SlideShare a Scribd company logo
1 of 86
Download to read offline
LECTURE 1: INTRODUCTION
TO VIRTUAL REALITY
COMP 4010 - Virtual Reality
Semester 5 - 2019
Bruce Thomas, Mark Billinghurst, Gun Lee
University of South Australia
July 30th 2019
Overview
• Introduction
• Class Overview
• What is Virtual Reality
• History of Virtual Reality
Lecturers
• Bruce Thomas
• Director of the Wearable Computing Lab
• bruce.thomas@unisa.edu.au
• Mark Billinghurst
• Director of the Empathic Computing Lab
• mark.billinghurst@unisa.edu.au
• Gun Lee
• Senior Research Fellow, ECL
• gun.lee@unisa.edu.au
• Teaching Assistants
• Adam Drogemuller (Unity expert)
• Theophilus Teo (AR/Unity)
Class Logistics
• Weekly lecture (2 hrs)
• Tuesday 10pm – 12pm
• Room F1-16
• Weekly Lab (1 hr)
• Thursday 12-1
• Assessment
• 3 projects @ 20%, 30%, 40%
• Paper reading/class presentation @ 10%
• What you will need
• iOS or Android phone/tablet (for AR programming)
• Access to laptop/PC for development
VR Lab Equipment
• 6 VR capable PCs
• High end graphics cards
• Fast processors
• 3 Oculus Rift HMDs
• Wide Field of View display
• Two touch controllers
• 1 HTC Vive HMD
• Room scale tracking
• Two handheld controllers
Unity3D – www.unity3d.com
• Who has Unity3D Experience?
What You Will Learn
• What Augmented Reality/Virtual Reality is
• History of AR/VR
• Current AR/VR commercial market
• Different AR/VR applications
• Human perception side of VR/AR
• AR/VR technology
• 3D user interface guidelines
• How to design good AR/VR experiences
• How to build your own AR/VR applications
• Important directions for future research in AR/VR
WHAT IS VIRTUAL REALITY?
Ivan Sutherland (1963)
• Sketchpad – first interactive graphics program
• https://www.youtube.com/watch?v=DWAIp3t6SLU
The Ultimate Display
“The ultimate display would, of course, be a room
within which the computer can control the
existence of matter. A chair displayed in such a
room would be good enough to sit in. Handcuffs
displayed in such a room would be confining, and
a bullet displayed in such a room would be fatal”.
Ivan Sutherland, 1965
An Invisible Interface
Sutherland Display
https://www.youtube.com/watch?v=NtwZXGprxag
1967 – IBM 1401 – half of the computers in the world, $10,000/month to run
The Incredible Disappearing Computer
1960-70’s
Room
1970-80’s
Desk
1980-90’s
Lap
1990-2000’s
Hand
Making Interfaces Invisible
Rekimoto, J. and Nagao, K. 1995. The world through the computer: computer augmented
interaction with real world environments. In Proceedings of the 8th Annual ACM Symposium on
User interface and Software Technology. UIST '95. ACM, New York, NY, 29-36.
Graphical User Interfaces
• Separation between real and digital worlds
• WIMP (Windows, Icons, Menus, Pointer) metaphor
Ubiquitous Computing/IoT
• Embed computing and sensing in real world
• Smart objects, sensors, etc..
Virtual Reality
• Users immersed in Computer Generated environment
• HMD, gloves, 3D graphics, body tracking
What is Virtual Reality?
Typical VR System
• https://www.youtube.com/watch?v=eJCiyf8Kn9w
Many Other Definitions
Virtual reality is..
a computer technology that replicates an environment, real
or imagined, and simulates a user's physical presence and
environment to allow for user interaction. (Wikipedia)
electronic simulations of environments experienced via
head mounted eye goggles and wired clothing enabling the
end user to interact in realistic three-dimensional situations.
(Coates, 1992)
an alternate world filled with computer-generated images
that respond to human movements. (Greenbaum, 1992)
an interactive, immersive experience generated by a
computer (Pimental 1995)
Key Characteristics for VR
• Virtual Reality has three key characteristics
• 3D stereoscopic display
• Wide field of view display
• Low latency head tracking
• When these three things are combined they
provide a compelling immersive experience
Defining Characteristics
• https://www.youtube.com/watch?v=FPcbBJbGhmk
VR Experience
• “This is so real..”
• https://www.youtube.com/watch?v=pAC5SeNH8jw
Defined in Terms of Presence
• Presence is the key to defining VR in terms of experience
• Presence is defined as the sense of being in an environment
• Telepresence is defined as the experience of presence in an
environment by means of a communication medium.
• A “virtual reality” is defined as a real or simulated environment
in which a perceiver experiences telepresence.
David Zeltzer’s AIP Cube
nAutonomy – User can to
react to events and stimuli.
nInteraction – User can
interact with objects and
environment.
nPresence – User feels
immersed through sensory
input and output channels
Interaction
Autonomy
Presence
VR
