SlideShare a Scribd company logo
1 of 85
Download to read offline
DESIGNING USABLE
VR INTERFACES
Mark Billinghurst
University of Auckland
October 3rd 2018
How Can we Design Useful VR?
• Designing VR experiences that meet real needs
Interaction Design
Designing interactive products to
support people in their everyday
and working lives”
Preece, J., (2002). Interaction Design
• Interaction Design is the design of
user experience with technology
• Interaction Design involves answering three questions:
• What do you do? - How do you affect the world?
• What do you feel? – What do you sense of the world?
• What do you know? – What do you learn?
Bill Verplank
The Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
Develop alternative prototypes/concepts and compare them
And iterate, iterate, iterate....
Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
Develop alternative prototypes/concepts and compare them
And iterate, iterate, iterate....
NeedsAnalysis Goals
1. Create a deep understanding of
the user and problem space
2. Understand howVR can help
address the user needs
Methods for Identifying User Needs
Learn from
people
Learn from
analogous
settings
Learn from
Experts
Immersive
yourself in
context
Is VR the Best Solution?
• Not every problem can be solved by VR..
• Problems Ideal for Virtual Reality, have:
• visual elements
• 3D spatial interaction
• physical manipulation
• procedural learning
• Problems Not ideal for VR, have:
• heavy reading, text editing
• many non visual elements
• need for connection with real world
• need for tactile, haptic, olfaction feedback
Suitable for VR or not?
The Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
Idea Generation
• Once user need is found, solutions can be proposed
• Idea generation through:
• Brainstorming
• Lateral thinking
• Ideal storming
• Formal problem solving
• Etc..
VR Interface Design Sketches
• Sketch out Design concept(s)
Why is Sketching Useful?
• Early ideation
• Think through ideas
• Force you to visualize how things come together
• Communicate ideas to inspire new designs
• Ideal for active brainstorming
• Beginning of prototyping process
VR Design Considerations
• Use UI Best Practices
• Adapt know UI guidelines to VR
• Use of Interface Metaphors/Affordances
• Decide best metaphor for VR applications
• Design for Humans
• Use Human Information Processing model
• Design for Different User Groups
• Different users may have unique needs
• Design for the Whole User
• Social, cultural, emotional, physical cognitive
VR Human Interface Guidelines
• Interface design website - http://vrhig.com/
• Set of VR interface design best practices
More VR Design Guidelines
• Use real-world cues when appropriate.
• If there is a horizon line, keep it steady
• Be careful about mixing 2D GUI and 3D
• Avoid rapid movement, it makes people sick
• Avoid rapid or abrupt transitions to the world space
• Keep the density of information and objects on screen low
• Do not require the user to move their head or body too much
From https://www.wired.com/2015/04/how-to-design-for-virtual-reality/
Cardboard Design Lab
• Mobile VR App providing examples of best practice VR
designs and user interaction (iOS, Play app stores)
Demo: Cardboard Design Lab
• https://www.youtube.com/watch?v=2Uf-ru2Ndvc
Use Interface Metaphors
• Design interface object to be similar to familiar
physical object that the user knows how to use
• E.g. Desktop metaphor, spreadsheet, calculator
• Benefits
• Makes learning interface easier and more accessible
• Users understand underlying conceptual model
Typical VR Interface Metaphors
• Direct Manipulation
• Reach out and directly grab objects
• Ray Casting
• Select objects through ray from head/hand
• Vehicle Movement
• Move through VR environment through vehicle movement
Simple Virtual Hand Manipulation
https://www.youtube.com/watch?v=_OgfREa4ggw
How are These Used?
Affordances
”… the perceived and actual properties of
the thing, primarily those fundamental
properties that determine just how the thing
could possibly be used. [...]
Affordances provide strong clues to the
operations of things.”
(Norman, The Psychology of Everyday Things 1988, p.9)
Affordances in VR
• Design interface objects to show how they are used
• Use visual cues to show possible affordances
• Perceived affordances should match actual affordances
