SlideShare a Scribd company logo
1 of 47
Download to read offline
Viscoelastic Damping
Mohammad Tawfik
Cairo University
Aerospace Engineering Department
2 February, 2014
Introduction

Contents
Introduction ............................................................................................................................................ 3
Classical Models ...................................................................................................................................... 3
Maxwell Model ................................................................................................................................... 3
Model Characteristics ..................................................................................................................... 4
Kalvin-Voigt Model .............................................................................................................................. 6
Zener Model ........................................................................................................................................ 8
The Area in the curve exist only when   0 ...................................................................................... 11
Golla-Hughes-McTavish (GHM) 1983................................................................................................ 11
Unconstrained Layer Damping.............................................................................................................. 17
Finite Element Model of Bars ........................................................................................................... 17
Composite Bar ................................................................................................................................... 18
Constrained Layer Damping .................................................................................................................. 18
Active Constrained layers damping ...................................................................................................... 27
Bibliography .......................................................................................................................................... 42

Viscoelastic Damping

2
Introduction

Introduction
Objectives
•

Recognize the nature of viscoelastic material

•

Understand the damping models of viscoelastic material

•

Dynamics of structures with viscoelastic material

What is Viscoelastic Material?
•

Materials that Exhibit, both, viscous and elastic characteristics.

•

The material may be modeled in many different ways. Classical models include:
–

Mawxell Model

–

Kalvin-Voight Model

Classical Models
Maxwell Model
The Maxwell model describes the material as a viscous damper in series with an elastic stiffness
(Figure 1). When stress is applied, it is uniform through the element, in turn, we may write the total
strain of the viscoeleastic element as:

  s  d

Figure 1. Schematic for a viscoelastic element using the Maxwell model

According to this model, the stress is equal in both elements, which may be expressed by the
relation:


  Es s  Cd  d
According to this relation, we may write:

s 


Es

d  


Cd

dt

According to this, the total strain may be expressed as:

Viscoelastic Damping

3
Classical Models




Es




Cd

dt

Or






Es




Cd

Model Characteristics
When investigating the model characteristics in our context, we are interested in three aspects;
namely:
•

Creep. When a material is loaded for a prolonged period of time, the strain tends to
increase, which leads, in turn, to failure. The phenomenon of the strain increase at constant
load is called creep.

•

Relaxation. When materials are strained for a prolonged periods of time, the internal
stresses tend to decrease. The phenomenon of stress decrease at a constant strain value is
called relaxation.

•

Storage and Loss Moduli. When the viscoelastic material is loaded harmonically, the stressstrain relation may be presented by complex modulus of elasticity. The real part of the
complex modulus is called storage modulus while the imaginary part is called the loss
modulus.

To study the creep characteristics of the Maxwell model, we need to set the rate of change of stress
to zero in the stress-strain differential relation. Thus:






Es





Cd

zero

Solving the differential equation, we get:




Cd

t

The resulting strain time function indicates that the strain will grow to an unbound value as time
increases!
To investigate the relaxation characteristics, the strain rate is set to be zero in the differential
relation, the resulting relation becomes:

0



Es




Cd

When solved, the above relation gives the stress time relation as:

Viscoelastic Damping

4
Classical Models

   0e tE

s

Cd

Where,  0 indicates the initial stress value. The above relation indicates that the stress will decrease
exponentially with time with an asymptotic value of zero.
When studying the response of the model under harmonic excitation, the excitation stress is
presented as:

   0e jt
Thus, the strain response is presented as:

   0 e jt
Substituting in the differential equation, we get:

o 

Es Cd j
o
Es  jCd

Giving:

o

C d E s  2  E s C d j

o
2
2
Es   2Cd
2

2

Separating the real and imaginary parts, we get:
2
 C d 2 E s 2
Es Cd  
 2
 o
o  
j 2
2
2
E s   2Cd
E s   2Cd 



Where, the storage modulus is:

Cd Es 2
2
2
Es   2Cd
2

E' 

And the loss modulus becomes:

Es Cd 
2
2
E s   2Cd
2

E" 

The loss modulus, defines as the ratio between the storage and loss moduli, may be given as:



Es
Cd 

Now, the stress strain relation may be expressed as:

 o  E 1  j  o
Viscoelastic Damping

5
Classical Models
Where the complex modulus is given by:

E *  E 1  j 

1
0.9
0.8

Modulus

0.7
0.6
E

0.5

u

0.4
0.3
0.2
0.1
0
0

2

4

6

8

10

Frequency

Figure 2. The variation of the storage modulus and the loss factor with frequency according to Maxwell’s model

Figure 2 presents the variation of the storage modulus and the loss factor with frequency. Note that
according to Maxwell’s Model:
•

Under static loading, the stiffness, storage modulus, is zero and the loss factor is infinity!

•

For very high frequencies, the loss factor becomes zero!

Kalvin-Voigt Model
The Kalvin-Voigt model describes the material as a viscous damper in parallel with an elastic stiffness
(Figure 3). When stress is applied, it is distributed through the element, while the strain in both
elements is equal.

Figure 3. Schematic for a viscoelastic element using the Kalvin-Voigt model

The stress strain relation may be written as:

  s d

Viscoelastic Damping

6
Classical Models


  Es s  Cd  d
No we come to the studying the Kalvin-Voigt Model characteristics. To study the creep we solve the
above equation for constant stress to get:





1  e

Es

 E s t Cd



Which indicates that the strain will grow to a constant value as time increases!
When studying the relaxation, we set the strain rate to zero, giving:

  Es 0
Which means that the stress will stay constant as time grows for the same strain!
Now, we come to investigating the Storage modulus and Loss Factor. For harmonic stress and strain
we get:

   0 e jt

   0e jt
Resulting in the relation:

  Es  jCd  o
14
12

Modulus

10
8
6
E

4

u

2
0
0

2

4

6

8

10

Frequency

Figure 4. The variation of the storage modulus and the loss factor with frequency according to the Kalvin-Voigt model

Figure 4 presents the variation of the storage modulus and the loss factor with frequency. Note that
according to the Kalvin-Voigt Model:

Viscoelastic Damping

7
Classical Models
•

Under all loading, storage modulus is equal to the stiffness of the spring, and the loss factor
is zero.

•

For very high frequencies, the loss factor becomes unbound!

Zener Model
The Zener model describes the material as a viscous damper in parallel with an elastic stiffness and
both are in series with stiffness (Figure 5). The strain may be written as:

   s  1

Figure 5. Schematic for a viscoelastic element using the Zener model

Stress-Strain relation, according to the zener model, may be written as:


  Es  s  E p  1  Cd  1
From which we may write in Laplace domain:

s 


Es

, 1 


E p  sCd

Or:




Es



 E  sCd  Es 

 p
 E E  sC  
E p  sCd
d 
 s p



Back to time domain, we get:

Es E p  sCd   E p  sCd  Es 
From which we get the differential equation:



Es E p  Es Cd   E p  Es   Cd 
Or:



E  E    

Viscoelastic Damping

8
Classical Models

Studying Zener Model characteristics, we get for the creep:


E  E    0
Giving:



0
E



e t 
Es

And for the relaxation, we get:

E    

Giving:

   0  E 0 1  e t  
While for the storage modulus and loss factor we get:

E o  jE o   o  jo
Rearranging, we get:

1  j
1   2  j    
o  E
o  E
o
1  j
1   2 2
Or:

 1   2 j     
 o  E
 1   2 2  1   2 2  o



Or simply:

 o  E 1  j  o

Viscoelastic Damping

9
Classical Models

2
1.8
1.6

Modulus

1.4
1.2
1
0.8
0.6

E

0.4

u

0.2
0
0

1

2

3

4

Frequency

Figure 6. The variation of the storage modulus and the loss factor with frequency according to the Zener model

This is more realistic for the presentation of the material characteristics, however, is does not satisfy
the detailed studies needed for analysis of complex structures. Let’s recall the harmonic relations:

   o e i t
   o e it
And the differential equation



E  E    
Which give:

 oeit   oieit  E oeit  E oieit
Expanding the complex exponentials, we get:

 o cost  i sin t    oi cost  i sin t 
 E o cost  i sin t   E oi cost  i sin t 
Equating the real and imaginary parts:

 o cos t   o sin t  E o cos t  E o sin t
 o sin t   o cos t  E o sin t  E o cos t

Viscoelastic Damping

10
Classical Models

 o sin t  E ' o sin t  E '' o cos t
 Total   e   d


elastic

dissipativ e

 dissipativ e  E  o cos t
''



E '' '
E  o 1  sin 2 t
'
E

  ( E ' o ) 2  ( E ' o sin t ) 2
  ( E ' o ) 2   e
d




2

2


2
  ( E ' o ) 2   e


2

 
2
  d    e  ( E ' o ) 2
 
 
Divide by ( E ' o ) 2 
2

2

 d   e 
 '    '  1
 E    E  
o 
o 


This equation represent ellipse with major diameter  2 * E ' o & minor diameter  2 *E ' o

Figure 7.

The Area in the curve exist only when   0

Golla-Hughes-McTavish (GHM) 1983

Simple mass+visco elastic material

Viscoelastic Damping

11
Classical Models


S 2  2n S 
 S    1   2
0
2
S  2n S  n 

2

n 2
let  Z  2

2
S  2n S  n
Z 00  2n Z 0  n Z  n 
2

2

Z 00  2n Z 0  n   Z 
Z  int ernal vaiable

substitute( Z )  in DE.of .system

 S 2  2n S 

n 2


 S    1   
2

 S 2  2 S   2    0
n

n
n 




2


S 2  2n S Z  0
2
n
 2
 00    2 n   Z   0
n
 S 2     

 00   1     Z  0

& . 00  n   2n  0  n   0
2

2

00
-     0
0    0     
 0     0


 


 


 
0
2  
1  00  0 2   0  - n 2
  0
n  


 

0  00
0  0

0
  
-     0


 


        
   00  
2   0  
  
0
    0
 0
   -  
2 

n   

n    





Complex stiffeners is given as

Viscoelastic Damping

12
Classical Models


S 2  2n S 
   1   2
2
S  2n S  n 

*


S 2  2n S 
G  G 1   2
2
S  2n S  n 

*


S 2  2n S 
   1   2
2
S  2n S  n 

 ,  , n are unknown prameters
*

mass supported on a visco elastic spring : 
S 2  2n S 
 S    1   2
0
2
S  2n S  n 

assume the internal variable Z

1

2

n 2
Z  internal DOF  2

2
S  2n S  n
S2 Z  2n SZ  n    
2

2
3

From equation 1&2

Viscoelastic Damping

13
Classical Models



S 2  2 n S
n 2
 S    1  
0
2
2 
2
n
S  2 n S   n 



S 2  2 n S
2
 S     
Z 0
2
2

n

 S 2           0
 S 2    1       0
in time domain
 00   1       0
eqn.  3  00  2 n  0   n    n   0
2


0



0



2

0  00  0 0   0     1 -    


 
0
 00   
 0   
2  
1    0 2 n    -  n 2

n 


 
0  00
0 0
 0
  


 
       1 -      0
   00  
2   0  
 

    
 0
   -  
2 

n  
n   




Viscoelastic Damping

14
Classical Models

 Visco elastic material has its own internal DOF =Z
 In general X&Z are vectors



S 2  2 n n S

  1   n   n 2
2

 S  2 n n S   n








Summary








The original system has (X ) DOF
The system+vesco elastic material has (X+Z) DOF
Entire system order has increased
X=primary DOF
Z=secondary DOF
Use static condensation method (Guyan reduction method )
I.e condensation =eliminate the secondary DOF&only maintain the
primary DOF.

Static Condensation
*consider only the stiffnes matrix

 1   
-  

  

-       F 
  
    0 

   

 1       F

F    redused stiffnes matrix
    1
         
    1
consider
    1
 1

 1   
1
-  
 
1   
0 

Viscoelastic Damping

-   1

  1


15
Classical Models

compare energy terms : 
1 
1
  reduced        total 
2
2
 
1
 
   total  
2
 





strain energy of entire system  strain energy of primary DOF.
" " redused can be obtained also as follow : -       F 
 1   
  
-  
    0 


0     F 

  
 1
1   0 


 

  

 0


0 
0
  00  
 
0
2


n 


0 
 1   
2   0  

- 
n 



-  
F 

   0  
 
 


 redused  00  C redused  00   redused 

Visco Elastic Material Damping

*Golla-Hughes-McTavish (GHM) model

Stiffners complex modulas (longitudinal or sheer)


S 2  2 n S 
   1   2
2 
S  2 n S   n 



*

Viscoelastic Damping

16
Unconstrained Layer Damping

For structure& V E M-------------system dynamics


0



0  00
0


  
   00  
    0
n 2    



 0
 
     1
2   0   
    - 
n    

0

-       F 
  
    0 


**GHM model when augmented with structural model can be written as:1-frequency domain
2-time domain

Other Models
•

Some, more accurate, models were developed to represent the behavior of viscoelastic
material

•

The greatest concern was paid for the modeling in the time domain.

•

The most famous models are:
–

Golla-Hughes-McTavish

–

Augmented Temperature Field

Fractional Derivative

Unconstrained Layer Damping
• The most common way of using viscoelastic material in damping is by
bonding it to the surface of the structure!
• The viscoelastic material will be strained with the structure resulting in
energy losses in the surface layer

Finite Element Model of Bars

• Recall the stiffness and mass matrices of a bar:
• It is possible, in the above model, to superimpose more than one
element!