Zeltzer, D. (1992). Autonomy, interaction, and presence. Presence: Teleoperators
& Virtual Environments, 1(1), 127-132.
Types of VR
2
7
Augmented Reality
•Virtual Images blended with the real world
• See-through HMD, handheld display, viewpoint tracking, etc..
Augmented Reality in Science Fiction
1977 – Star Wars
Augmented Reality Definition
•Defining Characteristics [Azuma 97]
• Combines Real andVirtual Images
• Both can be seen at the same time
• Interactive in real-time
• The virtual content can be interacted with
• Registered in 3D
• Virtual objects appear fixed in space
Azuma, R. T. (1997). A survey of augmented reality. Presence, 6(4), 355-385.
2008 - CNN
https://www.youtube.com/watch?v=v7fQ_EsMJMs
• Put AR pictures here
Augmented Reality Examples
https://www.youtube.com/watch?v=aUPMDwypBkA
AR Colouring Example - Quiver
AR vsVR
From Reality toVirtual Reality
Ubiquitous Computing Augmented Reality Virtual Reality
Real World Virtual World
Milgram’s Mixed Reality (MR) Continuum
Augmented Reality Virtual Reality
Real World Virtual World
Mixed Reality
"...anywhere between the extrema of the virtuality continuum."
P. Milgram and A. F. Kishino, (1994) A Taxonomy of Mixed Reality Visual Displays
Internet of Things
Extended Reality (XR)
Augmented Reality Virtual Reality
Real World Virtual World
Mixed Reality
Extended Reality
Internet of Things
Summary
• Virtual Reality can be defined in a number of ways
• In terms of technology
• From a Presence perspective
• VR can also be classified with other technologies
• Invisible Interfaces
• Milgram’s Mixed Reality continuum
HISTORY OF VR
VR History Timeline
https://immersivelifeblog.files.wordpress.com/2015/04/vr_history.jpg
When anything new comes along, everyone,
like a child discovering the world thinks that
they’ve invented it, but you scratch a little
and you find a caveman scratching on a wall
is creating virtual reality in a sense.
Morton Helig (Hammit 1993)
Early History (30,000 BC - )
The history of VR is rooted in human’s first
attempts to reproduce the world around them
1800’s – Capturing Reality
• Panoramas (1790s)
• Immersive paintings
• Photography (1820-30s)
• Oldest surviving photo (Niépce, 1826)
• Stereo imagery (1830s)
• Wheatstone (1832)
• Brewster (1851)
• Movies (1870s)
• Muybridge (1878)
• Roundhay Garden Scene (1888)
Stereo Viewers
Wheatstone (1832)
Brewster (1860)
Viewmaster (1939)
3D Cinema Golden Era (1950-60s)
• Polarized 3D projection or anaglyph (red/blue)
1900s – Interactive Experiences
• Early Simulators (<1960s)
• Flight simulation
• Sensorama (1955)
• Early HMDs (1960s)
• Philco, Ivan Sutherland
• Military + University Research (1970-80s)
• US Airforce, NASA, MIT, UNC
• First Commercial Wave (1980-90s)
• VPL, Virtual i-O, Division, Virtuality
• VR Arcades, Virtual Boy
Link Trainer (1929 – 1950s)
• Flight Simulator Training
• Full six degree of freedom rotation
• Force feedback and motion control
• Simulated instruments
• Modeling common flight conditions
• Over 500,000 pilots trained
Link Trainer Video (1940’s)
• https://www.youtube.com/watch?v=5kmmKj7fbnI
Sensorama (1955)
• Created by Morton Heilig
• Experience Theater
• Multi-sensory
• Visuals
• Sound
• Wind
• Vibration
• Smell
• No financial support
• Commercial failure
Early HMD Patents
Early HMDs (1960s)
Philco Headsight (1961) Harvard Viewer (1962)
Sutherland (1968)
Ivan Sutherland (1960s)
5
3
Ivan Sutherland’s Head-Mounted Display (1968)
Super Cockpit (1965-80’s)
• US Airforce Research Program
• Wright Patterson Air Force Base
• Tom Furness III
• Multisensory
• Visual, auditory, tactile
• Head, eye, speech, and hand input
• Addressing pilot information overload
• Flight controls and tasks too complicated
• Research only
• big system, not safe for ejecting
UNC Haptic Systems (1967 – 80’s)
• Haptic/kinesthetic display system
• 6D force fields of molecular structures
• Progression
• Grope I, simple fields, particle feedback
• Grope II, 1978, children’s building blocks
• Grope III, late 80’s, Remote Manipulator
• Sarcos arm
The Data Glove (1981-82)
• Precursor, Sayre Glove
• Univ. of Illinois, 1977
• Thomas Zimmerman (1982)
• Fiber optic bend sensors
• Detecting finger bending
• Commercialized by VPL
• Mattel PowerGlove (1989)
VPL DataGlove Demo
• https://www.youtube.com/watch?v=fs3AhNr5o6o
NASA VIEW/VIVED (1981-86)
• Early HMD (McGreevy Humphries)
• LCD “Watchman” displays
• VIEW (Scott Fisher)
• Polhemus tracker
• Wide FOV HMD
• 3D audio (Convolvotron)
• DataGlove gesture input
• Simple graphics
VPL Research (1985 – 1999)
• First Commercial VR Company
• Jaron Lanier, Jean-Jacques Grimaud
• Provided complete systems
• Displays, software, gloves, etc
• DataGlove, EyePhone, AudioSphere