• Good cognitive model - map object behavior to expected
Familiar objects in Job Simulator Object shape shows how to pick up
Examples of Affordances in VR
Virtual buttons can be pushed Virtual doors can be walked through
Virtual objects can be picked upFlying like a bird in Birdly
Human Information Processing
• High level staged model from Wickens and Carswell (1997)
• Relates perception, cognition, and physical ergonomics
Perception Cognition Ergonomics
Design for Physical Ergonomics
• Design for the human motion range
• Consider human comfort and natural posture
• Design for hand input
• Coarse and fine scale motions, gripping and grasping
• Avoid “Gorilla arm syndrome” from holding arm pose
Consider the Whole User Needs
Would you wear this HMD?
Whole User Needs
• Social
• Don’t make your user look stupid
• Cultural
• Follow local cultural norms
• Physical
• Can the user physically use the interface?
• Cognitive
• Can the user understand how the interface works?
• Emotional
• Make the user feel good and in control
How can we Interact in VR?
• How can VR devices create a natural user experience?
Universal 3D Interaction Tasks in VR
• Object Interaction
• Selection: Picking object(s) from a set
• Manipulation: Modifying object properties
• Navigation
• Travel: motor component of viewpoint motion
• Wayfinding: cognitive component; decision-making
• System control
• Issuing a command to change system state or mode
Interaction: Selection and Manipulation
• Selection:
• specifying one or more objects from a set
• Manipulation:
• modifying object properties
• position, orientation, scale, shape, color, texture, behavior..
Classification of Selection Techniques
• asdf
Simple virtual hand technique
• Process
• One-to-one mapping between physical and virtual hands
• Object can be selected by “touching” with virtual hand
• “Natural” mapping
• Limitation:
• Only select objects in hand reach
Ray-casting technique
• “Laser pointer” attached
to virtual hand
• First object intersected by
ray may be selected
• User only needs to control
2 DOFs
• Proven to perform well
for remote selection
• Variants:
• Cone casting
• Snap-to-object rays
Example Ray Casting
• https://www.youtube.com/watch?v=W1ZUBTPCL3E
Classification of Manipulation Techniques
• asdfa
World-in-miniature (WIM) technique
• “Dollhouse” world held in
user’s hand
• Miniature objects can be
manipulated directly
• Moving miniature objects
affects full-scale objects
• Can also be used for
navigation
Stoakley, R., Conway, M., & Pausch, R. (1995). Virtual Reality on a WIM: Interactive Worlds in
Miniature. Proceedings of CHI: Human Factors in Computing Systems, 265-272, and
Pausch, R., Burnette, T., Brockway, D., & Weiblen, M. (1995). Navigation and Locomotion in
Virtual Worlds via Flight into Hand-Held Miniatures. Proceedings of ACM SIGGRAPH, 399-400.
https://www.youtube.com/watch?v=Ytc3ix-He4E
Navigation
• How we move from place to place within an environment
• The combination of travel with wayfinding
• Wayfinding: cognitive component of navigation
• Travel: motor component of navigation
• Travel without wayfinding: "exploring", "wandering”
Movement Process
• Focusing on user control
Taxonomy of Travel Techniques
• Focusing on
sub-task of
travel
Bowman, D. A., Koller, D., &
Hodges, L. F. (1997, March).
Travel in immersive virtual
environments: An evaluation
of viewpoint motion control
techniques. In Virtual Reality
Annual International
Symposium, 1997., IEEE
1997 (pp. 45-52). IEEE.
TelePortation
• Use controller to select end point
• Usable with 3DOF contoller
• Jump to a fixed point in VR
• Discrete motion can be confusing/cause sickness
https://www.youtube.com/watch?v=SbxgNnOeyF8
Redirected Walking
• Address problem of limited
walking space
• Warp VR graphics view of
space
• Create illusion of walking
straight, while walking in circles
Razzaque, S., Kohn, Z., & Whitton, M. C. (2001, September). Redirected walking.
In Proceedings of EUROGRAPHICS (Vol. 9, pp. 105-106).
Redirected Walking
• https://www.youtube.com/watch?v=KVQBRkAq6OY
System Control
• Issuing a command to change system state or mode
• Examples
• Launching application
• Changing system settings
• Opening a file
• Etc.
• Key points
• Make commands visible to user
• Support easy selection
System Control Options
Example: GearVR Interface
