530/
Youtube recommendations
• Uses implicit customer feedback
• Back in 2014 used Weighted MF
• Used MFCC and CNNs to extract features from music –
helps with cold start and finding unpopular tracks
• Used NLP to extract features from song texts and other
textual information
• Basically uses a hybrid recommender system
https://benanne.github.io/2014/08/05/spotify-cnns.html
https://www.oreilly.com/radar/personalization-of-spotify-home-
and-tensorflow/
Spotify recommendations
• Autoencoder-based recommendations:
• to learn the lower-dimensional feature representations at the bottleneck layer
• to fill in the blanks of the user-item interaction matrix directly in the reconstruction layer
• CNN-based recommendations:
• to extract features from images
• to extract features from audio and video
• to extract features from texts
• RNN-based recommendations
• to extract sequential patterns in session-based tasks
• and many others: https://towardsdatascience.com/recommendation-system-series-part-2-the-10-
categories-of-deep-recommendation-systems-that-189d60287b58
Other DL approaches
Metrics:
• When predicting rating: MSE, RMSE, etc.
• When predicting binary output: Accuracy, Precision, Recall, F1
• When predicting top N: MAP@N, MAR@N
• Coverage: % of items which are recommended (average CF predicts ~8-10%)
Real-world testing:
• CTR or CR (product, ads, etc.)
• Avg Time spent or Customer retention (content)
• A/B testing
• Serendipity: pleasant surprise, unintended discovery
Evaluation
• Novelty
• Diversity
• Serendipity
• Interpretability
• Adaptation
Qualities of a good recommender
• https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
• https://towardsdatascience.com/recommendation-system-series-part-1-an-executive-guide-to-
building-recommendation-system-608f83e2630a
• https://medium.com/libreai/a-glimpse-into-deep-learning-for-recommender-systems-
d66ae0681775
• ADD: https://towardsdatascience.com/modern-recommender-systems-a0c727609aa8
Materials
Alex Konduforov
alexander.konduforov@gmail.com
@alex_konduforov
Thank you!

More Related Content

More from Lviv Startup Club

More from Lviv Startup Club (20)

Petro Nikolaiev & Dmytro Kisov: ТОП-5 методів дослідження клієнтів для успіху...
Petro Nikolaiev & Dmytro Kisov: ТОП-5 методів дослідження клієнтів для успіху...Petro Nikolaiev & Dmytro Kisov: ТОП-5 методів дослідження клієнтів для успіху...
Petro Nikolaiev & Dmytro Kisov: ТОП-5 методів дослідження клієнтів для успіху...
 
Maksym Stelmakh : Державні електронні послуги та сервіси: чому бізнесу варто ...
Maksym Stelmakh : Державні електронні послуги та сервіси: чому бізнесу варто ...Maksym Stelmakh : Державні електронні послуги та сервіси: чому бізнесу варто ...
Maksym Stelmakh : Державні електронні послуги та сервіси: чому бізнесу варто ...
 
Alexander Marchenko: Проблеми росту продуктової екосистеми (UA)
Alexander Marchenko: Проблеми росту продуктової екосистеми (UA)Alexander Marchenko: Проблеми росту продуктової екосистеми (UA)
Alexander Marchenko: Проблеми росту продуктової екосистеми (UA)
 
Oleksandr Grytsenko: Save your Job або прокачай скіли до Engineering Manageme...
Oleksandr Grytsenko: Save your Job або прокачай скіли до Engineering Manageme...Oleksandr Grytsenko: Save your Job або прокачай скіли до Engineering Manageme...
Oleksandr Grytsenko: Save your Job або прокачай скіли до Engineering Manageme...
 
Yuliia Pieskova: Фідбек: не лише "як", але й "коли" і "навіщо" (UA)
Yuliia Pieskova: Фідбек: не лише "як", але й "коли" і "навіщо" (UA)Yuliia Pieskova: Фідбек: не лише "як", але й "коли" і "навіщо" (UA)
Yuliia Pieskova: Фідбек: не лише "як", але й "коли" і "навіщо" (UA)
 
Nataliya Kryvonis: Essential soft skills to lead your team (UA)
Nataliya Kryvonis: Essential soft skills to lead your team (UA)Nataliya Kryvonis: Essential soft skills to lead your team (UA)
Nataliya Kryvonis: Essential soft skills to lead your team (UA)
 
Volodymyr Salyha: Stakeholder Alchemy: Transforming Analysis into Meaningful ...
Volodymyr Salyha: Stakeholder Alchemy: Transforming Analysis into Meaningful ...Volodymyr Salyha: Stakeholder Alchemy: Transforming Analysis into Meaningful ...
Volodymyr Salyha: Stakeholder Alchemy: Transforming Analysis into Meaningful ...
 
