SlideShare a Scribd company logo
1 of 28
Download to read offline
The Structure FactorThe Structure Factor
Suggested Reading
P 303 312 i D G f & M HPages 303-312 in DeGraef & McHenry
Pages 59-61 in Engler and Randle
1
Structure Factor (Fhkl)
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
• Describes how atomic arrangement (uvw)
1i
influences the intensity of the scattered beam.
It tells us which reflections (i e peaks hkl) to• It tells us which reflections (i.e., peaks, hkl) to
expect in a diffraction pattern.
2
Structure Factor (Fhkl)
• The amplitude of the resultant wave is given by a
ratio of amplitudes:ratio of amplitudes:
amplitude of the wave scattered by all atoms of a UC
li d f h d b l
hklF 
• The intensity of the diffracted wave is proportional
amplitude of the wave scattered by one electron
hkl
• The intensity of the diffracted wave is proportional
to |Fhkl|2.
3
Some Useful Relations
ei = e3i = e5i = … = -1
e2i = e4i = e6i = … = +1
eni = (-1)n, where n is any integery g
eni = e-ni, where n is any integer
eix + e-ix =2 cos x
Needed for structure factor calculationsNeeded for structure factor calculations
4
Fhkl for Simple Cubic
• Atom coordinate(s) u,v,w:
– 0,0,0
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
0,0,0
2 (0 0 0 )i h k l2 (0 0 0 )i h k l
hklF fe f     
 
No matter what atom coordinates or plane indices you substitute into theNo matter what atom coordinates or plane indices you substitute into the
structure factor equation for simple cubic crystals, the solution is always
non-zero.
5
Thus, all reflections are allowed for simple cubic (primitive) structures.
Fhkl for Body Centered Cubic
• Atom coordinate(s) u,v,w:
– 0,0,0;
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
0,0,0;
– ½, ½, ½.
2
h k l
i
 
 2
2 (0) 2 2 2
h k l
i
i
hklF fe fe


 
  
 
 

 
 1 i h k l
F f e
hkl
  
 
When h+k+l is even Fhkl = non-zero → reflection.
6
When h+k+l is odd Fhkl = 0 → no reflection.
Fhkl for Face Centered Cubic
• Atom coordinate(s) u,v,w:
– 0,0,0;
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
0,0,0;
– ½,½,0;
– ½,0,½;
– 0,½,½.
 
2 2 2
2 0 2 2 2 2 2 2
h k h l k l
i i i
i
f f f f
  

            
      2 0 2 2 2 2 2 2i
hklF fe fe fe fe      
   

7
     
 1 i h k i h l i k l
hklF f e e e    
   
Fhkl for Face Centered Cubic
     
 1 i h k i h l i k l
hklF f e e e    
   
• Substitute in a few values of hkl and you will find
the following:the following:
– When h,k,l are unmixed (i.e. all even or all odd), then
Fhkl = 4f. [NOTE: zero is considered even]
F 0 f i d i di (i bi ti f dd– Fhkl = 0 for mixed indices (i.e., a combination of odd
and even).
8
Fhkl for NaCl Structure
• Atom coordinate(s) u,v,w:
– Na at 0,0,0 + FC transl.;
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
Na at 0,0,0 FC transl.;
• 0,0,0;
• ½,½,0;
½ 0 ½
This means these
coordinates
• ½,0,½;
• 0,½,½.
coordinates
(u,v,w)
– Cl at ½,½,½ + FC transl.
• ½,½,½;  ½,½,½
1 1 ½ 0 0 ½
The re-assignment of coordinates is
• 1,1,½;  0,0,½
• 1,½,1;  0,½,0
• ½,1,1.  ½,0,0
g
based upon the equipoint concept in
the international tables for
crystallography
9• Substitute these u,v,w values into Fhkl equation.
Fhkl for NaCl Structure – cont’d
• For Na:
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
 2 (0) ( ) ( ) ( )i i h k i h l i k l
f e e e e     
    
 
( ) ( ) ( ) ( )
( ) ( ) ( )
1
Na
i h k i h l i k l
Na
f e e e e
f e e e    
   
  
• For Cl:
 
 
2 ( ) 2 ( ) 2 ( )( ) 2 2 2
l k hi h k i h l i k li h k l
Clf e e e e
         
   
 
 
( ) ( ) ( ) ( )
( ) ( ) ( )
2 2 2 2
( )
2 2i h k l i i ih k h l k l
Cl
i h k l i i i
Cl
f e e e e
f e e e e
   