The University of North Carolina
at Chapel Hill (1980s- )
6
1
Head-Mounted Displays
Tracking, Haptics, Applications
University of Washington (1989 - )
• Human Interface Technology Laboratory (HIT Lab)
• Founded by Tom Furness III
• Many AR/VR Innovations
• Virtual Retinal Display
• ARToolKit AR Tracking library
• GreenSpace shared VR experience
• VR and pain care
• VR and Education
CAVE (1992)
• Projection VR system
• 3-6 wall stereo projection, viewpoint tracking
• Developed at EVL, University of Illinois Chicago
• Commercialized by Mechdyne Corporation(1996)
C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon and J. C. Hart. "The CAVE: Audio Visual
Experience Automatic Virtual Environment", Communications of the ACM, vol. 35(6), 1992, pp. 64–72.
CAVE Demo Video
• https://www.youtube.com/watch?v=aKL0urEdtPU
Desktop VR - 1995
• Expensive - $150,000+
• 2 million polys/sec
• VGA HMD – 30 Hz
• Magnetic tracking
Rise of Commercial VR Companies
• W Industries/Virtuality (1985 - 97)
• Location based entertainment
• Virtuality VR Arcades
• Division (1989 – 1998)
• Turn key VR systems
• Visual programming tools
• Virtual i-O (1993 -1997)
• Inexpensive gamer HMDs
• Sense8 (1990 - 1998)
• WorldToolKit, WorldUp
• VR authoring tools
Dactyl Nightmare
• https://www.youtube.com/watch?v=L60wgPuuDpE
• April 2007 ComputerWorld
• VRVoted 7th on list of 21 biggest technology flops
• MS Bob #1
VR Second Wave (2010 - )
• Palmer Luckey
• HMD hacker
• Mixed Reality Lab (MxR) intern
• Oculus Rift (2011 - )
• 2012 - $2.4 million kickstarter
• 2014 - $2B acquisition FaceBook
• $350 USD, 110o FOV
The Oculus Kickstarter Video
• https://www.youtube.com/watch?v=aNSYscbxFAw
Desktop VR in 2016
• Graphics Desktop
• $1,500 USD
• >4 Billion poly/sec
• $600 HMD
• 1080x1200, 90Hz
• Optical tracking
• Room scale
Oculus Rift
Sony Morpheus
HTC/Valve Vive
2016 - Rise of Consumer HMDs
HTC Vive
• Room scale tracking
• Gesture input devices
Example Vive App – Tilt Brush
• https://www.youtube.com/watch?v=ijukZmYFX-0
VR2GO (2013)
• MxR Lab
• 3D print VR viewer for mobiles
• Open source hardware + software
• http://projects.ict.usc.edu/mxr/diy/vr2go/
• Early Mobile VR viewer
Google Cardboard
• Released 2014 (Google 20% project)
• >5 million shipped/given away
• Easy to use developer tools
+ =
Multiple Mobile VR Viewers Available
2018 – Self Contained VR
• Untethered VR, self contained in one device
• Inside out 6 DOF tracking
• 1-2 handheld controllers
• Mobile graphics and processing
Vive Focus Oculus Quest
• https://www.youtube.com/watch?v=Di7dIhUFsbw
Projected HMD Sales
• asdf
Large Commercial Market
Market Size
Why 2019 won’t be like 1996
• It’s not just VR anymore
• Huge amount of investment
• Inexpensive hardware platforms
• Easy to use content creation tools
• New devices for input and output
• Proven use cases – no more Hype!
• Most important: Focus on User Experience
Conclusion
• Virtual Reality has a long history
• > 50 years of HMDs, simulators
• Key elements for VR were in place by early 1990’s
• Displays, tracking, input, graphics
• Strong support from military, government, universities
• First commercial wave failed in late 1990’s
• Too expensive, bad user experience, poor technology, etc
• We are now in second commercial wave
• Better experience, Affordable hardware
• Large commercial investment, Significant installed user base
Lecture Schedule – 13 Lectures/Labs
• July 30th: 1. Introduction to VR - Intro to Unity
• Aug 6th: 2. Virtual Reality Perception – Intro to Steam VR SDK
• Aug 13th: 3. VR Technology Overview – Building VR scenes in Unity
• Aug 20th: 4. Virtual Reality Systems– Scripting in Unity
• Aug 27st: 5. 3D User Interfaces– Navigation in VR
• Sept 3rd: 6. Interaction Design for VR – Interaction in VR
• Sept 10th: 7. VR Applications – Interaction in VR
• Sept 17th: 8. Introduction to AR – Building Apps using Vuforia
• Oct 8th: 9. AR Technology – AR Tracking
• Oct 15th: 10. AR Interface Design – Handheld AR Interaction
• Oct 22nd: 11. Mobile AR – Handheld AR Interaction
• Oct 29th: 12. AR Applications – AR Project Work
• Nov 5th: 13. Research Directions - (no lab)
Assignments
• Assignment One – VR Scene – August 28th
• Create a VR scene of a four room space station
• Include complex 3D models, texture, skybox, lighting, interactions
• Deploy on HTC Vive or Oculus Rift
• Assignment Two – VR Interaction – October 2nd
• Build a VR burger builder interface
• Add advanced interactivity to the VR scene
• Animations
• Select and manipulation objects controlling a simulation
• Assignment Three – AR Application – November 6th
• Handheld AR application
• Using image based tracking
• Screen based interaction techniques

