SlideShare a Scribd company logo
1 of 24
Aluminum
Introduction Aluminum is the most abundant metal in the Earth's crust, and the third most abundant element therein, after oxygen and silicon. It is a silvery-white metal. It is light-weight, non-toxic, and can be easily machined or cast. Pure aluminum is soft and ductile, but can be strengthened by alloying with small amounts of copper, magnesium, and silicon.
Introduction Iron ore output for 2009 was almost 210 million tonnes globally, while that of Aluminum is 2.8 million tonnes.  Aluminum weathers far better than iron.  Aluminum is a strongly reactive metal that forms a high-energy chemical bond with oxygen. Aluminum is very active galvanically, and will sacrifice itself to any other metal it contacts either directly or indirectly.
Aluminum Aluminum is strong, corrosion resistant, non sparking, It also conducts electricity and heat well, and is readily weldableby MIG or TIG processes.  In terms of ease of construction, aluminum is excellent.  Aluminum provides the option to make use of much greater plate thickness within a given weight budget, so that strength can be greater than with steel.
Physical properties
Mechanical Properties
Aluminum Aluminum reaches its "endurance limit" sooner than steel in terms of flexure.  endurance limit: The stress level below which a specimen will withstand cyclic stress indefinitely without exhibiting fatigue failure. Rigid, elastic, low damping materials such as thermosetting plastics and some crystalline thermoplastics do not exhibit an endurance limit. Also known as FATIGUE LIMIT.  Flexure: A curve, turn, or fold, such as a bend.
Aluminum properties Flexural strength, also known as modulus of rupture, bend strength, or fracture strength, a mechanical parameter for brittle material, is defined as a material's ability to resist deformation under load. The principal interest in using non-sparking materials is to avoid ignition of combustible or explosive materials. Aluminum is non ferromagnetic,a property of importance in the electrical and electronics industries.
Aluminum Weathering Resistance to weathering is equal in importance to light weight in number of applications and volume of metal consumed.  Those aluminum alloys that are especially formulated for outdoor exposure are regularly used without paint or other protective finish. Numerous installations have been exposed for 30 years with no loss of structural integrity. The performance of aluminum in combination with organic coatings. Properly applied paint coatings on aluminum exhibit maximum adhesion, and local penetrations of the coating seldom expand.
Aluminum Rigidity The property of an object that it strongly resists changing its shape OR  the property of a solid body to resist deformation, which is sometimes referred to as rigidity When exposed to air, aluminum does not oxidize progressively  The tight chemical oxide bond is the reason that aluminum is not found in nature; it exists only as a compound.
Aluminum  Cold working the metal approximately doubles its strength.  In other attempts to increase strength, aluminum is alloyed with elements such as manganese, silicon, copper, magnesium, or zinc. The alloys can also be strengthened by cold working.  Some alloys are further strengthened and hardened by heat treatments. At subzero temperatures, aluminum is stronger than at room temperature and is no less ductile.
Alloying Aluminum Most of the physical properties--density, melting-temperature range, heat content, coefficient of thermal expansion, and electrical and thermal conductivities--are changed by addition of one or more alloying elements. Electrochemical properties and corrosion resistance are strongly affected by alloying elements that form either solid solutions, or additional phases, or both.
Wrought aluminum Those aluminum products that have been subjected to plastic deformation by hot- and cold working mill processes (such as rolling, extruding, and drawing, either singly or in combination), so as to transform cast aluminum ingot into the desired product form. One significant change being implemented by designers of automobiles and military vehicles today is converting driveshafts, radiators, cylinder heads, suspension members, and other structural components to aluminum.
Wrought aluminum A four-digit number usually designates wrought aluminum alloys. (1xxx, 3xxx, 4xxx, and 5xxx) this corresponds to a specific alloying element combination. To develop strength, heat-treatable wrought alloys are solution heat treated, then quenched and precipitation hardened. Wrought aluminum alloys are also strengthened by cold working
Wrought Aluminum wrought aluminum products also may be classified into heat treatable and non-heat-treatable alloys. Initial strength of non-heat-treatablealloys depends on the hardening effects of elements such as manganese, silicon, iron, and magnesium, singly or in various combinations. Because these alloys are work hardenable, further strengthening is made possible by various degrees of cold working, denoted by the H series of tempers.
Wrought aluminum Easy for cold working & hot working, machining & welding. Commercial wrought aluminum products are divided basically into five major categories based on production methods as well as geometric configurations. These are: · Flat-rolled products (sheet, plate, and foil) · Rod, bar, and wire · Tubular products · Shapes · Forgings
Casting Aluminum Aluminum can be cast by all common casting processes. Aluminum casting alloys are identified with a unified, four-digit (xxx.x) system.  Commercial casting alloys include heat-treatable and non-heat-treatable compositions. Alloys that are heat treated carry the temper designations 0, T4, T5, T6, and T7. Die castings are not usually solution heat treated because the temperature can cause blistering.
Aluminum Castings Good fluidity for filling thin sections Low melting point relative to those required for many other metals Rapid heat transfer from the molten aluminum to the mold, providing shorter casting cycles Hydrogen is the only gas with appreciable solubility in aluminum and its alloys, and hydrogen solubility in aluminum can be readily controlled by processing methods Many aluminum alloys are relatively free from hot-short cracking and tearing tendencies Chemical stability Good as-cast surface finish with lustrous surfaces and little or no blemishes
Selection of Casting Alloys Casting process considerations: fluidity, resistance to hot tearing, solidification range Casting design considerations: solidification range, resistance to hot tearing, fluidity, die soldering (die casting) Mechanical-property requirements: strength and ductility, heat treatability, hardness Service requirements: pressure tightness characteristic, corrosion resistance, surface treatments, dimensional stability, thermal stability Economics: machinability, weldability, ingot and melting costs, heat treatment
Aluminum Castings Castings are usually moderately good enough to be used for welding & machining purposes. They can offer better corrosion resistance than wrought products. Aluminum automotive pistons generally are permanent mold castings. This design usually is superior in economy and design flexibility. The alloy most commonly used for passenger car pistons has a good combination of foundry, mechanical, and physical characteristics, including low thermal expansion.  Heat treatment improves hardness for improved machinability.
Cost Stainless steel is frequently in competition with aluminum for parts and structures requiring resistance to weathering or other corrosive environments. The ingot price advantage of aluminum is maintained in fabricated products such as sheet and plate.  0.22 kg of aluminum has the same conductive capability as 0.45 kg of copper. To complete the cost comparison it is, of course, necessary to make allowances for fabricating both materials into final form.
Physical Properties
Mechanical Properties