   
       
 
   
  
l k h
l k h
These terms are all positive and even.
 Whether the exponent is odd or
10
 Whether the exponent is odd or
even depends solely on the remaining
h, k, and l in each exponent.
Fhkl for NaCl Structure – cont’d
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 • Therefore Fhkl:
 
 
( ) ( ) ( )
( ) ( ) ( ) ( )
1 i h k i h l i k l
hkl Na
i h k l i i i
Cl
F f e e e
f e e e e
  
   
  
 
    
  l k h
 Clf e e e e  
which can be simplified to*:
  ( ) ( ) ( ) ( )
1i h k l i h k i h l i k l
hkl Na ClF f f e e e e       
    
11
Fhkl for NaCl Structure
When hkl are even Fhkl = 4(fNa + fCl)
Primary reflectionsPrimary reflections
When hkl are odd F = 4(f f )When hkl are odd Fhkl = 4(fNa - fCl)
Superlattice reflections
When hkl are mixed Fhkl = 0
N fl tiNo reflections
12
(200)
100
80
90
NaCl
CuKα radiation
(220)
%)
60
70
Intensity(
50
I
30
40
(111)
(222)
(400)
(420)
(422) (600)
(442)
10
20
13
(111)
(311)
(400)
(331)
(333)
(511)
(440)
(531)
20 30 40 50 60 70 80 90 100 110 120
2θ (°)
0
10
Fhkl for L12 Crystal Structure
• Atom coordinate(s) u,v,w:
– 0,0,0; A B
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
0,0,0;
– ½,½,0;
– ½,0,½;
A
– 0,½,½.
     2 2 22 (0) 2 2 2 2 2 2
h k h l k li i ii           2 (0) 2 2 2 2 2 2
A B B B
i
F f e f e f e f e
hkl
   

14
 ( ) ( ) ( )
A B
i h k i h l i k l
F f f e e e
hkl
    
   
Fhkl for L12 Crystal Structure
 ( ) ( ) ( )
A B
i h k i h l i k l
F f f e e e
hkl
    
   
(1 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB
(1 1 0) Fhkl = fA + fB(1-1-1) = fA – fB
A B
(1 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB
(2 0 0) Fhkl = fA + fB(1+1+1) = fA +3 fB
(2 1 0) Fhkl = fA + fB(-1+1-1) = fA – fB(2 1 0) Fhkl fA fB( 1 1 1) fA fB
(2 2 0) Fhkl = fA + fB(1+1+1) = fA +3 fB
(2 2 1) Fhkl = fA + fB(1-1-1) = fA – fB
(3 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB
(3 1 0) Fhkl = fA + fB(1-1-1) = fA – fB
(3 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB
15
(3 1 1) Fhkl fA + fB(1+1+1) fA +3 fB
(2 2 2) Fhkl = fA + fB(1+1+1) = fA +3 fB
Intensity (%)
100
(111)
Example of XRD pattern
from a material with an
L12 crystal structure
A B
80
90
100
A B
60
70
80
40
50
60
(200)
30
40
(220)
(311)
2 θ (°)
10
20
(100)
(110)
(210) (211) (221)
(300)
(310)
(222)
(320) (321)
16
( )
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115
0
( ) ( )
Fhkl for MoSi2
• Atom positions:
– Mo atoms at 0,0,0; ½,½,½
Si t t 0 0 0 0 ½ ½ ½ ½ ½ ½ 1/3
c
– Si atoms at 0,0,z; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3
– MoSi2 is actually body centered tetragonal with
a = 3.20 Å and c = 7.86 Å z
c c ac
x
y
x y
z
xy
z
b
x
y
z
a
b
a b ab
Viewed down z-axis
17
a a
Viewed down x-axis Viewed down y-axis
Fhkl for MoSi2
Substitute in atom positions:
( )2
1
  

  i j i
N
i hu kv lw
hkl i
i
F f e
• Mo atoms at 0,0,0; ½,½,½
• Si atoms at 0,0, ; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3
     5   h k l h k l h k ll l
     
   
52 2 22 ( ) 2 ( )2 (0) 2 2 2 2 2 6 2 2 63 3
5
   
           
        
   
   
 
h k l h k l h k ll li i ii ii
F f e f e f e f e f e f e
hkl Mo Mo Si Si Si Si
l ll l h k h k     52 ( ) 2 ( )
3 33 31
  
        
        