• 2D Interface in 3D Environment
• Head pointing and click to select
https://www.youtube.com/watch?v=qMadjF1B3rI
Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
How can we quickly
prototype Virtual Reality
experiences with little or
no coding?
Why Prototype?
▪ Quick visual design
▪ Capture key interactions
▪ Focus on user experience
▪ Communicate design ideas
▪ “Learn by doing/experiencing”
VR Prototyping Tools
• Low Fidelity
• Sketched Paper Interfaces – pen/paper, non-interactive
• Onride Photoshop tool – digital, non-interactive
• InstaVR - 360 web based tool, simple interactivity
• SketchBox – create VR interface inside VR
• High Fidelity
• Entiti – template based VR with visual programming
• A-Frame – web based VR tool using HTML
• EditorVR – Unity wrapper inside VR
• Unity/Unreal Game Engine – programming needed
Sketching VR Interfaces
• Download 360 panorama template grid
• Draw interface ideas into grid
• Scan into 360 photo viewer for VR HMD
See https://virtualrealitypop.com/vr-sketches-56599f99b357
Example Sketched VR Interface
• https://www.youtube.com/watch?v=BmMh6-jPWOc
ONIRIDE - 360° Art Plugin for Photoshop
• Draw 360 panorama’s directly in Photoshop
• Preview in Photoshop, export to VR
• See http://www.oniride.com/360art
OnRide Demo
• https://www.youtube.com/watch?v=1P1EfGizal0
InstaVR
•http://www.instavr.co/
•Free, fast panorama VR, deploy to multi platforms
Demo - Using InstaVR
• https://www.youtube.com/watch?v=M2C8vDL0YeA
Sketchbox
• VR design tool - create VR interface inside VR
• Support for HTC Vive, Oculus Rift
• Easy to use VR sketching tool
• Available from SteamVR
• See https://www.sketchboxvr.com/
Sketchbox Demo
• https://www.youtube.com/watch?v=gWfgewGzaEI
A-Frame
• See https://aframe.io/
• Web based VR framework
• Make WebVR with HTML and Entity-Component
• Works on Vive, Rift, Daydream, GearVR, desktop
A-Frame Demo
• https://www.youtube.com/watch?v=1MskH9uqOyQ
Unity EditorVR
• Edit Unity VR scenes inside VR
• 3D user interface on top of Unity
• 2 handed interface using HTC Vive
• Support for multi-user input
• Available from https://github.com/Unity-Technologies/EditorVR
Demo: Unity EditorVR
• https://www.youtube.com/watch?v=ILe2atyofqM
More Prototyping Tools
• List of 24 prototyping tools
• Tools for prototyping 3D VR experiences
• Tools for prototyping 360 degree experiences
• Web based Tools for 3D prototyping
• 3D modeling tools in VR
See http://bit.ly/2wx3i6H
Interaction Design Process
Evaluate
(Re)Design
Identify needs/
establish
requirements
Build an
interactive
version
Final Product
What is Evaluation?
•Evaluation is concerned with
gathering data about the usability
of a design or product by a
specified group of users for a
particular activity within a specified
environment or work context
When to evaluate?
• Once the product has been developed
• pros : rapid development, small evaluation cost
• cons : rectifying problems
• During design and development
• pros : find and rectify problems early
• cons : higher evaluation cost, longer development
design implementation evaluation
redesign &
reimplementation
design implementation
Four Evaluation Paradigms
•‘quick and dirty’
•usability testing (lab studies)
•field studies
•predictive evaluation
EXAMPLE:
CONCEPT TO DEMO
NASA Hololens AR/VR Concept Demo
• Vision: Work on Mars from your office
• Story and sketches based on vision
• Led to working Demo
Chesley Bonestell (1940s)
Hololens Story
HoloLens Concept Sketches
Final NASA HoloLens OnSight Demo
https://www.youtube.com/watch?v=o-GP3Kx6-CE
CONCLUSION
Conclusion
• Interaction Design methods can be used to develop
effective Virtual Realty interfaces
• Needs Analysis
• Several methods available for determining user needs
• Design
• Use metaphors and affordances, good UI guidelines
• Prototyping
• Many rapid prototyping tools available
• Evaluation
• Use multiple methods for best evaluation
Resources
• Excellent book
• 3D User Interfaces: Theory and Practice
• Doug Bowman, Ernst Kruijff, Joseph, LaViola, Ivan Poupyrev
• Great Website
• http://www.uxofvr.com/
• 3D UI research at Virginia Tech.
• research.cs.vt.edu/3di/
UX of VR Website - www.uxofvr.com
• Many examples of great interaction techniques
• Videos, books, articles, slides, code, etc..
www.empathiccomputing.org
@marknb00
mark.billinghurst@auckland.ac.nz