More Related Content

What's hot (20)

Steel
SteelSteel
Steel
 
Chapter 11 heat treatment
Chapter 11 heat treatmentChapter 11 heat treatment
Chapter 11 heat treatment
 
Types of steels
Types of  steelsTypes of  steels
Types of steels
 
Ferrous and non ferrous metals
Ferrous and non ferrous metalsFerrous and non ferrous metals
Ferrous and non ferrous metals
 
Iron & Steel
Iron & SteelIron & Steel
Iron & Steel
 
Trip steel
Trip steelTrip steel
Trip steel
 
Steel (2)
Steel (2)Steel (2)
Steel (2)
 
Aluminium and it’s alloys
Aluminium and it’s alloysAluminium and it’s alloys
Aluminium and it’s alloys
 
Non ferrous alloys.ppt
Non ferrous alloys.pptNon ferrous alloys.ppt
Non ferrous alloys.ppt
 
Ferrous alloys
Ferrous alloysFerrous alloys
Ferrous alloys
 
Aluminium alloys applications
Aluminium alloys   applicationsAluminium alloys   applications
Aluminium alloys applications
 
aluminium extraction
aluminium extractionaluminium extraction
aluminium extraction
 
copper and copper alloys
copper and copper alloyscopper and copper alloys
copper and copper alloys
 
Aluminium alloys
Aluminium alloysAluminium alloys
Aluminium alloys
 
Aluminium and its alloy
Aluminium and its alloyAluminium and its alloy
Aluminium and its alloy
 