   
 
l ll l i h k i h ki ii h k l
F f e f e e e e
Mo Si
Now we can plug in different values for h k l to determine the structure factor.
F h k l 1 0 0• For h k l = 1 0 0
 
     5(0) (0)(0) (0)
3 33 3
1 0 1 02 ( ) 2 ( )1 0 0
2
1
0
(1 1) (1 1 1 1) 0
               
  
      
i ii ii
hkl Mo Si
hkl
Mo Si
F f e f e e e e
F
f f
18
2
( ) ( )
You will soon learn that intensity is proportional to ; there is NO REFLECTION!
Mo S
l
i
hkF
f f
Now we can plug in different values for h k l to determine the structure factor
Fhkl for MoSi2 – cont’d
Now we can plug in different values for h k l to determine the structure factor.
• For h k l = 0 0 1
 
     5(1) (1)
1 1
3 33 3
0 0 0 02 ( ) 2 ( )0 0 10                
 
i ii ii
hkl Mo SiF f e e f e e e e
22
3(1 ) (2 ( ) )
(1 1) ( 1 1) 0
 
   
     

i i
Mo Si
Mo si
f e f COS e
f f
• For h k l = 1 1 0
2
0 NO REFLECTION!hklF
 
     
 1 1 0 1 1 0 1 1 00 2 (0) 2 (0)
2 (0) (0) 2 2
(1 ) ( )
(2) (4)
   
  
     
     
     
 
i i ii i
hkl Mo Si
i i i
Mo Si
Mo si
F f e e f e e e e
f e f e e e e
f f
If you continue for different h k l combinations trends will emerge this will lead you
2
POSITIVE! YOU WILL SEE A REFLECTION

hklF
19
• If you continue for different h k l combinations… trends will emerge… this will lead you
to the rules for diffraction…
h + k + l = even
100
(103)
80
90
(110)
MoSi2
CuKα radiation
%)
60
70
(101)
(110)
Intensity(
50
I
30
40
(002)
(213)
10
20
(112) (200)
(202) (211) (116)
(301)
(206)
(303)
2020 30 40 50 60 70 80 90 100 110 120
2θ (°)
0
10
(006)
(204) (222)
(301) (303)
(312) (314)
Fhkl for MoSi2 – cont’d
2000 JCPDS International Centre for Diffraction Data All rights reserved
21
2000 JCPDS-International Centre for Diffraction Data. All rights reserved
PCPDFWIN v. 2.1
Structure Factor (Fhkl) for HCP
2 ( )i j i
N
i hu kv lw
F f
  

• Describes how atomic arrangement (uvw)
( )
1
i j i
hkl i
i
F f e

 
• Describes how atomic arrangement (uvw)
influences the intensity of the scattered beam.
i.e.,
• It tells us which reflections (i.e., peaks, hkl) to
expect in a diffraction pattern from a given crystal
structure with atoms located at positions u v w
22
structure with atoms located at positions u,v,w.
• In HCP crystals (like Ru Zn Ti and Mg) the• In HCP crystals (like Ru, Zn, Ti, and Mg) the
lattice point coordinates are:
– 0 0 0
–
1 2 1
3 3 2
• Therefore, the structure factor becomes:
2
2
h k l
i  
   2
3 3 2
1
i
hkl iF f e
  
  
 
 
  
 
• We simplify this expression by letting:p y p y g
2 1
3 2
h k
g

 
which reduces the structure factor to:
 2
1 ig
hkl iF f e 
 
• We can simplify this once more using:
 1hkl iF f e
from which we find:
2ix ix
2cosix ix
e e x 
2 2 2 2
4 cos
h k l
F f 
   4 cos
3 2
hkl iF f   
 
Selection rules for HCP
0 when 2 3 and oddh k n l  
2
2
2
when 2 3 1 and even
3 when 2 3 1 and odd
i
hkl
f h k n l
F
f h k n l

    
 
