SlideShare a Scribd company logo
1 of 147
Download to read offline
SOLAR	
  RESOURCE	
  OF	
  LATIN	
  AMERICA	
  
LEAST-­‐COST-­‐&-­‐RISK	
  LIFECYCLE	
  	
  
DELIVERED	
  ENERGY	
  SERVICES	
  
Michael	
  P	
  To,en,	
  Senior	
  Fellow,	
  Rocky	
  Mountain	
  Ins:tute,	
  Nov.	
  12,	
  2014	
  
Presenta:on	
  to	
  the	
  IDB	
  ENE	
  CSF	
  Energy	
  Training	
  Workshop	
  	
  
EPPs	
  +	
   +	
  
Efficiency	
  
Power	
  
Plants	
  
Summary	
  of	
  Key	
  Points	
  
1.  Least-­‐Cost-­‐and-­‐Risk	
  Lifecycle	
  PorLolio	
  of	
  Delivered	
  Energy	
  Services	
  top	
  priority	
  	
  	
  
2.  Risks	
  include	
  intrinsic	
  uncertain:es	
  and	
  surprises	
  –	
  climate	
  disrup:on	
  costs,	
  price	
  
vola:li:es	
  of	
  fuel,	
  water,	
  pollu:on	
  and	
  emissions,	
  catastrophic	
  accident	
  fat-­‐tail	
  
probabili:es,	
  destruc:on	
  of	
  ecosystem	
  services,	
  cultural	
  disrup:on	
  
3.  End-­‐use	
  efficiency	
  gains	
  (Eta,	
  η)	
  vast	
  pool	
  capable	
  of	
  delivering	
  50	
  to	
  75%	
  of	
  new	
  
energy	
  services	
  for	
  decades,	
  far	
  cheaper	
  than	
  any	
  supply	
  op:on	
  –	
  integrated	
  
design	
  intelligence/knowledge	
  displacing	
  energy	
  resources	
  &	
  materials.	
  
4.  Wind	
  power	
  now	
  cheapest	
  supply	
  op:on	
  in	
  countries	
  and	
  regions	
  with	
  wind	
  
resources.	
  
5.  Solar	
  Photovoltaics	
  (PV)	
  systems	
  now	
  equal	
  to	
  or	
  less	
  than	
  the	
  grid	
  electricity	
  
from	
  other	
  sources	
  in	
  79	
  countries.	
  	
  Within	
  60	
  months	
  (by	
  2020)	
  –	
  as	
  the	
  scale	
  of	
  
deployments	
  grows	
  and	
  the	
  costs	
  con:nue	
  to	
  decline	
  –	
  more	
  than	
  80%	
  humanity	
  
will	
  live	
  in	
  regions	
  where	
  solar	
  will	
  be	
  compe::ve	
  with	
  electricity	
  from	
  other	
  
sources.	
  
6.  Efficiency,	
  Wind	
  &	
  Solar,	
  once	
  installed,	
  are	
  risk-­‐free	
  from	
  price	
  vola:lity	
  over	
  
lifecycle	
  given	
  no	
  fuel	
  demand,	
  virtually	
  no	
  water,	
  no	
  pollu:on,	
  waste	
  or	
  
emissions	
  in	
  genera:ng	
  and	
  delivering	
  electricity	
  services.	
  
Natural Gas
provides fuel for
transportation,
electricity, and
heat
Telecom
provides SCADA
and
communications
technologies
Transportation
provides fuel
transport and
shipping
Electric Power
provides energy to
support facility
operations
Water
provides water for
production, cooling,
and emissions
reductions
Oil
provides fuel and
lubricants
Figure 3. Examples of Critical Infrastructure Interdependencies
Adapted from: Rinaldi, Peerenboom, and Kelly (2001)”Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies” IEEE Control Systems Magazine,
December. Available at: http://www.ce.cmu.edu/~hsm/im2004/readings/CII-Rinaldi.pdf.
CriZcal	
  Infrastructure	
  Interdependencies	
  	
  
Cybersecurity	
  and	
  the	
  North	
  American	
  Electric	
  Grid:	
  New	
  Policy	
  Approaches	
  to	
  Address	
  an	
  Evolving	
  Threat,	
  Bipar:san	
  Policy	
  Center,	
  Feb.	
  2014	
  
Threats	
  Landscape:	
  ELECTRIC	
  POWER	
  SECTOR	
  
Spectrum of Threats do today. The Chertoff Group was biological, or radiological attacks). As
F I G U R E 1
THREAT LANDSCAPE: ELECTRIC POWER SECTOR
Source: The Chertoff Group, December 2013
Cyber Attack
Physical Attack / Theft
Coordinated Physical and Cyber Attack
Insider Threat
Electromagnetic Interference / EMP
Natural Disasters
Pandemic
Supply Chain Compromise
Chemical, Biological or Radiological Attack
Nuclear Attack
LIKELIHOOD
CONSEQUENCE
UglyGorilla	
  (Chinese)	
  Hack	
  of	
  U.S.	
  UZlity	
  	
  
Exposes	
  Cyberwar	
  Threat	
  
“This	
  is	
  as	
  big	
  a	
  naZonal	
  security	
  threat	
  as	
  I	
  have	
  ever	
  seen	
  in	
  the	
  
history	
  of	
  this	
  country	
  that	
  we	
  are	
  not	
  prepared	
  for,”	
  said	
  U.S.	
  
Congressman	
  Mike	
  Rogers	
  (R-­‐MI)	
  ,	
  chairman,	
  USHR	
  intelligence	
  
commiaee.	
  
“Your	
  palms	
  get	
  a	
  liale	
  sweaty	
  thinking	
  about	
  what	
  the	
  
outcome	
  of	
  those	
  aaacks	
  might	
  have	
  been	
  and	
  how	
  close	
  they	
  
actually	
  came.”	
  	