More Related Content

What's hot

Comp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionComp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionMark Billinghurst
 
Comp4010 lecture6 Prototyping
Comp4010 lecture6 PrototypingComp4010 lecture6 Prototyping
Comp4010 lecture6 PrototypingMark Billinghurst
 
2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR SystemsMark Billinghurst
 
2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VRMark Billinghurst
 
Lecture 2 Presence and Perception
Lecture 2 Presence and PerceptionLecture 2 Presence and Perception
Lecture 2 Presence and PerceptionMark Billinghurst
 
Comp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XRComp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XRMark Billinghurst
 
Building VR Applications For Google Cardboard
Building VR Applications For Google CardboardBuilding VR Applications For Google Cardboard
Building VR Applications For Google CardboardMark Billinghurst
 
Comp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRComp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRMark Billinghurst
 
COMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsCOMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsMark Billinghurst
 
2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR TechnologyMark Billinghurst
 
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityCOMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityMark Billinghurst
 
COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityCOMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityMark Billinghurst
 
Lecture7 Example VR Applications
Lecture7 Example VR ApplicationsLecture7 Example VR Applications
Lecture7 Example VR ApplicationsMark Billinghurst
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsMark Billinghurst
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR InteractionMark Billinghurst
 
2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR PrototypingMark Billinghurst
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsMark Billinghurst
 
Comp 4010 2021 - Snap Tutorial-1
Comp 4010 2021 - Snap Tutorial-1Comp 4010 2021 - Snap Tutorial-1
Comp 4010 2021 - Snap Tutorial-1Mark Billinghurst
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsMark Billinghurst
 

What's hot (20)

Comp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionComp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-Perception
 
Comp4010 lecture6 Prototyping
Comp4010 lecture6 PrototypingComp4010 lecture6 Prototyping
Comp4010 lecture6 Prototyping
 
2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems
 
2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR
 
Lecture 2 Presence and Perception
Lecture 2 Presence and PerceptionLecture 2 Presence and Perception
Lecture 2 Presence and Perception
 
Comp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XRComp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XR
 
Building VR Applications For Google Cardboard
Building VR Applications For Google CardboardBuilding VR Applications For Google Cardboard
Building VR Applications For Google Cardboard
 
Comp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRComp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VR
 
COMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and SystemsCOMP 4010 Lecture 3 VR Input and Systems
COMP 4010 Lecture 3 VR Input and Systems
 
2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR Technology
 
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual RealityCOMP 4010 Lecture7 3D User Interfaces for Virtual Reality
COMP 4010 Lecture7 3D User Interfaces for Virtual Reality
 
COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual RealityCOMP 4010: Lecture 5 - Interaction Design for Virtual Reality
COMP 4010: Lecture 5 - Interaction Design for Virtual Reality
 
Lecture7 Example VR Applications
Lecture7 Example VR ApplicationsLecture7 Example VR Applications
Lecture7 Example VR Applications
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive Analytics
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
 
2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research Directions
 
Comp 4010 2021 - Snap Tutorial-1
Comp 4010 2021 - Snap Tutorial-1Comp 4010 2021 - Snap Tutorial-1
Comp 4010 2021 - Snap Tutorial-1
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR Applications
 
Lecture 9 AR Technology
Lecture 9 AR TechnologyLecture 9 AR Technology
Lecture 9 AR Technology
 

Similar to Designing Usable Interface

Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsMark Billinghurst
 
Lecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRLecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRMark Billinghurst
 
Mobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMark Billinghurst
 
Lecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual RealityLecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual RealityMark Billinghurst
 
COMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRCOMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRMark Billinghurst
 
COMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityCOMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityMark Billinghurst
 
virtual reality Information-160422181930.pdf
virtual reality Information-160422181930.pdfvirtual reality Information-160422181930.pdf
virtual reality Information-160422181930.pdf21107117
 
COMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesCOMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesMark Billinghurst
 
CIS375 Interaction Designs Chapter2
CIS375 Interaction Designs Chapter2CIS375 Interaction Designs Chapter2
CIS375 Interaction Designs Chapter2Dr. Ahmed Al Zaidy
 
Mobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMark Billinghurst
 
COMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsCOMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsMark Billinghurst
 
COMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionCOMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionMark Billinghurst
 
From Context-awareness to Human Behavior Patterns
From Context-awareness to Human Behavior PatternsFrom Context-awareness to Human Behavior Patterns
From Context-awareness to Human Behavior PatternsVille Antila
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented RealityAnkit Raj
 
Augmented Reality in Multi-Dimensionality: Design for Space, Motion, Multiple...
Augmented Reality in Multi-Dimensionality: Design for Space, Motion, Multiple...Augmented Reality in Multi-Dimensionality: Design for Space, Motion, Multiple...
Augmented Reality in Multi-Dimensionality: Design for Space, Motion, Multiple...Shalin Hai-Jew
 

Similar to Designing Usable Interface (20)

Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR Applications
 
Lecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VRLecture 6 Interaction Design for VR
Lecture 6 Interaction Design for VR
 
ICS2208 lecture7
ICS2208 lecture7ICS2208 lecture7
ICS2208 lecture7
 
ARI2132 lecture 8
ARI2132 lecture 8ARI2132 lecture 8
ARI2132 lecture 8
 
Mobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface DesignMobile AR lecture 9 - Mobile AR Interface Design
Mobile AR lecture 9 - Mobile AR Interface Design
 
Lecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual RealityLecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual Reality
 
COMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VRCOMP 4010: Lecture 4 - 3D User Interfaces for VR
COMP 4010: Lecture 4 - 3D User Interfaces for VR
 
Virtual Reality
Virtual RealityVirtual Reality
Virtual Reality
 
COMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityCOMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual Reality
 
virtual reality Information-160422181930.pdf
virtual reality Information-160422181930.pdfvirtual reality Information-160422181930.pdf
virtual reality Information-160422181930.pdf
 
COMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User InterfacesCOMP 4010 - Lecture 4: 3D User Interfaces
COMP 4010 - Lecture 4: 3D User Interfaces
 
ICS2208 lecture6
ICS2208 lecture6ICS2208 lecture6
ICS2208 lecture6
 
Virtual reality
Virtual realityVirtual reality
Virtual reality
 
CIS375 Interaction Designs Chapter2
CIS375 Interaction Designs Chapter2CIS375 Interaction Designs Chapter2
CIS375 Interaction Designs Chapter2
 
Mobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research DirectionsMobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research Directions
 
COMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR ApplicationsCOMP 4010 - Lecture11 - AR Applications
COMP 4010 - Lecture11 - AR Applications
 
COMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR InteractionCOMP 4010 Lecture9 AR Interaction
COMP 4010 Lecture9 AR Interaction
 
From Context-awareness to Human Behavior Patterns
From Context-awareness to Human Behavior PatternsFrom Context-awareness to Human Behavior Patterns
From Context-awareness to Human Behavior Patterns
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented Reality
 
Augmented Reality in Multi-Dimensionality: Design for Space, Motion, Multiple...
Augmented Reality in Multi-Dimensionality: Design for Space, Motion, Multiple...Augmented Reality in Multi-Dimensionality: Design for Space, Motion, Multiple...
Augmented Reality in Multi-Dimensionality: Design for Space, Motion, Multiple...
 