   
2
3 when 2 3 1 and odd
4 when 2 3 and even
i
i
f h k n l
f h k n l
 
   
 For your HW problem, you will need these things to
do the structure factor calculation for Ru.
 HINT: It might save you some time if you already
had the ICDD card for Ru.ad t e C ca d o u
List of selection rules for different crystals
Crystal Type Bravais Lattice Reflections Present Reflections Absent
Simple Primitive, P Any h,k,l Nonep , y
Body-centered Body centered, I h+k+l = even h+k+l = odd
Face-centered Face-centered, F h,k,l unmixed h,k,l mixed
NaCl FCC h,k,l unmixed h,k,l mixed
Zincblende FCC Same as FCC, but if all even
and h+k+l4N then absent
h,k,l mixed and if all even
and h+k+l4N then absent
Base-centered Base-centered h,k both even or both odd h,k mixed
Hexagonal close-packed Hexagonal h+2k=3N with l even
h+2k=3N1 with l odd
h+2k=3N1 with l even
h+2k=3N with l odd
26
What about solid solution alloys?
• If the alloys lack long range order, then youIf the alloys lack long range order, then you
must average the atomic scattering factor.
falloy =xAfA + xBfB
where xn is an atomic fraction for the atomic
iconstituent
27
Exercises
• For CaF2 calculate the structure factor and
determine the selection rules for alloweddetermine the selection rules for allowed
reflections.
28

More Related Content

What's hot

Crystallography and X ray Diffraction - Quick Overview
Crystallography and X ray Diffraction - Quick OverviewCrystallography and X ray Diffraction - Quick Overview
Crystallography and X ray Diffraction - Quick OverviewNakkiran Arulmozhi
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...University of California, San Diego
 
X ray powder diffraction
X ray powder diffractionX ray powder diffraction
X ray powder diffractionSolairajan A
 
crystal structure and x ray diffraction
crystal structure and x ray diffractioncrystal structure and x ray diffraction
crystal structure and x ray diffractionMd Kaleem
 
Molecular Orbital (M. O.) diagram for hexaaquatitanium(III) [Ti(H2O)6]3+
Molecular Orbital (M. O.) diagram for hexaaquatitanium(III) [Ti(H2O)6]3+Molecular Orbital (M. O.) diagram for hexaaquatitanium(III) [Ti(H2O)6]3+
Molecular Orbital (M. O.) diagram for hexaaquatitanium(III) [Ti(H2O)6]3+Mithil Fal Desai
 
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICSCRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICSharikrishnaprabu
 
Frankel and schottky defects
Frankel and schottky defectsFrankel and schottky defects
Frankel and schottky defectsGurpreet Singh
 
Mossbauer- Nuclear quadrupole effect (basics)
Mossbauer- Nuclear quadrupole effect (basics)Mossbauer- Nuclear quadrupole effect (basics)
Mossbauer- Nuclear quadrupole effect (basics)Anamika Banerjee
 
Molecular orbital theory of octahedral complexes
Molecular orbital theory of octahedral complexesMolecular orbital theory of octahedral complexes
Molecular orbital theory of octahedral complexesMithil Fal Desai
 
Materials Characterization Technique Lecture Notes
Materials Characterization Technique Lecture NotesMaterials Characterization Technique Lecture Notes
Materials Characterization Technique Lecture NotesFellowBuddy.com
 
X ray diffraction ppt
X ray diffraction pptX ray diffraction ppt
X ray diffraction pptVanithaVaniN1
 
Characterization techniques
Characterization techniquesCharacterization techniques
Characterization techniquessniedar
 

What's hot (20)

Crystallography and X ray Diffraction - Quick Overview
Crystallography and X ray Diffraction - Quick OverviewCrystallography and X ray Diffraction - Quick Overview
Crystallography and X ray Diffraction - Quick Overview
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
 
X ray powder diffraction
X ray powder diffractionX ray powder diffraction
X ray powder diffraction
 
lattice planes Brajmohan kushwah
lattice planes Brajmohan kushwahlattice planes Brajmohan kushwah
lattice planes Brajmohan kushwah
 
crystal structure and x ray diffraction
crystal structure and x ray diffractioncrystal structure and x ray diffraction
crystal structure and x ray diffraction
 
Chapter 4 optical properties of phonons
Chapter 4   optical properties of phononsChapter 4   optical properties of phonons
Chapter 4 optical properties of phonons
 
Molecular Orbital (M. O.) diagram for hexaaquatitanium(III) [Ti(H2O)6]3+
Molecular Orbital (M. O.) diagram for hexaaquatitanium(III) [Ti(H2O)6]3+Molecular Orbital (M. O.) diagram for hexaaquatitanium(III) [Ti(H2O)6]3+
Molecular Orbital (M. O.) diagram for hexaaquatitanium(III) [Ti(H2O)6]3+
 
X ray diff lecture 3
X ray diff lecture 3X ray diff lecture 3
X ray diff lecture 3
 
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICSCRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
CRYSTAL STRUCTURE AND ITS TYPES-SOLID STATE PHYSICS
 