  
National Security
and the
Accelerating Risks
of Climate Change
Military Advisory Board
General Paul Kern, USA (Ret.)
Brigadier General Gerald E. Galloway Jr., USA (Ret.)
Vice Admiral Lee Gunn, USN (Ret.)
Admiral Frank “Skip” Bowman, USN (Ret.)
General James Conway, USMC (Ret.)
Lieutenant General Ken Eickmann, USAF (Ret.)
Lieutenant General Larry Farrell, USAF (Ret.)
General Don Hoffman, USAF (Ret.)
General Ron Keys, USAF (Ret.)
Rear Admiral Neil Morisetti, British Royal Navy (Ret.)
Vice Admiral Ann Rondeau, USN (Ret.)
Lieutenant General Keith Stalder, USMC (Ret.)
General Gordon Sullivan, USA (Ret.)
Rear Admiral David Titley, USN (Ret.)
General Charles “Chuck” Wald, USAF (Ret.)
Lieutenant General Richard Zilmer, USMC (Ret.)
Pentagon	
  Report:	
  U.S.	
  Military	
  
Considers	
  Climate	
  Change	
  a	
  
'Threat	
  MulZplier'	
  That	
  Could	
  
Exacerbate	
  Terrorism	
  
BUILDING A
RESILIENT
POWER GRID
Industry and government are working together to ensure
necessary investments—not only to anticipate and prevent
possible harm to critical energy supply—but also to ensure a
constant focus on building a more resilient grid.
ENERGY	
  STRATEGIES	
  FOR	
  NATIONAL	
  SECURITY	
  
	
  (and	
  profits,	
  jobs,	
  nature	
  and	
  climate)	
  
Funded	
  by	
  Dept	
  Defense	
  Civil	
  
Defense	
  Preparedness	
  Agency	
  
Funded	
  by	
  Department	
  of	
  
Defense	
  
1980	
   2005	
  
Main
Utility Grid
PCC
Household appliances and electronics
DC Coupled Subsystem
Modes of Operation: ISLANDED
US	
  Dept	
  of	
  Defense	
  Mandated	
  Islandable	
  Microgrids	
  at	
  	
  
Military	
  Bases	
  to	
  operate	
  even	
  if	
  	
  Grid	
  Collapses	
  
RANKING	
  
LEAST-­‐COST-­‐RISK	
  (LCR)	
  
DELIVERED	
  ENERGY	
  SERVICES	
  (DES)	
  
CORE:	
  Efficiency,	
  ProducZvity,	
  IntegraZve	
  Design	
  
Energy	
  ConsumpZon	
  in	
  the	
  U.S.	
  economy,	
  2010-­‐2050	
  
Ken Caldeira
η	
  
Eta	
  
Efficiency	
  
Power	
  Plants	
  (EPPs)	
  
You’re  Telling  Me  An  EE  Power  Plant  
Is Just Like A Fossil Power Plant?
.
7
• Yes,  and  it’s  less  expensive,  
removes more pollutants,
and saves water
• Answer these questions to
build an EE power plant:
– How many MW and MWh?
– When and where?
– Quantity of tons needed to
be removed?
Building	
  Energy	
  Efficiency	
  Power	
  Plants:	
  Cu^ng	
  Through	
  the	
  Fog	
  or	
  Why	
  EE	
  Advocates	
  Should	
  Engage	
  Air	
  Regulators,	
  Christopher	
  
James,	
  Principal,	
  Regulatory	
  Assistance	
  Project	
  (RAP),	
  ACEEE	
  Summer	
  Study,	
  August	
  2014	
  
Efficiency	
  Power	
  Plant	
  (EPP)	
  calculator,	
  Regulatory	
  Assistance	
  Project,	
  h,p://www.raponline.org/featured-­‐work/cu^ng-­‐
through-­‐the-­‐fog-­‐to-­‐build-­‐energy-­‐efficiency	
  
Efficiency	
  Power	
  Plant	
  (EPP)	
  Calculator	
  	
  
Building	
  Energy	
  Efficiency	
  Power	
  Plants:	
  Cu^ng	
  Through	
  the	
  Fog	
  or	
  Why	
  EE	
  Advocates	
  Should	
  Engage	
  Air	
  Regulators,	
  Christopher	
  
James,	
  Principal,	
  Regulatory	
  Assistance	
  Project	
  (RAP),	
  ACEEE	
  Summer	
  Study,	
  August	
  2014	
  
same principles as our demonstration tool, that could potentially be used by states as part of their
future plans. Indeed, many existing tools used by efficiency program administrators would
require only modest modifications (and perhaps no modifications in some cases) to provide such
functionality.
Figure 2. Efficiency power plant planning tool inputs.
17
"End Use" (what the
electricity is being
used for)
Representative
installed equipment
(also called
"Measure")
Unit of installed
equipment (what
are you counting?)
Quantity of
installed
equipment
(how many
will be
installed?)
Savings
per Unit
(kWh/yr)
Total
Savings
(MWh/yr)
RESIDENTIAL
Residential Cooling ENERGY STAR Central A/C Air Conditioner 756 150 113
Cooking & Laundry CEE Tier 3 Washer Washing Machine 6,830 237 1,619
Lighting CFL Light Bulb 981,130 35 34,340
Refrigeration Recycled Refrigerator Refrigerator 2,127 720 1,531
Space Heating Weatherization One Home 542 1,500 813
Water Heating Low Flow Showerhead Showerhead 3,530 260 918
Other Custom Projects One Home 3,257 1,000 3,257
Total Residential 42,591
COMMERCIAL & INDUSTRIAL
A/C Project One C&I Project 623 5,505 3,429
Hot Water Project One C&I Project 139 1,000 139
Industrial Process Project One C&I Project 73 140,000 10,220
Interior Lighting Project One C&I Project 2,621 16,000 41,936
Motors VFD<= 10 HP One C&I Project 1,509 5,400 8,149
Refrigeration Project One C&I Project 147 17,500 2,573
Space Heating Project One C&I Project 112 4,250 476
Ventilation Project One C&I Project 73 13,400 978
Compressed Air Project One C&I Project 62 29,187 1,810
Other Project One C&I Project 540 2,000 1,080
Total Commercial & Industrial 70,789
Enter the quantity
for each row in the
bright yellow cell in
Column E
Only change the savings
per unit in the light
yellow cells in Column F if
you have savings
estimates that are
specific to the service
territory you are
analyzing
What	
  Might	
  an	
  Efficiency	
  Power	
  Plant	
  Look	
  Like?	
  
EE Power Plant Output by Month
12
Building	
  Energy	
  Efficiency	
  Power	
  Plants:	
  Cu^ng	
  Through	
  the	
  Fog	
  or	
  Why	
  EE	
  Advocates	
  Should	
  Engage	
  Air	
  Regulators,	
  Christopher	
  
James,	
  Principal,	
  Regulatory	
  Assistance	
  Project	
  (RAP),	
  ACEEE	
  Summer	
  Study,	
  August	
  2014	
  
MWh	
  savings	
  
12,000	
  
10,000	
  
EE Power Plant for a July Day
13
MWhSavings
Building	
  Energy	
  Efficiency	
  Power	
  Plants:	
  Cu^ng	
  Through	
  the	
  Fog	
  or	
  Why	
  EE	
  Advocates	
  Should	
  Engage	
  Air	
  Regulators,	
  Christopher	
  
James,	
  Principal,	
  Regulatory	
  Assistance	
  Project	
  (RAP),	
  ACEEE	
  Summer	
  Study,	
  August	
  2014	
  
MWh	
  savings	
  
Reducing	
  Greenhouse	
  Gases	
  and	
  Improving	
  Air	
  Quality	
  Through	
  Energy	
  Efficiency	
  Power	
  Plants:	
  Cu^ng	
  Through	
  the	
  Fog	
  to	
  Help	
  Air	
  Regulators	
  “Build"	
  EPPs,	
  