More Related Content

What's hot

2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR PrototypingMark Billinghurst
 
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysCOMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysMark Billinghurst
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsMark Billinghurst
 
Comp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionComp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionMark Billinghurst
 
Lecture7 Example VR Applications
Lecture7 Example VR ApplicationsLecture7 Example VR Applications
Lecture7 Example VR ApplicationsMark Billinghurst
 
Comp4010 Lecture9 VR Input and Systems
Comp4010 Lecture9 VR Input and SystemsComp4010 Lecture9 VR Input and Systems
Comp4010 Lecture9 VR Input and SystemsMark Billinghurst
 
Comp4010 Lecture5 Interaction and Prototyping
Comp4010 Lecture5 Interaction and PrototypingComp4010 Lecture5 Interaction and Prototyping
Comp4010 Lecture5 Interaction and PrototypingMark Billinghurst
 
Augmented Reality: The Next 20 Years
Augmented Reality: The Next 20 YearsAugmented Reality: The Next 20 Years
Augmented Reality: The Next 20 YearsMark Billinghurst
 
Comp4010 Lecture4 AR Tracking and Interaction
Comp4010 Lecture4 AR Tracking and InteractionComp4010 Lecture4 AR Tracking and Interaction
Comp4010 Lecture4 AR Tracking and InteractionMark Billinghurst
 
Research Directions in Transitional Interfaces
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional InterfacesMark Billinghurst
 
Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Mark Billinghurst
 
Lecture 8 Introduction to Augmented Reality
Lecture 8 Introduction to Augmented RealityLecture 8 Introduction to Augmented Reality
Lecture 8 Introduction to Augmented RealityMark Billinghurst
 
2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR SystemsMark Billinghurst
 
Comp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyComp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyMark Billinghurst
 
COMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyCOMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyMark Billinghurst
 
Comp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRComp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRMark Billinghurst
 
2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VRMark Billinghurst
 
COMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR TrackingCOMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR TrackingMark Billinghurst
 
COMP 4010 - Lecture 2: Presence in Virtual Reality
COMP 4010 - Lecture 2: Presence in Virtual RealityCOMP 4010 - Lecture 2: Presence in Virtual Reality
COMP 4010 - Lecture 2: Presence in Virtual RealityMark Billinghurst
 
Lecture 2 Presence and Perception
Lecture 2 Presence and PerceptionLecture 2 Presence and Perception
Lecture 2 Presence and PerceptionMark Billinghurst
 

What's hot (20)

2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR Prototyping
 
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic DisplaysCOMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
COMP 4010 - Lecture4 VR Technology - Visual and Haptic Displays
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR Applications
 
Comp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionComp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-Perception
 
Lecture7 Example VR Applications
Lecture7 Example VR ApplicationsLecture7 Example VR Applications
Lecture7 Example VR Applications
 
Comp4010 Lecture9 VR Input and Systems
Comp4010 Lecture9 VR Input and SystemsComp4010 Lecture9 VR Input and Systems
Comp4010 Lecture9 VR Input and Systems
 
Comp4010 Lecture5 Interaction and Prototyping
Comp4010 Lecture5 Interaction and PrototypingComp4010 Lecture5 Interaction and Prototyping
Comp4010 Lecture5 Interaction and Prototyping
 
Augmented Reality: The Next 20 Years
Augmented Reality: The Next 20 YearsAugmented Reality: The Next 20 Years
Augmented Reality: The Next 20 Years
 
Comp4010 Lecture4 AR Tracking and Interaction
Comp4010 Lecture4 AR Tracking and InteractionComp4010 Lecture4 AR Tracking and Interaction
Comp4010 Lecture4 AR Tracking and Interaction
 
Research Directions in Transitional Interfaces
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional Interfaces
 
Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality Grand Challenges for Mixed Reality
Grand Challenges for Mixed Reality
 
Lecture 8 Introduction to Augmented Reality
Lecture 8 Introduction to Augmented RealityLecture 8 Introduction to Augmented Reality
Lecture 8 Introduction to Augmented Reality
 
2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR Systems
 
Comp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyComp4010 lecture3-AR Technology
Comp4010 lecture3-AR Technology
 
COMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR TechnologyCOMP 4010: Lecture8 - AR Technology
COMP 4010: Lecture8 - AR Technology
 
Comp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VRComp4010 Lecture8 Introduction to VR
Comp4010 Lecture8 Introduction to VR
 
2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR2022 COMP 4010 Lecture 7: Introduction to VR
2022 COMP 4010 Lecture 7: Introduction to VR
 
COMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR TrackingCOMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR Tracking
 
COMP 4010 - Lecture 2: Presence in Virtual Reality
COMP 4010 - Lecture 2: Presence in Virtual RealityCOMP 4010 - Lecture 2: Presence in Virtual Reality
COMP 4010 - Lecture 2: Presence in Virtual Reality
 
Lecture 2 Presence and Perception
Lecture 2 Presence and PerceptionLecture 2 Presence and Perception
Lecture 2 Presence and Perception
 

Similar to Lecture1 introduction to VR

COMP Lecture1 - Introduction to Virtual Reality
COMP Lecture1 - Introduction to Virtual RealityCOMP Lecture1 - Introduction to Virtual Reality
COMP Lecture1 - Introduction to Virtual RealityMark Billinghurst
 
COMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityCOMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityMark Billinghurst
 
COMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityCOMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityMark Billinghurst
 
Introduction to Augmented Reality
Introduction to Augmented RealityIntroduction to Augmented Reality
Introduction to Augmented RealityMark Billinghurst
 
Virtual Reality: Sensing the Possibilities
Virtual Reality: Sensing the PossibilitiesVirtual Reality: Sensing the Possibilities
Virtual Reality: Sensing the PossibilitiesMark Billinghurst
 