Metallurgy of maraging steel
Metallurgy of maraging steelMetallurgy of maraging steel
Metallurgy of maraging steel
 
Steels and Special Alloys
Steels and Special AlloysSteels and Special Alloys
Steels and Special Alloys
 
Non Ferrous Metals
Non Ferrous MetalsNon Ferrous Metals
Non Ferrous Metals
 
Magnesium and its alloys
Magnesium and its alloysMagnesium and its alloys
Magnesium and its alloys
 
Aluminum alloys cast and wrought
Aluminum alloys cast and wrought Aluminum alloys cast and wrought
Aluminum alloys cast and wrought
 

Similar to Aluminum

A number of benefits of modular aluminium extrusions.pptx
A number of benefits of modular aluminium extrusions.pptxA number of benefits of modular aluminium extrusions.pptx
A number of benefits of modular aluminium extrusions.pptxJM Aluminium
 
Non ferrous al alloy
Non ferrous al alloyNon ferrous al alloy
Non ferrous al alloyNeelKhant1
 
Aluminium Bar
Aluminium BarAluminium Bar
Aluminium BarAlutech1
 
ALUMINIUM ROOFING.pdf
ALUMINIUM ROOFING.pdfALUMINIUM ROOFING.pdf
ALUMINIUM ROOFING.pdfNehaPaliwal31
 
What Do You Know About Aluminum Alloy
What Do You Know About Aluminum AlloyWhat Do You Know About Aluminum Alloy
What Do You Know About Aluminum Alloyplay62color
 
5454 6014 6082 7068 Aluminum Sheet for Sale
5454 6014 6082 7068 Aluminum Sheet for Sale5454 6014 6082 7068 Aluminum Sheet for Sale
5454 6014 6082 7068 Aluminum Sheet for Salessuser32f835
 
Simmal Aluminum Extrusion Designing To The Limits Nov 09
Simmal Aluminum Extrusion Designing To The Limits Nov 09Simmal Aluminum Extrusion Designing To The Limits Nov 09
Simmal Aluminum Extrusion Designing To The Limits Nov 09frankpower
 
Aluminium As a Building Material
Aluminium As a Building MaterialAluminium As a Building Material
Aluminium As a Building MaterialArchDuty
 
4340 alloy steel sheet
4340 alloy steel sheet4340 alloy steel sheet
4340 alloy steel sheetdeltaalloys
 
Aluminium Sheets.pptx
Aluminium Sheets.pptxAluminium Sheets.pptx
Aluminium Sheets.pptxPrituJadhav1
 
Technology of Material, Aluminum
Technology of Material, AluminumTechnology of Material, Aluminum
Technology of Material, AluminumAnongs
 
A Guide to Aluminum Extrusion
A Guide to Aluminum ExtrusionA Guide to Aluminum Extrusion
A Guide to Aluminum Extrusionsangerarayal
 
High End Applications of Aluminum Alloys
High End Applications of Aluminum AlloysHigh End Applications of Aluminum Alloys
High End Applications of Aluminum Alloysssuser32f835
 

Similar to Aluminum (20)

A number of benefits of modular aluminium extrusions.pptx
A number of benefits of modular aluminium extrusions.pptxA number of benefits of modular aluminium extrusions.pptx
A number of benefits of modular aluminium extrusions.pptx
 
Non ferrous al alloy
Non ferrous al alloyNon ferrous al alloy
Non ferrous al alloy
 
Aluminium Bar
Aluminium BarAluminium Bar
Aluminium Bar
 
Aluminium and Its alloys.pptx
Aluminium and Its alloys.pptxAluminium and Its alloys.pptx
Aluminium and Its alloys.pptx
 
ALUMINIUM ROOFING.pdf
ALUMINIUM ROOFING.pdfALUMINIUM ROOFING.pdf
ALUMINIUM ROOFING.pdf
 
What Do You Know About Aluminum Alloy
What Do You Know About Aluminum AlloyWhat Do You Know About Aluminum Alloy
What Do You Know About Aluminum Alloy
 
