Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Manualtomografiaaxialmulticorte 130207203241-phpapp01

558 views

Published on

para los estudian te de tomografía de la escuela de imágenes técnica del cibao

Published in: Education
  • Login to see the comments

Manualtomografiaaxialmulticorte 130207203241-phpapp01

  1. 1. 1 manual de tomografía axial computarizada multicorte
  2. 2. 2 Edición: Autor Diseño y Maquetación: Alexander Blanca Pérez Diseño de Portada: Ramón Mondejar Corrección: Lic. Alicia Jordán González Figuras al final de los capitulos © Manual de Tomografía Axial Computarizada Multicorte Dr. José Carlos Ugarte Suárez y Col. Tercera Edición © Sobre la presente edición: Editorial CIMEQ, 2006 ISBN: 959-238-124-0 Todos los derechos reservados. Esta publicación no puede ser reproducida, ni en todo ni en parte, en ningún soporte, sin la autorización por escrito de la editorial. Editorial CIMEQ Calle 216 esq. 13, Siboney, Playa Ciudad de La Habana, Cuba editorial@cimeq.sld.cu
  3. 3. 3 DEDICADO A: TODOS LOS QUE LUCHAN POR LOGRAR UN MUNDO MEJOR. MI NIETO, HIJA, ESPOSA Y MADRE. MIS EDUCANDOS.
  4. 4. 4 AUTORES: Dr. José Carlos Ugarte Suárez Doctor en Ciencias, Investigador y Profesor Titular de Imagenología. Especialista de 2do grado. Dra. Dayana Ugarte Moreno Especialista de 1er Grado de Imagenología. Dr. José Jordán González Especialista de 1er Grado de Imagenología. Profesor Asistente de imagenología. Dr. Angel Gaspar Obregon Santos Doctor en Ciencias Medicas Profesor Auxiliar de Cardiología. Especialista de 2do grado Dr. Luis Quevedo Sotolongo Especialista de 2do Grado de Imagenología. Profesor Auxiliar de imagenología. Dr. Manuel Cepero Nogueira Investigador y Profesor Auxiliar de Cirugía Especialista de 2do grado. Dr. Eduardo Fermín Hernández Especialista de Imagenología Médica. Doctor en Ciencias Filosóficas. Dr. Hanoi Hernández Rivero Especialista de 1er Grado en Cirugía. Tec. Alexey Narey Rodríguez. Especialista de Imagenología Médica. Lic.. José García Lahera Especialista de Imagenología Médica
  5. 5. 5 COLABORADORES Lic. María Cristina Rosell Fernández de Alaiza Ing. Luís Felipe Cerutti Ortega Ing. Julio Cesar Imperatori García Ing. Aldo Leyva Valero Ing. Manuel Alejandro Cabrera Velásquez Tec. Elisa Moreno López Tec. David del Risco Rámos Sr. Fernando Beils Dra. Marlene Fernández Arias Lic. Alicia Jordán González
  6. 6. 6 NOTAS DEL AUTOR A principios del 2005, editamos un pequeño manual de Tomografía Axial Computarizada Multicorte, con algunas experiencias alcanzadas durante nuestro adiestramiento en esta novedosa técnica, que sirviera de texto básico para instruir a los colegas que comienzan a dar los prime- ros pasos en ésta. Recientemente publicamos una segunda edición donde se mostraban nuestras experiencias obtenidas durante el intenso trabajo realizado con nuestro equipo de 64 cortes. Nuestro Comandante en Jefe tuvo conocimiento de esta publicación y demostrando como siempre su humanidad y sus convicciones internacionalistas de compartir las ex- periencias adquiridas, decidió hacer una tercera edición que estuviera al alcance de todos los radiólogos y cardió- logos cubanos, así como de todos los médicos interesados en el tema, a través de las bibliotecas de los hospitales y policlínicos de todo el país. También tuvo en cuenta en hacer llegar algunos ejemplares a nuestras facultades y a la Escuela Latino Americana de Medicina. Pensó en todos nuestros trabajadores internacionalistas de estas especialidades afines y en los que dan su aporte en los CDMAT y los CDI, en Venezuela. Además decidió que se difundiera gratuitamente entre nuestros colegas radiólogos latinoamericanos. Esta sencilla publicación está destinada a los residen- tes, los especialistas jóvenes y a profesores que puedan usarla en beneficio de sus educandos. Ojalá sea de utilidad para todos ustedes.
  7. 7. 7 INDICE Introducción. /8 Datos historicos de la TAC. /10 Aspectos técnicos. /23 Principios básicos. /28 Estudios de los troncos supra-aórticos y las arterias intracerebrales. /50 Estudio del corazón y sus vasos. /123 Estudio del arbol vascular pulmonar. /200 Estudio de la aorta. /212 Estudio de las arterias viscerales. /245 Estudio de las arterias de los miembros inferiores. /298 Citas bibliograficas. /327
  8. 8. 8 INTRODUCCION. La radiología ha experimentado enormes avances tecno- lógicos y aplicaciones clínicas cada vez más amplias desde que Roentgen descubrió los rayos X (RX), en 1895. En los últimos 10 años ha existido un crecimiento de manera explosiva en el diagnóstico radiológico por imáge- nes, con el refinamiento progresivo de las radiografías convencionales, el desarrollo de nuevas modalidades y la introducción de la informática en este campo. El advenimiento y desarrollo del ultrasonido diagnósti- co (USD), de la tomografía axial computarizada (TAC), la resonancia magnética (RM), la radiología intervencionista (RI) y otras sofisticadas técnicas de diagnósticos por ima- gen, hace que los especialistas de la rama tengan que estudiar profundamente estas técnicas, para lograr la mayor eficiencia en el uso de las mismas. Con el advenimiento de la tomografía axial computarizada multicorte (TACM), la angiografía por TAC ha ganado progresivamente la aceptación en la práctica clínica. Esta técnica permite una resolución de imagen submilimétrica de los pequeños y grandes vasos, por métodos poco invasivos. Entre las ventajas que proporciona este proceder, po- demos mencionar: · Es mínimamente invasiva. · Es fácil de realizar. · Se adquiere de la información en tiempos cortos. · Aporta una buena resolución espacial. · Brinda una excelente capacidad diagnóstica con las imágenes en 3 dimensiones, como las recons- trucciones multiplanares y el volumen rendering. · Se estudian extensas áreas del cuerpo con rapidez. · Puede proporcionar una información anatómica muy completa para la planificación quirúrgica.
  9. 9. 9 · Se logran estudios de alta calidad diagnóstica en fase arterial y venosa. Como desventajas tenemos: · La cantidad de radiaciones recibida por el pacien- te. · La inyección de una gran cantidad de contraste, a un alto flujo. · Las imágenes diagnósticas se obtienen con postprocesamiento, lo que demora el proceso de in- forme imagenológico. La TACM es una excelente herramienta para el estu- dio mínimamente invasivo de los vasos arteriales y venosos, por lo que esta técnica puede considerarse un angiógrafo con TAC, además de otras novedosas posibili- dades, que permiten realizar endoscopías virtuales, estudios de perfusión cerebral, detección precoz y estu- dio de un nódulo pulmonar, y otras (Fig. G- 1 a 6). Los 3 principales aspectos técnicos de las TACM son: su colimación, el número de detectores por fila y el tiempo de rotación del gantry. Los fabricantes de los equipos trabajan en la mejoría de estos parámetros, ya que a menor colimación, mejora la resolución espacial. El au- mento de los detectores por fila, incrementa la velocidad del corte y la disminución del tiempo de rotación del gantry, ofreciendo una mejor resolución temporal. En este manual sólo nos referiremos a las enfermeda- des cuyo diagnóstico se basa fundamentalmente en los estudios vasculares. Recientemente han surgido equipos que permiten ma- yor velocidad en los cortes con una superior resolución para los estudios de los órganos en movimiento.
  10. 10. 10 DATOS HISTORICOS DE LA TAC. La TAC fue introducida por Sir Godfrey Hounsfield en Londres, en 1972, obteniendo el Premio Nobel en 1979. El primer prototipo clínico fue instalado en el Hospital Atkinson Morley, de Londres y el primero con fines co- merciales fue el EMI Mark I. Este equipo consistía en un gantry que contenía un tubo de RX. con ánodo estacio- nario enfriado con aceite. El haz de RX era colimado y pasaba a través de la cabeza del paciente (que estaba rodeada por una bolsa de agua) y la información era cap- tada por 2 detectores con un cristal de yoduro de sodio, unido a un fotomultiplicador. El mecanismo para obte- ner la imagen era por medio de la rotación (un grado a la derecha y otro hacia la izquierda de la línea media) y la traslación del tubo. El tiempo de adquisición era de 4,5 min. y 0,5 min. en la reconstrucción de la imagen, con una matriz de 80 x 80. La segunda generación de estos equipos consistía en un sistema de rotación traslación, logrando realizar el corte en 18 seg., obteniéndose una imagen de mayor resolu- ción. El incremento en velocidad se obtuvo con los equipos de tercera y cuarta generación, en los que se desarrolló el sistema de rotación solamente. El de tercera genera- ción se caracterizaba porque el tubo y los detectores estaban montados en lados opuestos al paciente y se movían simultáneamente. En la cuarta generación sólo se movía el tubo de RX y existía un grupo de 600 a 2400 detectores estacionarios situados alrededor del paciente. En estas dos últimas generaciones los cortes duraban entre 2 y 4 seg. El primer equipo de TAC para el estudio de todo el cuerpo salió al mercado en 1977. No fue hasta 1985 que pudie- ron estudiarse eficientemente las estructuras óseas con las imágenes tridimensionales y los programas para eva- luar la densidad ósea. El primer equipo que entró en nuestro país fue el SOMATOM SD, instalado en el año 1980. Este era de 3ra
  11. 11. 11 generación y constaba de un tubo de RX rotatorio y 256 detectores de yoduro de cesio. El tiempo de corte era de 9 seg. En 1981 Lackner y Thurn, reportan la obtención de imá- genes cardiacas usando un equipo de 3ra generación, con un tiempo de rotación de 2 segundos. Los datos de los cortes eran coleccionados tomando como base las fa- ses del ciclo cardiaco usando la información electrocardiográfica, para lograr obtener imágenes con una efectiva resolución temporal de 0,5 seg. Este siste- ma lo conocimos como “Seriocard” y tuvimos algunas experiencias en nuestro centro (SOMATOM SF), en el año 1985. En 1982, se introdujeron los resultados clínicos con un sistema conocido como EBCT (ELECTRON BEAM CT) que fue el llamado Imatron (USA) y Evolution (Siemens, Ale- mania), que lograba un corte de 50- 100 milisegundos. Este no se difundió debido a su gran tamaño, peso y costo. En 1987, fue que se puso en el mercado un equipo que lograba la rotación continua del gantry alrededor del pa- ciente, naciendo así la tomografía en espiral. Esta se desarrolló a partir de 1989, siendo posible los estudios de los campos pulmonares en 24 segundos, con el pa- ciente en apnea. En 1992, se comienzan a realizar con buenos resulta- dos, los estudios angiográficos con TAC, al lograrse rotaciones y procesamientos de imágenes más rápidos. En 1998 nace la época de los equipos espirales con multicorte, lográndose 2 cortes en una sola rotación. En el año 1999, comienzan a usarse estos equipos para el estudio del área cardiaca. Así ha transitado el desarrollo de la TAC con equipos multicorte de 2, 4, 6, 10,16, 40 y 64 cortes. Este último sistema (de 64 cortes) permite una velocidad de rotación de 0,33 seg. y cortes de 0,4 milímetros, ofreciendo la más alta resolución y permitiendo los estudios de las arterias coronarias, con mayor eficiencia que los ante- riores.
  12. 12. 12 El primer equipo de 64 cortes fue el SENSATION 64, instalado en nuestro país en el mes de junio del 2005 (Fig. G-7- 8). A finales de este mismo año se presentó el equipo SOMATOM DEFINITION. El mismo se caracteriza por tener dos tubos y dos sistemas de detectores que se mueven solamente en un ángulo de 90º, con el fin de adquirir los datos necesarios para conformar la imagen. Con esto obtenemos una resolución temporal de 83 milisegundos (ms.) que duplica las que nos ofrecen los equipos de un solo tubo que es de 165 ms. Unido a una resolución espacial menor de 0.4 mm. hace que este equi- po pueda definir estructuras anatómicas menores al anterior, con una alta calidad y sin compromisos asocia- dos al uso de los beta bloqueadores y al control electrocardiográfico. Este es un aparato de gran utilidad para el estudio de los órganos en movimiento, especial- mente del corazón.