Chris	
  James	
  and	
  Ken	
  Colburn,	
  Regulatory	
  Assistance	
  Project	
  Chris	
  Neme	
  and	
  Jim	
  Greva,,	
  Energy	
  Futures	
  Group,	
  ACEEE	
  Summer	
  Study,	
  August	
  2014	
  
Figure 1. Ozone design values 2009-11. Source: EPA 2014b
Opportunities to Include Energy Efficiency in Clean Air Act Requirements
The EE community can help spur the inclusion of EE in new and revised air quality rules,
and promote EE’s role in helping states and air pollution sources comply with such rules, in two
principal areas. First, the EE community should assure that EPA rules explicitly include EE as a
compliance option. Because many states are expressly prohibited by their state constitutions
LocaZons	
  with	
  Air	
  PolluZon	
  Exceeding	
  Clean	
  Air	
  Standards	
  
OpportuniZes	
  to	
  include	
  Energy	
  Efficiency	
  in	
  Clean	
  Air	
  Requirements	
  
New York
California
USA minus CA & NY
Per Capital
Electricity
Consumption
165 GW
Coal
Power
Plants
Californian’s have
net savings of
$1,000 per family
[EPPs]
For delivering least-cost & risk electricity, natural gas & water services
Integrated Resource Planning (IRP) & Decoupling sales from
revenues are key to harnessing Efficiency Power Plants
California 30 year proof of IRP value in promoting
lower cost efficiency over new power plants or
hydro dams, and lower GHG emissions.
California signed MOUs with Provinces in China
to share IRP expertise (now underway in Jiangsu).
Net	
  Savings	
  
$165	
  per	
  
capita	
  
14
Annual Energy Savings from Efficiency Programs and Standards
0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
GWh/year
Appliance Standards
Building Standards
Utility Efficiency
Programs at a cost of
~1% of electric bill
~15% of Annual Electricity Use in California in 2003
Arthur	
  H.	
  Rosenfeld,	
  Commissioner	
  California	
  Energy	
  Commission,	
  Successes	
  of	
  Energy	
  Efficiency:	
  The	
  United	
  States	
  and	
  California,	
  Na:onal	
  
Environmental	
  Trust,	
  May	
  2,	
  2007	
  
COOL	
  CITIES	
  
BENIGN	
  GEOENGINEERING	
  
Over 4000 Walmart stores with
white roofs, and standard
practice since 1990
Reflects away 80% of solar heat
SOLAR REFLECTORS
A	
  Real-­‐World	
  	
  
Example	
  of	
  Cooling	
  
25	
  
The whitewashed
greenhouses of
Almeria, Spain have
cooled the region by
0.8 degrees Celsius
each decade compared
to surrounding regions,
according to 20 years
of weather station data.
Source:	
  	
  Google	
  Earth	
  	
  
Hashem Akbari Arthur Rosenfeld and Surabi Menon, Global Cooling: Increasing World-wide Urban Albedos to Offset CO2, 5th Annual California Climate Change
Conference, Sacramento, CA, September 9, 2008, http://www.climatechange.ca.gov/events/2008_conference/presentations/index.html
World of Solar Reflecting Cities
$2+ Trillion Global Savings Potential, 59 Gt CO2 Reduction
100 m2
27	
  
White	
  roofs,	
  cool-­‐colored	
  roofs	
  save	
  
money	
  and	
  can	
  even	
  avoid	
  the	
  need	
  to	
  
air	
  condi:on	
  
flat,	
  white	
  
pitched,	
  white	
  
pitched,	
  cool	
  &	
  colored	
  
OLD	
   NEW	
  
AC	
  savings	
  ≈	
  15%	
  
AC	
  savings	
  ≈	
  10%	
  
AC	
  savings	
  ≈	
  5%	
  
AC	
  savings	
  ≈	
  15%	
  
AC	
  savings	
  ≈	
  10%	
  
Temperature	
  and	
  Smog	
  Forma:on	
  
28	
  
Source:	
  Maryland	
  Commission	
  on	
  Climate	
  Change	
  
EPA	
  Compliance	
  Std	
  =	
  75	
  
TransiZon	
  Zone	
  
Calif	
  Title	
  24	
  “Cool	
  Roof”	
  standards	
  
•  In	
  2005,	
  California’s	
  “Title	
  24”	
  energy	
  efficiency	
  
standards	
  prescribed	
  white	
  surfaces	
  for	
  low-­‐sloped	
  roofs	
  
on	
  commercial	
  and	
  large	
  residen:al	
  buildings	
  
(apartments,	
  hotels,	
  etc.).	
  Several	
  hot	
  states	
  are	
  
following.	
  
•  In	
  2008,	
  California	
  prescribed	
  “cool	
  colored”	
  surfaces	
  for	
  
steep	
  residen:al	
  roofs	
  in	
  its	
  5	
  ho,est	
  climate	
  zones,	
  but	
  
not	
  yet	
  Los	
  Angeles.	
  
•  Other	
  U.S.	
  states	
  &	
  all	
  countries	
  with	
  hot	
  summers	
  
ought	
  to	
  follow.	
  	
  
29	
  
Resources	
  on	
  the	
  web	
  
LBNL	
  –	
  Heat	
  Island	
  Group	
  
HeatIsland.LBL.gov	
  	
  
Global	
  Cool	
  Ci:es	
  Alliance	
  
www.GlobalCoolCi:es.org	
  	
  
Cool	
  Roofs	
  and	
  Cool	
  Pavements	
  
Toolkit	
  
www.CoolRoofToolkit.org	
  	
  	
  