Anna Chalyuk: 7 інструментів та принципів, які допоможуть зробити вашу команд...
Anna Chalyuk: 7 інструментів та принципів, які допоможуть зробити вашу команд...Anna Chalyuk: 7 інструментів та принципів, які допоможуть зробити вашу команд...
Anna Chalyuk: 7 інструментів та принципів, які допоможуть зробити вашу команд...
 
Oksana Smilka: Цінності, цілі та (де) мотивація (UA)
Oksana Smilka: Цінності, цілі та (де) мотивація (UA)Oksana Smilka: Цінності, цілі та (де) мотивація (UA)
Oksana Smilka: Цінності, цілі та (де) мотивація (UA)
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
 
Andrii Skoromnyi: Чому не працює методика "5 Чому?" – і яка є альтернатива? (UA)
Andrii Skoromnyi: Чому не працює методика "5 Чому?" – і яка є альтернатива? (UA)Andrii Skoromnyi: Чому не працює методика "5 Чому?" – і яка є альтернатива? (UA)
Andrii Skoromnyi: Чому не працює методика "5 Чому?" – і яка є альтернатива? (UA)
 
Maryna Sokyrko & Oleksandr Chugui: Building Product Passion: Developing AI ch...
Maryna Sokyrko & Oleksandr Chugui: Building Product Passion: Developing AI ch...Maryna Sokyrko & Oleksandr Chugui: Building Product Passion: Developing AI ch...
Maryna Sokyrko & Oleksandr Chugui: Building Product Passion: Developing AI ch...
 
Ihor Pavlenko: PMO Resource Management (UA)
Ihor Pavlenko: PMO Resource Management (UA)Ihor Pavlenko: PMO Resource Management (UA)
Ihor Pavlenko: PMO Resource Management (UA)
 
Anastasiia Khait: Building Product Passion: Empowering Development Teams thro...
Anastasiia Khait: Building Product Passion: Empowering Development Teams thro...Anastasiia Khait: Building Product Passion: Empowering Development Teams thro...
Anastasiia Khait: Building Product Passion: Empowering Development Teams thro...
 
Oksana Krykun: Перші 90 днів в роботі над новим продуктом (UA)
Oksana Krykun: Перші 90 днів в роботі над новим продуктом (UA)Oksana Krykun: Перші 90 днів в роботі над новим продуктом (UA)
Oksana Krykun: Перші 90 днів в роботі над новим продуктом (UA)
 
Nikita Zahurdaiev: PMO Tools and Technologies (UA)
Nikita Zahurdaiev: PMO Tools and Technologies (UA)Nikita Zahurdaiev: PMO Tools and Technologies (UA)
Nikita Zahurdaiev: PMO Tools and Technologies (UA)
 
Nikita Zahurdaiev: Developing PMO Services and Functions (UA)
Nikita Zahurdaiev: Developing PMO Services and Functions (UA)Nikita Zahurdaiev: Developing PMO Services and Functions (UA)
Nikita Zahurdaiev: Developing PMO Services and Functions (UA)
 
Oleksandr Krakovetskyi: What's wrong with Generative AI? (UA)
Oleksandr Krakovetskyi: What's wrong with Generative AI? (UA)Oleksandr Krakovetskyi: What's wrong with Generative AI? (UA)
Oleksandr Krakovetskyi: What's wrong with Generative AI? (UA)
 
Oleksandr Krakovetskyi: What's wrong with Generative AI? (UA)
Oleksandr Krakovetskyi: What's wrong with Generative AI? (UA)Oleksandr Krakovetskyi: What's wrong with Generative AI? (UA)
Oleksandr Krakovetskyi: What's wrong with Generative AI? (UA)
 
Stanislav Podyachev: AI Agents as Role-Playing Business Modeling Tools (UA)
Stanislav Podyachev: AI Agents as Role-Playing Business Modeling Tools (UA)Stanislav Podyachev: AI Agents as Role-Playing Business Modeling Tools (UA)
Stanislav Podyachev: AI Agents as Role-Playing Business Modeling Tools (UA)
 

Recently uploaded

Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Sheetaleventcompany
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
amitlee9823
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
daisycvs
 
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Anamikakaur10
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
amitlee9823
 
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai KuwaitThe Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
daisycvs
 
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
dlhescort
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
dlhescort
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
dollysharma2066
 

Recently uploaded (20)

Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
Chandigarh Escorts Service 📞8868886958📞 Just📲 Call Nihal Chandigarh Call Girl...
 