  13. 13. 13 PROTECCION RADIOLOGICA La Protección Radiológica: es una disciplina científi- co-práctica encargada de elaborar los criterios para evaluar las radiaciones ionizantes como factor perjudi- cial al hombre y su medio, y en consecuencia, establecer las medidas tendientes a asegurar que las exposiciones a dichas radiaciones se mantengan dentro de límites acep- tables. A- ¿Por qué y quiénes dictan estas normas interna- cionales de protección? A pesar que el hombre está sometido a radiaciones des- de la prehistoria, el descubrimiento de los RX en 1895 (Roentgen) y de la radioactividad en 1896 (Becquerel), ha- cen que el hombre tome posesión de las radiaciones naturales y cree otras con el fin de transformar la vida de la sociedad. También conoce prontamente sus efectos po- sitivos y perjudiciales, por lo que en 1928 se crea la Comisión Internacional de Protección Radiológica. Esta Comisión, con sede en las Naciones Unidas, es la encar- gada de implantar las medidas más generales que rigen las normas internacionales de protección. En Cuba, a pesar de que desde 1974 existen regulacio- nes dentro de este tema, no es hasta 1981 que se pone en vigor la Norma Cubana (NC69-01-81). La dosis permisible anual es de 50 milisierv. B- Los órganos más afectados por las radiaciones son: Grupo I: (radio sensibles): gónadas, médula ósea, tejido linfoide, bazo y epitelio de las vías digestivas. Grupo II: (radio reactivos): piel, vasos sanguíneos, glán- dulas salivales, hueso y cartílago, conjuntiva y córnea. Grupo III: (radio resistentes): cerebro, hipófisis, tiroides, hígado, riñones, suprarrenales, músculos y páncreas.
  14. 14. 14 C- ¿Cuáles son las normas internacionales de pro- tección radiológica? La única medida eficaz para protegerse de las radiacio- nes, es no recibirlas; por lo que las regulaciones de la OMS señalan: “las radiaciones ionizantes no deben ser utilizadas siempre que el diagnóstico de las enfermedades pueda realizarse mediante otros medios; no obstante, en caso de su empleo debemos ser fieles cumplidores de sus normas”. Las normas establecidas son las siguientes: 1- Relacionadas con el Equipo: a- Condiciones técni- cas óptimas b- Calibración adecuada 2- Relacionados con el local: barrera de protección pri- maria y secundaria con plomo o baritina. 3- Medidas de protección con el personal expuesto a las radiaciones. a- Medios de protección personal. b- Control dosimétrico. 4- Medidas de protección con el paciente. D- Medidas que se deben tener en cuenta al indicar una TACM. 1- Conocer las propiedades de los RX. 2- Reducir razonablemente los exámenes que regis- tran las dosis equivalentes más altas, sin sacrificar la información diagnóstica necesaria. 3- La mujer en edad reproductiva debe considerarse potencialmente embarazada. 4- No debe indicarse una TACM a menos que produzca un beneficio neto positivo. 5- No exponer al paciente a tomografías seriadas, a corto plazo. 6- Limitar el examen en niños. 7- Evaluar bien la historia clínica del paciente.
  15. 15. 15 8- Revisar los resultados de los procedimientos diag- nósticos radiológicos o no, previos a la indicación. 9- Indicar primero los exámenes simples y después los contrastados. 10- Agotar todos los métodos diagnósticos no invasivos, donde se reciban menor cantidad de radiaciones y que no se utilicen contrastes. 11- Recordar a su paciente que debe exigir el uso de los medios de protección individual. 12- De ser posible, consultar con el imagenólogo la indicación de los exámenes más complejos. 13- Llenar adecuadamente la indicación radiológica para que el imagenólogo tenga la mayor información sobre el paciente. 14- Conocer adecuadamente las indicaciones, limita- ciones, contraindicaciones y complicaciones, del examen que va a indicar. E- ¿Aumentan las dosis de radiación los equipos multicorte? No hay dudas que la TAC es una de las técnicas en el campo de la radiología, en la que el paciente es sometido a altas dosis de radiaciones. En los primeros equipos con- vencionales y espirales de un solo corte, todas las imágenes se obtenían con un miliamperaje constante para el área de estudio, independientemente del mayor o menor espe- sor de ésta. En equipos espirales y algunos multicorte, ya tenían un nivel de reducción de dosis basada en el espesor de cada área, detectado en las vistas del topograma. Ya en algunos de los últimos modelos de mayor cantidad de cortes la dosis se regula por medio de la modulación en tiempo real del área de estudio. El ajuste de dosis es totalmente auto- mático, al utilizar hasta 2320 mediciones por segundo para ajustar el miliamper por segundo (MAS) en tiempo real; calculándose que puede haber una reducción hasta de 66%, en comparación con los equipos que realizaban los exáme- nes con miliamperaje fijo.
  16. 16. 16 CONTRASTES RADIOLOGICOS. La sustancia de contraste es aquella cuyo coeficiente de absorción a los rayos X difiere de los tejidos del orga- nismo, aportando una mayor resolución a la imagen diagnóstica. A- La sustancia de contraste ideal debe cumplir los siguientes requisitos: a- Alto contenido de yodo. b- Alta solubilidad en el agua. c- Baja viscosidad. d- Osmolalidad igual o cercana a los fluidos corporales. e- No poseer carga eléctrica. f- Ser estable al calor. Esto permite ofrecer una opacificación adecuada de las estructuras que se estudian, sin constituir un peligro para el organismo. B- Las causas de las reacciones adversas de las sus- tancias de contrastes son: a- Reacción alérgica, anafiláctica, anafilactoide e idiosincrásica. b- Acción tóxica c- Hiperosmolaridad. C- Las sustancias de contrastes pueden clasificarse en: POSITIVAS: aire, CO2 y ozono. NEGATIVAS:estos contrastes son derivados del triyodobenceno y se dividen en: iónicos y no iónicos. Los iónicos se caracterizan por presentar carga eléctri- ca y los no iónicos, no la tienen; además son hidrofílicos.
  17. 17. 17 La presión osmótica de las soluciones de contraste, es de gran importancia y está representada por el número de partículas libres móviles en solución. Esta se mide en miliosmoles x kg. (osmolalidad), en miliosmoles x litro (osmolaridad), en Megapascal y en atmósferas. La con- versión es de 1000 miliosmol = 2,58 MPa = 25,5 at. . La presión osmótica del plasma es de 290 miliosmoles x kg. Los iónicos se dividen en monoméricos y diméricos. Entre los primeros tenemos los contrastes de mayor uso en urología y en angiografías, donde podemos señalar los compuestos por: ácidos diatrizoico, metrizoico, iodamico, iotalámico, ioxitalámico y ioglínico. La osmolalidad de este grupo se encuentra alrededor de los 1500 miliosmol x kg. En el grupo de los diméricos con baja osmolalidad te- nemos el ácido ioxáglico y iocármico. La osmolalidad de este grupo se encuentra alrededor de los 500 miliosmol x Kg. Entre los no iónicos de baja osmolalidad tenemos: iopamidol, iohexol, iopromide, ioversol, iopentol e iobitridol. La osmolalidad de este grupo se encuentra alrededor de los 645 miliosmol x kg. Entre los no iónicos isosmolares con el plasma tene- mos el ioxanol y el iotrolan. La osmolalidad de este grupo se encuentra alrededor de los 290 miliosmol x Kg. D- Los factores de riesgo a considerar antes de la ad- ministración de un contraste radiológico son los siguientes: a- La edad del paciente inferior a cinco años o supe- rior a sesenta y cinco. b- Los antecedentes de cardiopatías, insuficiencia he- pática o renal, hipertensión arterial, diabetes, mieloma múltiple, asma, anemias y otras. c- La deshidratación o desnutrición del paciente. d- Los antecedentes atópicos.
  18. 18. 18 e- Los antecedentes de reacciones adversas a la ad- ministración de un contraste radiológico. f- Los antecedentes de hipersensibilidad a otros fármacos. E- Las medidas profilácticas que deben tenerse en cuen- ta en pacientes de alto riesgo son: a- Obtener el consentimiento informado del paciente y familiares. b- Utilizar contrastes de baja osmolalidad y no iónicos, de ser posible. c- Debe premedicarse al paciente antes de la explora- ción. d- Asegurar el monitoreo constante de ECG, TA, pulso y saturación de O2 . e- Disponer de medios de resucitación y de personal entrenado para ésta, en el área de realización del examen. F- ¿Cuál es el tratamiento de las reacciones severas a los contrastes? Medidas generales: a- Ladear al paciente para evitar una broncoaspiración. b- Dar psicoterapia y tomar sistemáticamente los sig- nos vitales. c- Tener una vena canalizada y mantener una venoclisis. d- Suspender los contrastes y anestésicos. e- Abrigar al paciente de ser necesario. f- Mantener las vías aéreas permeables. g- Uso de O2 si fuera necesario. h- Localizar al personal entrenado en reanimación.
  19. 19. 19 G- Tratamiento medicamentoso: a- Benadrilina: 40 mg por vía EV. b- Hidrocortisona: 5 mg x kg. x dosis. c- Adrenalina (un ámpula en 1000 cc): 0,3 cc x vía subcutánea. d- Atropina ( si bradicardia): 0,01 mg x kg. x dosis. e- Aminofilina ( sí disnea): 250 mg x vía EV. f- Bicarbonato de Na al 4% (9,5 meq): dosis de 50 a 75 meq. g- Diazepam (si convulsiona): 0,5 mg x Kg. x dosis. h- Expansores plasmáticos. Después de revisar los aspectos más generales de los contrastes yodados que se usan en la práctica diaria de la radiología, vamos a referirnos a aspectos técnicos pro- pios de la TACM. En esta técnica deben conocerse algunos parámetros importantes, que son el bolo de contraste geométrico (bolus geometry) y los tiempos de bolo de contraste (bolus timing). Dentro de éste último se incluyen el test bolus y el bolus tracking. La TACM en los estudios angiográficos, se basa en la rápida adquisición de los datos durante el paso del con- traste por la fase arterial o venosa. El procedimiento ofrece la mayor intensidad de contraste dentro de la luz del vaso, que permite diferenciar éste de las estructuras vecinas. Esta novedosa técnica, en la actualidad, es comparable con la angiografía por sustracción digital, que sigue sien- do el «gold standard», de los estudios vasculares, aventajando a ésta, por ser menos invasiva. No hay dudas de que el principal aspecto en la realiza- ción de los exámenes contrastados con TACM es poder definir adecuadamente el tiempo de la inyección del bolo de contraste en relación con el comienzo de la adquisi- ción de los datos. Este tiempo se basa en el conocimiento del bolus geometry. Se se define como el patrón de in-
  20. 20. 20 tensificación del contraste, medido en la región de inte- rés, relacionado en el tiempo y la atenuación alcanzada de las unidades Hounsfield (UH). El bolus geometry se caracteriza por dos parámetros fundamentales, que son: a- El pico de máxima intensidad (peak of maximum enhancement), en UH. b- El tiempo para alcanzar el pico de máxima intensi dad. De estos parámetros se genera una curva de intensidad del contraste por tiempo, que ofrecen estos modernos equipos multicorte. Existen una serie de parámetros que influyen en el bolus geometry, que son: 1- Demográficos. Muchos autores coinciden en que la edad, el peso, la altura, la superficie corporal, el sexo, la presión arterial y la frecuencia cardiaca, no afectan significativamente el pico de intensidad/ tiempo del contraste. 2- Por enfermedades. Las enfermedades que afectan la fracción de eyección producen proporcionalmente un incremento del pico de intensidad de contraste en forma de meseta e incrementan el tiempo en llegar el bolo de éste al área de interés. Esto se debe a que el aumento del tiempo de circulación produ- ce dilución del material de contraste. 3- Por concentración del contraste. Cuanto mayor sea la concentración de yodo en el con- traste, el pico se incrementa, mientras que el tiempo de circulación permanezca invariable. Es por lo que se reco- miendan contrastes con una concentración superior a 350 mg/mL. Algunas compañías han introducido recientemente en el mercado contrastes no iónicos de 400 mg/mL, que ofrecen las siguientes ventajas en la TACM: A- Aporta la dosis de yodo requerida en menos tiempo, sin una carga innecesaria de volumen.