Frankel and schottky defects
Frankel and schottky defectsFrankel and schottky defects
Frankel and schottky defects
 
Mossbauer- Nuclear quadrupole effect (basics)
Mossbauer- Nuclear quadrupole effect (basics)Mossbauer- Nuclear quadrupole effect (basics)
Mossbauer- Nuclear quadrupole effect (basics)
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffraction
 
Basics of-xrd
Basics of-xrdBasics of-xrd
Basics of-xrd
 
Molecular orbital theory of octahedral complexes
Molecular orbital theory of octahedral complexesMolecular orbital theory of octahedral complexes
Molecular orbital theory of octahedral complexes
 
Xrd lecture 1
Xrd lecture 1Xrd lecture 1
Xrd lecture 1
 
Seminar chm804
Seminar chm804Seminar chm804
Seminar chm804
 
Materials Characterization Technique Lecture Notes
Materials Characterization Technique Lecture NotesMaterials Characterization Technique Lecture Notes
Materials Characterization Technique Lecture Notes
 
X ray diffraction ppt
X ray diffraction pptX ray diffraction ppt
X ray diffraction ppt
 
Characterization techniques
Characterization techniquesCharacterization techniques
Characterization techniques
 
Crystal systems
Crystal systemsCrystal systems
Crystal systems
 

Similar to Mte 583 class 18b

Fourier transform.ppt
Fourier transform.pptFourier transform.ppt
Fourier transform.pptRadhyesham
 
Method for beam 20 1-2020
Method for beam 20 1-2020Method for beam 20 1-2020
Method for beam 20 1-2020RahulMeena188
 
Transformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear MatterTransformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear MatterAlex Quadros
 
NEET Courses - iPositiev Academy
NEET Courses - iPositiev AcademyNEET Courses - iPositiev Academy
NEET Courses - iPositiev AcademyiPositive Academy
 
Jee sol-internet-pcm off -2013
Jee sol-internet-pcm off -2013Jee sol-internet-pcm off -2013
Jee sol-internet-pcm off -2013Ashish Yadav
 
Jee sol-internet-pcm
Jee sol-internet-pcmJee sol-internet-pcm
Jee sol-internet-pcmvishalraj412
 
Properties of coordination compoundes part 1 of 3
Properties of coordination compoundes part 1 of 3Properties of coordination compoundes part 1 of 3
Properties of coordination compoundes part 1 of 3Chris Sonntag
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesDaisuke Satow
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionAlexander Litvinenko
 
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1Eneutron
 
(Www.entrance exam.net)-aieee chemistry sample paper 1
(Www.entrance exam.net)-aieee chemistry sample paper 1(Www.entrance exam.net)-aieee chemistry sample paper 1
(Www.entrance exam.net)-aieee chemistry sample paper 1Atul Sharma
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron CorrelationAlbert DeFusco
 
Aieee 2004 chemistry
Aieee 2004 chemistryAieee 2004 chemistry
Aieee 2004 chemistryprasad1086
 
Properties of coordination complexes Complete
Properties of coordination complexes CompleteProperties of coordination complexes Complete
Properties of coordination complexes CompleteChris Sonntag
 

Similar to Mte 583 class 18b (20)

253A-2016-03.pdf
253A-2016-03.pdf253A-2016-03.pdf
253A-2016-03.pdf
 
Fourier transform.ppt
Fourier transform.pptFourier transform.ppt
Fourier transform.ppt
 
Method for beam 20 1-2020
Method for beam 20 1-2020Method for beam 20 1-2020
Method for beam 20 1-2020
 
Transformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear MatterTransformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear Matter
 
NEET Courses - iPositiev Academy
NEET Courses - iPositiev AcademyNEET Courses - iPositiev Academy
NEET Courses - iPositiev Academy
 
Jee sol-internet-pcm off -2013
Jee sol-internet-pcm off -2013Jee sol-internet-pcm off -2013
Jee sol-internet-pcm off -2013
 
Jee sol-internet-pcm
Jee sol-internet-pcmJee sol-internet-pcm
Jee sol-internet-pcm
 
Properties of coordination compoundes part 1 of 3
Properties of coordination compoundes part 1 of 3Properties of coordination compoundes part 1 of 3
Properties of coordination compoundes part 1 of 3
 
AIPMT 2014-paper-solution-chemistry
AIPMT 2014-paper-solution-chemistryAIPMT 2014-paper-solution-chemistry
AIPMT 2014-paper-solution-chemistry
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Slides
SlidesSlides
Slides
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
 