Call Girls Zirakpur👧 Book Now📱7837612180 📞👉Call Girl Service In Zirakpur No A...
Call Girls Zirakpur👧 Book Now📱7837612180 📞👉Call Girl Service In Zirakpur No A...Call Girls Zirakpur👧 Book Now📱7837612180 📞👉Call Girl Service In Zirakpur No A...
Call Girls Zirakpur👧 Book Now📱7837612180 📞👉Call Girl Service In Zirakpur No A...
 
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
(Anamika) VIP Call Girls Napur Call Now 8617697112 Napur Escorts 24x7
 
Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1Katrina Personal Brand Project and portfolio 1
Katrina Personal Brand Project and portfolio 1
 
Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024Marel Q1 2024 Investor Presentation from May 8, 2024
Marel Q1 2024 Investor Presentation from May 8, 2024
 
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
Call Girls Jp Nagar Just Call 👗 7737669865 👗 Top Class Call Girl Service Bang...
 
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
Quick Doctor In Kuwait +2773`7758`557 Kuwait Doha Qatar Dubai Abu Dhabi Sharj...
 
Falcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business GrowthFalcon Invoice Discounting: Empowering Your Business Growth
Falcon Invoice Discounting: Empowering Your Business Growth
 
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
Call Now ☎️🔝 9332606886🔝 Call Girls ❤ Service In Bhilwara Female Escorts Serv...
 
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort ServiceMalegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
Malegaon Call Girls Service ☎ ️82500–77686 ☎️ Enjoy 24/7 Escort Service
 
Organizational Transformation Lead with Culture
Organizational Transformation Lead with CultureOrganizational Transformation Lead with Culture
Organizational Transformation Lead with Culture
 
RSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors DataRSA Conference Exhibitor List 2024 - Exhibitors Data
RSA Conference Exhibitor List 2024 - Exhibitors Data
 
PHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation FinalPHX May 2024 Corporate Presentation Final
PHX May 2024 Corporate Presentation Final
 
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service BangaloreCall Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
Call Girls Hebbal Just Call 👗 7737669865 👗 Top Class Call Girl Service Bangalore
 
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai KuwaitThe Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
The Abortion pills for sale in Qatar@Doha [+27737758557] []Deira Dubai Kuwait
 
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
Call Girls In Majnu Ka Tilla 959961~3876 Shot 2000 Night 8000
 
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
Call Girls in Delhi, Escort Service Available 24x7 in Delhi 959961-/-3876
 
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Majnu Ka Tilla, Delhi Contact Us 8377877756
 
Cracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptxCracking the Cultural Competence Code.pptx
Cracking the Cultural Competence Code.pptx
 
Phases of Negotiation .pptx
 Phases of Negotiation .pptx Phases of Negotiation .pptx
Phases of Negotiation .pptx
 