Viscoelastic Damping

17
Constrained Layer Damping

K

EA  1  1
AL 2 1
  1 1  & M  6 1 2 
L 




Composite Bar

• The effect of each part of the bar may be added to the other part
linearly incorporating the effect of both materials

1
 1

 A  V AV 2
MC  B B
L
6
1
KC 

E B AB  EV AV
L

 1
1

1
2


Homework #9
• Use the datasheet of the DYAD606 viscoelastic material to calculate the
bar response with modulus of elasticity varying with frequency
Constrained Layer Damping
• When the viscoelastic layer is covered, constrained, from the top side,
sheer stresses are generated between the different surfaces.
• Viscoelastic materials are characterized by having much higher losses in
the case of sheer than in the case of axial strain.
Constrained Layer Damping

Viscoelastic Damping

18
Constrained Layer Damping

Sheer Stresses

Viscoelastic Damping

19
Constrained Layer Damping

 

x h2

  E2

u
x

 2u


2
x
E2 h2
 2u
G *  u  u0 



x 2 E2 h2  h1 



Axial Displacement
• The axial displacement relation becomes:
 2u
G *  u  u0 



x 2 E2 h2  h1 



E2 h2 h1  2u
 u  u0
G * x 2
B*

 2u
 u  u0
x 2

• The axial displacement relation becomes:
• Solving:
B*u xx  u   0 x

 x 
 x 
u  a1Sh *   a1Ch *    0 x
B 
B 

 x 
B * Sh *  

 B 
u  0 x 

 l 
Ch *  

 2B  


Sheer Strain

Viscoelastic Damping

20
Constrained Layer Damping



u  u0 u   0 x

h1
h1

 x 
* 
B 
 
 l 
Ch * 
 2B 

 0 B * Sh

Lost Energy

G o2 B*

l/2

W  h1G   2 dx 
l / 2

h1Ch



*

2

2

l 2B   Sh x
l/2

2

*

B* dx

l / 2

Note that

l/2







B*
l
*
/ 2Sh x B dx  2 Sh l B  2
l
2

 ass 
A

W
(1 / 2) 2  0 h1 h2 l
2

 4

l
cos( / 2)
0

 0  sh( A) sin( / 2)  sin( ) cos( / 2) 

l 
ch( A)  cos( )




l
sin( / 2)
0

G *  G (cos  i sin  )  G cos(1  tan  )  G cos(1  i )

0 

h1 h2 E 2
G

 v  tan

Example

.01 * .01 *107
0 
 1' '
103
Loptimum  3.28 * 0  3.28' '

Viscoelastic Damping

21
Constrained Layer Damping

For unconstrained layer damping

d (W )  hh11  0
''

2

W  total energy dissipated
 hh11  0 L
''

1

2

In the constrained case
l/2

Wconstrained 

l/2

 d (W ) hh G  
''

1

l / 2

2

dx

l / 2

hh1G ' '

l/2



2

dx
Wconstrained
l / 2

Wunconstrained
hh11 '' L o 2

G*  G 'iG' '  G ' 1  i 
*  'i' '  ' 1  i 
G ' '  G '

Viscoelastic Damping

' '  '

22
Constrained Layer Damping

'
  poisson's ratio
21   
for VEM ,  0.5

G' 

G' 

'
3



G' '  G' 

' ' '

3
3

G' '
 1/ 3
' '

Wcon
1
Ratio 

 2 dx
2 
Wuncon 3l o  l / 2
l/2



2 h2  2 o  sh Asin / 2   sin cos / 2  

3 h1 G l sin 
cosh   cos 



o  sh Asin / 2   sin cos / 2  
  0.124
l sin 
cosh   cos 


v  1    45o
h2
1
h1
R

2
 104
G

2
* 1 * 104 * 0.124  1000
3

Summary
*constraining the VEM makes it deforms in sheer & results in significantly high
energy dissipation characteristics

Notes
The plunkett & Lee analysis assumes:1-quasi-static analysis (satisfied by the force that the constraining layer
thickness is small (its inertia can be neglected)

Viscoelastic Damping

23
Constrained Layer Damping

2-A general base structure
3-longitudinal vibration

beam

2w
 max .ofVEM  d 2

2w
M   2

 max  cons tan t   0

For the beam:Energy dissipated

Viscoelastic Damping

24
Constrained Layer Damping

l/2

l/2

 d (W ) hh G  

Wconstrained 

''

2

1

l / 2

dx

l / 2


* 
 
  l 
h1ch * 
 2 

 0*sh

W  hh1G ' '  *

2

l/2



2

d Wxx

l / 2

2

sh2 (  / *)
dx
2
ch (l / *)

Exercise

Show that the above composite has

t t
r rh
* 3
 1  re rh  3(1  rr ) 2 e *
1 1
1  re rh
*



re  2  2 (1  i )  re (1  i )
1
1
*

where : 
rh 

h2
h1

Viscoelastic Damping

*

re 

2
1
25
Constrained Layer Damping

And show that:-





re rh 3  6rh  4r  2re rh  re rh
2



3

2

4



(1  re rh ) 1  4re rh  6re rh  4re rh  re rh
2

3

2

4

2



Take;-

rh 

h2
1
h1

re  3.585 * 10 4

  0.00502 2
  0.00519 2
Kinematics of CLD

h2
Wx
2
h
U   U 3  3 Wx
2
U   U1 

U   U A  (U 3  U1 )  (
Wx   

h1  h3
)Wx
2

U U A
h2

Viscoelastic Damping

26
Active Constrained layers damping






U   U   h 2W 
h2
(U 1  U 3 )  (

h1 h3
  h)W 
2 2
h2

U1 U 3 h
 W
h2
h2

Active Constrained layers damping

Viscoelastic Damping

27
Active Constrained layers damping

* U   U   0 
2

2

* 

h1h2 2
G*

   L/2



U
0
X

Solution procedure
*solve for U
*determine γ

W  G ' 'h2 2
Compute *
W   Wdx Compute *

*put in dimensionless form η

Viscoelastic Damping

28
Active Constrained layers damping

For ACLD

   passive  active
If controller fails---------------system still “fail-safe” because of passive damping


 p   0  ( p   d ) 0
t
Notes (viscoelastic)

if

   ' (1   i )

F   ' (1   i )    '    ' i 
if

   0 e iwt

 o  iw o e iwt  iw
' 0
F  
  Felastic  Fdamping
w
'

2 / 

Energy dissipated per cycle 


0

dx
Fd
dt 
dt

2 / 


0

 '



 o 2 dt

for   0 sin t
2 / 

Energy  W 



 '

0

potential Energy 
W
 2 
We



 2  0 2 cos 2 (t )dt 

2 '
2
2
  o    ' o
2

1 ' 2
  0  We
2
W

2We

W
 specific damping capacity
We

Viscoelastic Damping

29
Active Constrained layers damping

Viscous Damping
Fd  C o
2 / 

 C

W  dissipated energy 

o

 o dt

0

 C  o
2

2 / 
2

 cos

2

t dt

0




2
2
C 2  o  C o


Equivalent viscous damping to viscoelastic material
 '  C

C

 '


C  '
1
damping ratio   

Co
 2  '



2

'


2

at resonance   


2

2-Transeverse Vibration

Kinematics equation:

 

U1  U 3 h
 Wx
h2
h2

h

h1  h3
 h2
2

U=longitudinal deflection of base structure

Viscoelastic Damping

30
Active Constrained layers damping



=shear angle

Wx=slope of deflection line
h2   U 1  hW 
U 1  h2   hW 
U 1  h2   hW   1
=F 1h1U 1 x Force on top layer per unit width =
dF
 1h1U1  G *  shearstress  2
d
1h1 (h2   hW )  G *

 

G*
h

  W
1h1h2
h2

let

 1  1h1  longitudinal Rigidity

  

G*
h
  W
1
h2

NOTE
Bending in beam:

( ) *  Dt  Dt (1   i)
*

Equation of motion;
Dt W   m 2W  0
*

W  

m 2
Dt

*

W 0

W    B W  0
*4

Viscoelastic Damping

31
Active Constrained layers damping

where  B  bending wave number
W  W0 e i ( wt  B  )
*

one propagation solution

W
( D * t / m) 1 / 4

let

 *B 



W 1/ 2


  B (1  i )
4
( Dt / m)1 / 4 (1  i  )1 / 4

*

B

W  W0 e i ( wt  B  ) e (  B  / 4 )
W  W0 e (  B / 4 ) 

Energy  CW 2  CW0 e (  B / 2) 
2

d energy
2   B
 CW0 (
)e
dx
2

  B

2

d Energy/dx
  B

Energy
2
 2 d Energy/dx
C 
 constrained layers assembly
B
Energy

solution for  C ;
* put W  W0 e i ( wt  
* solve

 

*

B )

G*
h

  W 
 1 h2
h2

for 
* calculate d energy/dx   G'  v h2  2
Using the solution given in ''Damping of flexural waves by constrained layers ''
Journal of acoustic society of America, Vol 31, 7 pp952-962, 1959

Viscoelastic Damping

32
Active Constrained layers damping

W   i *3 BW0 e i B  e iWt
*

W   i B W
*3

 

G*
h

   B 3 iW
 1 h2
h2

 

ih B

W


G*
h2 1 

*2
( B  1 2 ) 

check that it satisfies equation

Summary
Loss factor for constrained layer damping during transverse vibration
WD dissipated Energy

W
Elastic Energy
WD
loss factor   
2 W
specifi damping 

2-for beam in bending
Equation of motion

Viscoelastic Damping

33
Active Constrained layers damping

( ) *  Dt  Dt (1   i)
*

Equation of motion;
Dt W   m 2W  0
*

W  

m 2
Dt

*

W 0

W    B W  0
*4

1/ 4

 mW 2 
where  *B  bending wave number  
 D*

 t 



*

B

W 1/ 2


  B (1  i )
1/ 4
1/ 4
4
( Dt / m) (1  i  )

W  W0 e i ( wt  B  ) e (  B  / 4 )
W  W0 e (  B / 4 ) 
 B  wave number of constrained layer sassembly without losses





Energy  CW 2  C W0ei ( wt   B  ) e B / 2  Ce B / 2
2

denergy / dx Ce B / 2 ( B / 2)

 ( B / 2)
energy
Ce B / 2
3-calculate loss factor of CLD

C 

 2 d Energy/dx
B
Energy

4- For 3 layers CLD

Viscoelastic Damping

34
Active Constrained layers damping

 

U1  U 3 h
 Wx
h2
h2

h

h1  h3
 h2
2

If

U3=0 a-

 

U1 h
 W
h2 h2

U1  h2  hW
U   h2   hW

Quasi-static Equilibrium

Longitudinal load on layer2=shear load

 1
d   (db)


U 
  G *   h1 1  h1  1
 h1  1U 


from geomtry;
(h1 * b)

U 1  h2    hW 

Viscoelastic Damping

35
Active Constrained layers damping

1h1 h2   hW   G * 
1h1h2
 hh
   1 1 W  
G*
G*
G *
h
  
 W
1h1h2 h2
let

1h1   1

  

G*
h
  W 
 1 h2
h2

W  W0 e i ( wt  

*

B )

W   i *3 BW0 e i

one propagation solution
*

B

e iWt

W   i B W
*3

  

G*
h
   B 3 iW
 1 h2
h2

It has a solution;

 

ih B

W


G*
h2 1 

*2
 ( B  1 2 ) 
check that it satisfies equation

Viscoelastic Damping

36
Active Constrained layers damping

  G'  v h2 2 Energy dissipated per unit length

Energy in bending waves

W  W0 e i ( wt  

*

B )

W  W0 sin( wt   B * )
W 0  W0  cos(t   B * )  linear velocity
W 0   W0  B sin(t   B * )  Anguler velocity
W    B *W0 cos(t    * )
W     W0 sin(t    * )
*2

moment    Dt *W   Dt *  *2 W0 sin(t    )

  Dt *  *3W0 cos(t    )

W 0
power  FW 0  


shear  F  

 W 2 0   *3 Dt * cos2  Dt *   W 2 o sin 2  W0   *3 Dt
*3

2

Energy  power * 2 / 
 -2  *3 DtWo2

   h2G ' 'V  2

2
2  3 DtWo2


const .layer

(h 2 / Dt ) g
 V
1  g 2

Viscoelastic Damping

37
Active Constrained layers damping

g

G*
 shear parameter
 *2 1 2


constr

is Max. when

constr
0
g

g optimum  1

NOTE
 1  1h1
what is the physical meaning of g ,
if

W  0  CLD in long.vibration

 

U1  U 3 hW

h2
h2

 

U1
h2

Also
G*
 0
 1h2
   o e  G*/ 1h2 

  

Viscoelastic Damping

38
Active Constrained layers damping

U  U oe
Uo
e
U
 G*

 h
1 2






G * /  1 h2 


e  1



 1h2
G*
1
g  *2 2
 B e

e 

* 
B

let

g

2

g



2
2 2  e2

bendin gwave length
shear wave length

b- if U3=0
 

U1  U 3 h
 W
h2
h2

where U1 & U 3 are dependent
in order to have

1h1U1  3h3U 3   0
F1



F3

0

 1U1   3U 3   0
where
U3 

 