2016 AR Summer School - Lecture1
2016 AR Summer School - Lecture12016 AR Summer School - Lecture1
2016 AR Summer School - Lecture1Mark Billinghurst
 
Fifty Shades of Augmented Reality: Creating Connection Using AR
Fifty Shades of Augmented Reality: Creating Connection Using ARFifty Shades of Augmented Reality: Creating Connection Using AR
Fifty Shades of Augmented Reality: Creating Connection Using ARMark Billinghurst
 
Building AR and VR Experiences
Building AR and VR ExperiencesBuilding AR and VR Experiences
Building AR and VR ExperiencesMark Billinghurst
 
Mobile AR Lecture1-introduction
Mobile AR Lecture1-introductionMobile AR Lecture1-introduction
Mobile AR Lecture1-introductionMark Billinghurst
 
Mixed Reality in the Workspace
Mixed Reality in the WorkspaceMixed Reality in the Workspace
Mixed Reality in the WorkspaceMark Billinghurst
 
Beyond Reality (2027): The Future of Virtual and Augmented Reality
Beyond Reality (2027): The Future of Virtual and Augmented RealityBeyond Reality (2027): The Future of Virtual and Augmented Reality
Beyond Reality (2027): The Future of Virtual and Augmented RealityMark Billinghurst
 
Experiential Media - Dok.fest 2015
Experiential Media - Dok.fest 2015Experiential Media - Dok.fest 2015
Experiential Media - Dok.fest 2015JournovationSU
 
Augmented Reality (AR): Intro and History
Augmented Reality (AR): Intro and HistoryAugmented Reality (AR): Intro and History
Augmented Reality (AR): Intro and HistorySamiha Samrose
 
Virtual reality
Virtual realityVirtual reality
Virtual realityAmit Sinha
 
모바일 AR 개요 및 Scan Search 사례 2부
모바일 AR 개요 및 Scan Search 사례 2부모바일 AR 개요 및 Scan Search 사례 2부
모바일 AR 개요 및 Scan Search 사례 2부mosaicnet
 

Similar to Lecture1 introduction to VR (20)

COMP Lecture1 - Introduction to Virtual Reality
COMP Lecture1 - Introduction to Virtual RealityCOMP Lecture1 - Introduction to Virtual Reality
COMP Lecture1 - Introduction to Virtual Reality
 
COMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual RealityCOMP 4010 - Lecture1 Introduction to Virtual Reality
COMP 4010 - Lecture1 Introduction to Virtual Reality
 
COMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual RealityCOMP 4010 - Lecture 1: Introduction to Virtual Reality
COMP 4010 - Lecture 1: Introduction to Virtual Reality
 
Introduction to Augmented Reality
Introduction to Augmented RealityIntroduction to Augmented Reality
Introduction to Augmented Reality
 
Virtual Reality: Sensing the Possibilities
Virtual Reality: Sensing the PossibilitiesVirtual Reality: Sensing the Possibilities
Virtual Reality: Sensing the Possibilities
 
May the Force be with You
May the Force be with YouMay the Force be with You
May the Force be with You
 
2016 AR Summer School - Lecture1
2016 AR Summer School - Lecture12016 AR Summer School - Lecture1
2016 AR Summer School - Lecture1
 
Fifty Shades of Augmented Reality: Creating Connection Using AR
Fifty Shades of Augmented Reality: Creating Connection Using ARFifty Shades of Augmented Reality: Creating Connection Using AR
Fifty Shades of Augmented Reality: Creating Connection Using AR
 
Virtual Reality
Virtual RealityVirtual Reality
Virtual Reality
 
Building AR and VR Experiences
Building AR and VR ExperiencesBuilding AR and VR Experiences
Building AR and VR Experiences
 
Virtual reality
Virtual realityVirtual reality
Virtual reality
 
Lecture#01.pptx
Lecture#01.pptxLecture#01.pptx
Lecture#01.pptx
 
Mobile AR Lecture1-introduction
Mobile AR Lecture1-introductionMobile AR Lecture1-introduction
Mobile AR Lecture1-introduction
 
Mixed Reality in the Workspace
Mixed Reality in the WorkspaceMixed Reality in the Workspace
Mixed Reality in the Workspace
 
Beyond Reality (2027): The Future of Virtual and Augmented Reality
Beyond Reality (2027): The Future of Virtual and Augmented RealityBeyond Reality (2027): The Future of Virtual and Augmented Reality
Beyond Reality (2027): The Future of Virtual and Augmented Reality
 
Experiential Media - Dok.fest 2015
Experiential Media - Dok.fest 2015Experiential Media - Dok.fest 2015
Experiential Media - Dok.fest 2015
 
Augmented Reality (AR): Intro and History
Augmented Reality (AR): Intro and HistoryAugmented Reality (AR): Intro and History
Augmented Reality (AR): Intro and History
 
Virtual reality
Virtual realityVirtual reality
Virtual reality
 
Virtual reality
Virtual realityVirtual reality
Virtual reality
 
모바일 AR 개요 및 Scan Search 사례 2부
모바일 AR 개요 및 Scan Search 사례 2부모바일 AR 개요 및 Scan Search 사례 2부
모바일 AR 개요 및 Scan Search 사례 2부
 