Art	
  Rosenfeld’s	
  website	
  
www.ArtRosenfeld.org	
  
30	
  
Figure 6:
Two Cool Roof Installations
A cool coating is applied to a dark roof
(top), and a cool single-ply membrane
roof is unrolled (bottom). Image Source:
DIY Advice
or coated to make them reflective.
Built-Up Roofs consist of a base sheet, fabric reinforcement layers, and a protective surface layer
that is traditionally dark. The surface layer can be made in a few different ways, and each has
cool options. One way involves embedding mineral aggregate (gravel) in a flood coat of asphalt.
By substituting reflective marble chips or gray slag for dark gravel you can make the roof cool.
A second way built-up roofs are finished is with a mineral surfaced sheet. These can be made
cool with reflective mineral granules or with a factory-applied coating. Another surface option
involves coating the roof with a dark asphaltic emulsion. This type can be made cool by applying
a cool coating directly on top of the dark emulsion.
Modified Bitumen Sheet Membranes are composed of
one or more layers of plastic or rubber material with
reinforcing fabrics, and are surfaced with mineral granules
or with a smooth finish. A modified bitumen sheet can
also be used to surface a built-up roof, and this is called a
“hybrid”  roof.  Modified  bitumen  surfaces  can  be  pre-
coated at the factory to make them cool.
Spray Polyurethane Foam roofs are constructed by
mixing two liquid chemicals together that react and
expand to form one solid piece that adheres to the roof.
Since foams are highly susceptible to mechanical,
moisture, and UV damage, they rely on a protective
coating. These coatings are traditionally reflective and
offer cool roof performance.
Steep Sloped Roofs
Shingled Roofs consist of overlapping panels made from
any of numerous materials. Fiberglass asphalt shingles,
commonly used on homes, are coated with granules for
protection. Cool asphalt shingles are use specially coated
granules that provide better solar reflectance. While it is
possible to coat existing asphalt shingles to make them
cool, this is not normally recommended or approved by
shingle manufacturers. Other shingles are made from
wood, polymers, or metals and these can be coated at the
factory or in the field to make them more reflective. Metal
shingles are described in the Metal Roofs section that
follows.
x
EPDM stands for ethylene propylene diene M-class, a kind of synthetic rubber.
Cool Policies for Cool Cities:
Best Practices for
Mitigating Urban Heat Islands
in North American Cities
Virginia Hewitt and Eric Mackres,
American Council for an Energy-Efficient Economy
Kurt Shickman,
Global Cool Cities Alliance
June 2014
Report Number U1405
© American Council for an Energy-Efficient Economy and
Global Cool Cities Alliance
529 14th Street NW, Suite 600, Washington, DC 20045
Phone: (202) 507-4000
Twitter: @ACEEEDC
Facebook.com/myACEEE
www.aceee.org
www.globalcoolcities.org
Best Practices for
Mitigating Urban Heat Islands
in North American Cities
Virginia Hewitt and Eric Mackres,
American Council for an Energy-Efficient Economy
Kurt Shickman,
Global Cool Cities Alliance
June 2014
Report Number U1405
© American Council for an Energy-Efficient Economy and
Global Cool Cities Alliance
529 14th Street NW, Suite 600, Washington, DC 20045
Phone: (202) 507-4000
Twitter: @ACEEEDC
Facebook.com/myACEEE
www.aceee.org
www.globalcoolcities.org
HVAC	
  &	
  Electric	
  Motors	
  
TUNNELING	
  THROUGH	
  TO	
  LOW-­‐E	
  
Now use 1/2 global power
30-50% efficiency savings achievable w/ high ROI
ELECTRIC MOTOR SYSTEMS
Improvement Over Time
10
0
10
20
30
40
50
60
70
80
90
100
110
1970 1980 1990 2000 2010 2020 2030
NormalizedEUI(1975Use=100)
Year
Improvement in ASHRAE Standard 90.1 (Year 1975-2013)
90-1975 90A -1980
90.1-1989
90.1-
1999
90.1-
2007
90.1-
2010
90.1-2004
14%
4.5% 0.5%
12.3%
4.5%
18.5%
90.1-2001
90.1-
2013
18.5%
6~8%
Improvement	
  in	
  ASHRAE	
  Standard	
  90.1	
  (1975-­‐2013)	
  
PNNL,	
  Building	
  Codes	
  Commercial	
  Landscape,	
  PNNL-­‐SA-­‐103479,	
  June	
  2014	
  
10 Source: David Goldstein
New United States Refrigerator Use v. Time
and Retail Prices
0
200
400
600
800
1,000
1,200
1,400
1,600
1,800
2,000
1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002
AverageEnergyUseorPrice
0
5
10
15
20
25
Refrigeratorvolume(cubicfeet)
Energy Use per Unit
(kWh/Year)
Refrigerator
Size (cubic ft)
Refrigerator Price
in 1983 $
$ 1,270
$ 462
Arthur	
  H.	
  Rosenfeld,	
  Commissioner	
  California	
  Energy	
  Commission,	
  Successes	
  of	
  Energy	
  Efficiency:	
  The	
  United	
  States	
  and	
  California,	
  Na:onal	
  
Environmental	
  Trust,	
  May	
  2,	
  2007	
  
ASHRAE Standard 90.1 Projections
11
Heating and cooling use index based on weighted equipment efficiency
requirement changes; Envelope based on typical medium office steel frame wall
and window areas with U-factor changes; Lighting power based on building area
allowances weighted for U.S. building floor area; Overall Standard 90.1 progress
based on PNNL’s analysis.
ASHRAE	
  Standard	
  90.1	
  ProjecZons	
  to	
  2030	
  
PNNL,	
  Building	
  Codes	
  Commercial	
  Landscape,	
  PNNL-­‐SA-­‐103479,	
  June	
  2014	
  
Interrelationships
IECC	
  adopts	
  90.1	
  by	
  reference	
  –	
  designer	
  choice	
  which	
  to	
  use	
  but	
  cannot	
  ‘pick	
  and	
  choose’,	
  must	
  use	
  one	
  or	
  the	
  other	
  only	
  
IgCC	
  adopts	
  the	
  IECC	
  by	
  reference	
  but	
  adds	
  criteria	
  to	
  address	
  addiZonal	
  items	
  not	
  covered	
  in	
  the	
  IECC	
  or	
  increases	
  
stringency	
  of	
  the	
  IECC	
  
IgCC	
  adopts	
  189.1	
  by	
  reference	
  –	
  designer	
  choice	
  which	
  to	
  use	
  but	
  cannot	
  ‘pick	
  and	
  choose’,	
  must	
  use	
  one	
  or	
  the	
  other	
  only	
  
ASHRAE	
  189.1	
  adopts	
  90.1	
  by	
  reference	
  but	
  adds	
  criteria	
  to	
  address	
  addiZonal	
  items	
  not	
  covered	
  by	
  90.1	
  or	
  increases	
  
stringency	
  of	
  90.1	
  
InterrelaZonships	
  Building	
  Energy	
  Commercial	
  Codes	
  
ASHRAE	
  189.1	
  	
  
ASHRAE	
  90.1	
  	
  
ASHRAE--Chiller Plant Efficiency
0.5
(7.0)
0.6
(5.9)
0.7
(5.0)
0.8
(4.4)
0.9
(3.9)
1.0
(3.5)
1.1
(3.2)
1.2
(2.9)
NEEDS IMPROVEMENTFAIRGOODEXCELLENT
AVERAGE ANNUAL CHILLER PLANT EFFICIENCY IN KW/TON (C.O.P.)
(Input energy includes chillers, condenser pumps, tower fans and chilled water pumping)
New Technology
All-Variable Speed
Chiller Plants
High-efficiency
Optimized
Chiller Plants
Conventional
Code Based
Chiller Plants
Older Chiller
Plants
Chiller Plants with
Correctable Design or
Operational Problems
Based on electrically driven centrifugal chiller plants in comfort conditioning applications with
42F (5.6C) nominal chilled water supply temperature and open cooling towers sized for 85F
(29.4C) maximum entering condenser water temperature and 20% excess capacity.
Local Climate adjustment for North American climates is +/- 0.05 kW/ton
kW/ton
C.O.P.
0.59 typical Trane Guaranty
Source: LEE Eng Lock, Singapore
0.49	
  Infosys,	
  Bangalore,	
  India	
  