 1  1h1

 3  3h3

 1
U1
3

1  1 /  3
h
U1  W
h2
h2

Viscoelastic Damping

39
Active Constrained layers damping

 1   3 

U1  h2  hW
 

3



2 
 3h2
 3h
 U1 

W 

 
1   3
1   3



  1 

h1    eqm.of top layer
  
 1U1 
h1  G * 

 1U1   G * 

But

 1 3h2
h
   1 3 W  G*
1   3
1   3

  

G * ( 1   3 )
h
  W
 1h3h2
h2

Follow same procedure as case of U3=0 to get

 constr  V

( 1 h 2 / Dt )( g / 1  g ) 2
 1
g 
1



 3 1 g 

2

Summary

1- Longitudinal vibration

-to find optimum length of constraining layers

Viscoelastic Damping

40
Active Constrained layers damping

(Following plunket &lec. paper)
Loptimum
 3.28
B*
G*
1
B* 

h1h2 E2 characterstic length

2-comparing between CLD &un CLD
Energy dissipated in un CLD<<< CLD
Tension

shear

3-transiverse vibration
A -definition
-specific damping
-loss factor
-loss factor &damping ratio selection

B-CLD with U3=0
*shear parameter g=1 for optimum
*g=ratio of bending to shear wave length

---optimum is ensured if there is balance between shear and bending

C-U3=0

Viscoelastic Damping

41
<Bibliography

Bibliography
A dynamic function formulation for the response of a beam structure to a moving mass. Foda, M. A.
and Abduljabbar, Z. 1998. 1998, Journal of Sound and Vibration, Vol. 210, pp. 295-306.
A HYSTERESIS MODEL FOR THE FIELD-DEPENDENT DAMPING FORCE OF A MAGNETORHEOLOGICAL
DAMPER. LEE, S.-B. CHOI AND S.-K. 2001. 2001, Journal of Sound and Vibration, p. 9.
A Review of Power Harvesting from Vibration Using Piezoelectric Materials. Sodano, Henry A.,
Inman, Daniel J. and Park, Gyuhae. 2004. 2004, The Shock and Vibration Digest, Vol. 36, pp. 197205. DOI: 10.1177/0583102404043275.
A Review of Power Harvesting Using Piezoelectric Materials (2003-2006). Anton, Steven R. and
Sodano, Henry A. 2007. 3, 2007, Smart Materials and Structures, Vol. 16, pp. R1-R21. DOI:
10.1088/0964-1726/16/3/R01.
A Review of the State of the Art in Magnetorheological Fluid Technologies - Part I: MR fluids and MR
fluid models. Goncalves, Fernando D., Koo, Jeong-Hoi and Ahmadian, Mehdi. 2006. 3, 2006, The
Shoack and Vibration Dijest, Vol. 38, pp. 203-219. DOI: 10.1177/0583102406065099.
A.V. Srinivasan, D. Michael McFarland. 2001. Smart Structures analysis and design. Cambridge :
Press Syndicate Of The University Of Cambridge, 2001.
Aero-Thermo-Mechanical Characteristics od Shape Memory Alloy Hybrid Composite Panels with
Geometric Imperfections. Ibrahim, H., Tawfik, M. and Negm, H. 2008. Cairo : s.n., 2008. 13th
International Conference on Applied Mechanics and Mechanical Engineering. 27-29 May 2008, Cairo,
Egypt.
Application of the theory of impulsive parametric excitation and new treatments of general
parametric excitation problems. Hsu, C. S. and Cheng, W. H. 1973. 1973, Journal of Applied
Mechanics, Vol. 40.
Benedetti, G. A. 1973. Transverse vibration and stability of a beam subject to moving mass loads.
Civil Engineering, Arizona State University. 1973. PhD Dissertation.
Coussot, Philippe. 2005. RHEOMETRY OF PASTES,SUSPENSIONS AND GRANULAR MATERIALS. s.l. :
John Wiley & Sons, Inc., 2005.
Dave, Dr. 2004. Dr. Dave's Do It Yourself MR Fluid. s.l. : Lord Corporation, 2004.
Dynamic behavior of beam structures carrying moving masses. Saigal, S. 1986. 1986, Journal of
Applied Mechanics, Vol. 53, pp. 222-224.
Dynamic deflection of cracked beam with moving mass. Parhi, D. R. and Behera, A. K. 1997. 1997,
Proceeding of the Institution of Mechanical engineering, Vol. 211, pp. 77-87.

Viscoelastic Damping

42
<Bibliography
Dynamic Modeling of Semi-Active ER/MR Fluid Dampers. Xiaojie Wang, Faramarz Gordaninejad.
2001. Reno, NV : s.n., 2001. Wang, X. and Gordaninejad, F., “Dynamic Modeling of Semi-Active
ER/MR Fluid Dampers,”. p. 10.
Dynamic Stability and Response of a beam subject to deflection dependent moving load. Katz, R., et
al. 1987. 1987, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 109, pp. 361-365.
Dynamic stability of a beam carrying moving masses. Nelson, H. D. and Conover, R. A. 1971. 1971,
Journal of Applied Mechanics, Vol. 38, pp. 1003-1006.
Dynamic stability of a beam excited by a sequence of moving mass particles. Makhertich, S. 2004.
2004, Journal of the Acoustical Society of America, Vol. 115, pp. 1416-1419.
Dynamic stability of a beam loaded be a sequence of moving mass particles. Benedetti, G. A. 1974.
1974, Journal of Applied Mechanics, Vol. 41, pp. 1069-1071.
Dynamic Stability of Stepped Beams Under Moving Loads. Aldraihem, O. J. and Baz, A. 2002. 2002,
Journal of Sound and Vibration, Vol. 250, pp. 835-848.
Dynamics and Stability of Gun-Barrels with Moving Bullets. Wagih, A., et al. 2008. Cairo : s.n., 2008.
13th International Conference on Applied Mechanics and Mechanical Engineering. 27-29 May 2008,
Cairo, Egypt.
Dynamics and Stability of Stepped Gun-Barrels with Moving Bullets. Tawfik, M. 2008. 2008,
Advances in Acoustics and Vibration, Vol. 2008. Article ID 483857, 6 pages.
doi:10.1155/2008/483857.
—. Tawfik, Mohammad. 2008. Article ID 483857, 2008, Advances in Acoustics and Vibration, Vol.
2008, p. 6 pages. doi:10.1155/2008/483857.
Efficient computation of parametric instability regimes in systems with large number of degrees-offreedom. Kochupillai, J., Ganesan, N. and Padnamaphan, C. 2004. 2004, Finite elements in Analysis
and Design, Vol. 40, pp. 1123-1138.
Elmy, Amed O. 2007. Application of MR fluids in Vibration Damping. Engineering and Material
Science, German University in Cairo. 2007. BSc Thesis.
Energy conservation in Newmark-based time integration algorithms. Krenk, Steen. 2006. 2006,
Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 6110-6124.
Energy Harvesting from a Backpack Instrument with Piezoelectric Shoulder Straps. Granstorm,
Jonathan, et al. 2007. 5, 2007, Smart Materials and Structures, Vol. 16, pp. 1810-1820. DOI:
10.1088/0964-1726/16/5/036.
Experimental and Spectral Finite Element Study of Plates with Shunted Piezoelectric Patches. Tawfik,
M. and Baz, A. 2004. 2, 2004, International Journal of Acoustics and Vibration, Vol. 9, pp. 87-97.
Finite element analysis of elastic beams subjected to moving dynamic loads. Lin, Y. H. and
Trethewey, M. W. 1990. 1990, Journal of Vibration and Acoustics, Vol. 112, pp. 323-342.

Viscoelastic Damping

43
<Bibliography
Finite element vibration analysis of rotating Timoshenko beams. Rao, S. and Gupta, R. 2001. 2001,
Journal of Sound and Vibration, Vol. 242, pp. 103-124.
Finitel element analysis of an elastic beam structure subjected to a moving distributed mass train.
Rieker, J. R. and Trethewey, M. W. 1999. 1999, Mechanical Systems and Signal Processing, Vol. 13,
pp. 31-51.
G. Magnac, P. Meneroud, M.F. Six, G. Patient, R. Leletty, F. Claeyssen. CHARACTERISATION OF
MAGNETO-RHEOLOGICAL FLUIDS. Meylan, France : s.n.
G. Yang, a B.F. Spencer,a Jr., J.D. Carlsonb and M.K. Sainc. Large-scale MR fluid dampers: modeling,
and dynamic performance considerations. Indiana, USA : s.n.
Gravatt, John W. 2003. Magneto-Rheological Dampers for Super-Sport Motorcycle Applications. 8th
MAY 2003.
Guangqiang Yang, B.S., M.S. 2001. LARGE-SCALE MAGNETORHEOLOGICAL FLUID DAMPER FOR
VIBRATION. December 2001.
Impulsive parametric excitation: Theory. Hsu, C. S. 1972. 1972, Journal of Applied Mechanics, Vol.
39, pp. 551-558.
Instability of vibration of a mass that moves uniformly along a beam on a periodically
inhomogeneous foundation. Verichev, S.N. and Metrikine, A.V. 2003. 2003, Journal of Sound and
Vibration, Vol. 260, pp. 901-925.
Instability of vibration of a moving-train-and-rail coupling system. Zheng, D. Y. and Fan, S. C. 2002. 2,
2002, Journal of Sound and Vibration, Vol. 255, pp. 243-259.
Kallio, Marke. 2005. The elastic and damping properties of magnetorheological elastomers.
Vuorimiehentie : JULKAISIJA – UTGIVARE – PUBLISHER, 2005.
Kelly, S. G. 2000. Fundamentals Of Mechanical Vibrations. s.l. : Mc-Graw-Hill Higher Education, 2000.
Lai, W H Liao and C Y. 2002. Harmonic analysis of a magnetprheological da,per for vibration control.
Shatin, NT, Hong Kong : s.n., 5th April 2002.
Li Pang, G. M. Kamath, N. M. Werely. ANALYSIS AND TESTING OF A LINEAR STROKE
MAGNETORHEOLOGICAL DAMPER. Maryland, USA : s.n.
Linear Dynamics of an elastic beam under moving loads. Rao, G. V. 2000. 2000, Journal of Vibration
and Acoustics, Vol. 122, pp. 281-289.
MAGNETO-RHEOLOGICAL FLUID DAMPERS MODELING:NUMERICAL AND EXPERIMENTAL. N. Yasreb,
A. Ghazavi, M. M.Mashhad, A. Yousefi-koma. 2006. Montreal, QC, Canada : s.n., 2006. The 17th
IASTED International Conference MODELLING AND SIMULATION. p. 5.
Malkin, Alexander Ya. Rheology Fundamentals. Moscow : ChemTec Publishing.

Viscoelastic Damping

44
<Bibliography
Moving-Loads-Induced Instability in Stepped Tubes. Aldrihem, O. J. and Baz, A. 2004. 2004, Journal
of Vibration and Control, Vol. 10, pp. 3-23.
Non-Linear dyanmics of an elastic beam under moving loads. Wayou, A. N. Y., Tchoukuegno, R. and
Woafo, P. 2004. 2004, Journal of Sound and Vibration, Vol. 273, pp. 1101-1108.
Nonlinear Panel Flutter with Temperature Effects of Functionally Graded Material Panels with
Temperature-Dependent Material Properties. Ibrahim, H. H., Tawfik, M. and Al-Ajmi, M. 2,
Computational Mechanics, Vol. 41. DOI:10.1007/s00466-007-0188-4.
Norris, James A. Behavior of Magneto-Rheological Fluids Subject to Impact and Schock Loading.
OPTIMAL DESIGN OF MR DAMPERS. Henri GAVIN, Jesse HOAGG and Mark DOBOSSY. 2001. Seattle
WA : s.n., 2001. U.S.-Japan Workshop on Smart Structures for Improved Seismic Performance in
Urban Regions. p. 12.
P.Edwards. Mass-Spring-Damper Systems.
Phenomenological Model of a Magnetorheological Damper. B.F. Spencer Jr., S.J. Dyke, M.K. Sain
and J.D. Carlson. 1996. 1996, ASCE Journal of Engineering Mechanics, p. 23.
Phenomenological Model of a Magnetorheological. Spenser, Jr., B. F. 1996. 1996, Journal of
Engineering Mechanics, Vol. 23.
Poynor, James. Innovative Designs for Magneto-Rheological Dampers.
Random Response of Shape Memory Alloy Hybrid Composite Plates Subject To Thermo-Acoustic
Loads. Ibrahim, H. H., Tawfik, M. and Negm, H. M. 2008. 3, 2008, Journal of Aircraft, Vol. 44. DOI:
10.2514/1.32843.
Rashaida, Ali A. 2005. FLOW OF A NON-NEWTONIAN BINGHAM PLASTIC FLUID OVER A ROTATING
DISK. 2005.
Response of periodically stiffened shells to moving projectile propelled by internal pressure wave.
Ruzzene, M. and Baz, A. 2006. 2006, Mechanics of Advanced Materials ans Structures, Vol. 13, pp.
267-284.
Semi-analytic solution in time domain for non-uniform multi-span Bernoulli-Euler beams transversed
by moving loads. Martinez-Castro, A. E., Museros, P. and Castillo-Linares, A. 2006. 2006, Journal of
Sound and Vibration, Vol. 294, pp. 278-297.
Singh, V. P. 1997. Mechanical vibrations. Delhi : DHANPAT RAI & CO., 1997.
Solution of the moving mass problem using complex eigenfunction expansions. Lee, K. Y. and
Renshaw, A. A. 2000. 2000, Journal of Applied Mechanics, Vol. 67, pp. 823-827.
Stochastic Finite Element Analysis of the Free Vibration of Functionally Graded Material Plates.
Shaker, A., et al. 2008. 3, 2008, Computational Mechanics, Vol. 44, pp. 707-714. DOI
10.1007/s00466-007-0226-2.