  21. 21. 21 B- Acorta el tiempo para alcanzar el pico máximo de realce. C- Proporciona mayor realce de los vasos y el parénquima, con el mismo volumen. D- Ofrece un perfil de seguridad adecuado. No existen variaciones en el pico de máxima intensidad relacionadas con la osmolalidad, ionicidad y el grupo (monomérico o dimérico) a que pertenece el contraste. 4- Por la realización del examen pre o post pandrial. No se han descrito diferencias sustanciales al respecto. Algunos autores describen un incremento en el pico de contraste intrahepático después de las comidas, pues existe aumento del flujo arterial mesentérico. 5- El sitio de inyección. Hay trabajos que refieren que mientras más central sea la inyección, el pico del bolo de contraste se incrementará y el tiempo disminuirá. 6- El volumen de contraste a inyectar. El contraste a usar puede ser iónico o no iónico, a una concentración de 370 a 400 mg/mL. En los estudios vasculares el volumen del bolo inyectado debe ser igual a la duración del tiempo de corte, para lograr el mayor nivel de intensificación del mismo, en los vasos. Los estudios han probado que a mayor volumen de éste, se incrementa el pico de mayor intensidad y el tiempo de circulación. Este volumen oscila entre 80 y 150 mL, atendiendo al protocolo de trabajo, al área a estudiar y el peso del pa- ciente. Recordar que la dosis del contraste yodado es de 2 a 4 cc. por kg. de peso. Esta debe ser más controlada cuando se trabaja con niños. 7- Flujo de inyección (injection rate). El flujo de inyección oscila entre 2,5 a 6 mL/segundo. A mayor flujo se obtiene mayor concentración del contraste en el área de interés, por tanto mayor pico en menos tiempo (Fig. G- 9-10).
  22. 22. 22 8- Inyección de solución salina (bolus chaser). El bolus chaser es la inyección de solución salina en forma de bolo a través de la misma línea por donde se inyecta el contraste. Esto se realiza con una bomba de inyección automática, de jeringuillas dobles. Su ventaja fundamental es que se obtiene un incremento del pico de intensidad de contraste en menor tiempo, esto nos permite inyectar menos cantidad del mismo y evita los artefactos producidos por los restos de contraste que fre- cuentemente quedan en las venas. También evita las flebitis post contraste y disminuye los costos. 9- Test bolus y bolus tracking. La cantidad y tiempo de inyección del contraste son vitales en la realización de un examen de calidad. El retardo entre el comienzo de la inyección de éste y el comienzo de la adquisición de los datos debe ser óptimo. Existen dos modalidades que nos permiten definir el tiem- po de retardo adecuado para comenzar la adquisición en cada tipo de examen. En el test bolus se toma una región de interés dentro de la luz de un vaso, próxima al área que será estudiada. Se inyectan unos 20 mL. de contraste a un flujo igual al que posteriormente será inyectado, realizándose cortes simples dinámicos a intervalos entre 1 y 2 segundos. Cuando éste llegue a esa zona predeterminada, el pico de atenuación en el tiempo obtenido, se utilizará como retardo (delay time) para la inyección del bolo principal. La diferencia con el bolus tracking es que éste se basa en un software que coordina el comienzo de los cortes, cuando la mayor tinción es alcanzada en el área de inte- rés, por el contraste. El umbral de disparo puede planificársele al equipo cuando la imagen alcance deter- minada concentración en unidades Hounsfield (UH); por lo general se usan 130 UH.
  23. 23. 23 ASPECTOS TECNICOS. Los equipos multicortes constituyen la solución más actual en la formación de la imagen cardiovascular, por- que ofrecen un detalle diagnóstico sin precedentes con una resolución isotrópica por debajo de los 0,4 milíme- tros, a cualquier velocidad de exploración. Además tienen software para realizar otras novedosas técnicas. Este consta de un generador de rayos X, de alta poten- cia, la mesa para los pacientes, la unidad de control y evaluación, la consola de evaluación, el sistema informático, el de refrigeración, el de software ampliado y el módulo de red. El diseño del tubo es el elemento clave para conseguir un tiempo de rotación de 0,33 segundos y un rendimien- to fiable al funcionar con gran potencia. Este equipo dispone de una tecnología en el eje “z”, que permite la cobertura de volúmenes submilimétricos con una reso- lución isótropa de rutina por debajo de cuatro milímetros, independientemente del pitch y de cualquier posición del campo de exploración. El mismo utiliza un sistema de detectores multifila, basado en el detector de cerámica ultrarrápida, que pro- porciona flexibilidad en la elección del grosor de corte, así como una extraordinaria calidad de imagen, eficien- cia en la dosis y una máxima cobertura del volumen, para adaptar el examen de forma óptima a los requisitos clínicos. La resolución isotrópica por debajo de 0,4 mm. de corte permite observar los más pequeños vasos intracraneales, pulmonares, mesentéricos, renales y periféricos, así como las ramificaciones coronarias más pequeñas. El tubo admite la exploración submilimétrica, de alta velocidad y volumen, así como un examen de cuerpo entero en una sola apnea. La TACM submilimétrica de cuerpo entero, de 157 cm., sólo requiere 18 segundos; el estudio de tórax, abdomen y la pelvis, es de 120 cm., sólo requiere 14 segundos; el estudio de coronarias, de 12 cm., se realiza en nueve
  24. 24. 24 segundos. Esto reduce el tiempo de apnea de forma signi- ficativa, aumenta la calidad de la imagen y la comodidad del paciente, disminuyendo ostensiblemente los artefac- tos. Un aspecto interesante desde el punto de vista tecno- lógico es el tipo de tubo de RX, que utiliza un haz de electrones con una deflexión rápida y precisa, lo que crea dos focos definidos, que alternan 4640 veces por segundo. Esto dobla las proyecciones de los RX que inciden en cada elemento detector. Las dos proyecciones superpues- tas producen un sobre muestreo en la proyección «z» que recibe el nombre de «muestreo doble z». Las mediciones realizadas se superponen, dando más anchura al ele- mento detector, lo que duplica la información de exploración, sin aumentar la dosis. Los detectores de cerámica y la correspondiente electrónica del detector de alta velocidad, a 64 cortes, permiten la lectura prác- ticamente simultánea de dos proyecciones para cada elemento detector (dos por 32 cortes para cada ángulo de visión), lo que produce una adquisición completa de 64 cortes. Esto proporciona una visualización de vóxeles isotrópicos por debajo de 0,4 mm., independientemente del pitch, con la correspondiente eliminación de los ar- tefactos en espiral que aparecen en la rutina clínica, en cualquier posición del campo de exploración. El sistema informático de estos equipos consta de 3 componentes, que son: la microcomputadora de recons- trucción, la consola del operador (NAVEGATOR) y la consola de evaluación (WIZARD). La microcomputadora de reconstrucción contiene un grupo de procesadores de altas prestaciones que se en- cargan del procesamiento previo y la reconstrucción de los datos de la TACM. La consola del operador establece el diálogo hombre-máquina y la evaluadora permite ha- cer el postprocesamiento de las imágenes. El software entrega un gran número de protocolos de exámenes predefinidos, lo que hace que la planificación del exa- men sea rápida y eficiente. Además cuenta con programas de aplicaciones clínicas en su configuración estándar. Nos
  25. 25. 25 referiremos brevemente a ellos: a - Programa para estudio del corazón: Tiene una adquisición de datos optimizada, controlada por ECG, para reconstruir imágenes y evaluar la infor- mación obtenida con el fin de cuantificar las calcificaciones coronarias, las lesiones vasculares de estas arterias y analizar la función ventricular. La opción permite un es- tudio secuencial (disparo prospectivo por ECG), con una resolución temporal de hasta 166 ms y una exploración espiral (sincronización retrospectiva por ECG), con una resolución temporal de 83 ms.; para obtener imágenes del corazón en diferentes momentos del ciclo cardiaco, con un tiempo de exploración de 0,33 seg. Esta última tam- bién permite lograr imágenes de calidad en algunos casos de arritmias graves. La sincronización con el ECG ayuda a evitar los artefactos de pulsación y movimiento de los pulmones y vasos próximos al corazón. El estudio para evaluación del calcio, facilita el cálculo del volumen y la masa de calcio en las paredes coronarias. Esto permite valorar el riesgo de infarto cardiaco y la evaluación cuando se piensa imponer un stent, en las áreas que defina el ejecutor. La masa de calcio se deter- mina en unidades de CaHA (hidroxiapatita de calcio) equivalentes; estos datos se obtienen y calibran automáticamente mediante el modo de exploración (Fig. G- 11-12). Existe una aplicación para análisis de las lesiones vasculares basada en un software que admite la evalua- ción semiautomática o manual, cuantificación precisa y graduación de las lesiones vasculares, tomando como base los datos obtenidos en la adquisición. Otra aplicación es el estudio de los parámetros funcio- nales cardiacos. El análisis funcional se basa en el conjunto de datos angiográficos obtenidos en la adquisi- ción, reconstruidos mediante sincronización retrospectiva por ECG en diferentes fases del ciclo cardiaco, refor- mándolos posteriormente mediante el MPR. Esto nos facilita la determinación de los parámetros funcionales
  26. 26. 26 básicos como los volúmenes al final de la sístole y la diástole, la fracción de eyección, la cuantificación del gro- sor miocárdico y el cálculo de masa (Fig. G- 13- 14). b - Programa de estudio de perfusión cerebral. La opción de perfusión está destinada a la evaluación cuantitativa de los datos dinámicos de la TACM del cere- bro después de la inyección de contraste. Se obtiene la formación funcional de una imagen del cerebro y el rápido diagnóstico de las alteraciones de la perfusión cerebral. El principal campo de uso es el estudio de los accidentes vásculo-cerebrales isquémicos y en la perfusión de los tu- mores cerebrales. En este examen deben evaluarse los siguientes parámetros: a- El tiempo de tránsito medio (MTT). b- El tiempo del pico de contraste (TTP). c- El flujo sanguíneo cerebral (CBF). d- El volumen sanguíneo cerebral (CBV). El MTT y el TTP son los parámetros que se alteran en la isquemia y el CBV y el CBF son los que indican el área de penumbra isquémica. c - Programa de estudios endoscópicos virtuales. 1- La colonoscopía endoscópica: es una colonoscopía no invasiva del colon completo de alta resolución y dosis re- ducida. Es la aplicación clínica de un software que permite el estudio. Evalúa simultáneamente los datos adquiridos mediante dos exploraciones (en decúbito prono y supino), dando una imagen fiable para el diagnóstico de los pólipos y las oclusiones. 2- Otras posibilidades de estudios endoscópicos virtuales son: la broncoscopía, la pielo-uretoscopía y la endoscopía intravascular.
  27. 27. 27 d - Programa de aplicaciones clínicas del estudio del pulmón. Es una herramienta que además de estudiar los cam- pos pulmonares con alta resolución, permite el estudio y seguimiento de los nódulos pulmonares. De estos se puede evaluar la medición exacta y fiable de los focos redondos pulmonares y su diferenciación con estructuras vasculares sospechosas. Además la TACM admite también hacer los estudios convencionales de TAC con mayor resolución.
  28. 28. 28 PRINCIPIOS BASICOS. Existen una serie de principios básicos que son comu- nes para las distintas técnicas de imagen, a saber: A- Calidad de la imagen: Toda técnica de diagnóstico debe velar por una buena calidad de imagen como precepto indispensable. Existen una serie de parámetros de calidad de imagen a que nos referiremos brevemente, estos son: resolución espacial, el contraste, la resolución temporal, la relación señal- ruido y la presencia de artefactos. 1- Resolución espacial. Es la distancia mínima que debe haber entre dos pun- tos de un objeto, para poderlos identificar como imágenes independientes. En el caso de la TAC la resolución máxi- ma teórica es el tamaño del voxel. Por tanto, para tener mayor resolución espacial se debe disminuir el espesor del corte, aumentar la matriz de la imagen y reducir el tamaño del campo. Un aumento de la resolución espa- cial es importante porque para examinar los vasos e imágenes pequeñas, se necesita un rango milimétrico para obtener la imagen con la calidad requerida. 2- Resolución de contraste. Es la capacidad que tiene la imagen para revelar dife- rencias sutiles en la composición de los tejidos del organismo. Dependerá de las diferentes propiedades de los tejidos frente a la técnica de imagen empleada. Se definen 5 densidades radiológicas básicas: el aire, la gra- sa, el agua, el calcio y el metal, que proporcionan el contraste en la imagen. La TAC tiene mayor resolución de contraste que la radiología convencional y esto se expresa con el término densidad o atenuación. Este de- penderá de la anchura y el nivel de ventana de visualización.