More from Mark Billinghurst

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented RealityMark Billinghurst
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesMark Billinghurst
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the MetaverseMark Billinghurst
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseMark Billinghurst
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationMark Billinghurst
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseMark Billinghurst
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR SystemsMark Billinghurst
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseMark Billinghurst
 
Research Directions in Transitional Interfaces
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional InterfacesMark Billinghurst
 
Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Mark Billinghurst
 
Advanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARMark Billinghurst
 

More from Mark Billinghurst (15)

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented Reality
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR Experiences
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the Metaverse
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader Metaverse
 
ISS2022 Keynote
ISS2022 KeynoteISS2022 Keynote
ISS2022 Keynote
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR Systems
 
Metaverse Learning
Metaverse LearningMetaverse Learning
Metaverse Learning
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole Metaverse
 
Research Directions in Transitional Interfaces
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional Interfaces
 
Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality
 
Advanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise AR
 

Recently uploaded

Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 

Recently uploaded (20)

Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 

Designing Usable Interface

  • 1. DESIGNING USABLE VR INTERFACES Mark Billinghurst University of Auckland October 3rd 2018
  • 2. How Can we Design Useful VR? • Designing VR experiences that meet real needs
  • 3. Interaction Design Designing interactive products to support people in their everyday and working lives” Preece, J., (2002). Interaction Design • Interaction Design is the design of user experience with technology
  • 4. • Interaction Design involves answering three questions: • What do you do? - How do you affect the world? • What do you feel? – What do you sense of the world? • What do you know? – What do you learn? Bill Verplank
  • 5. The Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product Develop alternative prototypes/concepts and compare them And iterate, iterate, iterate....
  • 6. Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product Develop alternative prototypes/concepts and compare them And iterate, iterate, iterate....
  • 7. NeedsAnalysis Goals 1. Create a deep understanding of the user and problem space 2. Understand howVR can help address the user needs
  • 8. Methods for Identifying User Needs Learn from people Learn from analogous settings Learn from Experts Immersive yourself in context
  • 9. Is VR the Best Solution? • Not every problem can be solved by VR.. • Problems Ideal for Virtual Reality, have: • visual elements • 3D spatial interaction • physical manipulation • procedural learning • Problems Not ideal for VR, have: • heavy reading, text editing • many non visual elements • need for connection with real world • need for tactile, haptic, olfaction feedback
  • 10. Suitable for VR or not?
  • 11. The Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product
  • 12. Idea Generation • Once user need is found, solutions can be proposed • Idea generation through: • Brainstorming • Lateral thinking • Ideal storming • Formal problem solving • Etc..
  • 13. VR Interface Design Sketches • Sketch out Design concept(s)
  • 14. Why is Sketching Useful? • Early ideation • Think through ideas • Force you to visualize how things come together • Communicate ideas to inspire new designs • Ideal for active brainstorming • Beginning of prototyping process
  • 15. VR Design Considerations • Use UI Best Practices • Adapt know UI guidelines to VR • Use of Interface Metaphors/Affordances • Decide best metaphor for VR applications • Design for Humans • Use Human Information Processing model • Design for Different User Groups • Different users may have unique needs • Design for the Whole User • Social, cultural, emotional, physical cognitive
  • 16. VR Human Interface Guidelines • Interface design website - http://vrhig.com/ • Set of VR interface design best practices
  • 17. More VR Design Guidelines • Use real-world cues when appropriate. • If there is a horizon line, keep it steady • Be careful about mixing 2D GUI and 3D • Avoid rapid movement, it makes people sick • Avoid rapid or abrupt transitions to the world space • Keep the density of information and objects on screen low • Do not require the user to move their head or body too much From https://www.wired.com/2015/04/how-to-design-for-virtual-reality/