Viscoelastic Damping

45
<Bibliography
Stochastic Finite Element Analysis of the Free Vibration of Laminated Composite Plates. Shaker, A., et
al. 2008. 4, 2008, Computational Mechanics, Vol. 41, pp. 493-501. DOI:10.1007/s00466-007-0205-7.
The Structural Response of Cylindrical Shells to Internal Moving Pressure and Mass. Baz, A., Saad
Eldin, K. and Elzahabi, A. 2004. Cairo : s.n., 2004. Proceeding of 11th International Conference on
Applied Mechanics and Mechanical Engineering (AMME). pp. 720-734.
The use of finite element techniques for calculating the dynamic response of structures to moving
loads. Wu, J-J, Whittaker, A. R. and Cartmell, M. P. 2000. 2000, Computer and Structures, Vol. 78,
pp. 789-799.
Thermal Buckling and Nonlinear Flutter Behavior of FunctionallyGraded Material Panels. Ibrahim, H.
H., Tawfik, M. and Al-Ajmi, M. 2007. 5, 2007, Journal of Aircraft, Vol. 44, pp. 1610-1618.
DOI:10.2514/1.27866.
Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates. Tawfik,
M., Ro, J-J. and Mei, C. 2002. 2, 2002, Smart Materials and Structures, Vol. 11, pp. 297-307.
doi:10.1088/0964-1726/11/2/313.
Transient vibration analysis of high-speed feed drive system. Cheng, C. C. and Shiu, J. S. 2001. 3,
2001, Journal of Sound and Vibration, Vol. 239, pp. 489-504.
Vibration analysis of beams with general boundary conditions transveresed by a moving force. Abu
Hilal, M. and Zibdeh, H. S. 2000. 2, 2000, Journal of Sound and Vibration, Vol. 229, pp. 377-388.
Vibration analysis of continuous beam subjected to moving mass. Ichikawa, M., Miyakawa, Y. and
Matsuda, A. 2000. 3, 2000, Journal of Sound and Vibration, Vol. 230, pp. 493-506.
Vibration and stability of axially loadded beams on elastic foundation under moving harmonic loads.
Kim, Seong-Min. 2004. 2004, Engineering Structures, Vol. 26, pp. 95-105.
Vibration Attenuation in A Periodic Rotating Timoshenko Beam. Alaa El-Din, Maged and Tawfik,
Mohammad. 2007. Cairns : s.n., 2007. ICSV14.
Vibration Attenuation in Rotating Beams with Periodically Distributed Piezoelectric Controllers. Alaa
El-Din, Maged and Tawfik, Mohammad. July 2006. Vienna, Austria : s.n., July 2006. 13th
International Congress on Sound and Vibration.
Vibration Characteristics of Periodic Sandwich Beam. Badran, H., Tawfik, M. and Negm, H. 2008.
Cairo : s.n., 2008. 13th International Conference on Applied Mechanics and Mechanical Engineering.
27-29 May 2008, Cairo, Egypt.
Vibration Control of Tubes with Internally Moving Loads Using Active Constrained Damping. Ro, J-J,
Saad Eldin, K. and Baz, A. 1997. Dallas, TX : s.n., 1997. ASME Winter Annual Meeting.
Vibration Control Using Smart Fluids. Sims, Neil D., Stanway, Roger and Johnson, Andrew R. 1999.
3, 1999, The Shock and Vibration Dijest, Vol. 31, pp. 195-203. DOI:10.1177/058310249903100302.
Villarreal, Karla A. EFFECTS OF MR DAMPER PLACEMENT ON STRUCTURE VIBRATION PARAMETERS.
Tokyo, Japan : s.n.

Viscoelastic Damping

46
<Bibliography
Wave attenuation in periodic helicopter blades. Tawfik, M., Chung, J. and Baz, A. 2004. Amman,
Jordan : s.n., 2004. Jordan International Mechanical engieering Confernce.
What Makes a Good MR Fluid? Carlson, J. David. 2002. 4, 2002, Journal of Intelligent Material
Systems and Structures, Vol. 13, pp. 431-435. DOI: 10.1106/104538902028221.
Zhang, G Y Zhou and P Q. 2002. Investigation of the dynamic mechanical behavior of the doublebarreled configuration in a magnetorheological fluid damper. Hefei, Anhui, China : s.n., 5th April
2002.

Viscoelastic Damping

47

More Related Content

What's hot

Unit I Stresses and strain PSG.pptx
Unit I Stresses and strain PSG.pptxUnit I Stresses and strain PSG.pptx
Unit I Stresses and strain PSG.pptxPriya Gajjal
 
Lecture: Mechanical Properties: Macro Viewpoint
Lecture: Mechanical Properties: Macro ViewpointLecture: Mechanical Properties: Macro Viewpoint
Lecture: Mechanical Properties: Macro ViewpointNikolai Priezjev
 
Maxwell and voight model fo viscoelasticity materials
Maxwell and voight model fo viscoelasticity materialsMaxwell and voight model fo viscoelasticity materials
Maxwell and voight model fo viscoelasticity materialsAtheenaPandian Enterprises
 
Mechanical Properties of textile fibers.pptx
Mechanical Properties of textile fibers.pptxMechanical Properties of textile fibers.pptx
Mechanical Properties of textile fibers.pptxTabassum
 
Micromechanics of Composite Materials
Micromechanics of Composite MaterialsMicromechanics of Composite Materials
Micromechanics of Composite MaterialsMohammad Tawfik
 
Basics of mechanics stresses and strains (1)
Basics of mechanics stresses and strains (1)Basics of mechanics stresses and strains (1)
Basics of mechanics stresses and strains (1)ShrishailBiradar4
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planesPRAJWAL SHRIRAO
 
Bending Stress In Beams
Bending Stress In BeamsBending Stress In Beams
Bending Stress In BeamsHitesh Singh
 
Modelling Visco-elastic material for Building structure
Modelling Visco-elastic material for Building structureModelling Visco-elastic material for Building structure
Modelling Visco-elastic material for Building structureDigvijay Gaikwad
 
Stress vs. Strain Curve
Stress vs. Strain CurveStress vs. Strain Curve
Stress vs. Strain Curvejuliesypoq
 
Plastic Analysis
Plastic AnalysisPlastic Analysis
Plastic AnalysisAayushi5
 

What's hot (20)

Presentation on glass fiber
Presentation on glass fiberPresentation on glass fiber
Presentation on glass fiber
 
Unit I Stresses and strain PSG.pptx
Unit I Stresses and strain PSG.pptxUnit I Stresses and strain PSG.pptx
Unit I Stresses and strain PSG.pptx
 
CH 3.pptx
CH 3.pptxCH 3.pptx
CH 3.pptx
 
Glass Fibre
Glass FibreGlass Fibre
Glass Fibre
 
what is Poisons Ratio
what is Poisons Ratiowhat is Poisons Ratio
what is Poisons Ratio
 
Glass fibres
Glass fibresGlass fibres
Glass fibres
 
1 tension
1  tension1  tension
1 tension
 
Lecture: Mechanical Properties: Macro Viewpoint
Lecture: Mechanical Properties: Macro ViewpointLecture: Mechanical Properties: Macro Viewpoint
Lecture: Mechanical Properties: Macro Viewpoint
 
Maxwell and voight model fo viscoelasticity materials
Maxwell and voight model fo viscoelasticity materialsMaxwell and voight model fo viscoelasticity materials
Maxwell and voight model fo viscoelasticity materials
 
Mechanical Properties of textile fibers.pptx
Mechanical Properties of textile fibers.pptxMechanical Properties of textile fibers.pptx
Mechanical Properties of textile fibers.pptx
 
FIBER REINFORCED PLASTICS by sairam
FIBER  REINFORCED  PLASTICS by sairamFIBER  REINFORCED  PLASTICS by sairam
FIBER REINFORCED PLASTICS by sairam
 
Micromechanics of Composite Materials
Micromechanics of Composite MaterialsMicromechanics of Composite Materials
Micromechanics of Composite Materials
 
Basics of mechanics stresses and strains (1)
Basics of mechanics stresses and strains (1)Basics of mechanics stresses and strains (1)
Basics of mechanics stresses and strains (1)
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planes
 
Bending Stress In Beams
Bending Stress In BeamsBending Stress In Beams
Bending Stress In Beams
 
Shear centre
Shear centreShear centre
Shear centre
 
Types of beam
Types of beamTypes of beam
Types of beam
 
Modelling Visco-elastic material for Building structure
Modelling Visco-elastic material for Building structureModelling Visco-elastic material for Building structure
Modelling Visco-elastic material for Building structure
 
Stress vs. Strain Curve
Stress vs. Strain CurveStress vs. Strain Curve
Stress vs. Strain Curve
 
Plastic Analysis
Plastic AnalysisPlastic Analysis
Plastic Analysis
 

Viewers also liked

Viscoelastic Damping: Zener model
Viscoelastic Damping: Zener modelViscoelastic Damping: Zener model
Viscoelastic Damping: Zener modelMohammad Tawfik
 
Modeling viscoelastic-damping-for-dampening-adhesives
Modeling viscoelastic-damping-for-dampening-adhesivesModeling viscoelastic-damping-for-dampening-adhesives
Modeling viscoelastic-damping-for-dampening-adhesivesCan Ozcan
 
01 SDOF - SPC408 - Fall2016
01 SDOF - SPC408 - Fall201601 SDOF - SPC408 - Fall2016
01 SDOF - SPC408 - Fall2016Maged Mostafa
 
02 Damping - SPC408 - Fall2016
02 Damping - SPC408 - Fall201602 Damping - SPC408 - Fall2016
02 Damping - SPC408 - Fall2016Maged Mostafa
 
Vibration damping using smart materials
Vibration damping using smart materialsVibration damping using smart materials
Vibration damping using smart materialsMaged Mostafa
 
Understanding viscoelasticity
Understanding viscoelasticityUnderstanding viscoelasticity
Understanding viscoelasticitySpringer
 
Vibration Damping: Lecture Notes - UMD Spring 2001
Vibration Damping: Lecture Notes - UMD Spring 2001Vibration Damping: Lecture Notes - UMD Spring 2001
Vibration Damping: Lecture Notes - UMD Spring 2001Mohammad Tawfik
 
Finite Element Analysis of the Aeroelasticity Plates Under Thermal and Aerody...
Finite Element Analysis of the Aeroelasticity Plates Under Thermal and Aerody...Finite Element Analysis of the Aeroelasticity Plates Under Thermal and Aerody...
Finite Element Analysis of the Aeroelasticity Plates Under Thermal and Aerody...Mohammad Tawfik
 
Airfoils and Wings: Airfoils
Airfoils and Wings: AirfoilsAirfoils and Wings: Airfoils
Airfoils and Wings: AirfoilsMohammad Tawfik
 
11 initial value problems system
11 initial value problems   system11 initial value problems   system
11 initial value problems systemMohammad Tawfik
 
Aero495 Shape Memory Alloys SMA
Aero495 Shape Memory Alloys SMAAero495 Shape Memory Alloys SMA
Aero495 Shape Memory Alloys SMAMohammad Tawfik
 
Periodic Structures - A Passive Vibration Damper
Periodic Structures - A Passive Vibration DamperPeriodic Structures - A Passive Vibration Damper
Periodic Structures - A Passive Vibration DamperMohammad Tawfik
 

Viewers also liked (20)

Viscoelastic Damping: Zener model
Viscoelastic Damping: Zener modelViscoelastic Damping: Zener model
Viscoelastic Damping: Zener model
 
Modeling viscoelastic-damping-for-dampening-adhesives
Modeling viscoelastic-damping-for-dampening-adhesivesModeling viscoelastic-damping-for-dampening-adhesives
Modeling viscoelastic-damping-for-dampening-adhesives
 
01 SDOF - SPC408 - Fall2016
01 SDOF - SPC408 - Fall201601 SDOF - SPC408 - Fall2016
01 SDOF - SPC408 - Fall2016
 
Piezo book
Piezo bookPiezo book
Piezo book
 
02 Damping - SPC408 - Fall2016
02 Damping - SPC408 - Fall201602 Damping - SPC408 - Fall2016
02 Damping - SPC408 - Fall2016
 
Vibration damping using smart materials
Vibration damping using smart materialsVibration damping using smart materials
Vibration damping using smart materials
 
Vibration Absorber
Vibration AbsorberVibration Absorber
Vibration Absorber
 
Sdof
SdofSdof
Sdof
 
Understanding viscoelasticity
Understanding viscoelasticityUnderstanding viscoelasticity
Understanding viscoelasticity
 
07 interpolationnewton
07 interpolationnewton07 interpolationnewton
07 interpolationnewton
 
13 weightedresidual
13 weightedresidual13 weightedresidual
13 weightedresidual
 
Vibration Damping: Lecture Notes - UMD Spring 2001
Vibration Damping: Lecture Notes - UMD Spring 2001Vibration Damping: Lecture Notes - UMD Spring 2001
Vibration Damping: Lecture Notes - UMD Spring 2001
 
Trusses!
Trusses!Trusses!
Trusses!
 