  29. 29. 29 3- Resolución temporal. Está relacionada con la mayor o menor borrosidad cinética del cuerpo estudiado por el tiempo de adquisi- ción de la imagen, siendo inversamente proporcional al tiempo de exposición. Esta resolución se mejora dismi- nuyendo los tiempos de adquisición, usando fármacos y sincronizando la obtención de la imagen con la respira- ción o el electrocardiograma. Por lo general se obtienen las imágenes en diástole y en apnea. 4- Resolución isotrópica. Es la misma resolución espacial pero a escala submilimétrica. El tamaño del voxel es de 0,4 mm. 5- Relación señal-ruido. Son los componentes que aparecen en la imagen, aje- nos al objeto de interés. Cuando se interpreta una imagen, el objetivo es separar los rasgos diagnósticos (señal) de su entorno (ruido), que dificulta la identificación de la señal. Cuanto mayor sea la relación entre la señal y el ruido, será más fácil interpretar la imagen diagnóstica. Se dice que una lesión es conspicua cuando es fácilmente visible en la imagen, o sea, que la relación señal-ruido es alta. La conspicuidad es el contraste de la lesión dividido por la complejidad del fondo (ruido aleatorio y el estructural); tiene una buena correlación estadística con la probabili- dad de detección de la lesión. El ruido aleatorio es el que depende de las variaciones locales de la intensidad de ra- diación y/o de la sensibilidad de los sistemas receptores. El ruido estructurado depende de la superposición de es- tructuras. 6- Artefactos. Es cualquier estructura que aparezca en una imagen médica que no tenga correspondencia real con el área estudiada. Los artefactos más frecuentes son por:
  30. 30. 30 a- Calibración: sí el sistema TACM no está ajustado adecuadamente. b- Endurecimiento del rayo: cuando los RX atraviesan el tejido, la energía media del espectro de radiación se desplaza hacia una energía más alta. c- Artefactos de metal: los objetos de metal absorben totalmente la radiación. Esto produce como resultado las correspondientes rayas fuertes, negras o blancas, o ar- tefactos en forma de estrella. d- Artefactos de imagen. e- Artefactos de movimiento: el movimiento de los ór- ganos en el corte o el desplazamiento de todo el corte, durante la exploración pueden provocar artefactos bri- llantes y oscuros. Estos parámetros de calidad de imagen se relacionan entre sí. Lo ideal es poder disponer de mayor resolución espacial, temporal y de contraste en imagen, con alta relación señal-ruido y sin artefactos. B- Aspectos técnicos generales. La técnica a utilizar debe ser meticulosa para obtener imágenes de la mayor calidad. Para eso se usan protoco- los de trabajo, donde deben controlarse las siguientes variables: 1- Grosor del corte (slice thickness). Este depende de la colimación, influyendo en la reso- lución espacial y la relación señal-ruido. Por ejemplo para el estudio de vasos de pequeño calibre la colimación debe ser de 2 o 3 mm.; en los de gran calibre se usan 5 mm. En pacientes de alta estatura la colimación debe ser de 5 mm. para mejorar la relación señal-ruido y ganar cali- dad en la imagen. La colimación en los estudios del corazón es de 0,6 mm. 2- Área de estudio (scan area). Es la definición con exactitud del área de estudio.
  31. 31. 31 3- Longitud del área de cortes (scan length): Es la definición de la longitud del área a estudiar. 4- Dirección de corte. El corte puede dirigirse cráneo-caudal o a la inversa. 5- Kilovoltaje (kv): El kv representa la energía de los fotones y proporciona la penetración del rayo en el área a estudiar. 6- Miliamperaje efectivo (effective mAs): Proporciona la cantidad de haz de RX que representa el número de fotones que atraviesa al paciente y por tanto la calidad de las radiaciones, dando mayor detalle a la imagen, por incremento del tono de contraste. No obstante, el manejo incorrecto de este parámetro puede someter al paciente a radiaciones innecesarias y tam- bién producir artefactos por el mal uso del mAs. 7- Duración del corte (rotation time): Se recomienda entrenar al paciente para lograr el ma- yor tiempo de apnea posible, atendiendo al examen a realizar. En el caso de los estudios de carótida este tam- poco debe deglutir. 8- Pitch: Se define como la relación entre el avance de la mesa por la rotación completa del gantry y la anchura del cor- te, de una fila de detectores. Los factores altos del pitch, que expresan una mayor distancia entre los cortes espirales, proporcionan: 1- Una mejor resolución espacial. 2- Una menor exposición a las radiaciones. 3- Un pitch de 2 significa la mitad de las exposiciones que un pitch de 1. En su contra tiene que el corte debe ser muy fino y aumenta el ruido; esto puede ser compensado aumen- tando el mAs. Normalmente el pitch usado es de 2 y sólo se usa de 3
  32. 32. 32 cuando los cortes son de 1 mm, porque la resolución es- pacial es diagnóstica y los artefactos de la imagen no afectan el área de interés. Nunca debe usarse un pitch por debajo de 1.5. 9- Velocidad de movimiento de la mesa (table feed/ rotation) Esta velocidad es en mm/seg. y consiste en la relación entre la distancia a recorrer la mesa (en el área de es- tudio determinado por el operador), con el tiempo que puede estar el paciente en apnea. Por ejemplo si la dis- tancia a recorrer es de 250 mm y el paciente sostiene la respiración 25 seg. , la velocidad de movimiento debe ser de 10 mm/seg. 10- Reconstrucción (reconstruction increment): Este representa la distancia entre los cortes consecu- tivos y sus efectos sobre la resolución espacial y de contraste. La reconstrucción se realiza dependiendo del volumen que se obtiene por la superposición de cortes. Una re- construcción estrecha minimiza los artefactos por superposición en las reconstrucciones tridimensionales. 11- Kernel: El kernel no es más que un sistema de filtrado de la imagen. Oscila entre 30 y 90 en una escala de resolu- ción y el área varía según la zona a estudiar, que puede ser: cabeza (H) y cuerpo (B). Otro dato es la alta resolu- ción (H) y la ultra alta resolución (U). La resolución se refiere a la mayor o menor definición de las estructuras y bordes y no a la espacial o temporal. Debe siempre tenerse en cuenta que para las imágenes en 3D no es correcto programar un kernel de alta resolución, pues pierde calidad al no existir buena homogeneidad en toda la imagen. 12- Campo de Visión (FOV): Es el tamaño de la imagen que va a ser reconstruida, y se calcula por medio del tomograma. A campo más estre- cho hay mayor resolución porque el píxel es más pequeño, en una matriz casi siempre fija.
  33. 33. 33 13- Protocolos de trabajo (scan protocols). La optimización de los protocolos de trabajo está basa- da en los siguientes aspectos: 1- Deben escogerse adecuadamente los parámetros de corte y de necesitarse el contraste, escoger el tipo y forma de administración. 2- Se deben definir los parámetros de reconstrucción basándose en una indicación o propósito determinado. Existen dos tipos que sirven de base a la reconstrucción: a- El procesamiento de los datos, que ofrece: una alta resolución, cortes finos, gran número de imá- genes, un efectivo procesamiento y archivo. b-La revisión de los datos (review dataset), ofrece menor resolución, cortes más gruesos, menor nú- mero de imágenes y da buena calidad en la docu- mentación de la imagen. 3- Se debe escoger adecuadamente la metodología y técnica de post-procesamiento. 14- Datos de post-procesamiento. El post-procesamiento de la imagen ha ganado en im- portancia por día, debido a la gran cantidad de información por imagen que brindan los equipos multicortes. Entre estos sólo nos referiremos brevemente a los más impor- tantes dentro de esta novedosa técnica: 1- Proyección de Máxima Intensidad (MIP). El MIP nos proporciona una proyección del vaso en toda su extensión pudiéndose usar esta imagen para limpiar la imagen, al poder sustituir todas las estructuras que se superponen. La misma es de gran utilidad para eva- luar las calcificaciones y los stents en los vasos. Con ayuda de esta función pueden calcularse nuevas interfaces de orientación seleccionable libremente a par- tir de tomogramas. Es un método para presentación 3D a lo largo de la dirección de visualización a través de un volumen. En la imagen los resultados dependerán del voxel con la ab-
  34. 34. 34 sorción más alta de cada área. 2- Reconstrucción Multi Planar (MPR). Es la primera reconstrucción que hace el equipo en los planos coronal, axial y sagital. Permite moverse dentro de estos planos hasta obtener la posición deseada para proceder a realizar las reconstrucciones más complejas. 3- Función de Transferencia de Modulación (MTF). Es la relación dependiente de la frecuencia del con- traste del objeto, respecto al contraste de la imagen. La MTF permite una determinación cualitativa de la reso- lución espacial de un sistema de generación de imágenes. 4- Volumen ejecutable (volume rendering VRT). El volumen rendering es posiblemente la técnica más novedosa entre estas reconstrucciones, ya que aporta una codificación de colores que asigna a cada uno de los tejidos por sí solo, siendo más fácil identificarlos. Otras de sus ventajas es que se puede eliminar el plano óseo y los tejidos blandos aparecen como transparentes. En esta técnica se genera un histograma basado en la intensidad de un voxel y cada uno es mapeado como opa- cidad o incremento de la intensidad. La atenuación relativa al voxel es preservada usando la escala de grises en la imagen. Todos los datos obtenidos son usados y al final de la imagen pueden proyectarse vasos, órganos o ambos. Esto ofrece la posibilidad, por medio del software, de ob- servar el interior de los mismos y transitar a través de ellos usando la realidad virtual. 15- Voxel. Existe una unidad elemental para imágenes bidimensionales digitalizadas que es el píxel. El voxel es una unidad elemental de volumen, que da la informa- ción tridimensional y el conjunto de estos es lo que determina la matriz de la imagen.
  35. 35. 35 C- Preparación del paciente. Para obtener buenos resultados diagnósticos el médico debe lograr la óptima preparación del paciente que va a enfrentar un proceder imagenológico. El primer aspecto a tener en cuenta es el consentimien- to de éste para realizarse el examen; esta aprobación es un derecho que debe respetarse y es aceptado como un concepto legal. Por esto, el médico tiene la obligación de informar al mismo sobre los riesgos, consecuencias, al- ternativas, recomendaciones, de manera que el enfermo tenga elementos para hacer un razonamiento antes de otorgar su permiso. Todo este proceso debe mantenerse de manera confi- dencial entre el médico y el paciente. El médico no tiene derecho a indicar un procedimiento sin el acuerdo del pa- ciente; esto sólo será factible en casos de extrema emergencia o en pacientes incapacitados mentales, siem- pre velando por la ética profesional y de ser posible, previa consulta con familiares allegados. En el caso de uso de contrastes radiológicos o de proce- deres de alto riesgo se debe dar el consentimiento por escrito mediante documento preparado al efecto. Este es un precepto legal exigido en muchos países. En la TACM se usan grandes cantidades de contraste, por lo que este consentimiento es imprescindible. Preparaciones habituales. a– Sedación: en la mayoría de los procederes diagnós- ticos no invasivos, no es necesario usar sedación previa. Sólo recomendamos, en algunos enfermos que serán so- metidos a esta prueba, una ligera sedación la noche anterior con una tableta de Midazolan, Diazepam o simi- lar, siempre que no interfiera con algún tratamiento que pueda tener indicado. La sedación o anestesia durante el examen se deja en manos del médico anestesista. b– Ayunas: a nuestros pacientes se les exige que estén en ayunas desde la noche anterior o sin tomar nada en las últimas 4 horas.