Aluminium Presentation.pptx
Aluminium Presentation.pptxAluminium Presentation.pptx
Aluminium Presentation.pptx
 
5454 6014 6082 7068 Aluminum Sheet for Sale
5454 6014 6082 7068 Aluminum Sheet for Sale5454 6014 6082 7068 Aluminum Sheet for Sale
5454 6014 6082 7068 Aluminum Sheet for Sale
 
Simmal Aluminum Extrusion Designing To The Limits Nov 09
Simmal Aluminum Extrusion Designing To The Limits Nov 09Simmal Aluminum Extrusion Designing To The Limits Nov 09
Simmal Aluminum Extrusion Designing To The Limits Nov 09
 
8
88
8
 
List of Raw Materials
List of Raw MaterialsList of Raw Materials
List of Raw Materials
 
Aluminium As a Building Material
Aluminium As a Building MaterialAluminium As a Building Material
Aluminium As a Building Material
 
4340 alloy steel sheet
4340 alloy steel sheet4340 alloy steel sheet
4340 alloy steel sheet
 
Aluminium tube
Aluminium tubeAluminium tube
Aluminium tube
 
The Machinability of Aluminum
The Machinability of AluminumThe Machinability of Aluminum
The Machinability of Aluminum
 
Aluminium Sheets.pptx
Aluminium Sheets.pptxAluminium Sheets.pptx
Aluminium Sheets.pptx
 
Technology of Material, Aluminum
Technology of Material, AluminumTechnology of Material, Aluminum
Technology of Material, Aluminum
 
A Guide to Aluminum Extrusion
A Guide to Aluminum ExtrusionA Guide to Aluminum Extrusion
A Guide to Aluminum Extrusion
 
aluminum.pptx
aluminum.pptxaluminum.pptx
aluminum.pptx
 
High End Applications of Aluminum Alloys
High End Applications of Aluminum AlloysHigh End Applications of Aluminum Alloys
High End Applications of Aluminum Alloys
 

More from Moiz Barry

Metallurgy--intro
Metallurgy--introMetallurgy--intro
Metallurgy--introMoiz Barry
 
S H E E T F O R M I N G
S H E E T  F O R M I N GS H E E T  F O R M I N G
S H E E T F O R M I N GMoiz Barry
 
F O R G I N G & E X T R U S I O N
F O R G I N G &  E X T R U S I O NF O R G I N G &  E X T R U S I O N
F O R G I N G & E X T R U S I O NMoiz Barry
 
Metallurgy Casting
Metallurgy  CastingMetallurgy  Casting
Metallurgy CastingMoiz Barry
 
Metallurgy P R O P E R T I E S And Definitions
Metallurgy   P R O P E R T I E S And DefinitionsMetallurgy   P R O P E R T I E S And Definitions
Metallurgy P R O P E R T I E S And DefinitionsMoiz Barry
 
History--Egyptian civilization
History--Egyptian civilizationHistory--Egyptian civilization
History--Egyptian civilizationMoiz Barry
 
Computer Lecture 2
Computer  Lecture 2Computer  Lecture 2
Computer Lecture 2Moiz Barry
 
Computer Lecture 3
Computer  Lecture 3Computer  Lecture 3
Computer Lecture 3Moiz Barry
 
Computer Word Lec2
Computer  Word Lec2Computer  Word Lec2
Computer Word Lec2Moiz Barry
 
Computer Lecture 1
Computer  Lecture 1Computer  Lecture 1
Computer Lecture 1Moiz Barry
 
History- Intro Lec 1
History- Intro Lec 1History- Intro Lec 1
History- Intro Lec 1Moiz Barry
 

More from Moiz Barry (18)

Thermosets
ThermosetsThermosets
Thermosets
 
Rubber
RubberRubber
Rubber
 
Plastics
PlasticsPlastics
Plastics
 
Metallurgy--intro
Metallurgy--introMetallurgy--intro
Metallurgy--intro
 
S H E E T F O R M I N G
S H E E T  F O R M I N GS H E E T  F O R M I N G
S H E E T F O R M I N G
 
R O L L I N G
R O L L I N GR O L L I N G
R O L L I N G
 
F O R G I N G & E X T R U S I O N
F O R G I N G &  E X T R U S I O NF O R G I N G &  E X T R U S I O N
F O R G I N G & E X T R U S I O N
 