Finite Element Analysis of the Aeroelasticity Plates Under Thermal and Aerody...
Finite Element Analysis of the Aeroelasticity Plates Under Thermal and Aerody...Finite Element Analysis of the Aeroelasticity Plates Under Thermal and Aerody...
Finite Element Analysis of the Aeroelasticity Plates Under Thermal and Aerody...
 
Airfoils and Wings: Airfoils
Airfoils and Wings: AirfoilsAirfoils and Wings: Airfoils
Airfoils and Wings: Airfoils
 
11 initial value problems system
11 initial value problems   system11 initial value problems   system
11 initial value problems system
 
03 multipledof
03 multipledof03 multipledof
03 multipledof
 
Aero495 Shape Memory Alloys SMA
Aero495 Shape Memory Alloys SMAAero495 Shape Memory Alloys SMA
Aero495 Shape Memory Alloys SMA
 
05 continuous beams
05 continuous beams05 continuous beams
05 continuous beams
 
Periodic Structures - A Passive Vibration Damper
Periodic Structures - A Passive Vibration DamperPeriodic Structures - A Passive Vibration Damper
Periodic Structures - A Passive Vibration Damper
 

Similar to Viscoelastic Damping: Lecture Notes 140202

Mechanical Behaviour of Materials Assignment Help
Mechanical Behaviour of Materials Assignment HelpMechanical Behaviour of Materials Assignment Help
Mechanical Behaviour of Materials Assignment HelpSolidwork Assignment Help
 
Bio engineering notes (auckland)
Bio engineering notes (auckland)Bio engineering notes (auckland)
Bio engineering notes (auckland)swapnatoya
 
free vibration with damping in Single degree of freedom
free vibration with damping in Single degree of freedomfree vibration with damping in Single degree of freedom
free vibration with damping in Single degree of freedommaniagoyal1987
 
ESA Module 4 Part-A ME832. by Dr. Mohammed Imran
ESA Module 4 Part-A ME832. by Dr. Mohammed ImranESA Module 4 Part-A ME832. by Dr. Mohammed Imran
ESA Module 4 Part-A ME832. by Dr. Mohammed ImranMohammed Imran
 
M2 Internship report rare-earth nickelates
M2 Internship report rare-earth nickelatesM2 Internship report rare-earth nickelates
M2 Internship report rare-earth nickelatesYiteng Dang
 
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...Marshal Fulford
 
2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And MeasurementPedro Craggett
 
Hatten spring 1561232600_stablesprings0.7.3
Hatten spring 1561232600_stablesprings0.7.3Hatten spring 1561232600_stablesprings0.7.3
Hatten spring 1561232600_stablesprings0.7.3widgetdog
 
Deflection of Beams.pptx......pptx
Deflection of Beams.pptx......pptxDeflection of Beams.pptx......pptx
Deflection of Beams.pptx......pptxKhalilBahrEldin
 
Topic Achievement Final Report - Revised
Topic Achievement Final Report - RevisedTopic Achievement Final Report - Revised
Topic Achievement Final Report - RevisedCody Peng
 
Unit 1 notes-final
Unit 1 notes-finalUnit 1 notes-final
Unit 1 notes-finaljagadish108
 
Senior Research paper
Senior Research paperSenior Research paper
Senior Research paperEvan Foley
 
W. t. koiter’s elastic stability of
W. t. koiter’s elastic stability ofW. t. koiter’s elastic stability of
W. t. koiter’s elastic stability ofAbdollah Ghavami
 
Theory of superconductivity
Theory of superconductivityTheory of superconductivity
Theory of superconductivityKumar
 

Similar to Viscoelastic Damping: Lecture Notes 140202 (20)

Mechanical Behaviour of Materials Assignment Help
Mechanical Behaviour of Materials Assignment HelpMechanical Behaviour of Materials Assignment Help
Mechanical Behaviour of Materials Assignment Help
 
Bio engineering notes (auckland)
Bio engineering notes (auckland)Bio engineering notes (auckland)
Bio engineering notes (auckland)
 
free vibration with damping in Single degree of freedom
free vibration with damping in Single degree of freedomfree vibration with damping in Single degree of freedom
free vibration with damping in Single degree of freedom
 
ESA Module 4 Part-A ME832. by Dr. Mohammed Imran
ESA Module 4 Part-A ME832. by Dr. Mohammed ImranESA Module 4 Part-A ME832. by Dr. Mohammed Imran
ESA Module 4 Part-A ME832. by Dr. Mohammed Imran
 
M2 Internship report rare-earth nickelates
M2 Internship report rare-earth nickelatesM2 Internship report rare-earth nickelates
M2 Internship report rare-earth nickelates
 
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
Thesis - Design a Planar Simple Shear Test for Characterizing Large Strange B...
 
2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement2. Stress And Strain Analysis And Measurement
2. Stress And Strain Analysis And Measurement
 
notes module 1.pdf
notes module 1.pdfnotes module 1.pdf
notes module 1.pdf
 
Hatten spring 1561232600_stablesprings0.7.3
Hatten spring 1561232600_stablesprings0.7.3Hatten spring 1561232600_stablesprings0.7.3
Hatten spring 1561232600_stablesprings0.7.3
 
Deflection of Beams.pptx......pptx
Deflection of Beams.pptx......pptxDeflection of Beams.pptx......pptx
Deflection of Beams.pptx......pptx
 
3814928.ppt
3814928.ppt3814928.ppt
3814928.ppt
 
Solid state
Solid stateSolid state
Solid state
 
Solid Mechanics Assignment Help
Solid Mechanics Assignment HelpSolid Mechanics Assignment Help
Solid Mechanics Assignment Help
 
main
mainmain
main
 
Topic Achievement Final Report - Revised
Topic Achievement Final Report - RevisedTopic Achievement Final Report - Revised
Topic Achievement Final Report - Revised
 
Unit 1 notes-final
Unit 1 notes-finalUnit 1 notes-final
Unit 1 notes-final
 
Senior Research paper
Senior Research paperSenior Research paper
Senior Research paper
 
W. t. koiter’s elastic stability of
W. t. koiter’s elastic stability ofW. t. koiter’s elastic stability of
W. t. koiter’s elastic stability of
 
VIGAS CONJUGADAS - RESISTENCIA DE LOS MATERIALES
VIGAS CONJUGADAS - RESISTENCIA DE LOS MATERIALES VIGAS CONJUGADAS - RESISTENCIA DE LOS MATERIALES
VIGAS CONJUGADAS - RESISTENCIA DE LOS MATERIALES
 
Theory of superconductivity
Theory of superconductivityTheory of superconductivity
Theory of superconductivity
 

More from Mohammad Tawfik

Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073Mohammad Tawfik
 
Supply Chain Management 01 - Introduction
Supply Chain Management 01 - IntroductionSupply Chain Management 01 - Introduction
Supply Chain Management 01 - IntroductionMohammad Tawfik
 
Supply Chain Management 02 - Logistics
Supply Chain Management 02 - LogisticsSupply Chain Management 02 - Logistics
Supply Chain Management 02 - LogisticsMohammad Tawfik
 
Supply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory ManagementSupply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory ManagementMohammad Tawfik
 
Creative problem solving and decision making
Creative problem solving and decision makingCreative problem solving and decision making
Creative problem solving and decision makingMohammad Tawfik
 
Digital content for teaching introduction
Digital content for teaching introductionDigital content for teaching introduction
Digital content for teaching introductionMohammad Tawfik
 
Crisis Management Basics
Crisis Management BasicsCrisis Management Basics
Crisis Management BasicsMohammad Tawfik
 
Effective Delegation Skills
Effective Delegation SkillsEffective Delegation Skills
Effective Delegation SkillsMohammad Tawfik
 
Business Management - Marketing
Business Management - MarketingBusiness Management - Marketing
Business Management - MarketingMohammad Tawfik
 
Project Management (CAPM) - Integration
Project Management (CAPM) - IntegrationProject Management (CAPM) - Integration
Project Management (CAPM) - IntegrationMohammad Tawfik
 
Project Management (CAPM) - The Framework
Project Management (CAPM) - The FrameworkProject Management (CAPM) - The Framework
Project Management (CAPM) - The FrameworkMohammad Tawfik
 
Project Management (CAPM) - Introduction
Project Management (CAPM) - IntroductionProject Management (CAPM) - Introduction
Project Management (CAPM) - IntroductionMohammad Tawfik
 
Introduction to Wind Energy
Introduction to Wind EnergyIntroduction to Wind Energy
Introduction to Wind EnergyMohammad Tawfik
 
Finite Element for Trusses in 2-D
Finite Element for Trusses in 2-DFinite Element for Trusses in 2-D
Finite Element for Trusses in 2-DMohammad Tawfik
 

More from Mohammad Tawfik (20)

Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073Supply Chain Management for Engineers - INDE073
Supply Chain Management for Engineers - INDE073
 
Supply Chain Management 01 - Introduction
Supply Chain Management 01 - IntroductionSupply Chain Management 01 - Introduction
Supply Chain Management 01 - Introduction
 
Supply Chain Management 02 - Logistics
Supply Chain Management 02 - LogisticsSupply Chain Management 02 - Logistics
Supply Chain Management 02 - Logistics
 
Supply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory ManagementSupply Chain Management 03 - Inventory Management
Supply Chain Management 03 - Inventory Management
 
Creative problem solving and decision making
Creative problem solving and decision makingCreative problem solving and decision making
Creative problem solving and decision making
 
Digital content for teaching introduction
Digital content for teaching introductionDigital content for teaching introduction
Digital content for teaching introduction
 
Crisis Management Basics
Crisis Management BasicsCrisis Management Basics
Crisis Management Basics
 
DISC Personality Model
DISC Personality ModelDISC Personality Model
DISC Personality Model
 
Training of Trainers
Training of TrainersTraining of Trainers
Training of Trainers
 
Effective Delegation Skills
Effective Delegation SkillsEffective Delegation Skills
Effective Delegation Skills
 
Train The Trainer
Train The TrainerTrain The Trainer
Train The Trainer
 
Business Management - Marketing
Business Management - MarketingBusiness Management - Marketing
Business Management - Marketing
 
Stress Management
Stress ManagementStress Management
Stress Management
 
Project Management (CAPM) - Integration
Project Management (CAPM) - IntegrationProject Management (CAPM) - Integration
Project Management (CAPM) - Integration
 
Project Management (CAPM) - The Framework
Project Management (CAPM) - The FrameworkProject Management (CAPM) - The Framework
Project Management (CAPM) - The Framework
 
Project Management (CAPM) - Introduction
Project Management (CAPM) - IntroductionProject Management (CAPM) - Introduction
Project Management (CAPM) - Introduction
 
The Creative Individual
The Creative IndividualThe Creative Individual
The Creative Individual
 
Introduction to Wind Energy
Introduction to Wind EnergyIntroduction to Wind Energy
Introduction to Wind Energy
 
Finite Element for Trusses in 2-D
Finite Element for Trusses in 2-DFinite Element for Trusses in 2-D
Finite Element for Trusses in 2-D
 
Future of Drones ITW'16
Future of Drones ITW'16Future of Drones ITW'16
Future of Drones ITW'16
 

Recently uploaded

How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 

Recently uploaded (20)