  36. 36. 36 c- Uso de preparación única por vía oral o rectal: en la vía oral se usan polvos que se diluyen en un litro de agua y se toman en un tiempo determinado. Por vía rec- tal se utilizan los microenemas. Esta preparación es fundamental cuando el paciente será sometido a una colonoscopía virtual. También de manera más convencio- nal se pueden usar laxantes por vía oral y enemas vía rectal. Los laxantes más comunes son el Bisacodilo, Dorbantilo u otros, teniendo en cuenta que siempre es necesaria la aplicación de enemas evacuantes en la no- che antes y a pocas horas de la realización del examen. d- Uso de tratamiento anti-sensibilizante: sólo se usa en algunos pacientes con hiperergia no grave al con- traste y donde sea el examen imprescindible para su diagnóstico. Nosotros usamos 50 mg. de Prednisona por vía oral o 100 de Hidrocortisona por vía IM., cada 6 horas de 12 a 72 horas antes del examen. Además de 25 a 50 mg. de Difenhidramina IM. y 100 mg. de Hidrocortisona, antes de comenzar el examen. D- Indicaciones, limitaciones y contraindicacio- nes generales de la TACM. I- Indicaciones: A- En el tórax, las indicaciones generales son: • Mediastino: 1- Es de gran utilidad para estudiar las masas mediastinales, su composición, características y localiza- ción, así como las lesiones vasculares de éste. • Pulmón: 1- Es de utilidad para el estudio de lesiones pulmonares, vistas o no en el Rx de tórax simple, pero sospechadas o con hallazgos que no expliquen la clínica del paciente. 2- Esta es una herramienta que además de estudiar los campos pulmonares con una alta resolución, permite el pesquisaje, estudio y seguimiento de los nódulos pulmonares.
  37. 37. 37 3- Para el estudio de las lesiones focales y difusas del parénquima pulmonar. 4- Además, la TACM es una técnica mínimamente invasiva para el estudio de los vasos arteriales y venosos pulmonares. 5- Proporciona excelentes vistas tridimensionales del árbol vascular y es capaz de detectar oclusiones u otras lesiones en vasos hasta de 1mm de diámetro. De gran utilidad para el diagnóstico del tromboembolismo pulmonar. 6- También es de utilidad en el estudio de despistaje de las bronquiectasias, aunque no sustituye a la broncografía cuando se utiliza para planificar una inter- vención quirúrgica. También pueden realizarse broncoscopías virtuales. 7- Estudio de las lesiones ocupativas intraluminales por broncoscopía virtual. 8- Estudio por perfusión de los tumores pulmonares. • Pleura y pared del tórax: de interés para el diag- nóstico de las lesiones primarias o secundarias de la pleura y la pared del tórax. • Tráquea: es de gran utilidad para el estudio de las enfermedades de estructuras circundantes que invaden la tráquea. • Otras: a- Evaluar manifestaciones torácicas de enfermedades malignas sospechadas. b- Detectar enfermedades torácicas sospechadas loca- les o sistémicas que no hayan sido detectadas por otro medio diagnóstico. c- Como guía para procederes intervencionistas como la BAAF. B- En el aparato cardiovascular: 1- Tiene utilidad en el diagnóstico precoz de los aneurismas aórticos.
  38. 38. 38 2- Programa para estudio del corazón: a- El estudio para evaluación del calcio, nos facilita el cálculo del volumen y la masa de calcio en las paredes coronarias. Esto permite valorar el riesgo de infarto cardiaco y la evaluación cuando se piensa im- poner un stent, en las áreas que defina el ejecutor. b- Su principal indicación es el estudio de las arte- rias coronarias. Entre éstas podemos citar: 1- En el dolor precordial cuando se sospecha enfer- medad coronaria. 2- En seguimiento evolutivo de la permeabilidad de los by pass y stents 3- Para evaluar los vasos coronarios en el curso de las miocardiopatías. 4- Para la evaluación del estado de las arterias coronarias previo a un tratamiento quirúrgico de las válvulas cardiacas. 5-Para evaluar las placas de ateromas, principalmen- te cuando se piensa en un tratamiento endovascular. 6-Para evaluar las variantes anatómicas de las arte- rias coronarias. 7-Como pesquisaje de lesiones coronarianas. 8-En el estudio de las cardiopatías congénitas del adulto y sus complicaciones quirúrgicas. 9-Como complemento de otros medios diagnósticos por imágenes que se usan para el diagnóstico de las en- fermedades cardiacas. c- Otra aplicación es que permite el estudio de los parámetros funcionales cardiacos. C - En el aparato digestivo: 1- Es de gran beneficio para el estudio de las enfer- medades del hígado y el páncreas, entre las que pueden citarse los procesos tumorales, inflamatorios y muy específicamente la infiltración de grasa en el hígado.
  39. 39. 39 2- También su uso se extiende a las enfermedades de la vesícula y las vías biliares, incluyendo la enfermedad litiásica y los procesos inflamatorios de esta área. 3- Además, con el uso de contraste oral pueden estu- diarse las vísceras huecas, fundamentalmente las lesiones malignas y su extensión a estructuras adyacentes. 4- Es de provecho también, para el estudio de todo tipo de procesos expansivos intrabdominales, tumorales o inflamatorios 5- Para el estudio del abdomen agudo. 6- También sirve para el estudio de las adenomegalias intrabdominales y retroperitoneales, las colecciones lí- quidas y los abscesos intra abdominales. 7- La colonoscopía virtual: es una endoscopía no invasiva del colon completo de alta resolución y dosis reducida. Es la aplicación clínica de un software que permite diagnóstico de las lesiones pólipoideas. 8- El estudio de pacientes con hipertensión portal, para la evaluación de las fases arteriales y venosas. 9- En el estudio de los aneurismas de la aorta abdo- minal y sus ramas. 10- En el estudio de los procesos isquémicos abdomi- nales agudos y crónicos. 11- En el estadiamiento general de los procesos tumorales D- En el tractus urinario: 1- Es de gran ayuda para el estudio de las masas re- nales y pararrenales, así como para diferenciar las lesiones quísticas de las sólidas. 2- También es de utilidad para el estudio de los traumatismos renales. 3- Es útil para el estudio de las anomalías congénitas. 4- Estudio de los riñones que no eliminan, en la hidronefrosis y la atrofia renal y otras causas.
  40. 40. 40 5- Es importante para el diagnóstico y seguimiento en la litiasis reno-uretral. 6- Permite endoscopías virtuales que pueden diferen- ciar los procesos oclusivos intraluminales de los extraluminales. 7- Es un examen de gran utilidad para el estudio de las suprarrenales. 8- También sirve para el estudio de la litiasis vesical, los tumores. En estos últimos tiene un gran valor en su estadiamiento. 9- En la próstata sirve para los tumores de la próstata, principalmente para su estadiamiento. 10- Para el estudio integral de los donantes de riñón. 11- En el estudio de la hipertensión reno-vascular y sus causas. E- En el sistema osteomioarticular: 1- Su valor fundamental es como complemento del exa- men simple de hueso y partes blandas. 2- Sirve para el estudio de las enfermedades que afec- ten el canal raquídeo como las hernias discales y otras enfermedades degenerativas, los tumores, las malfor- maciones, los traumas y otras. F- En el sistema nervioso: 1- La TACM se considera uno de los exámenes de elec- ción para el estudio de las enfermedades intracraneales en general, siendo su mayor ventaja en el estudio de las hemorragias agudas y en el politraumatizado. 2- Estudio de los procesos isquémicos cerebrales. Ade- más permite el diagnóstico precoz de los infartos usando el software de perfusión cerebral. 3- De utilidad en el estudio de los aneurismas para evaluar las características de éste y para planificar un abordaje quirúrgico o por intervencionismo.
  41. 41. 41 4- Estudio de las malformaciones cráneo-encefálicas, para determinar los vasos de aferencia y eferencia, así como para evaluar las características del nido. 5- Estudio de los tumores cerebrales, evaluando sus particularidades y vascularización. 6- Estudio de la perfusión de los tumores cerebrales, para evaluar la efectividad del tratamiento. 7- Evaluación de las malformaciones cráneo- encefálicas. 8- Estudio de las mastoides y del oído. G- En exámenes vasculares de miembros superiores e inferiores. 1- Sirve para los estudios arteriales y venosos de los miembros superiores e inferiores, en el estudio de las malformaciones y las enfermedades isquémicas. H- En exámenes vasculares del cuello. 1- Estudio de los procesos expansivos del cuello. 2- Evaluación de las lesiones esteno-oclusivas de las carótidas. 3- Estudio de las malformaciones vasculares del cue- llo. II- Limitaciones. 1- Las limitaciones en el tórax están dadas por los movimientos cardiacos y respiratorios que producen ar- tefactos, en pacientes que no cooperen o tengan alteraciones del ritmo cardiaco. En los campos pulmonares, a pesar de que pueden estudiarse lesiones bastante pequeñas, su limitación fundamental se debe a la no diferenciación entre lesiones benignas y malignas. 2- En las enfermedades abdominales, la TACM está li- mitada fundamentalmente en el estudio de los niños y los adultos delgados, por la poca cantidad grasa abdominal.
  42. 42. 42 3- En el cráneo, tiene limitaciones diagnósticas en al- gunos tipos de lesiones como las encefalitis y las enfermedades desmielinizantes. También las pequeñas hemorragias subaracnoideas, en lesiones del tallo cere- bral y del ángulo pontocerebeloso. III- Contraindicaciones. 1- Pacientes que no pueden ser sometidos a altas do- sis de radiaciones. 2- Pacientes con hiperergia a los contrastes yodados. 3- Pacientes con insuficiencia cardiaca, renal y hepá- tica, por el gran volumen de contraste que se utiliza para la realización de estos exámenes.
  43. 43. 43 Fig. G-1. Colonoscopía virtual con imagen polipoidea. Fig. G-2. Broncoscopía virtual con tumor que ocluye la luz bronquial
  44. 44. 44 Fig. G-3. Estudio de perfusión cerebral normal. Fig. G-4. Estudio de perfusión con infarto de cerebral media izquierda
  45. 45. 45 Fig. G-5. Estudio de perfusión de glioblastoma cerebral Fig. G-6. Detección de nódulos pulmonares por la técnica de “Lung Care”.
  46. 46. 46 Fig. G-7. Equipo Sensation 64. Fig. G-8. Bomba inyectora de doble cabezal.
  47. 47. 47 Fig. G-9. Curva de contraste con pico efectivo para la adquisición de imágenes. Fig. G-10. Curva de contraste insuficiente para lograr la adquisición de imágenes.
  48. 48. 48 Fig. G-11. Calcio scoring que indica pequeña placa calcificada en la arteria descendente anterior. Índice Agatston de 0.3. Fig. G-12. Calcio scoring que indica calcificaciones en arteria coronaria derecha y circunfleja. Indice de Agatston elevado.
  49. 49. 49 Fig. G-13. Estudio con programa “Argus” para evaluar masa miocárdica. Fig. G-14. Resultado de estudios funcionales del corazón con el pro- grama “Argus”.