Aula materiais
Aula materiaisAula materiais
Aula materiais
 
(Www.entrance exam.net)-aieee chemistry sample paper 1
(Www.entrance exam.net)-aieee chemistry sample paper 1(Www.entrance exam.net)-aieee chemistry sample paper 1
(Www.entrance exam.net)-aieee chemistry sample paper 1
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 
Aieee 2004 chemistry
Aieee 2004 chemistryAieee 2004 chemistry
Aieee 2004 chemistry
 
Properties of coordination complexes Complete
Properties of coordination complexes CompleteProperties of coordination complexes Complete
Properties of coordination complexes Complete
 

Recently uploaded

Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityWSO2
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelDeepika Singh
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native ApplicationsWSO2
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 

Recently uploaded (20)

Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 

Mte 583 class 18b

  • 1. The Structure FactorThe Structure Factor Suggested Reading P 303 312 i D G f & M HPages 303-312 in DeGraef & McHenry Pages 59-61 in Engler and Randle 1
  • 2. Structure Factor (Fhkl) 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       • Describes how atomic arrangement (uvw) 1i influences the intensity of the scattered beam. It tells us which reflections (i e peaks hkl) to• It tells us which reflections (i.e., peaks, hkl) to expect in a diffraction pattern. 2
  • 3. Structure Factor (Fhkl) • The amplitude of the resultant wave is given by a ratio of amplitudes:ratio of amplitudes: amplitude of the wave scattered by all atoms of a UC li d f h d b l hklF  • The intensity of the diffracted wave is proportional amplitude of the wave scattered by one electron hkl • The intensity of the diffracted wave is proportional to |Fhkl|2. 3
  • 4. Some Useful Relations ei = e3i = e5i = … = -1 e2i = e4i = e6i = … = +1 eni = (-1)n, where n is any integery g eni = e-ni, where n is any integer eix + e-ix =2 cos x Needed for structure factor calculationsNeeded for structure factor calculations 4
  • 5. Fhkl for Simple Cubic • Atom coordinate(s) u,v,w: – 0,0,0 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       0,0,0 2 (0 0 0 )i h k l2 (0 0 0 )i h k l hklF fe f        No matter what atom coordinates or plane indices you substitute into theNo matter what atom coordinates or plane indices you substitute into the structure factor equation for simple cubic crystals, the solution is always non-zero. 5 Thus, all reflections are allowed for simple cubic (primitive) structures.
  • 6. Fhkl for Body Centered Cubic • Atom coordinate(s) u,v,w: – 0,0,0; 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       0,0,0; – ½, ½, ½. 2 h k l i    2 2 (0) 2 2 2 h k l i i hklF fe fe                1 i h k l F f e hkl      When h+k+l is even Fhkl = non-zero → reflection. 6 When h+k+l is odd Fhkl = 0 → no reflection.
  • 7. Fhkl for Face Centered Cubic • Atom coordinate(s) u,v,w: – 0,0,0; 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       0,0,0; – ½,½,0; – ½,0,½; – 0,½,½.   2 2 2 2 0 2 2 2 2 2 2 h k h l k l i i i i f f f f                        2 0 2 2 2 2 2 2i hklF fe fe fe fe            7        1 i h k i h l i k l hklF f e e e        
  • 8. Fhkl for Face Centered Cubic        1 i h k i h l i k l hklF f e e e         • Substitute in a few values of hkl and you will find the following:the following: – When h,k,l are unmixed (i.e. all even or all odd), then Fhkl = 4f. [NOTE: zero is considered even] F 0 f i d i di (i bi ti f dd– Fhkl = 0 for mixed indices (i.e., a combination of odd and even). 8
  • 9. Fhkl for NaCl Structure • Atom coordinate(s) u,v,w: – Na at 0,0,0 + FC transl.; 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       Na at 0,0,0 FC transl.; • 0,0,0; • ½,½,0; ½ 0 ½ This means these coordinates • ½,0,½; • 0,½,½. coordinates (u,v,w) – Cl at ½,½,½ + FC transl. • ½,½,½;  ½,½,½ 1 1 ½ 0 0 ½ The re-assignment of coordinates is • 1,1,½;  0,0,½ • 1,½,1;  0,½,0 • ½,1,1.  ½,0,0 g based upon the equipoint concept in the international tables for crystallography 9• Substitute these u,v,w values into Fhkl equation.