More from Mark Billinghurst

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented RealityMark Billinghurst
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesMark Billinghurst
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the MetaverseMark Billinghurst
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseMark Billinghurst
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationMark Billinghurst
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseMark Billinghurst
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR SystemsMark Billinghurst
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR InteractionMark Billinghurst
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsMark Billinghurst
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseMark Billinghurst
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsMark Billinghurst
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsMark Billinghurst
 
Advanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARMark Billinghurst
 

More from Mark Billinghurst (16)

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Future Research Directions for Augmented Reality
Future Research Directions for Augmented RealityFuture Research Directions for Augmented Reality
Future Research Directions for Augmented Reality
 
Evaluation Methods for Social XR Experiences
Evaluation Methods for Social XR ExperiencesEvaluation Methods for Social XR Experiences
Evaluation Methods for Social XR Experiences
 
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
 
Empathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the Metaverse
 
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
 
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader Metaverse
 
Novel Interfaces for AR Systems
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR Systems
 
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
 
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive Analytics
 
Metaverse Learning
Metaverse LearningMetaverse Learning
Metaverse Learning
 
Empathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole Metaverse
 
Comp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research Directions
 
Comp4010 lecture11 VR Applications
Comp4010 lecture11 VR ApplicationsComp4010 lecture11 VR Applications
Comp4010 lecture11 VR Applications
 
Advanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise AR
 

Recently uploaded

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 

Recently uploaded (20)

EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 

Lecture1 introduction to VR

  • 1. LECTURE 1: INTRODUCTION TO VIRTUAL REALITY COMP 4010 - Virtual Reality Semester 5 - 2019 Bruce Thomas, Mark Billinghurst, Gun Lee University of South Australia July 30th 2019
  • 2. Overview • Introduction • Class Overview • What is Virtual Reality • History of Virtual Reality
  • 3. Lecturers • Bruce Thomas • Director of the Wearable Computing Lab • bruce.thomas@unisa.edu.au • Mark Billinghurst • Director of the Empathic Computing Lab • mark.billinghurst@unisa.edu.au • Gun Lee • Senior Research Fellow, ECL • gun.lee@unisa.edu.au • Teaching Assistants • Adam Drogemuller (Unity expert) • Theophilus Teo (AR/Unity)
  • 4. Class Logistics • Weekly lecture (2 hrs) • Tuesday 10pm – 12pm • Room F1-16 • Weekly Lab (1 hr) • Thursday 12-1 • Assessment • 3 projects @ 20%, 30%, 40% • Paper reading/class presentation @ 10% • What you will need • iOS or Android phone/tablet (for AR programming) • Access to laptop/PC for development
  • 5. VR Lab Equipment • 6 VR capable PCs • High end graphics cards • Fast processors • 3 Oculus Rift HMDs • Wide Field of View display • Two touch controllers • 1 HTC Vive HMD • Room scale tracking • Two handheld controllers
  • 6. Unity3D – www.unity3d.com • Who has Unity3D Experience?
  • 7. What You Will Learn • What Augmented Reality/Virtual Reality is • History of AR/VR • Current AR/VR commercial market • Different AR/VR applications • Human perception side of VR/AR • AR/VR technology • 3D user interface guidelines • How to design good AR/VR experiences • How to build your own AR/VR applications • Important directions for future research in AR/VR
  • 8. WHAT IS VIRTUAL REALITY?
  • 9. Ivan Sutherland (1963) • Sketchpad – first interactive graphics program • https://www.youtube.com/watch?v=DWAIp3t6SLU
  • 10. The Ultimate Display “The ultimate display would, of course, be a room within which the computer can control the existence of matter. A chair displayed in such a room would be good enough to sit in. Handcuffs displayed in such a room would be confining, and a bullet displayed in such a room would be fatal”. Ivan Sutherland, 1965
  • 13. 1967 – IBM 1401 – half of the computers in the world, $10,000/month to run
  • 14. The Incredible Disappearing Computer 1960-70’s Room 1970-80’s Desk 1980-90’s Lap 1990-2000’s Hand
  • 15. Making Interfaces Invisible Rekimoto, J. and Nagao, K. 1995. The world through the computer: computer augmented interaction with real world environments. In Proceedings of the 8th Annual ACM Symposium on User interface and Software Technology. UIST '95. ACM, New York, NY, 29-36.
  • 16. Graphical User Interfaces • Separation between real and digital worlds • WIMP (Windows, Icons, Menus, Pointer) metaphor
  • 17. Ubiquitous Computing/IoT • Embed computing and sensing in real world • Smart objects, sensors, etc..
  • 18. Virtual Reality • Users immersed in Computer Generated environment • HMD, gloves, 3D graphics, body tracking
  • 19. What is Virtual Reality?
  • 20. Typical VR System • https://www.youtube.com/watch?v=eJCiyf8Kn9w
  • 21. Many Other Definitions Virtual reality is.. a computer technology that replicates an environment, real or imagined, and simulates a user's physical presence and environment to allow for user interaction. (Wikipedia) electronic simulations of environments experienced via head mounted eye goggles and wired clothing enabling the end user to interact in realistic three-dimensional situations. (Coates, 1992) an alternate world filled with computer-generated images that respond to human movements. (Greenbaum, 1992) an interactive, immersive experience generated by a computer (Pimental 1995)
  • 22. Key Characteristics for VR • Virtual Reality has three key characteristics • 3D stereoscopic display • Wide field of view display • Low latency head tracking • When these three things are combined they provide a compelling immersive experience
  • 24. VR Experience • “This is so real..” • https://www.youtube.com/watch?v=pAC5SeNH8jw
  • 25. Defined in Terms of Presence • Presence is the key to defining VR in terms of experience • Presence is defined as the sense of being in an environment • Telepresence is defined as the experience of presence in an environment by means of a communication medium. • A “virtual reality” is defined as a real or simulated environment in which a perceiver experiences telepresence.
  • 26. David Zeltzer’s AIP Cube nAutonomy – User can to react to events and stimuli. nInteraction – User can interact with objects and environment. nPresence – User feels immersed through sensory input and output channels Interaction Autonomy Presence VR Zeltzer, D. (1992). Autonomy, interaction, and presence. Presence: Teleoperators & Virtual Environments, 1(1), 127-132.
  • 28. Augmented Reality •Virtual Images blended with the real world • See-through HMD, handheld display, viewpoint tracking, etc..
  • 29. Augmented Reality in Science Fiction 1977 – Star Wars
  • 30. Augmented Reality Definition •Defining Characteristics [Azuma 97] • Combines Real andVirtual Images • Both can be seen at the same time • Interactive in real-time • The virtual content can be interacted with • Registered in 3D • Virtual objects appear fixed in space Azuma, R. T. (1997). A survey of augmented reality. Presence, 6(4), 355-385.
  • 32. • Put AR pictures here Augmented Reality Examples
  • 35. From Reality toVirtual Reality Ubiquitous Computing Augmented Reality Virtual Reality Real World Virtual World
  • 36. Milgram’s Mixed Reality (MR) Continuum Augmented Reality Virtual Reality Real World Virtual World Mixed Reality "...anywhere between the extrema of the virtuality continuum." P. Milgram and A. F. Kishino, (1994) A Taxonomy of Mixed Reality Visual Displays Internet of Things
  • 37. Extended Reality (XR) Augmented Reality Virtual Reality Real World Virtual World Mixed Reality Extended Reality Internet of Things
  • 38. Summary • Virtual Reality can be defined in a number of ways • In terms of technology • From a Presence perspective • VR can also be classified with other technologies • Invisible Interfaces • Milgram’s Mixed Reality continuum
  • 41. When anything new comes along, everyone, like a child discovering the world thinks that they’ve invented it, but you scratch a little and you find a caveman scratching on a wall is creating virtual reality in a sense. Morton Helig (Hammit 1993)
  • 42. Early History (30,000 BC - ) The history of VR is rooted in human’s first attempts to reproduce the world around them
  • 43. 1800’s – Capturing Reality • Panoramas (1790s) • Immersive paintings • Photography (1820-30s) • Oldest surviving photo (Niépce, 1826) • Stereo imagery (1830s) • Wheatstone (1832) • Brewster (1851) • Movies (1870s) • Muybridge (1878) • Roundhay Garden Scene (1888)
  • 46. 3D Cinema Golden Era (1950-60s) • Polarized 3D projection or anaglyph (red/blue)