  50. 50. 50 ESTUDIO DE LOS TRONCOS SUPRA-AORTICOS Y LAS ARTERIAS INTRACEREBRALES. El infarto cerebral es la manifestación clínica más fre- cuente, entre las enfermedades que producen alteraciones en el flujo de las arterias carotídeas y cau- sa común de morbimortalidad en todo el mundo. En nuestro país, las enfermedades cerebro-vasculares ocu- pan el segundo o tercer lugar entre las causas de muerte. Algunos autores reportan una prevalencia del 2,5% para los hombres y 1,6% para las mujeres, incrementándose notablemente con la edad. Dentro de este grupo nos re- feriremos con énfasis a las enfermedades que cursan con una hemorragia cerebral, cuya morbilidad y mortali- dad es mayor y que se observan en la actualidad con bastante frecuencia en pacientes por debajo de los 40 años. 1- Aspectos anátomo-fisiopatológicos: De la concavidad del cayado de la aorta parten las arterias que irrigan los bronquios y el timo. Del lado convexo surgen los tres principales vasos, que son; de derecha a izquierda: el tronco arterial braquiocefálico, la arteria carótida primitiva izquierda y la arteria subclavia izquierda.(Fig. N-1) El tronco arterial braquiocefálico, asciende bifurcándo- se a pocos centímetros de su origen en la arteria subclavia derecha y la carótida primitiva derecha. La arteria subclavia da varias ramas, siendo la primera la arteria vertebral que asciende hacia el cuello, origi- nando otras ramas como son el tronco tirocervical, costocervical y la mamaria interna. En ocasiones esta arteria tiene un recorrido aberrante distal a la subclavia izquierda (0.5-1.0%). La carótida común derecha asciende hacia el cuello bifurcándose a nivel de C3-C5 en carótida externa e in- terna. Esta arteria también puede salir directamente de la aorta, casi siempre asociada a la subclavia aberrante. La carótida común izquierda sale directamente de la aorta y asciende hacia el cuello bifurcándose a la misma
  51. 51. 51 altura de su homóloga derecha. En ocasiones, la carótida común izquierda comparte un origen común con el tronco arterial braquiocefálico. La subclavia izquierda es el último vaso de la convexi- dad del cayado, dando la misma similitud de ramas que del lado derecho. Una de las variantes anatómicas a te- ner cuenta es que la vertebral salga directamente de la aorta. La arteria carótida externa irriga normalmente la ma- yoría de las estructuras extracraneales de la cabeza y el cuello. Las ramas que nacen de ella mantienen nume- rosas comunicaciones, estableciendo un equilibrio hemodinámico funcional que es de gran utilidad en el cierre quirúrgico de algunos de estos vasos. También hay que señalar, que se establecen múltiples comunicacio- nes con la carótida interna que pueden ser de gran ayuda en procesos isquémicos cerebrales. Además es necesa- rio tener en cuenta que podría ser fuente de embolismo en los procesos intervencionistas de esta área. Las principales anastomosis vasculares entre las carótidas externa e interna, son: (Fig. N-2) 1- Arteria meníngea media a ramas etmoidales de la oftálmica. 2- Arteria meníngea accesoria al tronco ínfero late- ral. 3- Arteria occipital a la arteria vertebral a través de ramas musculares. 4- Arteria faríngea ascendente a carótida interna por las ramas petrosas y cavernosas. 5- Arteria facial a arteria carótida interna a través de la arteria angular. Los vasos de la carótida externa se nominan en rela- ción con el territorio que irrigan, siendo sus principales ramas:
  52. 52. 52 Ramas de la carótida externa. Arteria Territorio que irriga Tiroidea superior Laringe y parte superior de la tiroides Faríngea ascendente Nasofaringe, orofaringe y oído medio. Pares craneales IX, X y XI. Lingual Suelo de la boca, lengua y glán- dulas submaxilares Facial Musculatura de la cara y parótida Occipital Porción posterior del cuero ca- belludo, musculatura cervical superior y meninges de fosa posterior Temporal superficial Cuero cabelludo, oreja. Da una importante rama que es la ar- teria facial transversa Maxilar interna Estructuras de la cara, múscu- los masticatorios, paladar, maxilar superior, nariz y órbi- ta. Da una importante rama que es la meníngea media. La arteria carótida interna, surge de la bifurcación de la carótida común, que ocurre a nivel de C-3 C-5 y tiene diferentes segmentos topográficos. (Fig. N-3) Existen diferentes clasificaciones de los segmentos carotídeos y en nuestra descripción usaremos la más reciente. Esta clasificación se compone de siete segmentos, que son: C-1 cervical. C-2 petroso. C-3 lacerado. C-4 cavernoso. C-5 clinoideo.
  53. 53. 53 C-6 oftálmico. C-7 comunicante. 1- Segmento cervical: se extiende desde la bifurcación carotídea hasta la base del cráneo. Ella se sitúa en posi- ción antero-medial a la yugular, conformando un paquete neurovascular que lo completan los pares craneales IX, X, XI y XII y fibras simpáticas postganglionares. Es importante señalar la relación de la pared antero- medial de la faringe con la carótida, de gran valor en la instrumentación otorrinolaringológica. El segmento cer- vical usualmente no da ramas. 2- El segmento petroso: tiene un segmento inicial ver- tical a nivel del canal carotídeo incurvándose después y formando el segmento horizontal, hasta su entrada intracraneal a nivel del agujero lacerado. Puede dar una rama que es la carótido-timpánica y además, otra rama inconstante que es la mandíbulo-vidiana que se ensan- cha patológicamente en los tumores de nasofaringe. Ambas arterias son de difícil visualización angiográfica en condiciones normales. 3- El segmento lacerado: en este segmento la carótida asciende para buscar el segmento cavernoso, siendo con- siderado por otros autores en otras clasificaciones como el segmento pre-cavernoso. 4- El segmento cavernoso: en este segmento la carótida realiza una curva de 180 grados terminando a nivel del plano dural donde se convierte en carótida clinoidea. A nivel cavernoso da ramas que pueden ser angiográficamente detectables, siendo su presentación variable como tronco único o ramas aisladas como la ar- teria hipofisaria anterior, la arteria meníngeo dorsal y las arterias basal y marginal del tentóreo. Otras arte- rias de este segmento son: el tronco ínfero-lateral, las arterias capsulares de Mc Conell, la arteria del foramen redondo y la arteria del foramen lacerado. Esta red arterial irriga todo el plano sellar y la dura a ese nivel así como la hipófisis. Todo este sistema arterial estable- ce anastomosis con la carótida externa, siendo la más constante la del tronco ínfero-lateral con rama faríngea de la carótida externa y la meníngea accesoria.
  54. 54. 54 5- El segmento clinoideo: es un corto segmento en forma de cuña entre los anillos durales, proximales y distales. 6- El segmento oftálmico se extiende distal al anillo dural hasta la emergencia de la comunicante posterior y es re- ferido por muchos autores como territorio supraclinoideo. Las dos ramas principales son la arteria oftálmica y la arteria hipofisaria superior. La arteria oftálmica sale del contorno lateral de la carótida y es de fácil identificación angiográfica, reali- zando una clara incurvación en sentido medial lateral al paso sobre el nervio óptico. Sus principales ramas son: la arteria lacrimal, la central de la retina, las ciliares y etmoidales. 7- El segmento comunicante es el último segmento pre- vio a la bifurcación carotídea, en el que se observan dos ramas: la proximal es la comunicante posterior que es hipoplásica en un 25 a 30 % de los casos. También puede adoptar la configuración embrionaria que se observa en el 25 % y la dilatación infundibuliforme en un 6%, estas constituyen sus principales variantes anatómicas. La arteria coroidea anterior surge a pocos milímetros del origen de la comunicante posterior y tiene dos seg- mentos: uno cisternal y otro intraventricular. Ella irriga importantes territorios vasculares como son los tractus ópticos, el pedúnculo cerebral, el uncus, el hipocampo y el núcleo geniculado lateral (área visual). Con posterioridad a la emergencia de estas arterias, la carótida se bifurca en sus dos grandes ramas termina- les que son la arteria cerebral media y la cerebral anterior. La arteria cerebral anterior es el más fino de los vasos que irriga la cara interna de los hemisferios cerebrales y se divide en diferentes segmentos que están en íntima relación con el cuerpo calloso. Segmentos de la arteria cerebral anterior. La arteria cerebral anterior tiene los siguientes segmen- tos: (Fig. N-4)
  55. 55. 55 A-1 Desde la bifurcación carotídea a la arteria comuni- cante anterior. A-2 Desde el rostrum hasta la rodilla del cuerpo calloso. A-3 Contornea el calloso hasta el nivel del cuerpo. A-4 Se sitúa por encima del cuerpo calloso. A-5 Es la parte distal del cuerpo y del esplenio. Existe un gran número de variantes anatómicas a ni- vel de la región en la comunicante anterior, por lo que es común el término de complejo de la arteria comuni- cante anterior. A este nivel puede existir duplicación de la comunicante, ausencia, redundancia de los vasos, lo cual hace difícil una correcta definición angiográfica. Una de las variantes más comunes es la hipoplasia de A-1 que se observa en el 10% de los casos. Esta anoma- lía produce una alteración hemodinámica que es predisponente a la formación aneurismática. Alrededor del 80% de los aneurismas de la arteria co- municante anterior tienen asimetría del segmento A-1. Ramas de la cerebral anterior. Las ramas perforantes: de los segmentos A1 y A2, sur- gen dos grupos de ramas perforantes que irrigan estructuras de la base. Una de las más notorias es la arteria recurrencial de Heubner. Esta arteria es una rama lentículoestriada que normalmente surge del seg- mento A-2. Del segmento A-2 surgen dos vasos corticales: la arte- ria órbito-frontal y fronto-polar. La arteria cerebral anterior a nivel de la rodilla del cuerpo calloso se incurva hacia atrás, formando la arte- ria pericallosa que transcurre por encima del cuerpo calloso. Desde su inicio da su rama más importante que es la arteria calloso-marginal situada a nivel de la cir- cunvolución del cíngulo. En su trayecto, da otras ramas corticales que van irrigando diferentes segmentos, de los cuales van adquiriendo el nombre como son: la arte- ria frontal anterior, frontal media, frontal posterior, paracentral y parietal superior.
  56. 56. 56 Es de señalar que estas ramas que irrigan clásicamente la cara interna del hemisferio, irrigan áreas de la convexi- dad cercana a la línea media, compartiendo estos territorios vasculares con la cerebral media y posterior. Estas fronteras vasculares dan lugar a las áreas limítro- fes que tienen gran importancia hemodinámica en la patología cerebro-vascular. Arteria cerebral media. Es la mayor de las dos ramas terminales de la carótida interna (Fig.N-5), y al igual que la cerebral anterior, tie- ne diferentes segmentos en su trayecto. El segmento horizontal o M-1 se extiende desde su ori- gen hasta su bifurcación o trifurcación y de este segmento surgen diferentes ramas perforantes como son las arte- rias lenticuloestriadas laterales que irrigan el núcleo lenticular, la cápsula interna y el caudado. El segmento M-2 o insular se forma cuando la cerebral media se incurva hacia la profundidad del hemisferio buscando la corteza insular que irriga. Posteriormente la cerebral media gira 180 grados saliendo de la ínsula, dirigiéndose hacia la convexidad del hemisferio, contorneando el opérculo. Es denominada a este nivel como M-3, dando numerosas ramas que irrigan la con- vexidad del hemisferio. Ramas de la arteria cerebral media. La arteria temporal anterior es una rama que proviene del segmento horizontal, que irriga el polo temporal y que puede salir directamente de la cerebral media o com- partir su origen con la arteria órbito-frontal. Da también la rama frontal media e inferior, que son ramas operculares. En su recorrido existen otras ramas que irrigan áreas elocuentes de la convexidad del hemisferio como son las arterias prefrontal y precentral, arteria central rolándica y la arteria parietal anterior y posterior, rama temporal posterior y la arteria angular; esta última es la rama
  57. 57. 57 más importante. Cursa sobre la parte posterior del gyrus temporal superior dando lugar al punto silviano (punto más alto e interno del recorrido de la cerebral media) irrigando importantes áreas cerebrales. Las variantes congénitas de la cerebral media son po- cas, aunque pueden presentar duplicaciones, presencia de un solo tronco o variantes en su bi o trifurcación. Arterias vertebrales. Las arterias vertebrales son las primeras ramas de la subclavia, siendo raramente del mismo calibre; general- mente es dominante la izquierda en un 60%. Las mismas ascienden y entran en la columna a través de los aguje- ros de conjunción de C-6, alcanzan el cráneo, entrando a través del agujero magno las dos se fusionan por de- lante del bulbo para formar la arteria basilar. (Fig. N-6) Ramas de la arteria vertebral. Las ramas intracraneales de la arteria vertebral son la arteria espinal anterior y la arteria cerebelosa póstero- inferior, conocida por sus siglas en inglés PICA. Tiene un segmento inicial latero-bulbar y después una curva característica a nivel amigdalino, ascendiendo posterior- mente para dar sus ramas hemisféricas. La arteria basilar se forma por la unión de ambas ver- tebrales, asciende por delante de la protuberancia, dando numerosas ramas perforantes al tallo y se bifurca en ambas cerebrales posteriores, a nivel de la cisterna interpeduncular. La primera rama importante del tronco basilar es la arteria cerebelosa antero-inferior que se conoce tam- bién por sus siglas en inglés AICA. Esta arteria transcurre por dentro de la cisterna del ángulo pontocerebeloso. Es cruzada por el sexto par y se dirige hacia el conducto auditivo interno en estrecha relación con el séptimo y el octavo par, a los cuales irriga. También irriga la protube- rancia, el pedúnculo cerebeloso medio y parte del hemisferio cerebeloso.