  • 18. Cardboard Design Lab • Mobile VR App providing examples of best practice VR designs and user interaction (iOS, Play app stores)
  • 19. Demo: Cardboard Design Lab • https://www.youtube.com/watch?v=2Uf-ru2Ndvc
  • 20. Use Interface Metaphors • Design interface object to be similar to familiar physical object that the user knows how to use • E.g. Desktop metaphor, spreadsheet, calculator • Benefits • Makes learning interface easier and more accessible • Users understand underlying conceptual model
  • 21. Typical VR Interface Metaphors • Direct Manipulation • Reach out and directly grab objects • Ray Casting • Select objects through ray from head/hand • Vehicle Movement • Move through VR environment through vehicle movement
  • 22. Simple Virtual Hand Manipulation https://www.youtube.com/watch?v=_OgfREa4ggw
  • 23. How are These Used?
  • 24. Affordances ”… the perceived and actual properties of the thing, primarily those fundamental properties that determine just how the thing could possibly be used. [...] Affordances provide strong clues to the operations of things.” (Norman, The Psychology of Everyday Things 1988, p.9)
  • 25. Affordances in VR • Design interface objects to show how they are used • Use visual cues to show possible affordances • Perceived affordances should match actual affordances • Good cognitive model - map object behavior to expected Familiar objects in Job Simulator Object shape shows how to pick up
  • 26. Examples of Affordances in VR Virtual buttons can be pushed Virtual doors can be walked through Virtual objects can be picked upFlying like a bird in Birdly
  • 27. Human Information Processing • High level staged model from Wickens and Carswell (1997) • Relates perception, cognition, and physical ergonomics Perception Cognition Ergonomics
  • 28. Design for Physical Ergonomics • Design for the human motion range • Consider human comfort and natural posture • Design for hand input • Coarse and fine scale motions, gripping and grasping • Avoid “Gorilla arm syndrome” from holding arm pose
  • 29. Consider the Whole User Needs
  • 30. Would you wear this HMD?
  • 31. Whole User Needs • Social • Don’t make your user look stupid • Cultural • Follow local cultural norms • Physical • Can the user physically use the interface? • Cognitive • Can the user understand how the interface works? • Emotional • Make the user feel good and in control
  • 32. How can we Interact in VR? • How can VR devices create a natural user experience?
  • 33.
  • 34. Universal 3D Interaction Tasks in VR • Object Interaction • Selection: Picking object(s) from a set • Manipulation: Modifying object properties • Navigation • Travel: motor component of viewpoint motion • Wayfinding: cognitive component; decision-making • System control • Issuing a command to change system state or mode
  • 35. Interaction: Selection and Manipulation • Selection: • specifying one or more objects from a set • Manipulation: • modifying object properties • position, orientation, scale, shape, color, texture, behavior..
  • 36. Classification of Selection Techniques • asdf
  • 37. Simple virtual hand technique • Process • One-to-one mapping between physical and virtual hands • Object can be selected by “touching” with virtual hand • “Natural” mapping • Limitation: • Only select objects in hand reach
  • 38. Ray-casting technique • “Laser pointer” attached to virtual hand • First object intersected by ray may be selected • User only needs to control 2 DOFs • Proven to perform well for remote selection • Variants: • Cone casting • Snap-to-object rays
  • 39. Example Ray Casting • https://www.youtube.com/watch?v=W1ZUBTPCL3E
  • 40. Classification of Manipulation Techniques • asdfa
  • 41. World-in-miniature (WIM) technique • “Dollhouse” world held in user’s hand • Miniature objects can be manipulated directly • Moving miniature objects affects full-scale objects • Can also be used for navigation Stoakley, R., Conway, M., & Pausch, R. (1995). Virtual Reality on a WIM: Interactive Worlds in Miniature. Proceedings of CHI: Human Factors in Computing Systems, 265-272, and Pausch, R., Burnette, T., Brockway, D., & Weiblen, M. (1995). Navigation and Locomotion in Virtual Worlds via Flight into Hand-Held Miniatures. Proceedings of ACM SIGGRAPH, 399-400.
  • 43. Navigation • How we move from place to place within an environment • The combination of travel with wayfinding • Wayfinding: cognitive component of navigation • Travel: motor component of navigation • Travel without wayfinding: "exploring", "wandering”
  • 44. Movement Process • Focusing on user control