  • 10. Fhkl for NaCl Structure – cont’d • For Na: 2 ( ) 1 i j i N i hu kv lw hkl i i F f e        2 (0) ( ) ( ) ( )i i h k i h l i k l f e e e e             ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 Na i h k i h l i k l Na f e e e e f e e e            • For Cl:     2 ( ) 2 ( ) 2 ( )( ) 2 2 2 l k hi h k i h l i k li h k l Clf e e e e                   ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 ( ) 2 2i h k l i i ih k h l k l Cl i h k l i i i Cl f e e e e f e e e e                          l k h l k h These terms are all positive and even.  Whether the exponent is odd or 10  Whether the exponent is odd or even depends solely on the remaining h, k, and l in each exponent.
  • 11. Fhkl for NaCl Structure – cont’d 2 ( ) 1 i j i N i hu kv lw hkl i i F f e      • Therefore Fhkl:     ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 i h k i h l i k l hkl Na i h k l i i i Cl F f e e e f e e e e                    l k h  Clf e e e e   which can be simplified to*:   ( ) ( ) ( ) ( ) 1i h k l i h k i h l i k l hkl Na ClF f f e e e e             11
  • 12. Fhkl for NaCl Structure When hkl are even Fhkl = 4(fNa + fCl) Primary reflectionsPrimary reflections When hkl are odd F = 4(f f )When hkl are odd Fhkl = 4(fNa - fCl) Superlattice reflections When hkl are mixed Fhkl = 0 N fl tiNo reflections 12
  • 14. Fhkl for L12 Crystal Structure • Atom coordinate(s) u,v,w: – 0,0,0; A B 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       0,0,0; – ½,½,0; – ½,0,½; A – 0,½,½.      2 2 22 (0) 2 2 2 2 2 2 h k h l k li i ii           2 (0) 2 2 2 2 2 2 A B B B i F f e f e f e f e hkl      14  ( ) ( ) ( ) A B i h k i h l i k l F f f e e e hkl         
  • 15. Fhkl for L12 Crystal Structure  ( ) ( ) ( ) A B i h k i h l i k l F f f e e e hkl          (1 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB (1 1 0) Fhkl = fA + fB(1-1-1) = fA – fB A B (1 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 0 0) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 1 0) Fhkl = fA + fB(-1+1-1) = fA – fB(2 1 0) Fhkl fA fB( 1 1 1) fA fB (2 2 0) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 2 1) Fhkl = fA + fB(1-1-1) = fA – fB (3 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB (3 1 0) Fhkl = fA + fB(1-1-1) = fA – fB (3 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB 15 (3 1 1) Fhkl fA + fB(1+1+1) fA +3 fB (2 2 2) Fhkl = fA + fB(1+1+1) = fA +3 fB
  • 16. Intensity (%) 100 (111) Example of XRD pattern from a material with an L12 crystal structure A B 80 90 100 A B 60 70 80 40 50 60 (200) 30 40 (220) (311) 2 θ (°) 10 20 (100) (110) (210) (211) (221) (300) (310) (222) (320) (321) 16 ( ) 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 0 ( ) ( )
  • 17. Fhkl for MoSi2 • Atom positions: – Mo atoms at 0,0,0; ½,½,½ Si t t 0 0 0 0 ½ ½ ½ ½ ½ ½ 1/3 c – Si atoms at 0,0,z; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3 – MoSi2 is actually body centered tetragonal with a = 3.20 Å and c = 7.86 Å z c c ac x y x y z xy z b x y z a b a b ab Viewed down z-axis 17 a a Viewed down x-axis Viewed down y-axis
  • 18. Fhkl for MoSi2 Substitute in atom positions: ( )2 1       i j i N i hu kv lw hkl i i F f e • Mo atoms at 0,0,0; ½,½,½ • Si atoms at 0,0, ; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3      5   h k l h k l h k ll l           52 2 22 ( ) 2 ( )2 (0) 2 2 2 2 2 6 2 2 63 3 5                                    h k l h k l h k ll li i ii ii F f e f e f e f e f e f e hkl Mo Mo Si Si Si Si l ll l h k h k     52 ( ) 2 ( ) 3 33 31                            l ll l i h k i h ki ii h k l F f e f e e e e Mo Si Now we can plug in different values for h k l to determine the structure factor. F h k l 1 0 0• For h k l = 1 0 0        5(0) (0)(0) (0) 3 33 3 1 0 1 02 ( ) 2 ( )1 0 0 2 1 0 (1 1) (1 1 1 1) 0                           i ii ii hkl Mo Si hkl Mo Si F f e f e e e e F f f 18 2 ( ) ( ) You will soon learn that intensity is proportional to ; there is NO REFLECTION! Mo S l i hkF f f