  58. 58. 58 Las dos arterias cerebelosas superiores surgen cerca del ápex de la arteria vertebral y se dirigen hacia atrás y afuera irrigando la superficie superior del vermis y de los hemisferios cerebelosos. Las arterias cerebrales posteriores son ramas termi- nales del tronco basilar y tienen diferentes segmentos: El segmento precomunicante o P-1 se extiende desde el tronco basilar hasta el sitio de anastomosis con la arteria comunicante posterior. Este segmento da las ar- terias tálamo-perforantes posteriores que irrigan el tálamo y el tronco encefálico. El segmento P-2 ambience o perimesencefálico, se ex- tiende desde la unión de la comunicante posterior y corre hacia atrás por el cerebro medio originando las arterias coroideas pósteromediales y pósterolaterales y las tála- mo-geniculadas, irrigando gran parte del tálamo y de la lámina cuadrigémina. Sistema venoso cerebral. Las venas cerebrales se dividen en dos grupos: venas corticales y venas profundas. Las venas superficiales corticales son muy variables en su conjunto, observán- dose tres venas con un trayecto más fijo, que son las venas silvianas, la vena anastomótica de Trolard y la vena anastomótica de Labbé. Estas dos últimas drenan sangre hacia el seno sagital superior y seno transverso, respectivamente. Las venas cerebrales profundas son: las venas medulares, las subependimarias, las basales y la vena magna de Galeno. Las venas medulares son venas que drenan sangre de la subcorteza hacia las venas ependimarias periventriculares y se hacen más patentes cuando exis- ten masas expansivas intracraneales. La vena magna de Galeno es un corto pero notable conducto venoso que recibe sangre de la vena cerebral interna y de la vena basal de Rosenthal y se une con el seno sagital inferior para formar el seno recto.
  59. 59. 59 Polígono de Willis. Es un sistema de interconexión arterial de importan- cia vital que rodea la superficie ventral del diencéfalo y es adyacente a los nervios ópticos y tractus ópticos. Está formado por los siguientes vasos: (Fig. N-7) Las dos carótidas internas. Los dos segmentos horizontales A-1 de las cerebrales anteriores. Las dos arterias comunicantes anteriores. Las dos arterias comunicantes posteriores. Los segmentos horizontales (P-1) de ambas arterias cerebrales posteriores. De este polígono surgen importantes vasos perforantes que irrigan estructuras vitales como son: el hipotálamo, los tractus ópticos, el infundíbulo y otras. - Variantes anatómicas a nivel del polígono. Un polígono con todos sus vasos presentes y simétricos sólo se ve en un 20-25% de los casos. Las anomalías más frecuentes son la hipoplasia de una de las arterias comunicantes posteriores (alrededor del 20%), un seg- mento A-1 de la cerebral anterior hipoplásico (17%) y el origen fetal de la cerebral posterior (origen carotídeo) con P-1 hipoplásico (12%). I- Enfermedades de los vasos supraaórticos: En los estudios de las mismas podemos dividirlas en: A- Las anomalías congénitas. B- Las enfermedades inflamatorias. C- Las enfermedades ateroscleróticas. Existen diferentes modalidades que han permitido el estudio de los vasos supraaórticos que han marchado desde la radiología convencional simple, las radiografías
  60. 60. 60 contrastadas del tractus digestivo superior, la ecografía, la resonancia magnética , la tomografía axial con técni- cas de reconstrucción y la angiografía arterial de los vasos supraaórticos. Hasta ahora ésta había constituido la regla de oro para los estudios de estas enfermedades, pero sin duda el avance tecnológico actual, la va ir rele- vando de su papel protagónico diagnóstico, quedando como una vía de abordaje para los procederes intervencionistas. A- Anomalías congénitas: Pueden ser muy variadas; algunas con connotación hemodinámica y sintomática y otras totalmente asintomáticas, constituyendo hallazgos diagnósticos. Las más comunes son: a- Anomalías de la subclavia. 1- La subclavia derecha aberrante puede ser diag- nosticada en las radiografías durante estudios contrastados de esófago, donde se observa una com- presión extrínseca del mismo, por el paso de la arteria anómala que puede justificar disfagia (disfagia lusoria). Existe una asociación significativa entre el síndrome de Down y la subclavia aberrante. b- Anomalías carotídeas 1- La agenesia de la carótida interna es muy rara y está en asociación con otras anomalías de los vasos supraaórticos y del polígono. 2- La carótida interna aberrante es una variante rara, pero con mayor incidencia en la práctica clínica que la agenesia. 3- El tronco bicarotídeo consiste en un tronco común de donde emergen ambas carótidas. Esta anomalía es poco frecuente. c- Anomalías vertebrales. Representan diferentes variantes de la circulación embrionaria entre la aorta embrionaria que va a dar lugar a la carótida caudal y las arterias neurales longitudinales que originan a la arteria vertebral y
  61. 61. 61 basilar. Estas comunicaciones pueden no reabsorberse dando lugar a las siguientes comunicaciones carótido vertebrales: 1- Arteria trigeminal. 2- Arteria hipoglosa. 3- Arteria ótica persistente. 4- Arteria proatlantal. La mayor prevalencia de estas comunicaciones es la arteria trigeminal que puede ser vista entre 0.1-0.7%. B- Enfermedades ateroscleróticas: Las enfermedades ateroscleróticas de los vasos supraórticos han adquirido una gran relevancia durante los últimos años, al ser reportados por diferentes auto- res, como la segunda causa de fuente embolígena cerebral, después de la fibrilación auricular. Se han utilizado diferentes métodos imagenológicos no invasivos entre los cuales se destaca el Doppler carotídeo y vertebral, la RM con contraste y las técnicas de re- construcción por TACM. El Doppler duplex es la modalidad de pesquisaje más utilizada, es inocuo, no invasivo y permite una adecuada visualización del flujo. Logra determinar el grado de es- tenosis por diferentes métodos como son por el grado de velocidad sistólica y diastólica o por mediciones del área estenótica y normal del vaso afecto. El Doppler duplex permite además determinar la dirección del flujo, la pre- sencia de un flujo reverso o turbulencia y logra caracterizar la placa de ateroma visualizando calificaciones, los ele- mentos blandos de la placa que son potencialmente embolígenos y las ulceraciones intraplacas. Otros elementos predictivos del Doppler es el IR (índice de resistencia), relación sisto- diastólica que puede ser muy elevado en deterioros cerebro-vasculares severos. También se debe tener en cuenta que cuando tengamos velocidades sistólicas muy bajas, por debajo de 40 cm/seg.,
  62. 62. 62 pueden ser expresión de bajo gasto cardiaco. Esto podría justificar la sintomatología neurológica. Entre los elementos negativos del Doppler debemos se- ñalar que es operador-dependiente y además tiende a sobreestimar el porciento de estenosis determinando el área de ausencia de flujo en lesiones pseudo oclusivas. La RM simple o potenciada con contraste, permite una adecuada visualización de los vasos supraaórticos aun- que, a semejanza del Doppler, puede darnos falsos positivos de oclusión en lesiones estenóticas severas. La RM nos ofrece mejor detalle que la ecografía sobre la emergencia de los vasos supraaórticos y además permite integrar esta información con la de los vasos cerebrales. La TACM con contraste y técnicas de reconstrucción ofrecen una buena caracterización del vaso afecto, con visualización del trombo, la calcificación mural y logra una adecuada visualización de la estenosis y de la tortuosidad de los vasos, convirtiéndose en la técnica de elección para el estudio de los vasos supraaórticos. (Fig. N-8-18) La angiografía intraarterial es hasta ahora la modali- dad más sensible para el diagnóstico de las enfermedades vasculares y define el porcentaje de estenosis con mayor exactitud que los procederes antes reportados; la NASCET la considera su regla de oro. La angiografía permite, mejor que otros procederes diag- nósticos, evaluar las estenosis severas y lesiones seudooclusivas como el signo de la cuerda, en la cual el flujo lento puede simular una falsa oclusión. Las estenosis se consideran hemodinámicamente sig- nificativas cuando son de más de un 70 % y producen síntomas clínicos. Bajo estas dos condiciones es que se considera que el paciente es tributario de tratamiento quirúrgico o endovascular. La angiografía de los vasos del cuello debe ser comple- tada con el estudio de los vasos cerebrales, permitiendo definir la circulación colateral u otras lesiones estenóticas, que pueden ser múltiples y son conocidas
  63. 63. 63 como lesiones en tándem. Las mismas se potencian aditivamente aportando en conjunto un mayor grado de estenosis y se observan en el 2% de los casos. En la evaluación de una lesión estenótica extracraneal es muy importante la valoración del polígono de Willis en el cual, la regla es la presencia de un anillo incompleto. Sólo en alrededor de un 20% de los casos el polígono tiene todos sus componentes de calibre normal. Otro elemento a valorar son las comunicaciones arteriales entre carótida externa o interna que permiten una su- plencia de territorios isquémicos. II- Enfermedades de los vasos intracraneales. A- Aneurismas cerebrales. El término aneurisma se refiere a una dilatación arterial patológica persistente. Según su forma pueden ser: saculares, fusiformes y disecantes. Inicialmente se pensaba que la mayoría de los aneurismas eran de origen congénito, en relación con defectos focales de los vasos, que no han sido comproba- dos en la actualidad. Se asocian en estos momentos a condiciones hemodinámicas favorables en el polígono: como la agenesia o hipoplasia de algunos de sus seg- mentos, o secundarios a degeneraciones vasculares de la pared de causas ateroscleróticas. Siendo menos fre- cuentes los causados por infecciones, drogas y traumatismos. La incidencia de los aneurismas es variable, existien- do algunas áreas geográficas con mayor prevalencia como Japón o Finlandia, en las cuales se observan tasas de 24 por cada 100 mil habitantes. Algunos autores han repor- tado una predisposición familiar a la formación aneurismática, generalmente de aneurismas saculares. Hay enfermedades que están asociadas a la enferme- dad aneurismática cerebral, como son: los riñones poliquísticos, la coartación aórtica, el Ehlers-Danlos, el déficit de alfa uno antitripsina y la displasia fibro-mus- cular. De estas enfermedades, los riñones poliquísticos tienen la incidencia más elevada con 10-11%.
  64. 64. 64 Los aneurismas intracerebrales son múltiples en el 15- 20%, siendo más frecuentes en las mujeres; la prevalencia aumenta en ese sexo a medida que aumenta el número de aneurismas.(Fig. N-19-20) En ocasiones los aneurismas pueden observarse en espejo, más frecuentemente a ni- vel de la comunicante posterior. La mayoría de los aneurismas saculares están situa- dos en el polígono, prevaleciendo en los vasos del circuito anterior (85%), con una distribución en que predomina la comunicante anterior (30-35%), territorio de la comu- nicante posterior (25-30%), bifurcación de cerebral media (alrededor de 20%), bifurcación carotídea (15%) y la re- gión carótido-oftálmica (10%).(Fig. N-21-26) El 15% de los aneurismas intracraneales son de la fosa posterior, siendo el más frecuente el de la bifurcación del tronco basilar (5%) y en el territorio de la arteria cerebelosa posteroinferior, siendo raro a nivel de la ar- teria cerebelosa antero-inferior. (Fig. N-27-28) La mayoría de los aneurismas son asintomáticos hasta el momento de su ruptura, donde aparece la clínica de una hemorragia subaracnoidea, con el grave cortejo sin- tomático que los acompaña. (Fig. N-29-30) Existen algunas presentaciones clínicas por compre- sión sobre los pares craneales que pueden ser signos premonitorios de lesión aneurismática. El más común es la compresión que produce el aneurisma de comuni- cante posterior sobre el tercer par craneal, con la oftalmoplejia como presentación clínica. (Fig. N-31) Los aneurismas cavernosos también pueden producir signos compresivos sobre los pares craneales que están en la pared lateral del seno que son los II, IV, VI y ramas del V par. (Fig. N-32) El comportamiento clínico de la hemorragia subaracnoidea (HSA) por aneurisma es realmente des- alentador. Del 10 al 18% de los pacientes mueren sin llegar al hospital y en aquellos que alcanzan los centros clínico-quirúrgicos, la mortalidad asciende al 25%. El resangramiento en la mayoría de los casos es fatal y oscila entre el 2-4% en los primeros días, 30% durante el primer mes y 2-4% al año.