Metallurgy Casting
Metallurgy  CastingMetallurgy  Casting
Metallurgy Casting
 
Metallurgy P R O P E R T I E S And Definitions
Metallurgy   P R O P E R T I E S And DefinitionsMetallurgy   P R O P E R T I E S And Definitions
Metallurgy P R O P E R T I E S And Definitions
 
History--Egyptian civilization
History--Egyptian civilizationHistory--Egyptian civilization
History--Egyptian civilization
 
Computer Lecture 2
Computer  Lecture 2Computer  Lecture 2
Computer Lecture 2
 
Computer Lecture 3
Computer  Lecture 3Computer  Lecture 3
Computer Lecture 3
 
Computer Word Lec2
Computer  Word Lec2Computer  Word Lec2
Computer Word Lec2
 
Computer Lecture 1
Computer  Lecture 1Computer  Lecture 1
Computer Lecture 1
 
History- Intro Lec 1
History- Intro Lec 1History- Intro Lec 1
History- Intro Lec 1
 
Iron
IronIron
Iron
 
P I D L E C 1
P I D  L E C 1P I D  L E C 1
P I D L E C 1
 
Titanic
TitanicTitanic
Titanic
 

Aluminum

  • 2. Introduction Aluminum is the most abundant metal in the Earth's crust, and the third most abundant element therein, after oxygen and silicon. It is a silvery-white metal. It is light-weight, non-toxic, and can be easily machined or cast. Pure aluminum is soft and ductile, but can be strengthened by alloying with small amounts of copper, magnesium, and silicon.
  • 3. Introduction Iron ore output for 2009 was almost 210 million tonnes globally, while that of Aluminum is 2.8 million tonnes. Aluminum weathers far better than iron. Aluminum is a strongly reactive metal that forms a high-energy chemical bond with oxygen. Aluminum is very active galvanically, and will sacrifice itself to any other metal it contacts either directly or indirectly.
  • 4. Aluminum Aluminum is strong, corrosion resistant, non sparking, It also conducts electricity and heat well, and is readily weldableby MIG or TIG processes. In terms of ease of construction, aluminum is excellent.  Aluminum provides the option to make use of much greater plate thickness within a given weight budget, so that strength can be greater than with steel.
  • 5.
  • 8. Aluminum Aluminum reaches its "endurance limit" sooner than steel in terms of flexure. endurance limit: The stress level below which a specimen will withstand cyclic stress indefinitely without exhibiting fatigue failure. Rigid, elastic, low damping materials such as thermosetting plastics and some crystalline thermoplastics do not exhibit an endurance limit. Also known as FATIGUE LIMIT. Flexure: A curve, turn, or fold, such as a bend.
  • 9. Aluminum properties Flexural strength, also known as modulus of rupture, bend strength, or fracture strength, a mechanical parameter for brittle material, is defined as a material's ability to resist deformation under load. The principal interest in using non-sparking materials is to avoid ignition of combustible or explosive materials. Aluminum is non ferromagnetic,a property of importance in the electrical and electronics industries.
  • 10. Aluminum Weathering Resistance to weathering is equal in importance to light weight in number of applications and volume of metal consumed. Those aluminum alloys that are especially formulated for outdoor exposure are regularly used without paint or other protective finish. Numerous installations have been exposed for 30 years with no loss of structural integrity. The performance of aluminum in combination with organic coatings. Properly applied paint coatings on aluminum exhibit maximum adhesion, and local penetrations of the coating seldom expand.
  • 11. Aluminum Rigidity The property of an object that it strongly resists changing its shape OR the property of a solid body to resist deformation, which is sometimes referred to as rigidity When exposed to air, aluminum does not oxidize progressively The tight chemical oxide bond is the reason that aluminum is not found in nature; it exists only as a compound.
  • 12. Aluminum Cold working the metal approximately doubles its strength. In other attempts to increase strength, aluminum is alloyed with elements such as manganese, silicon, copper, magnesium, or zinc. The alloys can also be strengthened by cold working. Some alloys are further strengthened and hardened by heat treatments. At subzero temperatures, aluminum is stronger than at room temperature and is no less ductile.