  • 45. Taxonomy of Travel Techniques • Focusing on sub-task of travel Bowman, D. A., Koller, D., & Hodges, L. F. (1997, March). Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Virtual Reality Annual International Symposium, 1997., IEEE 1997 (pp. 45-52). IEEE.
  • 46. TelePortation • Use controller to select end point • Usable with 3DOF contoller • Jump to a fixed point in VR • Discrete motion can be confusing/cause sickness
  • 48. Redirected Walking • Address problem of limited walking space • Warp VR graphics view of space • Create illusion of walking straight, while walking in circles Razzaque, S., Kohn, Z., & Whitton, M. C. (2001, September). Redirected walking. In Proceedings of EUROGRAPHICS (Vol. 9, pp. 105-106).
  • 50. System Control • Issuing a command to change system state or mode • Examples • Launching application • Changing system settings • Opening a file • Etc. • Key points • Make commands visible to user • Support easy selection
  • 52. Example: GearVR Interface • 2D Interface in 3D Environment • Head pointing and click to select
  • 54. Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product
  • 55. How can we quickly prototype Virtual Reality experiences with little or no coding?
  • 56. Why Prototype? ▪ Quick visual design ▪ Capture key interactions ▪ Focus on user experience ▪ Communicate design ideas ▪ “Learn by doing/experiencing”
  • 57. VR Prototyping Tools • Low Fidelity • Sketched Paper Interfaces – pen/paper, non-interactive • Onride Photoshop tool – digital, non-interactive • InstaVR - 360 web based tool, simple interactivity • SketchBox – create VR interface inside VR • High Fidelity • Entiti – template based VR with visual programming • A-Frame – web based VR tool using HTML • EditorVR – Unity wrapper inside VR • Unity/Unreal Game Engine – programming needed
  • 58. Sketching VR Interfaces • Download 360 panorama template grid • Draw interface ideas into grid • Scan into 360 photo viewer for VR HMD See https://virtualrealitypop.com/vr-sketches-56599f99b357
  • 59. Example Sketched VR Interface • https://www.youtube.com/watch?v=BmMh6-jPWOc
  • 60. ONIRIDE - 360° Art Plugin for Photoshop • Draw 360 panorama’s directly in Photoshop • Preview in Photoshop, export to VR • See http://www.oniride.com/360art
  • 63. Demo - Using InstaVR • https://www.youtube.com/watch?v=M2C8vDL0YeA
  • 64. Sketchbox • VR design tool - create VR interface inside VR • Support for HTC Vive, Oculus Rift • Easy to use VR sketching tool • Available from SteamVR • See https://www.sketchboxvr.com/
  • 66. A-Frame • See https://aframe.io/ • Web based VR framework • Make WebVR with HTML and Entity-Component • Works on Vive, Rift, Daydream, GearVR, desktop
  • 68. Unity EditorVR • Edit Unity VR scenes inside VR • 3D user interface on top of Unity • 2 handed interface using HTC Vive • Support for multi-user input • Available from https://github.com/Unity-Technologies/EditorVR
  • 69. Demo: Unity EditorVR • https://www.youtube.com/watch?v=ILe2atyofqM
  • 70. More Prototyping Tools • List of 24 prototyping tools • Tools for prototyping 3D VR experiences • Tools for prototyping 360 degree experiences • Web based Tools for 3D prototyping • 3D modeling tools in VR See http://bit.ly/2wx3i6H
  • 71. Interaction Design Process Evaluate (Re)Design Identify needs/ establish requirements Build an interactive version Final Product
  • 72. What is Evaluation? •Evaluation is concerned with gathering data about the usability of a design or product by a specified group of users for a particular activity within a specified environment or work context
  • 73. When to evaluate? • Once the product has been developed • pros : rapid development, small evaluation cost • cons : rectifying problems • During design and development • pros : find and rectify problems early • cons : higher evaluation cost, longer development design implementation evaluation redesign & reimplementation design implementation
  • 74. Four Evaluation Paradigms •‘quick and dirty’ •usability testing (lab studies) •field studies •predictive evaluation
  • 76. NASA Hololens AR/VR Concept Demo • Vision: Work on Mars from your office • Story and sketches based on vision • Led to working Demo
  • 80. Final NASA HoloLens OnSight Demo https://www.youtube.com/watch?v=o-GP3Kx6-CE
  • 82. Conclusion • Interaction Design methods can be used to develop effective Virtual Realty interfaces • Needs Analysis • Several methods available for determining user needs • Design • Use metaphors and affordances, good UI guidelines • Prototyping • Many rapid prototyping tools available • Evaluation • Use multiple methods for best evaluation
  • 83. Resources • Excellent book • 3D User Interfaces: Theory and Practice • Doug Bowman, Ernst Kruijff, Joseph, LaViola, Ivan Poupyrev • Great Website • http://www.uxofvr.com/ • 3D UI research at Virginia Tech. • research.cs.vt.edu/3di/
  • 84. UX of VR Website - www.uxofvr.com • Many examples of great interaction techniques • Videos, books, articles, slides, code, etc..