How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 

Viscoelastic Damping: Lecture Notes 140202

  • 1. Viscoelastic Damping Mohammad Tawfik Cairo University Aerospace Engineering Department 2 February, 2014
  • 2. Introduction Contents Introduction ............................................................................................................................................ 3 Classical Models ...................................................................................................................................... 3 Maxwell Model ................................................................................................................................... 3 Model Characteristics ..................................................................................................................... 4 Kalvin-Voigt Model .............................................................................................................................. 6 Zener Model ........................................................................................................................................ 8 The Area in the curve exist only when   0 ...................................................................................... 11 Golla-Hughes-McTavish (GHM) 1983................................................................................................ 11 Unconstrained Layer Damping.............................................................................................................. 17 Finite Element Model of Bars ........................................................................................................... 17 Composite Bar ................................................................................................................................... 18 Constrained Layer Damping .................................................................................................................. 18 Active Constrained layers damping ...................................................................................................... 27 Bibliography .......................................................................................................................................... 42 Viscoelastic Damping 2
  • 3. Introduction Introduction Objectives • Recognize the nature of viscoelastic material • Understand the damping models of viscoelastic material • Dynamics of structures with viscoelastic material What is Viscoelastic Material? • Materials that Exhibit, both, viscous and elastic characteristics. • The material may be modeled in many different ways. Classical models include: – Mawxell Model – Kalvin-Voight Model Classical Models Maxwell Model The Maxwell model describes the material as a viscous damper in series with an elastic stiffness (Figure 1). When stress is applied, it is uniform through the element, in turn, we may write the total strain of the viscoeleastic element as:   s  d Figure 1. Schematic for a viscoelastic element using the Maxwell model According to this model, the stress is equal in both elements, which may be expressed by the relation:    Es s  Cd  d According to this relation, we may write: s   Es d    Cd dt According to this, the total strain may be expressed as: Viscoelastic Damping 3
  • 4. Classical Models   Es   Cd dt Or     Es   Cd Model Characteristics When investigating the model characteristics in our context, we are interested in three aspects; namely: • Creep. When a material is loaded for a prolonged period of time, the strain tends to increase, which leads, in turn, to failure. The phenomenon of the strain increase at constant load is called creep. • Relaxation. When materials are strained for a prolonged periods of time, the internal stresses tend to decrease. The phenomenon of stress decrease at a constant strain value is called relaxation. • Storage and Loss Moduli. When the viscoelastic material is loaded harmonically, the stressstrain relation may be presented by complex modulus of elasticity. The real part of the complex modulus is called storage modulus while the imaginary part is called the loss modulus. To study the creep characteristics of the Maxwell model, we need to set the rate of change of stress to zero in the stress-strain differential relation. Thus:     Es    Cd zero Solving the differential equation, we get:   Cd t The resulting strain time function indicates that the strain will grow to an unbound value as time increases! To investigate the relaxation characteristics, the strain rate is set to be zero in the differential relation, the resulting relation becomes: 0   Es   Cd When solved, the above relation gives the stress time relation as: Viscoelastic Damping 4
  • 5. Classical Models    0e tE s Cd Where,  0 indicates the initial stress value. The above relation indicates that the stress will decrease exponentially with time with an asymptotic value of zero. When studying the response of the model under harmonic excitation, the excitation stress is presented as:    0e jt Thus, the strain response is presented as:    0 e jt Substituting in the differential equation, we get: o  Es Cd j o Es  jCd Giving: o C d E s  2  E s C d j  o 2 2 Es   2Cd 2 2 Separating the real and imaginary parts, we get: 2  C d 2 E s 2 Es Cd    2  o o   j 2 2 2 E s   2Cd E s   2Cd    Where, the storage modulus is: Cd Es 2 2 2 Es   2Cd 2 E'  And the loss modulus becomes: Es Cd  2 2 E s   2Cd 2 E"  The loss modulus, defines as the ratio between the storage and loss moduli, may be given as:  Es Cd  Now, the stress strain relation may be expressed as:  o  E 1  j  o Viscoelastic Damping 5
  • 6. Classical Models Where the complex modulus is given by: E *  E 1  j  1 0.9 0.8 Modulus 0.7 0.6 E 0.5 u 0.4 0.3 0.2 0.1 0 0 2 4 6 8 10 Frequency Figure 2. The variation of the storage modulus and the loss factor with frequency according to Maxwell’s model Figure 2 presents the variation of the storage modulus and the loss factor with frequency. Note that according to Maxwell’s Model: • Under static loading, the stiffness, storage modulus, is zero and the loss factor is infinity! • For very high frequencies, the loss factor becomes zero! Kalvin-Voigt Model The Kalvin-Voigt model describes the material as a viscous damper in parallel with an elastic stiffness (Figure 3). When stress is applied, it is distributed through the element, while the strain in both elements is equal. Figure 3. Schematic for a viscoelastic element using the Kalvin-Voigt model The stress strain relation may be written as:   s d Viscoelastic Damping 6
  • 7. Classical Models    Es s  Cd  d No we come to the studying the Kalvin-Voigt Model characteristics. To study the creep we solve the above equation for constant stress to get:   1  e Es  E s t Cd  Which indicates that the strain will grow to a constant value as time increases! When studying the relaxation, we set the strain rate to zero, giving:   Es 0 Which means that the stress will stay constant as time grows for the same strain! Now, we come to investigating the Storage modulus and Loss Factor. For harmonic stress and strain we get:    0 e jt    0e jt Resulting in the relation:   Es  jCd  o 14 12 Modulus 10 8 6 E 4 u 2 0 0 2 4 6 8 10 Frequency Figure 4. The variation of the storage modulus and the loss factor with frequency according to the Kalvin-Voigt model Figure 4 presents the variation of the storage modulus and the loss factor with frequency. Note that according to the Kalvin-Voigt Model: Viscoelastic Damping 7
  • 8. Classical Models • Under all loading, storage modulus is equal to the stiffness of the spring, and the loss factor is zero. • For very high frequencies, the loss factor becomes unbound! Zener Model The Zener model describes the material as a viscous damper in parallel with an elastic stiffness and both are in series with stiffness (Figure 5). The strain may be written as:    s  1 Figure 5. Schematic for a viscoelastic element using the Zener model Stress-Strain relation, according to the zener model, may be written as:    Es  s  E p  1  Cd  1 From which we may write in Laplace domain: s   Es , 1   E p  sCd Or:   Es   E  sCd  Es    p  E E  sC   E p  sCd d   s p  Back to time domain, we get: Es E p  sCd   E p  sCd  Es  From which we get the differential equation:   Es E p  Es Cd   E p  Es   Cd  Or:   E  E     Viscoelastic Damping 8
  • 9. Classical Models Studying Zener Model characteristics, we get for the creep:  E  E    0 Giving:  0 E  e t  Es And for the relaxation, we get:  E     Giving:    0  E 0 1  e t   While for the storage modulus and loss factor we get: E o  jE o   o  jo Rearranging, we get: 1  j 1   2  j     o  E o  E o 1  j 1   2 2 Or:  1   2 j       o  E  1   2 2  1   2 2  o    Or simply:  o  E 1  j  o Viscoelastic Damping 9
  • 10. Classical Models 2 1.8 1.6 Modulus 1.4 1.2 1 0.8 0.6 E 0.4 u 0.2 0 0 1 2 3 4 Frequency Figure 6. The variation of the storage modulus and the loss factor with frequency according to the Zener model This is more realistic for the presentation of the material characteristics, however, is does not satisfy the detailed studies needed for analysis of complex structures. Let’s recall the harmonic relations:    o e i t    o e it And the differential equation   E  E     Which give:  oeit   oieit  E oeit  E oieit Expanding the complex exponentials, we get:  o cost  i sin t    oi cost  i sin t   E o cost  i sin t   E oi cost  i sin t  Equating the real and imaginary parts:  o cos t   o sin t  E o cos t  E o sin t  o sin t   o cos t  E o sin t  E o cos t Viscoelastic Damping 10
  • 11. Classical Models  o sin t  E ' o sin t  E '' o cos t  Total   e   d   elastic dissipativ e  dissipativ e  E  o cos t ''  E '' ' E  o 1  sin 2 t ' E   ( E ' o ) 2  ( E ' o sin t ) 2   ( E ' o ) 2   e d    2 2  2   ( E ' o ) 2   e   2   2   d    e  ( E ' o ) 2     Divide by ( E ' o ) 2  2 2  d   e   '    '  1  E    E   o  o    This equation represent ellipse with major diameter  2 * E ' o & minor diameter  2 *E ' o Figure 7. The Area in the curve exist only when   0 Golla-Hughes-McTavish (GHM) 1983 Simple mass+visco elastic material Viscoelastic Damping 11
  • 12. Classical Models  S 2  2n S   S    1   2 0 2 S  2n S  n   2 n 2 let  Z  2  2 S  2n S  n Z 00  2n Z 0  n Z  n  2 2 Z 00  2n Z 0  n   Z  Z  int ernal vaiable substitute( Z )  in DE.of .system   S 2  2n S   n 2    S    1    2   S 2  2 S   2    0 n  n n      2  S 2  2n S Z  0 2 n  2  00    2 n   Z   0 n  S 2       00   1     Z  0 & . 00  n   2n  0  n   0 2 2 00 -     0 0    0       0     0             0 2   1  00  0 2   0  - n 2   0 n        0  00 0  0  0    -     0                   00   2   0      0     0  0    -   2   n     n         Complex stiffeners is given as Viscoelastic Damping 12
  • 13. Classical Models  S 2  2n S     1   2 2 S  2n S  n   *  S 2  2n S  G  G 1   2 2 S  2n S  n   *  S 2  2n S     1   2 2 S  2n S  n    ,  , n are unknown prameters * mass supported on a visco elastic spring :  S 2  2n S   S    1   2 0 2 S  2n S  n   assume the internal variable Z 1 2 n 2 Z  internal DOF  2  2 S  2n S  n S2 Z  2n SZ  n     2 2 3 From equation 1&2 Viscoelastic Damping 13
  • 14. Classical Models   S 2  2 n S n 2  S    1   0 2 2  2 n S  2 n S   n     S 2  2 n S 2  S      Z 0 2 2 n  S 2           0  S 2    1       0 in time domain  00   1       0 eqn.  3  00  2 n  0   n    n   0 2  0    0   2 0  00  0 0   0     1 -         0  00     0    2   1    0 2 n    -  n 2  n      0  00 0 0  0               1 -      0    00   2   0            0    -   2   n   n       Viscoelastic Damping 14
  • 15. Classical Models  Visco elastic material has its own internal DOF =Z  In general X&Z are vectors   S 2  2 n n S    1   n   n 2 2   S  2 n n S   n       Summary        The original system has (X ) DOF The system+vesco elastic material has (X+Z) DOF Entire system order has increased X=primary DOF Z=secondary DOF Use static condensation method (Guyan reduction method ) I.e condensation =eliminate the secondary DOF&only maintain the primary DOF. Static Condensation *consider only the stiffnes matrix  1    -       -       F         0        1       F F    redused stiffnes matrix     1               1 consider     1  1  1    1 -     1    0  Viscoelastic Damping -   1    1  15