  65. 65. 65 El diagnóstico de elección para la HSA lo ha constituido la TAC, que tiene una alta sensibilidad para la detección de la sangre fresca, mayor que la resonancia magnética (RM). Esta se puede gradificar por la TAC en la escala de Fisher de 0-IV, en la cual los valores más altos tienen un peor pronóstico para el paciente. Es de señalar que en el Fisher 0 (tomografía negativa) estamos, sin dudas, frente a un paciente con una HSA diagnosticada por la clínica y por laboratorio. Estos casos por lo general tienen un pro- nóstico favorable. El desarrollo tecnológico con la TACM permite una ade- cuada valoración de los vasos del polígono. Esta evalúa eficientemente las características del aneurisma, con una seguridad casi igual que la que se obtiene con la angiografía, con la ventaja de que puede ofrecer por re- construcciones las vistas con la angulación deseada por el neurocirujano. La angiorresonancia también ha sido de amplio uso en el pesquisaje de las malformaciones vasculares, princi- palmente las de los grandes vasos intracraneales. No obstante las técnicas antes mencionadas, la angiografía cerebral por cateterismo arterial constituye la técnica de mayor sensibilidad para el diagnóstico de las enfermedades vasculares cerebrales. Una angiografía cerebral en el paciente con aneurisma debe determinar la ubicación del mismo, su relación con el vaso aferente, la existencia de vasos perforantes rela- cionados con el mismo, si se visualizan elementos de trombosis dentro del saco que puedan falsear las dimen- siones, el estado del cuello y las características del polígono en el que pueden existir aneurismas múltiples. Con la TACM podemos obtener todos estos datos con fiabilidad en la actualidad. Los aneurismas múltiples se pueden observar en el 30% de los casos. (Fig. N-33) La angiografía debe buscar indi- cios de cuál aneurisma fue el que sangró, para que sea precozmente tratado, estos pueden ser: 1- Un área de vasoespasmo o efecto de masa asociado a la malformación vascular.
  66. 66. 66 2- Una irregularidad de sus contornos con presencia de áreas de adición al mismo llamada “carúncula”.(Fig. N-34) 3- Se considera que generalmente el aneurisma res- ponsable del sangramiento, es el mayor. 4- La localización también puede ser un indicio, sien- do los más probables los aneurismas del comunicante anterior, en el territorio anterior del polígono y el tip basilar o la PICA, en los aneurismas de fosa poste- rior. 5- Se reporta la extravasación de contraste dentro del proceder angiográfico lo cual sin duda es conclu- yente pero nefasto para el paciente. Alrededor de 30-40% de los casos de HSA, la angiografía puede ser negativa y no está en relación con hemorra- gias mesencefálicas. La mayoría de los autores coinciden en que con la TACM sustituye a la angiografía en los estudios evolutivos que deben repetirse entre 1 a 6 me- ses. Como causa de HSA debe ser descartada la espinal. Algunos aspectos hemodinámicos deben contemplarse en un aneurisma, estos son: 1- La parte superior de una red vascular es el sitio de mayor tensión hemodinámica y por lo tanto, el sitio probable para el desarrollo aneurismático en relación con los cambios dinámicos, que modifican la direc- ción del flujo y conllevan a la creación de una fuerza tipo cizallamiento, que conduce a la formación del aneurisma. Estos cambios pueden ocasionar la rup- tura del saco aneurismático. 2- Existen diferencias hemodinámicas de flujo den- tro del aneurisma que se sitúan en la bifurcación de una arteria terminal. Esto se debe a un llene rápido que los hace más susceptibles a la ruptura, como ocu- rre con los aneurismas del complejo de la comunicante anterior.(Fig. N-35-38) 3- Los aneurismas laterales a la pared del vaso pre- sentan un flujo lento que conlleva a un éstasis que puede provocar trombosis parcial del saco. Su creci-
  67. 67. 67 miento es lento y pueden llegar a convertirse en aneurismas gigantes. Generalmente estos aneurismas están relacionados con la carótida. Los aneurismas gigantes son definidos como lesiones que tienen más de 2,5cm y curiosamente presentan me- nor riesgo de ruptura por trombosis mural y calcificación. La mayoría de sus síntomas están en relación con la compresión de estructuras vecinas y su más frecuente localización, son los carotídeos. 4- La mayoría de los aneurismas que se rompen es- tán entre los 4 y 7 mm. 5- Las lesiones infundibuliformes de los vasos, prin- cipalmente la comunicante posterior, fueron reportadas por Taveras y Wood como alteraciones que deben ser evolucionadas y que no deben exceder los 3 mm. En ocasiones se ha demostrado su crecimiento relaciona- do con sangramientos. Los aneurismas cerebrales en niños tienen un com- portamiento diferente al adulto; son más raros, tienden a ser de mayor tamaño y se reportan con mayor inciden- cia en la fosa posterior. Los de causa infecciosa tienen una relativa prevalencia en los niños. Los aneurismas fusiformes o ateroescleróticos se ob- servan en pacientes de edad avanzada y constituyen grandes ectasias vasculares calcificadas con irregulari- dad en su trayecto, pudiendo encontrarse trombos en su interior. La localización más frecuente es en el territo- rio vértebro basilar y son lesiones que generalmente no tienen cuello(Fig. N-38A-B-C-D). Los aneurismas disecantes se producen a consecuen- cia de una hemorragia mural, que diseca la íntima y se extiende por fuera de la luz del vaso. Pueden estar en relación con un trauma o con alguna vasculopatía. Estas lesiones se observan generalmente en los grandes vasos extracraneales carotídeos o vertebrales. Otras causas de aneurismas saculares son los micóticos o infecciosos que están en relación con embolismos sép- ticos que afectan la pared arterial. Generalmente son distales y ha existido en los últimos tiempos una ten-
  68. 68. 68 dencia al incremento de los mismos, en relación con el abuso de drogas y la inmunodeficiencia. B- Malformaciones vasculares cerebrales Las malformaciones vasculares cerebrales se dividen en 4 tipos: 1- Las malformaciones arteriovenosas (MAV) piales o durales. 2- Las malformaciones venosas. 3- Las ectasias capilares. 4- Los angiomas cavernosos. Las malformaciones piales están compuestas por aferencias arteriales y vasos colaterales, el nido de la MAV y conductos de drenaje venoso. Generalmente den- tro de la MAV no existe tejido cerebral. La mayor localización es en los hemisferios cerebrales, 80-85% y 15-20% en fosa posterior. Generalmente son lesiones únicas y cuando son múl- tiples, están vinculadas a otros síndromes como el Rendu-Osler o al Wyburn-Mason. Es controversial el hecho de la existencia de una pre- disposición genética, pero la misma no se ha demostrado. El cuadro clínico principal de estos pacientes es varia- ble, pueden presentar convulsiones, síntomas de una HSA o síntomas de isquemia debido al robo de flujo al tejido normal. A muchos se les detecta en el curso de exáme- nes imagenológicos de rutina. Estas lesiones se consideran congénitas pero pueden modificar sus características durante la vida del pacien- te. Tienen un mayor riesgo de hemorragia mientras más precozmente se haya hecho el diagnóstico y se ha pro- puesto la fórmula siguiente: % de sangramiento = 105 – edad del enfermo. El riesgo de sangramiento por año oscila entre 2-4% y la mortalidad en el primer sangramiento es del 10-29%.
  69. 69. 69 oñeuqeP onaideM oñamaTnarG oñamaT )otP1(smc3< )sotP2(smc6-3 )sotP3(smc6> nóicazilacoL etneucoleoN )otP0( )otP1(etneucolE osonevejanerD )otP0(laicifrepuS )otP1(odnuforP Es muy divulgada y de gran manejo actual la clasifica- ción de Spetzler-Martin para la predicción del riesgo quirúrgico en la MAV y establece los grados del I al IV teniendo en cuenta los siguientes parámetros: (Tabla 1) Los medios para su diagnóstico son: la TACM, la RM y la angiografía. La TACM simple servirá para identificar las siguientes lesiones: a- Identificar calcificaciones patológicas. b- El diagnóstico de un sangramiento reciente, de an- tiguas hemorragias o de sufrimiento isquémico, por robo de la vascularización. c- El efecto de masa. d- Para el seguimiento evolutivo de las lesiones tra- tadas o no. Las técnicas contrastadas permiten una valoración del tamaño y drenaje de la lesión. Con esta técnica de multicorte se obtiene un magnífico detalle anatómico vascular de la aferencia, tamaño del nido y eferencia de estas lesiones (Fig. N- 39-44). La RM tiene alta sensibilidad para el diagnóstico. La angiorresonancia da una buena definición de los deta- lles de las estructuras vasculares de la MAV. La angiografía mantiene en la actualidad su prevalen- cia como método diagnóstico de mayor definición, principalmente para definir los vasos aferentes y eferentes, pero con las nuevas tecnologías va a ir que- Tabla 1
  70. 70. 70 dando como una vía de abordaje para los procederes intervencionistas. Generalmente las MAV son estructuras vasculares multicompartimentadas con diferentes aferencias arteriales y eferencias venosas, debiendo tratar de iden- tificar en ellas los aspectos anatómicos y hemodinámicos que la hacen propensa al sangramiento, como son la pre- sencia de aneurismas nidales arteriales o venosos y las estenosis venosas. También se asocia el sangramiento a lesiones de pequeño tamaño con drenaje venoso profun- do (Fig. N- 45-46). Existen localizaciones que están reportadas como áreas predisponentes al sangramiento como son: las localiza- ciones periventriculares o intraventriculares, la talámica y los ganglios basales. La TACM también posibilita evolu- cionar las MAV cerebrales tratados por intervencionismo (Fig. N- 47-48). En el 10% de los casos las MAV se pueden asociar a aneurismas del polígono. C- Malformaciones durales. Las malformaciones durales son lesiones adquiridas, secundarias a la trombosis de un seno venoso. Al recanalizarse el seno se producen numerosas comuni- caciones o fístulas al seno, visualizándose las arterias durales dilatadas con un área vascular venosa anómala, en la pared del seno. Algunos autores invocan que estas fístulas durales eran inicialmente fístulas arteriovenosas de la duramadre que posteriormente se extienden al seno. La mayoría de las lesiones durales están en relación con los senos venosos de la base (transverso y sigmoideo) y constituyen del 10-15% de todas las MAV intracraneales. Los síntomas clínicos son variables según la localiza- ción. Aquellos que toman el seno cavernoso, padecen de: proptosis, quémosis y oftalmoplejia. Aquellos que afectan el peñasco pueden producir tinitus, soplos y cefaleas como sus síntomas más frecuentes.
  71. 71. 71 Las características del drenaje venoso pueden tener implicación en el desarrollo clínico de complicaciones. Aquellas fístulas que drenan a un seno venoso, que no presentan ningún tipo de estenosis, no deben presen- tar complicaciones; pero las que tengan dificultad para el drenaje, por presentar algún componente estenótico, pueden producir un reflujo retrógrado a venas corticales que conllevan a infartos venosos o una HSA. La TACM permiten definir la vascularización anómala asociada a un seno, en distintos planos y precisar sí ha existido algún sangramiento. Además representa un excelente medio para el diagnóstico de las complica- ciones agudas como: el hematoma sub-dural, el intraparenquimatoso, el infarto venosos hemorrágico y la hidrocefalia obstructiva. También sirve para el diagnóstico de las MAV epidurales, que se caracteriza por que las venas de dre- naje son superficiales Fig. N- 49-52). La RM permite visualizar venas corticales dilatadas, pero no da una orientación directa del sitio fistuloso. Además de detectar la presencia de infartos hemorrágicos. Cualquier vaso arterial que irrigue la dura madre po- tencialmente puede participar en una fístula, los más frecuentes son ramas de la carótida externa, como la arteria occipital y las ramas meníngeas. D- Telangectasias capilares. Son capilares dilatados unidos en forma de racimos que pueden ser únicos o asociados a angiomas caverno- sos. Es bastante frecuente, siendo la segunda malformación después de los angiomas venosos. Muchas veces son asintomáticos y se observan con más frecuen- cia en la fosa posterior y en la médula espinal y su diagnóstico es un hallazgo necrópsico. La TACM sólo define si hay sangramiento; la angiografía generalmente es negativa y en la RM con contraste, se

×