Alexander Konduforov: Building modern recommender systems

  • 1. Building a modern recommender system Alex Konduforov Data Science Competence Leader AltexSoft
  • 4. Evolution Tapestry (Xerox Lab) - emails 1992 GroupLens project (UoM) - UseNet, MovieLens 1994 Amazon - item-based collaborative filtering 1998 Netflix - Cinematch, Netflix Prize 2006 Spotify - uses CNNs for audio analysis 2013 Youtube 2010 - naïve recommender 2016 - Deep Neural Nets by DeepMind 2016
  • 5. Types of recommendations Product recommendations Content recommendations
  • 6. • Choice overload – infinite "shelves" • Surprising suggestions • Higher conversion, more purchases • Preserving customer attention • Competitive advantage across industry Why do we need them?
  • 7. Main approaches Recommender systems Content-based filtering Collaborative filtering Hybrid systems Memory-based (neighborhood-based) Model-based (mix of content and collaborative methods)
  • 9. Uses similarity between items to recommend items similar to what the user likes. 2 approaches: 1) Build vector for item 2) Find similar item vectors (cosine, dot product, Euclidian, etc.) 1) Build vectors for user items 2) Derive a user vector from them 3) Find similar item vectors Content-based filtering Image source
  • 12. Uses interactions between users and items simultaneously to provide recommendations. Collaborative filtering Image source
  • 15. User-user: • Users have not many interactions • KNN is sensitive to single interactions (high variance) • More personalized results (low bias) Neighborhood-based CF Item-item: • Items have many users interacted with them • KNN is less sensitive to single interactions (lower variance) • Less personalized results (higher bias) • Works better for new users (not enough history) • More likely to converge General issues: • KNN is time consuming, doesn't scale well • Higher effect of "rich-get-richer" for popular items
  • 16. Also referred as Latent factor methods Approaches: 1. SVD 2. Matrix factorization 3. Neural Networks Model-based CF
  • 17. Model-based CF: Matrix Factorization Image source Matrix Factorization
  • 18. Training: • Initialize P and Q matrices with small random numbers • Teach P and Q • Alternating Least Squares • Stochastic Gradient Descent Predictions: MF algorithm
  • 19. MF example Latent features are calculated via MF: User-item score is the dot product: Item-item similarity is the cosine similarity:
  • 20. • MF with Biases: handling bias of some users giving higher ratings than others • MF with Side Features: adding data to handle the cold start problem (i.e. user occupation) • MF with Temporal Features: handling temporal changes of the data (i.e. occupation change) • Factorization Machine: extra item features + higher order interactions • MF with Fixture of tastes: give users several tastes • Variational MF MF improvements Source article
  • 21. Why? • Collaborative filtering uses robust approach based on similarities between customer tastes and can make cross-genre(category) recommendations • Pure CF lacks information about items and suffer from sparsity in data • Content-based filtering may find deep similarities between items and suggest novel and surprising new items • Only CBF can bring value from images, sounds, texts • All modern implementations are hybrid Hybrid More info: https://www.researchgate.net/publication/263377228_Hybrid_Recommender_Systems_Survey_and_Experiments
  • 24. • Modeling the non-linear interactions in the data • Feature extraction directly from the content: • Image, audio, text • Ability to use heterogeneous data (interactions, content) in the same model • Powerful for sequential modeling tasks (next item prediction, session-based recommendations) • Better representation learning of users and items for CF Deep Learning for RecSys
  • 25. Bringing NNs to CF Neural Collaborative Filtering Deep Factorization Machine Several more NN-based improvements can be found here: https://towardsdatascience.com/recsys-series-part-5-neural- matrix-factorization-for-collaborative-filtering-a0aebfe15883
  • 26. • Prior to Deep Learning approach used Matrix Factorization • 2 Neural Networks: • Candidates generation: broad personalization via CF (retrieves only couple of hundreds of videos) • Ranking: assigns a score to each video using a rich set of features from item and user • Uses implicit signals (full watching is positive), not explicit (thumbs up/down) • Use video "age" as a feature to recommend more new content • Rely mostly on A/B testing results https://research.google/pubs/pub45530/ Youtube recommendations
  • 27. • Uses implicit customer feedback • Back in 2014 used Weighted MF • Used MFCC and CNNs to extract features from music – helps with cold start and finding unpopular tracks • Used NLP to extract features from song texts and other textual information • Basically uses a hybrid recommender system https://benanne.github.io/2014/08/05/spotify-cnns.html https://www.oreilly.com/radar/personalization-of-spotify-home- and-tensorflow/ Spotify recommendations
  • 28. • Autoencoder-based recommendations: • to learn the lower-dimensional feature representations at the bottleneck layer • to fill in the blanks of the user-item interaction matrix directly in the reconstruction layer • CNN-based recommendations: • to extract features from images • to extract features from audio and video • to extract features from texts • RNN-based recommendations • to extract sequential patterns in session-based tasks • and many others: https://towardsdatascience.com/recommendation-system-series-part-2-the-10- categories-of-deep-recommendation-systems-that-189d60287b58 Other DL approaches
  • 29. Metrics: • When predicting rating: MSE, RMSE, etc. • When predicting binary output: Accuracy, Precision, Recall, F1 • When predicting top N: MAP@N, MAR@N • Coverage: % of items which are recommended (average CF predicts ~8-10%) Real-world testing: • CTR or CR (product, ads, etc.) • Avg Time spent or Customer retention (content) • A/B testing • Serendipity: pleasant surprise, unintended discovery Evaluation
  • 30. • Novelty • Diversity • Serendipity • Interpretability • Adaptation Qualities of a good recommender
  • 31. • https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada • https://towardsdatascience.com/recommendation-system-series-part-1-an-executive-guide-to- building-recommendation-system-608f83e2630a • https://medium.com/libreai/a-glimpse-into-deep-learning-for-recommender-systems- d66ae0681775 • ADD: https://towardsdatascience.com/modern-recommender-systems-a0c727609aa8 Materials