  • 16. Classical Models compare energy terms :  1  1   reduced        total  2 2   1      total   2     strain energy of entire system  strain energy of primary DOF. " " redused can be obtained also as follow : -       F   1       -       0    0     F       1 1   0            0  0  0   00     0 2   n   0   1    2   0    -  n    -   F      0         redused  00  C redused  00   redused  Visco Elastic Material Damping *Golla-Hughes-McTavish (GHM) model Stiffners complex modulas (longitudinal or sheer)  S 2  2 n S     1   2 2  S  2 n S   n     * Viscoelastic Damping 16
  • 17. Unconstrained Layer Damping For structure& V E M-------------system dynamics   0   0  00 0         00       0 n 2        0        1 2   0        -  n      0 -       F         0   **GHM model when augmented with structural model can be written as:1-frequency domain 2-time domain Other Models • Some, more accurate, models were developed to represent the behavior of viscoelastic material • The greatest concern was paid for the modeling in the time domain. • The most famous models are: – Golla-Hughes-McTavish – Augmented Temperature Field Fractional Derivative Unconstrained Layer Damping • The most common way of using viscoelastic material in damping is by bonding it to the surface of the structure! • The viscoelastic material will be strained with the structure resulting in energy losses in the surface layer Finite Element Model of Bars • Recall the stiffness and mass matrices of a bar: • It is possible, in the above model, to superimpose more than one element! Viscoelastic Damping 17
  • 18. Constrained Layer Damping K EA  1  1 AL 2 1   1 1  & M  6 1 2  L     Composite Bar • The effect of each part of the bar may be added to the other part linearly incorporating the effect of both materials 1  1   A  V AV 2 MC  B B L 6 1 KC  E B AB  EV AV L  1 1  1 2  Homework #9 • Use the datasheet of the DYAD606 viscoelastic material to calculate the bar response with modulus of elasticity varying with frequency Constrained Layer Damping • When the viscoelastic layer is covered, constrained, from the top side, sheer stresses are generated between the different surfaces. • Viscoelastic materials are characterized by having much higher losses in the case of sheer than in the case of axial strain. Constrained Layer Damping Viscoelastic Damping 18
  • 19. Constrained Layer Damping Sheer Stresses Viscoelastic Damping 19
  • 20. Constrained Layer Damping    x h2   E2 u x  2u   2 x E2 h2  2u G *  u  u0     x 2 E2 h2  h1    Axial Displacement • The axial displacement relation becomes:  2u G *  u  u0     x 2 E2 h2  h1    E2 h2 h1  2u  u  u0 G * x 2 B*  2u  u  u0 x 2 • The axial displacement relation becomes: • Solving: B*u xx  u   0 x  x   x  u  a1Sh *   a1Ch *    0 x B  B    x  B * Sh *     B  u  0 x    l  Ch *     2B    Sheer Strain Viscoelastic Damping 20
  • 21. Constrained Layer Damping  u  u0 u   0 x  h1 h1  x  *  B     l  Ch *   2B   0 B * Sh Lost Energy G o2 B* l/2 W  h1G   2 dx  l / 2 h1Ch  * 2 2 l 2B   Sh x l/2 2 * B* dx l / 2 Note that l/2    B* l * / 2Sh x B dx  2 Sh l B  2 l 2  ass  A W (1 / 2) 2  0 h1 h2 l 2  4 l cos( / 2) 0  0  sh( A) sin( / 2)  sin( ) cos( / 2)   l  ch( A)  cos( )    l sin( / 2) 0 G *  G (cos  i sin  )  G cos(1  tan  )  G cos(1  i ) 0  h1 h2 E 2 G  v  tan Example .01 * .01 *107 0   1' ' 103 Loptimum  3.28 * 0  3.28' ' Viscoelastic Damping 21
  • 22. Constrained Layer Damping For unconstrained layer damping d (W )  hh11  0 '' 2 W  total energy dissipated  hh11  0 L '' 1 2 In the constrained case l/2 Wconstrained  l/2  d (W ) hh G   '' 1 l / 2 2 dx l / 2 hh1G ' ' l/2  2 dx Wconstrained l / 2  Wunconstrained hh11 '' L o 2 G*  G 'iG' '  G ' 1  i  *  'i' '  ' 1  i  G ' '  G ' Viscoelastic Damping ' '  ' 22
  • 23. Constrained Layer Damping '   poisson's ratio 21    for VEM ,  0.5 G'  G'  ' 3  G' '  G'  ' ' '  3 3 G' '  1/ 3 ' ' Wcon 1 Ratio    2 dx 2  Wuncon 3l o  l / 2 l/2  2 h2  2 o  sh Asin / 2   sin cos / 2    3 h1 G l sin  cosh   cos    o  sh Asin / 2   sin cos / 2     0.124 l sin  cosh   cos    v  1    45o h2 1 h1 R 2  104 G 2 * 1 * 104 * 0.124  1000 3 Summary *constraining the VEM makes it deforms in sheer & results in significantly high energy dissipation characteristics Notes The plunkett & Lee analysis assumes:1-quasi-static analysis (satisfied by the force that the constraining layer thickness is small (its inertia can be neglected) Viscoelastic Damping 23
  • 24. Constrained Layer Damping 2-A general base structure 3-longitudinal vibration beam 2w  max .ofVEM  d 2  2w M   2   max  cons tan t   0 For the beam:Energy dissipated Viscoelastic Damping 24
  • 25. Constrained Layer Damping l/2 l/2  d (W ) hh G   Wconstrained  '' 2 1 l / 2 dx l / 2  *      l  h1ch *   2   0*sh W  hh1G ' '  * 2 l/2  2 d Wxx l / 2 2 sh2 (  / *) dx 2 ch (l / *) Exercise Show that the above composite has t t r rh * 3  1  re rh  3(1  rr ) 2 e * 1 1 1  re rh *   re  2  2 (1  i )  re (1  i ) 1 1 * where :  rh  h2 h1 Viscoelastic Damping * re  2 1 25
  • 26. Constrained Layer Damping And show that:-   re rh 3  6rh  4r  2re rh  re rh 2  3 2 4  (1  re rh ) 1  4re rh  6re rh  4re rh  re rh 2 3 2 4 2  Take;- rh  h2 1 h1 re  3.585 * 10 4   0.00502 2   0.00519 2 Kinematics of CLD h2 Wx 2 h U   U 3  3 Wx 2 U   U1  U   U A  (U 3  U1 )  ( Wx    h1  h3 )Wx 2 U U A h2 Viscoelastic Damping 26
  • 27. Active Constrained layers damping    U   U   h 2W  h2 (U 1  U 3 )  ( h1 h3   h)W  2 2 h2 U1 U 3 h  W h2 h2 Active Constrained layers damping Viscoelastic Damping 27
  • 28. Active Constrained layers damping * U   U   0  2 2 *  h1h2 2 G*    L/2  U 0 X Solution procedure *solve for U *determine γ W  G ' 'h2 2 Compute * W   Wdx Compute * *put in dimensionless form η Viscoelastic Damping 28
  • 29. Active Constrained layers damping For ACLD    passive  active If controller fails---------------system still “fail-safe” because of passive damping   p   0  ( p   d ) 0 t Notes (viscoelastic) if    ' (1   i ) F   ' (1   i )    '    ' i  if    0 e iwt  o  iw o e iwt  iw ' 0 F     Felastic  Fdamping w ' 2 /  Energy dissipated per cycle   0 dx Fd dt  dt 2 /   0  '   o 2 dt for   0 sin t 2 /  Energy  W    ' 0 potential Energy  W  2  We   2  0 2 cos 2 (t )dt  2 ' 2 2   o    ' o 2 1 ' 2   0  We 2 W  2We W  specific damping capacity We Viscoelastic Damping 29
  • 30. Active Constrained layers damping Viscous Damping Fd  C o 2 /   C W  dissipated energy  o  o dt 0  C  o 2 2 /  2  cos 2 t dt 0   2 2 C 2  o  C o  Equivalent viscous damping to viscoelastic material  '  C C  '  C  ' 1 damping ratio     Co  2  '  2 '  2 at resonance     2 2-Transeverse Vibration Kinematics equation:   U1  U 3 h  Wx h2 h2 h h1  h3  h2 2 U=longitudinal deflection of base structure Viscoelastic Damping 30
  • 31. Active Constrained layers damping  =shear angle Wx=slope of deflection line h2   U 1  hW  U 1  h2   hW  U 1  h2   hW   1 =F 1h1U 1 x Force on top layer per unit width = dF  1h1U1  G *  shearstress  2 d 1h1 (h2   hW )  G *   G* h    W 1h1h2 h2 let  1  1h1  longitudinal Rigidity    G* h   W 1 h2 NOTE Bending in beam: ( ) *  Dt  Dt (1   i) * Equation of motion; Dt W   m 2W  0 * W   m 2 Dt * W 0 W    B W  0 *4 Viscoelastic Damping 31
  • 32. Active Constrained layers damping where  B  bending wave number W  W0 e i ( wt  B  ) * one propagation solution W ( D * t / m) 1 / 4 let  *B   W 1/ 2     B (1  i ) 4 ( Dt / m)1 / 4 (1  i  )1 / 4 * B W  W0 e i ( wt  B  ) e (  B  / 4 ) W  W0 e (  B / 4 )  Energy  CW 2  CW0 e (  B / 2)  2 d energy 2   B  CW0 ( )e dx 2   B  2 d Energy/dx   B  Energy 2  2 d Energy/dx C   constrained layers assembly B Energy solution for  C ; * put W  W0 e i ( wt   * solve   * B ) G* h    W   1 h2 h2 for  * calculate d energy/dx   G'  v h2  2 Using the solution given in ''Damping of flexural waves by constrained layers '' Journal of acoustic society of America, Vol 31, 7 pp952-962, 1959 Viscoelastic Damping 32
  • 33. Active Constrained layers damping W   i *3 BW0 e i B  e iWt * W   i B W *3   G* h     B 3 iW  1 h2 h2   ih B W   G* h2 1   *2 ( B  1 2 )   check that it satisfies equation Summary Loss factor for constrained layer damping during transverse vibration WD dissipated Energy  W Elastic Energy WD loss factor    2 W specifi damping  2-for beam in bending Equation of motion Viscoelastic Damping 33
  • 34. Active Constrained layers damping ( ) *  Dt  Dt (1   i) * Equation of motion; Dt W   m 2W  0 * W   m 2 Dt * W 0 W    B W  0 *4 1/ 4  mW 2  where  *B  bending wave number    D*   t   * B W 1/ 2     B (1  i ) 1/ 4 1/ 4 4 ( Dt / m) (1  i  ) W  W0 e i ( wt  B  ) e (  B  / 4 ) W  W0 e (  B / 4 )   B  wave number of constrained layer sassembly without losses   Energy  CW 2  C W0ei ( wt   B  ) e B / 2  Ce B / 2 2 denergy / dx Ce B / 2 ( B / 2)   ( B / 2) energy Ce B / 2 3-calculate loss factor of CLD C   2 d Energy/dx B Energy 4- For 3 layers CLD Viscoelastic Damping 34
  • 35. Active Constrained layers damping   U1  U 3 h  Wx h2 h2 h h1  h3  h2 2 If U3=0 a-   U1 h  W h2 h2 U1  h2  hW U   h2   hW Quasi-static Equilibrium Longitudinal load on layer2=shear load  1 d   (db)   U    G *   h1 1  h1  1  h1  1U    from geomtry; (h1 * b) U 1  h2    hW  Viscoelastic Damping 35
  • 36. Active Constrained layers damping 1h1 h2   hW   G *  1h1h2  hh    1 1 W   G* G* G * h     W 1h1h2 h2 let 1h1   1    G* h   W   1 h2 h2 W  W0 e i ( wt   * B ) W   i *3 BW0 e i one propagation solution * B e iWt W   i B W *3    G* h    B 3 iW  1 h2 h2 It has a solution;   ih B W   G* h2 1   *2  ( B  1 2 )  check that it satisfies equation Viscoelastic Damping 36
  • 37. Active Constrained layers damping   G'  v h2 2 Energy dissipated per unit length Energy in bending waves W  W0 e i ( wt   * B ) W  W0 sin( wt   B * ) W 0  W0  cos(t   B * )  linear velocity W 0   W0  B sin(t   B * )  Anguler velocity W    B *W0 cos(t    * ) W     W0 sin(t    * ) *2 moment    Dt *W   Dt *  *2 W0 sin(t    )    Dt *  *3W0 cos(t    )  W 0 power  FW 0    shear  F    W 2 0   *3 Dt * cos2  Dt *   W 2 o sin 2  W0   *3 Dt *3 2 Energy  power * 2 /   -2  *3 DtWo2     h2G ' 'V  2  2 2  3 DtWo2  const .layer (h 2 / Dt ) g  V 1  g 2 Viscoelastic Damping 37
  • 38. Active Constrained layers damping g G*  shear parameter  *2 1 2  constr is Max. when constr 0 g g optimum  1 NOTE  1  1h1 what is the physical meaning of g , if W  0  CLD in long.vibration   U1  U 3 hW  h2 h2   U1 h2 Also G*  0  1h2    o e  G*/ 1h2     Viscoelastic Damping 38
  • 39. Active Constrained layers damping U  U oe Uo e U  G*   h 1 2    G * /  1 h2   e  1    1h2 G* 1 g  *2 2  B e e  *  B let g 2 g  2 2 2  e2 bendin gwave length shear wave length b- if U3=0   U1  U 3 h  W h2 h2 where U1 & U 3 are dependent in order to have 1h1U1  3h3U 3   0 F1  F3 0  1U1   3U 3   0 where U3     1  1h1  3  3h3  1 U1 3 1  1 /  3 h U1  W h2 h2 Viscoelastic Damping 39
  • 40. Active Constrained layers damping  1   3   U1  h2  hW    3    2   3h2  3h  U1   W     1   3 1   3     1   h1    eqm.of top layer     1U1  h1  G *    1U1   G *  But  1 3h2 h    1 3 W  G* 1   3 1   3    G * ( 1   3 ) h   W  1h3h2 h2 Follow same procedure as case of U3=0 to get  constr  V ( 1 h 2 / Dt )( g / 1  g ) 2  1 g  1     3 1 g  2 Summary 1- Longitudinal vibration -to find optimum length of constraining layers Viscoelastic Damping 40
  • 41. Active Constrained layers damping (Following plunket &lec. paper) Loptimum  3.28 B* G* 1 B*   h1h2 E2 characterstic length 2-comparing between CLD &un CLD Energy dissipated in un CLD<<< CLD Tension shear 3-transiverse vibration A -definition -specific damping -loss factor -loss factor &damping ratio selection B-CLD with U3=0 *shear parameter g=1 for optimum *g=ratio of bending to shear wave length ---optimum is ensured if there is balance between shear and bending C-U3=0 Viscoelastic Damping 41