  • 47. 1900s – Interactive Experiences • Early Simulators (<1960s) • Flight simulation • Sensorama (1955) • Early HMDs (1960s) • Philco, Ivan Sutherland • Military + University Research (1970-80s) • US Airforce, NASA, MIT, UNC • First Commercial Wave (1980-90s) • VPL, Virtual i-O, Division, Virtuality • VR Arcades, Virtual Boy
  • 48. Link Trainer (1929 – 1950s) • Flight Simulator Training • Full six degree of freedom rotation • Force feedback and motion control • Simulated instruments • Modeling common flight conditions • Over 500,000 pilots trained
  • 49. Link Trainer Video (1940’s) • https://www.youtube.com/watch?v=5kmmKj7fbnI
  • 50. Sensorama (1955) • Created by Morton Heilig • Experience Theater • Multi-sensory • Visuals • Sound • Wind • Vibration • Smell • No financial support • Commercial failure
  • 52. Early HMDs (1960s) Philco Headsight (1961) Harvard Viewer (1962) Sutherland (1968)
  • 53. Ivan Sutherland (1960s) 5 3 Ivan Sutherland’s Head-Mounted Display (1968)
  • 54. Super Cockpit (1965-80’s) • US Airforce Research Program • Wright Patterson Air Force Base • Tom Furness III • Multisensory • Visual, auditory, tactile • Head, eye, speech, and hand input • Addressing pilot information overload • Flight controls and tasks too complicated • Research only • big system, not safe for ejecting
  • 55.
  • 56. UNC Haptic Systems (1967 – 80’s) • Haptic/kinesthetic display system • 6D force fields of molecular structures • Progression • Grope I, simple fields, particle feedback • Grope II, 1978, children’s building blocks • Grope III, late 80’s, Remote Manipulator • Sarcos arm
  • 57. The Data Glove (1981-82) • Precursor, Sayre Glove • Univ. of Illinois, 1977 • Thomas Zimmerman (1982) • Fiber optic bend sensors • Detecting finger bending • Commercialized by VPL • Mattel PowerGlove (1989)
  • 58. VPL DataGlove Demo • https://www.youtube.com/watch?v=fs3AhNr5o6o
  • 59. NASA VIEW/VIVED (1981-86) • Early HMD (McGreevy Humphries) • LCD “Watchman” displays • VIEW (Scott Fisher) • Polhemus tracker • Wide FOV HMD • 3D audio (Convolvotron) • DataGlove gesture input • Simple graphics
  • 60. VPL Research (1985 – 1999) • First Commercial VR Company • Jaron Lanier, Jean-Jacques Grimaud • Provided complete systems • Displays, software, gloves, etc • DataGlove, EyePhone, AudioSphere
  • 61. The University of North Carolina at Chapel Hill (1980s- ) 6 1 Head-Mounted Displays Tracking, Haptics, Applications
  • 62. University of Washington (1989 - ) • Human Interface Technology Laboratory (HIT Lab) • Founded by Tom Furness III • Many AR/VR Innovations • Virtual Retinal Display • ARToolKit AR Tracking library • GreenSpace shared VR experience • VR and pain care • VR and Education
  • 63. CAVE (1992) • Projection VR system • 3-6 wall stereo projection, viewpoint tracking • Developed at EVL, University of Illinois Chicago • Commercialized by Mechdyne Corporation(1996) C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon and J. C. Hart. "The CAVE: Audio Visual Experience Automatic Virtual Environment", Communications of the ACM, vol. 35(6), 1992, pp. 64–72.
  • 64. CAVE Demo Video • https://www.youtube.com/watch?v=aKL0urEdtPU
  • 65. Desktop VR - 1995 • Expensive - $150,000+ • 2 million polys/sec • VGA HMD – 30 Hz • Magnetic tracking
  • 66. Rise of Commercial VR Companies • W Industries/Virtuality (1985 - 97) • Location based entertainment • Virtuality VR Arcades • Division (1989 – 1998) • Turn key VR systems • Visual programming tools • Virtual i-O (1993 -1997) • Inexpensive gamer HMDs • Sense8 (1990 - 1998) • WorldToolKit, WorldUp • VR authoring tools
  • 68. • April 2007 ComputerWorld • VRVoted 7th on list of 21 biggest technology flops • MS Bob #1
  • 69. VR Second Wave (2010 - ) • Palmer Luckey • HMD hacker • Mixed Reality Lab (MxR) intern • Oculus Rift (2011 - ) • 2012 - $2.4 million kickstarter • 2014 - $2B acquisition FaceBook • $350 USD, 110o FOV
  • 70. The Oculus Kickstarter Video • https://www.youtube.com/watch?v=aNSYscbxFAw
  • 71. Desktop VR in 2016 • Graphics Desktop • $1,500 USD • >4 Billion poly/sec • $600 HMD • 1080x1200, 90Hz • Optical tracking • Room scale
  • 72. Oculus Rift Sony Morpheus HTC/Valve Vive 2016 - Rise of Consumer HMDs
  • 73. HTC Vive • Room scale tracking • Gesture input devices
  • 74. Example Vive App – Tilt Brush • https://www.youtube.com/watch?v=ijukZmYFX-0
  • 75. VR2GO (2013) • MxR Lab • 3D print VR viewer for mobiles • Open source hardware + software • http://projects.ict.usc.edu/mxr/diy/vr2go/ • Early Mobile VR viewer
  • 76. Google Cardboard • Released 2014 (Google 20% project) • >5 million shipped/given away • Easy to use developer tools + =
  • 77. Multiple Mobile VR Viewers Available
  • 78. 2018 – Self Contained VR • Untethered VR, self contained in one device • Inside out 6 DOF tracking • 1-2 handheld controllers • Mobile graphics and processing Vive Focus Oculus Quest
  • 83. Why 2019 won’t be like 1996 • It’s not just VR anymore • Huge amount of investment • Inexpensive hardware platforms • Easy to use content creation tools • New devices for input and output • Proven use cases – no more Hype! • Most important: Focus on User Experience
  • 84. Conclusion • Virtual Reality has a long history • > 50 years of HMDs, simulators • Key elements for VR were in place by early 1990’s • Displays, tracking, input, graphics • Strong support from military, government, universities • First commercial wave failed in late 1990’s • Too expensive, bad user experience, poor technology, etc • We are now in second commercial wave • Better experience, Affordable hardware • Large commercial investment, Significant installed user base
  • 85. Lecture Schedule – 13 Lectures/Labs • July 30th: 1. Introduction to VR - Intro to Unity • Aug 6th: 2. Virtual Reality Perception – Intro to Steam VR SDK • Aug 13th: 3. VR Technology Overview – Building VR scenes in Unity • Aug 20th: 4. Virtual Reality Systems– Scripting in Unity • Aug 27st: 5. 3D User Interfaces– Navigation in VR • Sept 3rd: 6. Interaction Design for VR – Interaction in VR • Sept 10th: 7. VR Applications – Interaction in VR • Sept 17th: 8. Introduction to AR – Building Apps using Vuforia • Oct 8th: 9. AR Technology – AR Tracking • Oct 15th: 10. AR Interface Design – Handheld AR Interaction • Oct 22nd: 11. Mobile AR – Handheld AR Interaction • Oct 29th: 12. AR Applications – AR Project Work • Nov 5th: 13. Research Directions - (no lab)
  • 86. Assignments • Assignment One – VR Scene – August 28th • Create a VR scene of a four room space station • Include complex 3D models, texture, skybox, lighting, interactions • Deploy on HTC Vive or Oculus Rift • Assignment Two – VR Interaction – October 2nd • Build a VR burger builder interface • Add advanced interactivity to the VR scene • Animations • Select and manipulation objects controlling a simulation • Assignment Three – AR Application – November 6th • Handheld AR application • Using image based tracking • Screen based interaction techniques