  • 19. Now we can plug in different values for h k l to determine the structure factor Fhkl for MoSi2 – cont’d Now we can plug in different values for h k l to determine the structure factor. • For h k l = 0 0 1        5(1) (1) 1 1 3 33 3 0 0 0 02 ( ) 2 ( )0 0 10                   i ii ii hkl Mo SiF f e e f e e e e 22 3(1 ) (2 ( ) ) (1 1) ( 1 1) 0              i i Mo Si Mo si f e f COS e f f • For h k l = 1 1 0 2 0 NO REFLECTION!hklF          1 1 0 1 1 0 1 1 00 2 (0) 2 (0) 2 (0) (0) 2 2 (1 ) ( ) (2) (4)                            i i ii i hkl Mo Si i i i Mo Si Mo si F f e e f e e e e f e f e e e e f f If you continue for different h k l combinations trends will emerge this will lead you 2 POSITIVE! YOU WILL SEE A REFLECTION  hklF 19 • If you continue for different h k l combinations… trends will emerge… this will lead you to the rules for diffraction… h + k + l = even
  • 20. 100 (103) 80 90 (110) MoSi2 CuKα radiation %) 60 70 (101) (110) Intensity( 50 I 30 40 (002) (213) 10 20 (112) (200) (202) (211) (116) (301) (206) (303) 2020 30 40 50 60 70 80 90 100 110 120 2θ (°) 0 10 (006) (204) (222) (301) (303) (312) (314)
  • 21. Fhkl for MoSi2 – cont’d 2000 JCPDS International Centre for Diffraction Data All rights reserved 21 2000 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.1
  • 22. Structure Factor (Fhkl) for HCP 2 ( )i j i N i hu kv lw F f     • Describes how atomic arrangement (uvw) ( ) 1 i j i hkl i i F f e    • Describes how atomic arrangement (uvw) influences the intensity of the scattered beam. i.e., • It tells us which reflections (i.e., peaks, hkl) to expect in a diffraction pattern from a given crystal structure with atoms located at positions u v w 22 structure with atoms located at positions u,v,w.
  • 23. • In HCP crystals (like Ru Zn Ti and Mg) the• In HCP crystals (like Ru, Zn, Ti, and Mg) the lattice point coordinates are: – 0 0 0 – 1 2 1 3 3 2 • Therefore, the structure factor becomes: 2 2 h k l i      2 3 3 2 1 i hkl iF f e               
  • 24. • We simplify this expression by letting:p y p y g 2 1 3 2 h k g    which reduces the structure factor to:  2 1 ig hkl iF f e    • We can simplify this once more using:  1hkl iF f e from which we find: 2ix ix 2cosix ix e e x  2 2 2 2 4 cos h k l F f     4 cos 3 2 hkl iF f     
  • 25. Selection rules for HCP 0 when 2 3 and oddh k n l   2 2 2 when 2 3 1 and even 3 when 2 3 1 and odd i hkl f h k n l F f h k n l             2 3 when 2 3 1 and odd 4 when 2 3 and even i i f h k n l f h k n l        For your HW problem, you will need these things to do the structure factor calculation for Ru.  HINT: It might save you some time if you already had the ICDD card for Ru.ad t e C ca d o u
  • 26. List of selection rules for different crystals Crystal Type Bravais Lattice Reflections Present Reflections Absent Simple Primitive, P Any h,k,l Nonep , y Body-centered Body centered, I h+k+l = even h+k+l = odd Face-centered Face-centered, F h,k,l unmixed h,k,l mixed NaCl FCC h,k,l unmixed h,k,l mixed Zincblende FCC Same as FCC, but if all even and h+k+l4N then absent h,k,l mixed and if all even and h+k+l4N then absent Base-centered Base-centered h,k both even or both odd h,k mixed Hexagonal close-packed Hexagonal h+2k=3N with l even h+2k=3N1 with l odd h+2k=3N1 with l even h+2k=3N with l odd 26
  • 27. What about solid solution alloys? • If the alloys lack long range order, then youIf the alloys lack long range order, then you must average the atomic scattering factor. falloy =xAfA + xBfB where xn is an atomic fraction for the atomic iconstituent 27
  • 28. Exercises • For CaF2 calculate the structure factor and determine the selection rules for alloweddetermine the selection rules for allowed reflections. 28