0.59	
  Trane,	
  Singapore	
  
Sources:	
  LEE	
  Eng	
  Lock,	
  Trane,	
  Singapore;	
  Punit	
  Desai,	
  Infosys,	
  Bangalore,	
  India;	
  Tom	
  Hartman,	
  TX,	
  h,p://www.hartmanco.com/	
  	
  
Source: LEE Eng Lock, Singapore
Typical Chiller Plant -- Needs Improvement
(1.2 kW per ton)
Source: LEE Eng Lock, Singapore
High Performance Chiller Plant (0.56 kW/t)
Source: LEE Eng Lock, Singapore
HOW? Bigger pipes, 45° angles, Smaller chillers
Financial Benefits
Before After
Cooling TonHr/Week 80,000 80,000
System kWH/Week 152,000 47,200
kWh/TonH 1.90 0.59
Energy Savings in %
Energy Savings in kWH / Year
Energy Savings in $/Year @ $0.20/KWH
Water usage per year (M3) 0 34,682
Water Charge per year (New Water @ $1.0/M3)
Estimated Total $ Savings per Year
Annual Reduction in Carbon Emission per year (Tones)
$34,682
$1,055,238
2,724,800
68.95%
5,449,600
$1,089,920
ROI = 29%. Energy Savings over 15 years = S$15M
!  Making pipes just 50% fatter reduces friction by 86%
Pipe%Dia%in%
inch%
Flow%in%
GPM%
Velocity%
Ft%/sec%
Head%loss%
S/100S%
6% 800% 8.8% 3.5%
10% 800% 3.2% 0.3%
Big Pipe, small pumps
Punit	
  Desai,	
  Environmental	
  Sustainability	
  at	
  Infosys	
  Driven	
  by	
  values,	
  Powered	
  by	
  
innova:on,	
  InfoSys,	
  presenta:on	
  to	
  RMI,	
  Sept	
  15,	
  2014	
  
1. Ask for 0.60 kW/RT or better for chiller plant.
2. Ask for performance guarantee backed by clear
financial penalties in event of performance shortfall.
3. Ask for accurate Measurement & Verification system
of at least +-5% accuracy in accordance to
international standards of ARI-550 & ASHRAE guides
14P & 22.
4. Ask for online internet access to monitor the plant
performance.
5. Ask for track record.
Source: LEE Eng Lock, Singapore
Simple Guide to retrofit success
0.50	
  
design temperature, thus reducing pump system opportunities.
Figure 4: US Pumping System Efficiency Supply Curve
Cost effective energy saving
potential
0
50
100
150
200
250
300
350
400
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000
CostofConservedElectricity(US$/MWh-saved)
Annual Electricity Saving Potential (GWh/yr)
Pump System Efficiency Supply Curve for U.S. Industry
Average Unit Price of
Electricity for U.S Industr
in 2008:70.1 US$/MWh*
5
6
8
7
9
10
Cost effective electricity
savingpotential:
36,148 GWh/yr
Technicalelectricity
savingpotential:
54,023 GWh/yr
4
2
1
3
* The dotted lines represent the range of price from the sensitivity analysis- see Section 4.5.
NOTE: this supply curve is intended to provide an indicator of the relative cost-effectiveness of system energy efficiency measures at the
national level. The cost-effectiveness of individual measures will vary based on site-specific conditions.
US	
  Pumping	
  System	
  Efficiency	
  Supply	
  Curve	
  
Annual	
  Electricity	
  Saving	
  PotenZal	
  (GWh/yr)	
  
Cost	
  of	
  Conserved	
  Electricity	
  ($US/MWh-­‐saved)	
  
*	
  The	
  do,ed	
  lines	
  represent	
  the	
  range	
  of	
  price	
  from	
  the	
  sensi:vity	
  analysis-­‐	
  see	
  Sec:on	
  4.5.	
  
NOTE:	
  this	
  supply	
  curve	
  is	
  intended	
  to	
  provide	
  an	
  indicator	
  of	
  the	
  rela:ve	
  cost-­‐effec:veness	
  of	
  system	
  energy	
  efficiency	
  measures	
  at	
  the	
  
na:onal	
  level.	
  The	
  cost-­‐effec:veness	
  of	
  individual	
  measures	
  will	
  vary	
  based	
  on	
  site-­‐specific	
  condi:ons.	
  
Motor	
  Systems	
  Efficiency	
  Supply	
  Curves,	
  UNIDO,	
  UN	
  Industrial	
  Development	
  Organiza:on,	
  December	
  2010	
  
Equal	
  to	
  14	
  natural	
  gas	
  
power	
  plants	
  (500MW	
  each)	
  
RESULTS AND DISCUSSION
No. Energy Efficiency Measure
Cumulative
Annual
Electricity Saving
Potential in
Industry (GWh/yr)
Final CCE
(US$/MWh-
Saved)
Cumulative
Annual Primary
Energy Saving
Potential in
Industry (TJ/yr)
Cumulative
Annual CO2
Emission
Reduction
Potential from
Industry
(kton CO2 /yr)
1
Isolate flow paths to non-essential or
non-operating equipment
10,589 0.0 116,265 6,382
2 Install variable speed drive 23,295 44.5 255,784 14,040
3
Trim or change impeller to match output
to requirements
33,279 57.0 365,405 20,057
4
Use pressure switches to shut down
unnecessary pumps
36,148 65.7 396,905 21,786
5 Fix leaks, damaged seals, and packing 37,510 84.1 411,855 22,607
6
Replace motor with more energy efficient
type
39,084 116.9 429,138 23,555
7
Remove sediment/scale buildup from
piping
42,523 126.3 466,906 25,628
8
Replace pump with more energy efficient
type
48,954 132.2 537,516 29,504
9 Initiate predictive maintenance program 52,302 189.0 574,280 31,522
10
Remove scale from components such as
heat exchangers and strainers
54,023 330.9 593,171 32,559
Table 14: Cumulative Annual Electricity Saving and CO2 Emission Reduction for Pumping
System Efficiency Measures in the US Ranked by their Final CCE
Table 15: Total Annual Cost-effective and Technical Energy Saving and CO2 Emission
Reduction Potential for US Industrial Pumping Systems
	