  • 42. <Bibliography Bibliography A dynamic function formulation for the response of a beam structure to a moving mass. Foda, M. A. and Abduljabbar, Z. 1998. 1998, Journal of Sound and Vibration, Vol. 210, pp. 295-306. A HYSTERESIS MODEL FOR THE FIELD-DEPENDENT DAMPING FORCE OF A MAGNETORHEOLOGICAL DAMPER. LEE, S.-B. CHOI AND S.-K. 2001. 2001, Journal of Sound and Vibration, p. 9. A Review of Power Harvesting from Vibration Using Piezoelectric Materials. Sodano, Henry A., Inman, Daniel J. and Park, Gyuhae. 2004. 2004, The Shock and Vibration Digest, Vol. 36, pp. 197205. DOI: 10.1177/0583102404043275. A Review of Power Harvesting Using Piezoelectric Materials (2003-2006). Anton, Steven R. and Sodano, Henry A. 2007. 3, 2007, Smart Materials and Structures, Vol. 16, pp. R1-R21. DOI: 10.1088/0964-1726/16/3/R01. A Review of the State of the Art in Magnetorheological Fluid Technologies - Part I: MR fluids and MR fluid models. Goncalves, Fernando D., Koo, Jeong-Hoi and Ahmadian, Mehdi. 2006. 3, 2006, The Shoack and Vibration Dijest, Vol. 38, pp. 203-219. DOI: 10.1177/0583102406065099. A.V. Srinivasan, D. Michael McFarland. 2001. Smart Structures analysis and design. Cambridge : Press Syndicate Of The University Of Cambridge, 2001. Aero-Thermo-Mechanical Characteristics od Shape Memory Alloy Hybrid Composite Panels with Geometric Imperfections. Ibrahim, H., Tawfik, M. and Negm, H. 2008. Cairo : s.n., 2008. 13th International Conference on Applied Mechanics and Mechanical Engineering. 27-29 May 2008, Cairo, Egypt. Application of the theory of impulsive parametric excitation and new treatments of general parametric excitation problems. Hsu, C. S. and Cheng, W. H. 1973. 1973, Journal of Applied Mechanics, Vol. 40. Benedetti, G. A. 1973. Transverse vibration and stability of a beam subject to moving mass loads. Civil Engineering, Arizona State University. 1973. PhD Dissertation. Coussot, Philippe. 2005. RHEOMETRY OF PASTES,SUSPENSIONS AND GRANULAR MATERIALS. s.l. : John Wiley & Sons, Inc., 2005. Dave, Dr. 2004. Dr. Dave's Do It Yourself MR Fluid. s.l. : Lord Corporation, 2004. Dynamic behavior of beam structures carrying moving masses. Saigal, S. 1986. 1986, Journal of Applied Mechanics, Vol. 53, pp. 222-224. Dynamic deflection of cracked beam with moving mass. Parhi, D. R. and Behera, A. K. 1997. 1997, Proceeding of the Institution of Mechanical engineering, Vol. 211, pp. 77-87. Viscoelastic Damping 42
  • 43. <Bibliography Dynamic Modeling of Semi-Active ER/MR Fluid Dampers. Xiaojie Wang, Faramarz Gordaninejad. 2001. Reno, NV : s.n., 2001. Wang, X. and Gordaninejad, F., “Dynamic Modeling of Semi-Active ER/MR Fluid Dampers,”. p. 10. Dynamic Stability and Response of a beam subject to deflection dependent moving load. Katz, R., et al. 1987. 1987, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 109, pp. 361-365. Dynamic stability of a beam carrying moving masses. Nelson, H. D. and Conover, R. A. 1971. 1971, Journal of Applied Mechanics, Vol. 38, pp. 1003-1006. Dynamic stability of a beam excited by a sequence of moving mass particles. Makhertich, S. 2004. 2004, Journal of the Acoustical Society of America, Vol. 115, pp. 1416-1419. Dynamic stability of a beam loaded be a sequence of moving mass particles. Benedetti, G. A. 1974. 1974, Journal of Applied Mechanics, Vol. 41, pp. 1069-1071. Dynamic Stability of Stepped Beams Under Moving Loads. Aldraihem, O. J. and Baz, A. 2002. 2002, Journal of Sound and Vibration, Vol. 250, pp. 835-848. Dynamics and Stability of Gun-Barrels with Moving Bullets. Wagih, A., et al. 2008. Cairo : s.n., 2008. 13th International Conference on Applied Mechanics and Mechanical Engineering. 27-29 May 2008, Cairo, Egypt. Dynamics and Stability of Stepped Gun-Barrels with Moving Bullets. Tawfik, M. 2008. 2008, Advances in Acoustics and Vibration, Vol. 2008. Article ID 483857, 6 pages. doi:10.1155/2008/483857. —. Tawfik, Mohammad. 2008. Article ID 483857, 2008, Advances in Acoustics and Vibration, Vol. 2008, p. 6 pages. doi:10.1155/2008/483857. Efficient computation of parametric instability regimes in systems with large number of degrees-offreedom. Kochupillai, J., Ganesan, N. and Padnamaphan, C. 2004. 2004, Finite elements in Analysis and Design, Vol. 40, pp. 1123-1138. Elmy, Amed O. 2007. Application of MR fluids in Vibration Damping. Engineering and Material Science, German University in Cairo. 2007. BSc Thesis. Energy conservation in Newmark-based time integration algorithms. Krenk, Steen. 2006. 2006, Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 6110-6124. Energy Harvesting from a Backpack Instrument with Piezoelectric Shoulder Straps. Granstorm, Jonathan, et al. 2007. 5, 2007, Smart Materials and Structures, Vol. 16, pp. 1810-1820. DOI: 10.1088/0964-1726/16/5/036. Experimental and Spectral Finite Element Study of Plates with Shunted Piezoelectric Patches. Tawfik, M. and Baz, A. 2004. 2, 2004, International Journal of Acoustics and Vibration, Vol. 9, pp. 87-97. Finite element analysis of elastic beams subjected to moving dynamic loads. Lin, Y. H. and Trethewey, M. W. 1990. 1990, Journal of Vibration and Acoustics, Vol. 112, pp. 323-342. Viscoelastic Damping 43
  • 44. <Bibliography Finite element vibration analysis of rotating Timoshenko beams. Rao, S. and Gupta, R. 2001. 2001, Journal of Sound and Vibration, Vol. 242, pp. 103-124. Finitel element analysis of an elastic beam structure subjected to a moving distributed mass train. Rieker, J. R. and Trethewey, M. W. 1999. 1999, Mechanical Systems and Signal Processing, Vol. 13, pp. 31-51. G. Magnac, P. Meneroud, M.F. Six, G. Patient, R. Leletty, F. Claeyssen. CHARACTERISATION OF MAGNETO-RHEOLOGICAL FLUIDS. Meylan, France : s.n. G. Yang, a B.F. Spencer,a Jr., J.D. Carlsonb and M.K. Sainc. Large-scale MR fluid dampers: modeling, and dynamic performance considerations. Indiana, USA : s.n. Gravatt, John W. 2003. Magneto-Rheological Dampers for Super-Sport Motorcycle Applications. 8th MAY 2003. Guangqiang Yang, B.S., M.S. 2001. LARGE-SCALE MAGNETORHEOLOGICAL FLUID DAMPER FOR VIBRATION. December 2001. Impulsive parametric excitation: Theory. Hsu, C. S. 1972. 1972, Journal of Applied Mechanics, Vol. 39, pp. 551-558. Instability of vibration of a mass that moves uniformly along a beam on a periodically inhomogeneous foundation. Verichev, S.N. and Metrikine, A.V. 2003. 2003, Journal of Sound and Vibration, Vol. 260, pp. 901-925. Instability of vibration of a moving-train-and-rail coupling system. Zheng, D. Y. and Fan, S. C. 2002. 2, 2002, Journal of Sound and Vibration, Vol. 255, pp. 243-259. Kallio, Marke. 2005. The elastic and damping properties of magnetorheological elastomers. Vuorimiehentie : JULKAISIJA – UTGIVARE – PUBLISHER, 2005. Kelly, S. G. 2000. Fundamentals Of Mechanical Vibrations. s.l. : Mc-Graw-Hill Higher Education, 2000. Lai, W H Liao and C Y. 2002. Harmonic analysis of a magnetprheological da,per for vibration control. Shatin, NT, Hong Kong : s.n., 5th April 2002. Li Pang, G. M. Kamath, N. M. Werely. ANALYSIS AND TESTING OF A LINEAR STROKE MAGNETORHEOLOGICAL DAMPER. Maryland, USA : s.n. Linear Dynamics of an elastic beam under moving loads. Rao, G. V. 2000. 2000, Journal of Vibration and Acoustics, Vol. 122, pp. 281-289. MAGNETO-RHEOLOGICAL FLUID DAMPERS MODELING:NUMERICAL AND EXPERIMENTAL. N. Yasreb, A. Ghazavi, M. M.Mashhad, A. Yousefi-koma. 2006. Montreal, QC, Canada : s.n., 2006. The 17th IASTED International Conference MODELLING AND SIMULATION. p. 5. Malkin, Alexander Ya. Rheology Fundamentals. Moscow : ChemTec Publishing. Viscoelastic Damping 44
  • 45. <Bibliography Moving-Loads-Induced Instability in Stepped Tubes. Aldrihem, O. J. and Baz, A. 2004. 2004, Journal of Vibration and Control, Vol. 10, pp. 3-23. Non-Linear dyanmics of an elastic beam under moving loads. Wayou, A. N. Y., Tchoukuegno, R. and Woafo, P. 2004. 2004, Journal of Sound and Vibration, Vol. 273, pp. 1101-1108. Nonlinear Panel Flutter with Temperature Effects of Functionally Graded Material Panels with Temperature-Dependent Material Properties. Ibrahim, H. H., Tawfik, M. and Al-Ajmi, M. 2, Computational Mechanics, Vol. 41. DOI:10.1007/s00466-007-0188-4. Norris, James A. Behavior of Magneto-Rheological Fluids Subject to Impact and Schock Loading. OPTIMAL DESIGN OF MR DAMPERS. Henri GAVIN, Jesse HOAGG and Mark DOBOSSY. 2001. Seattle WA : s.n., 2001. U.S.-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Regions. p. 12. P.Edwards. Mass-Spring-Damper Systems. Phenomenological Model of a Magnetorheological Damper. B.F. Spencer Jr., S.J. Dyke, M.K. Sain and J.D. Carlson. 1996. 1996, ASCE Journal of Engineering Mechanics, p. 23. Phenomenological Model of a Magnetorheological. Spenser, Jr., B. F. 1996. 1996, Journal of Engineering Mechanics, Vol. 23. Poynor, James. Innovative Designs for Magneto-Rheological Dampers. Random Response of Shape Memory Alloy Hybrid Composite Plates Subject To Thermo-Acoustic Loads. Ibrahim, H. H., Tawfik, M. and Negm, H. M. 2008. 3, 2008, Journal of Aircraft, Vol. 44. DOI: 10.2514/1.32843. Rashaida, Ali A. 2005. FLOW OF A NON-NEWTONIAN BINGHAM PLASTIC FLUID OVER A ROTATING DISK. 2005. Response of periodically stiffened shells to moving projectile propelled by internal pressure wave. Ruzzene, M. and Baz, A. 2006. 2006, Mechanics of Advanced Materials ans Structures, Vol. 13, pp. 267-284. Semi-analytic solution in time domain for non-uniform multi-span Bernoulli-Euler beams transversed by moving loads. Martinez-Castro, A. E., Museros, P. and Castillo-Linares, A. 2006. 2006, Journal of Sound and Vibration, Vol. 294, pp. 278-297. Singh, V. P. 1997. Mechanical vibrations. Delhi : DHANPAT RAI & CO., 1997. Solution of the moving mass problem using complex eigenfunction expansions. Lee, K. Y. and Renshaw, A. A. 2000. 2000, Journal of Applied Mechanics, Vol. 67, pp. 823-827. Stochastic Finite Element Analysis of the Free Vibration of Functionally Graded Material Plates. Shaker, A., et al. 2008. 3, 2008, Computational Mechanics, Vol. 44, pp. 707-714. DOI 10.1007/s00466-007-0226-2. Viscoelastic Damping 45
  • 46. <Bibliography Stochastic Finite Element Analysis of the Free Vibration of Laminated Composite Plates. Shaker, A., et al. 2008. 4, 2008, Computational Mechanics, Vol. 41, pp. 493-501. DOI:10.1007/s00466-007-0205-7. The Structural Response of Cylindrical Shells to Internal Moving Pressure and Mass. Baz, A., Saad Eldin, K. and Elzahabi, A. 2004. Cairo : s.n., 2004. Proceeding of 11th International Conference on Applied Mechanics and Mechanical Engineering (AMME). pp. 720-734. The use of finite element techniques for calculating the dynamic response of structures to moving loads. Wu, J-J, Whittaker, A. R. and Cartmell, M. P. 2000. 2000, Computer and Structures, Vol. 78, pp. 789-799. Thermal Buckling and Nonlinear Flutter Behavior of FunctionallyGraded Material Panels. Ibrahim, H. H., Tawfik, M. and Al-Ajmi, M. 2007. 5, 2007, Journal of Aircraft, Vol. 44, pp. 1610-1618. DOI:10.2514/1.27866. Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates. Tawfik, M., Ro, J-J. and Mei, C. 2002. 2, 2002, Smart Materials and Structures, Vol. 11, pp. 297-307. doi:10.1088/0964-1726/11/2/313. Transient vibration analysis of high-speed feed drive system. Cheng, C. C. and Shiu, J. S. 2001. 3, 2001, Journal of Sound and Vibration, Vol. 239, pp. 489-504. Vibration analysis of beams with general boundary conditions transveresed by a moving force. Abu Hilal, M. and Zibdeh, H. S. 2000. 2, 2000, Journal of Sound and Vibration, Vol. 229, pp. 377-388. Vibration analysis of continuous beam subjected to moving mass. Ichikawa, M., Miyakawa, Y. and Matsuda, A. 2000. 3, 2000, Journal of Sound and Vibration, Vol. 230, pp. 493-506. Vibration and stability of axially loadded beams on elastic foundation under moving harmonic loads. Kim, Seong-Min. 2004. 2004, Engineering Structures, Vol. 26, pp. 95-105. Vibration Attenuation in A Periodic Rotating Timoshenko Beam. Alaa El-Din, Maged and Tawfik, Mohammad. 2007. Cairns : s.n., 2007. ICSV14. Vibration Attenuation in Rotating Beams with Periodically Distributed Piezoelectric Controllers. Alaa El-Din, Maged and Tawfik, Mohammad. July 2006. Vienna, Austria : s.n., July 2006. 13th International Congress on Sound and Vibration. Vibration Characteristics of Periodic Sandwich Beam. Badran, H., Tawfik, M. and Negm, H. 2008. Cairo : s.n., 2008. 13th International Conference on Applied Mechanics and Mechanical Engineering. 27-29 May 2008, Cairo, Egypt. Vibration Control of Tubes with Internally Moving Loads Using Active Constrained Damping. Ro, J-J, Saad Eldin, K. and Baz, A. 1997. Dallas, TX : s.n., 1997. ASME Winter Annual Meeting. Vibration Control Using Smart Fluids. Sims, Neil D., Stanway, Roger and Johnson, Andrew R. 1999. 3, 1999, The Shock and Vibration Dijest, Vol. 31, pp. 195-203. DOI:10.1177/058310249903100302. Villarreal, Karla A. EFFECTS OF MR DAMPER PLACEMENT ON STRUCTURE VIBRATION PARAMETERS. Tokyo, Japan : s.n. Viscoelastic Damping 46
  • 47. <Bibliography Wave attenuation in periodic helicopter blades. Tawfik, M., Chung, J. and Baz, A. 2004. Amman, Jordan : s.n., 2004. Jordan International Mechanical engieering Confernce. What Makes a Good MR Fluid? Carlson, J. David. 2002. 4, 2002, Journal of Intelligent Material Systems and Structures, Vol. 13, pp. 431-435. DOI: 10.1106/104538902028221. Zhang, G Y Zhou and P Q. 2002. Investigation of the dynamic mechanical behavior of the doublebarreled configuration in a magnetorheological fluid damper. Hefei, Anhui, China : s.n., 5th April 2002. Viscoelastic Damping 47