  • 13. Alloying Aluminum Most of the physical properties--density, melting-temperature range, heat content, coefficient of thermal expansion, and electrical and thermal conductivities--are changed by addition of one or more alloying elements. Electrochemical properties and corrosion resistance are strongly affected by alloying elements that form either solid solutions, or additional phases, or both.
  • 14. Wrought aluminum Those aluminum products that have been subjected to plastic deformation by hot- and cold working mill processes (such as rolling, extruding, and drawing, either singly or in combination), so as to transform cast aluminum ingot into the desired product form. One significant change being implemented by designers of automobiles and military vehicles today is converting driveshafts, radiators, cylinder heads, suspension members, and other structural components to aluminum.
  • 15. Wrought aluminum A four-digit number usually designates wrought aluminum alloys. (1xxx, 3xxx, 4xxx, and 5xxx) this corresponds to a specific alloying element combination. To develop strength, heat-treatable wrought alloys are solution heat treated, then quenched and precipitation hardened. Wrought aluminum alloys are also strengthened by cold working
  • 16. Wrought Aluminum wrought aluminum products also may be classified into heat treatable and non-heat-treatable alloys. Initial strength of non-heat-treatablealloys depends on the hardening effects of elements such as manganese, silicon, iron, and magnesium, singly or in various combinations. Because these alloys are work hardenable, further strengthening is made possible by various degrees of cold working, denoted by the H series of tempers.
  • 17. Wrought aluminum Easy for cold working & hot working, machining & welding. Commercial wrought aluminum products are divided basically into five major categories based on production methods as well as geometric configurations. These are: · Flat-rolled products (sheet, plate, and foil) · Rod, bar, and wire · Tubular products · Shapes · Forgings
  • 18. Casting Aluminum Aluminum can be cast by all common casting processes. Aluminum casting alloys are identified with a unified, four-digit (xxx.x) system. Commercial casting alloys include heat-treatable and non-heat-treatable compositions. Alloys that are heat treated carry the temper designations 0, T4, T5, T6, and T7. Die castings are not usually solution heat treated because the temperature can cause blistering.
  • 19. Aluminum Castings Good fluidity for filling thin sections Low melting point relative to those required for many other metals Rapid heat transfer from the molten aluminum to the mold, providing shorter casting cycles Hydrogen is the only gas with appreciable solubility in aluminum and its alloys, and hydrogen solubility in aluminum can be readily controlled by processing methods Many aluminum alloys are relatively free from hot-short cracking and tearing tendencies Chemical stability Good as-cast surface finish with lustrous surfaces and little or no blemishes
  • 20. Selection of Casting Alloys Casting process considerations: fluidity, resistance to hot tearing, solidification range Casting design considerations: solidification range, resistance to hot tearing, fluidity, die soldering (die casting) Mechanical-property requirements: strength and ductility, heat treatability, hardness Service requirements: pressure tightness characteristic, corrosion resistance, surface treatments, dimensional stability, thermal stability Economics: machinability, weldability, ingot and melting costs, heat treatment
  • 21. Aluminum Castings Castings are usually moderately good enough to be used for welding & machining purposes. They can offer better corrosion resistance than wrought products. Aluminum automotive pistons generally are permanent mold castings. This design usually is superior in economy and design flexibility. The alloy most commonly used for passenger car pistons has a good combination of foundry, mechanical, and physical characteristics, including low thermal expansion. Heat treatment improves hardness for improved machinability.
  • 22. Cost Stainless steel is frequently in competition with aluminum for parts and structures requiring resistance to weathering or other corrosive environments. The ingot price advantage of aluminum is maintained in fabricated products such as sheet and plate. 0.22 kg of aluminum has the same conductive capability as 0.45 kg of copper. To complete the cost comparison it is, of course, necessary to make allowances for fabricating both materials into final form.