  CumulaZve	
  Annual	
  Electricity	
  Saving	
  and	
  CO2	
  Emission	
  ReducZon	
  for	
  
Pumping	
  System	
  Efficiency	
  Measures	
  in	
  the	
  US	
  Ranked	
  by	
  their	
  Final	
  CCE	
  
Motor	
  Systems	
  Efficiency	
  Supply	
  Curves,	
  UNIDO,	
  UN	
  Industrial	
  Development	
  Organiza:on,	
  December	
  2010	
  
Hidden treasure: Why energy efficiency deserves a second look
Germany introduced an energy tax (the “eco-tax”) in
1999 to encourage energy savings in the private, public
Switzerland’s Energy Strategy 2050 framework propo-
ses similar measures with compulsory efficiency targets
Note: * Estimation for industrial companies, where direct energy costs account for ~5% of total costs
Sources: US Department of Energy; Energy Tax Advisory Case Studies; Lawrence Berkeley National Laboratory; Bain analysis
Energy
consumption
Taxes
and
incentives
Operational
non-energy
costs
Input material
costs
Own
generation/load
balancing
EE invest/
spend
Improved
profit margin
Sales
leverage
2.5
2.0
1.5
1.0
0.5
0
~ 1%
~ 0.5%
~ 0.5%
?
~ 0.5% ~ 0.5%
2%
SALESCOST REDUCTION
Percentage of net income (averaged over three years)
10%-30%
savings in
energy costs
for typical
IG&S
companies
In most OECD
countries, tax
measures
typically add
30%-50%
on top of the
expected
energy gains
Non-energy
costs savings
typically
amount to an
additional
50% of
energy savings
Not
quantified
10-30%
reduction
in suppliers’
energy costs,
50% pass-
through
Energy
efficiency
measures
with average
investment
payback
of ~1.5
years, when
measured
against
direct energy
savings
Figure 2: Typical manufacturing companies* can improve their profit margins by 2%
within three years
Typical	
  manufacturing	
  companies*	
  can	
  improve	
  
	
  their	
  profit	
  margins	
  by	
  2%	
  within	
  36	
  months	
  
LighZng	
  
TUNNELING	
  THROUGH	
  TO	
  LOW-­‐E	
  
•  1/4th	
  Total	
  USA	
  Electricity	
  Consumed	
  For	
  LighZng	
  (and	
  
associated	
  Cooling	
  to	
  remove	
  heat	
  from	
  lights)	
  
•  Equivalent	
  to	
  Nearly	
  Half	
  of	
  U.S.	
  Coal	
  Plants	
  
•  High-­‐efficiency	
  LED	
  Luminaires	
  Can	
  Deliver	
  Beaer	
  
Quality	
  Light	
  While	
  EliminaZng	
  Need	
  for	
  Half	
  of	
  Coal	
  
Plants	
  at	
  a	
  LCOE	
  [Levelized	
  Cost	
  Of	
  Electricity]	
  Lower	
  
than	
  current	
  coal	
  plant	
  operaZng	
  costs	
  
IlluminaZon	
  Services	
  
1	
  LED	
  lamp	
  provides	
  life3me	
  light	
  output	
  of	
  more	
  than	
  1	
  million	
  candles	
  at	
  frac3on	
  of	
  cost	
  	
  
Candle	
  consumes	
  about	
  80	
  waas	
  (W)	
  of	
  chemical	
  energy	
  to	
  emit	
  12	
  
lumens	
  of	
  light	
  for	
  about	
  seven	
  and	
  a	
  half	
  hours.	
  
Carbon-­‐filament	
  bulb	
  used	
  ¼	
  less	
  energy	
  (60	
  W),	
  emiaed	
  15	
  Zmes	
  
as	
  much	
  light	
  (180	
  lumens),	
  and	
  lasted	
  133	
  Zmes	
  as	
  long	
  as	
  the	
  
candle.	
  
Tungsten	
  filament	
  replaced	
  the	
  carbon	
  one,	
  efficiency	
  soared	
  4-­‐
fold	
  .	
  Tungsten	
  bulb	
  now	
  matched	
  lifeZme	
  output	
  of	
  8,100	
  
candles,	
  yet	
  the	
  lamp	
  and	
  electricity	
  cost	
  only	
  as	
  much	
  as	
  14	
  
candles.	
  
CFL	
  same	
  lumen	
  output	
  as	
  incandescent,	
  but	
  consumes	
  75%	
  less	
  
electricity	
  &	
  lasts	
  10	
  Zmes	
  longer.	
  One	
  CFL	
  now	
  displaces	
  the	
  
need	
  for	
  500,000	
  candles.	
  
LED	
  (Light-­‐Emi{ng	
  Diode)	
  lamp	
  provides	
  same	
  lumen	
  output	
  as	
  
CFL,	
  but	
  consumes	
  1/3rd	
  	
  less	
  electricity	
  &	
  lasts	
  10	
  Zmes	
  longer.	
  
One	
  LED	
  now	
  displaces	
  need	
  for	
  more	
  than	
  1	
  million	
  candles.	
  
4
Assuming constant lumen demand per square
Residential Commercial Industrial Outdoor
General
Service
Incandescent
Sectors
Decorative Directional Linear
Low /
High Bay
Street /
Roadway
Parking
Building
Exterior
Submarkets
Technologies
Incandescent
Reflector
Halogen
CFL Reflector CFL Pin T5
Metal Halide
High Pressure
Sodium
Mercury Vapor LED Lamp LED Luminaire
Halogen Reflector CFL
T8 T12
Energy	
  Savings	
  Forecast	
  of	
  Solid-­‐State	
  Ligh:ng	
  in	
  General	
  Illumina:on	
  Applica:ons,	
  U.S.	
  Department	
  of	
  Energy	
  August	
  2014	
  
LighZng	
  Landscape	
  	
  
Energy	
  Savings	
  Forecast	
  of	
  Solid-­‐State	
  Ligh:ng	
  in	
  General	
  Illumina:on	
  Applica:ons,	
  U.S.	
  Department	
  of	
  Energy	
  August	
  2014	
  
BR=Bulged	
  Reflector	
  	
  	
  	
  MR=Mul:faceted	
  Reflector	
  	
  	
  PAR=Parabolic	
  Aluminized	
  Reflector	
  
© 2012 Strategies Unlimited
27
LED Lighting Market Segmentation
LED Lighting
Market
Luminaires
Replacement
Lamps
A19
/Standard
PARS
MR16
Candelabras
/Globes/
Decorative
L F T
June13, 2012
The lamp technologies have been categorized as displayed below in Figure 2-1. The categories are
based on those used in the 2001 LMC, the categories used in the various data sources, as well as input
from members of the technical review committee. Descriptions of each lamp technology can be found
in Appendix A.
Figure 2-1 Lamp Classification6
Incandescent
General Service - A-type
General Service - Decorative
Reflector
Miscellaneous
Halogen
General Service
Reflector
LowVoltage Display
Miscellaneous
Compact Fluorescent
General Service – Screw
General Service – Pin
Reflector
Miscellaneous
Fluorescent
T5
T8 less than 4 foot
T8 4 foot
T8 greater than 4 foot
T8 less than 4 foot
T8 4 foot
T8 greater than 4 foot
T8 U-shaped
T12 U-shaped
Miscellaneous
High Intensity Discharge
LED Lamp
Miscellaneous
Mercury Vapor
Metal Halide
High Pressure Sodium
LowPressure Sodium
Other
SMART LED DIVERSITY OF
LIGHTING APPLICATIONS
A-type - Incandescent lamps
PARS - parabolic aluminized reflector lamps
MR16 - multifaceted reflector halogen bulbs
LFT- Linear Fluorescent tubes
LED Replacement of:
Luminaire	
  
http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/hwcfl/HWCFL-efficacy.asp
Hi-Wattage CFL (55-200 watts)
CFL (27-40 watts)
Compact Fluorescent Lamp (CFL) (5-26 watts)
Mercury Vapor
Halogen Infrared Reflecting
Tungsten Halogen
Incandescent
Fluorescent (full-size & U-tube)
Electrodeless fluorescent
Metal halide
High-Pressure Sodium (HPS/HID)
White Sodium
Smart LEDs (tunable color spectrum)
Efficacy of Various Light Sources
1 1 1 1 1 1 1 1 1 2
Low-Pressure Sodium (yellow-orange color)
Lumens per Watt !
(lamp plus ballast)
=
Smart!
LED
1!
80 watt!
LED
Smart LED Advantages!
Higher Lumens & lower Watts from Fewer lamps
Smart LED other benefits - longer lifespan, no mercury, fully
dimmable, instant start/restart, less heat, tunable colour spectrum
100k hrs 20k hrs 2k hrs
10k to 20k hrs
Luminaire	
  
Energy	
  Savings	
  Forecast	
  of	
  Solid-­‐State	
  Ligh:ng	
  in	
  General	
  Illumina:on	
  Applica:ons,	
  U.S.	
  Department	
  of	
  Energy	
  August	
  2014	
  
U.S.	
  LighZng	
  Service	
  Forecast	
  2013	
  to	
  2030	
  
(Trillions	
  of	
  Lumen-­‐hours)	
  
Fluorescent	
  
High-­‐Intensity	
  	
  
Discharge	
  (HID)	
  
LED	
  Luminaires	
  
LED	
  lamps	
  
CFLs	
  
SEM	
  oF	
  ROD	
  (blue)	
  and	
  CONE	
  (green)	
  cells	
  of	
  the	
  re:na.	
  ROD	
  cells	
  are	
  sensi:ve	
  to	
  low	
  
light	
  levels	
  and	
  produce	
  low-­‐clarity	
  black	
  and	
  white	
  vision.	
  CONE	
  cells	
  are	
  sensi:ve	
  to	
  
higher	
  levels	
  of	
  light	
  and	
  produce	
  sharp,	
  high-­‐clarity	
  trichroma:c	
  color	
  
Cone	
  
Rod	
  
LIGHT	
  FACTORY	
  -­‐-­‐	
  ReZnal	
  Rods	
  and	
  Cones	
  
Cone	
   Rod	
  
top-­‐down	
  view	
  
3	
  types	
  of	
  light-­‐sensi:ve	
  CONE	
  cells	
  create	
  TRI-­‐CHROMATIC	
  (or	
  
TRI-­‐STIMULUS)	
  color	
  –	
  blue,	
  green	
  &	
  red	
  –	
  or	
  short-­‐wavelength,	
  
medium-­‐wavelength	
  and	
  long	
  wavelength	
  sensi:vity,	
  
respec:vely.	
  	
  ROD	
  cells	
  mediate	
  no	
  color	
  vision.	
  
Mesopic Vision
RODs	
   CONEs	
  
RODs	
  &	
  CONEs	
  
ReZnal	
  SensiZvity	
  
ReZnal	
  SensiZvity	
  
Our	
  visual	
  system	
  consists	
  
of	
  a	
  2-­‐receptor	
  system:	
  
	
  
CONE	
  cells	
  providing	
  vision	
  
in	
  bright	
  light	
  	
  
(PHOTOPIC	
  vision)	
  
	
  
ROD	
  cells	
  providing	
  vision	
  
in	
  very	
  low	
  levels	
  of	
  light	
  	
  
(SCOTOPIC	
  vision)	
  
	
  
RODS	
  &	
  CONES	
  func:on	
  
together	
  at	
  :mes	
  like	
  dusk	
  
(MESOPIC	
  vision).	
  	
  
	
  
3	
  types	
  of	
  CONE	
  cells,	
  red,	
  
green	
  &	
  blue	
  (TRI-­‐
STIMULUS),	
  provide	
  wide	
  
range	
  	
  color	
  percep:on	
  in	
  
bright	
  light.	
  
MESOPIC	
  region	
  is	
  
where	
  both	
  the	
  rods	
  
and	
  cones	
  are	
  	
  
func:oning.	
  	
  
	
  
The	
  lower	
  light	
  level	
  
allows	
  the	
  ROD	
  to	
  
replenish	
  the	
  light	
  
sensi:ve	
  rhodopsin	
  
and	
  begin	
  func:oning.	
  
	
  
The	
  TRI-­‐STIMULUS	
  
CONE	
  receptors	
  s:ll	
  
have	
  enough	
  light	
  to	
  
provide	
  some	
  
amounts	
  of	
  color	
  
vision.	
  
SCOTOPIC	
  region	
  	
  
occurs	
  in	
  very	
  dim	
  
light	
  like	
  viewing	
  
grass	
  in	
  a	
  moonless	
  
night.	
  	
  
	
  
Here	
  only	
  the	
  RODS	
  
are	
  func:oning.	
  	
  
	
  
The	
  chemicals	
  in	
  the	
  
CONES	
  no	
  longer	
  
have	
  enough	
  light	
  to	
  
respond,	
  thus	
  we	
  no	
  
longer	
  see	
  color.	
  
PHOTOPIC,	
  MESOPIC	
  
&	
  SCOTOPIC	
  together	
  
allow	
  us	
  to	
  see	
  over	
  a	
  
wide	
  range	
  of	
  ligh:ng	
  
levels	
  with	
  about	
  1	
  or	
  
2	
  billion	
  :mes	
  (109,	
  
nine	
  orders	
  of	
  
magnitude)	
  range	
  
from	
  the	
  dimmest	
  to	
  
the	
  brightest	
  image	
  
we	
  can	
  see.	
  
Luminous	
  Intensity	
  
(Candela	
  per	
  sq	
  meter)	
  1	
  Candela	
  =	
  	
  
 
Reliance	
  on	
  the	
  lumen	
  (lm)	
  as	
  the	
  sole	
  
measure	
  of	
  ligh3ng	
  benefits	
  (lm/m2	
  and	
  
lm/W)	
  can	
  unnecessarily	
  waste	
  energy,	
  
increase	
  costs,	
  and	
  reduce	
  safety,	
  security	
  
and	
  visibility.	
  	
  
	
  
U3liza3on	
  of	
  analogous	
  benefit	
  metrics	
  in	
  
ligh3ng	
  standards	
  that	
  characterize	
  
human	
  visual	
  responses	
  would	
  increase	
  
the	
  value	
  of	
  ligh3ng	
  for	
  many	
  applica3ons.	
  
BETTER	
  LIGHTING	
  METRICS	
  
OpportuniZes	
  with	
  LEDs	
  for	
  Increasing	
  the	
  Visual	
  Benefits	
  of	
  LighZng	
  Mark	
  S.	
  Rea,	
  
LighZng	
  Research	
  Center,	
  Rensselaer	
  Polytechnic	
  InsZtute,	
  Troy	
  NY	
  
Smart LEDs are Tunable !
Along Color Spectrum
We thus see the future of public lighting as a transition from analog to digital, from
fluorescent lightbulbs to solid-state lighting—all connected to an energy grid throug
variety of last-mile access technologies (see Figure 1).
Figure 1. Moving from “Traditional” to “Intelligent” Lighting Networks.
Additional savings can be achieved by incorporating connected controls to the Intern
Source: Philips and Cisco, 2012
Moving from “Traditional” to “Intelligent” Lighting Networks
source: The Time Is Right for Connected Public Lighting Within Smart Cities, CISCO & Philips, October 2012
Smart LED RFPs Should Include !
Key Technical Specifications
LED photometric testing standards: !
• IES LM-79-08 Light output, efficacy, color for LED products!
• IES LM-80-08 Light output over time, temperature for LED packages

IES TM-21-11 Extrapolating LM-80 test data to predict life!
• IES LM-82-12 Light output, efficacy, color over temperature for light engines!
• ANSI/UL 153:2002 (Secs. 124-128A) Methods for in-situ temperature
ANSI/UL 1574:2004 (Sec. 54) method (ISTM) testing for EnergyStar!
• IP6 Addressable
Approved method describing procedures and precautions in
performing reproducible measurements of LEDs:!
! – total flux,

– electrical power,

– efficacy (lm/watt), and
– chromaticity!
N A N C Y C L A N T O N , P E , F I E S , I A L D
L E E D F E L L O W
C L A N T O N & A S S O C I A T E S , I N C .
B O U L D E R , C O L O R A D O
W W W . C L A N T O N A S S O C I A T E S . C O M
Streetlighting Guidel
and Design Decisio
www.clantonassociates.com
Questions?
www.clantonassociates.com
BIM	
  EvoluZon	
  BIM Evolution
Hand Drawing
2D CAD
evolution
3D CAD
BIM
3D/4D/5D..XD
BIM;	
  Building	
  Informa:on	
  Modeling,	
  but	
  also	
  encompasses	
  Building	
  Intelligence	
  Management	
  
Neil	
  Calvert,	
  “Why	
  We	
  Care	
  About	
  BIM…,”	
  Direc:ons	
  Magazine,	
  Dec.	
  11,	
  2013,	
  h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436	
  	
  
•  20%	
  reducZon	
  in	
  build	
  
costs	
  (buy	
  4,	
  get	
  one	
  
free!)	
  
•  33%	
  reducZon	
  is	
  costs	
  
over	
  the	
  lifeZme	
  of	
  the	
  
building	
  
•  47%	
  to	
  65%	
  reducZon	
  in	
  
conflicts	
  and	
  re-­‐work	
  
during	
  construcZon	
  
•  44%	
  to	
  59%	
  increase	
  in	
  
the	
  overall	
  project	
  
quality	
  
•  35%	
  to	
  43%	
  reducZon	
  in	
  
risk,	
  beaer	
  predictability	
  
of	
  outcomes	
  
•  34%	
  to	
  40%	
  beaer	
  
performing	
  completed	
  
infrastructure	
  
•  32%	
  to	
  38%	
  
improvement	
  in	
  review	
  
and	
  approval	
  cycles	
  
BIM	
  SIMs	
  
Neil	
  Calvert,	
  “Why	
  We	
  Care	
  About	
  BIM…,”	
  Direc:ons	
  Magazine,	
  Dec.	
  11,	
  2013,	
  
h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436	
  	
  
Issa, Suermann and Olbina
(A) Solar radiation Analysis (B) Daylighting analysis
(C) Shading analysis (D) Ventilation and Airflow Analysis
Figure 1: Different kinds of analysis performed by Autodesk Ecotect (Source: <www.autodesk.com/revit>)
Increase	
  in	
  project	
  Value	
  	
  
with	
  increase	
  in	
  BIM	
  details	
  
Solar	
  RadiaZon	
  Analysis	
  
DaylighZng	
  Analysis	
  
Shading	
  Analysis	
   VenZlaZon	
  &	
  Airflow	
  Analysis	
  
h,ps://www.youtube.com/watch?v=g04-­‐G53mbmc	
  
3D,	
  4D,	
  5D,	
  6D,	
  7D	
  BIM	
  
Con:nuous,	
  smarter	
  performance	
  
Planned vs. Actual
Planned	
  vs.	
  Actual	
  
Building Analytics in action
At one client facility running Building Analytics, the preheating
coil and cooling coil were operating simultaneously and wasting
more than $900 and 80,000 kBTUs on a daily basis. The problem
was pinpointed at a leaking chilled water valve that once repaired
produced $60,000 in annual savings with ROI in the first month.
Mixed air
temperature
sensor
Outdoor
air temp
“Occupancy”
is at set point
Return fan
status
Preheating
discharge
temperature
Heating
valve
position
Cooling
valve
position
Supply air
temperature
set point
Supply fan
status
Simultaneous
heating and cooling
Building name:
Equipment name:
Analysis name:
Estimated daily cost savings:
Problem:
Excess or simultaneous heating
and cooling
either providing excess heating or cooling
or operating simultaneously.
Possible causes:
and is leaking.
> Temperature sensor error or sensor
installation error is causing improper
control of the valves.
Issa, Suermann and Olbina
2D 3D 4D 5D
Risk
Figure 3: Decrease in project risk with the increase in model details
VICO Control is a location based virtual construction system that allows the creation of compressed schedules which al-
low the user to determine progress by comparing actual productivity to the project schedule. Many BIM models are not able
to store information beyond what the building looks like and as such do not allow the user to store info on the construction
process. VICO Control allows integrated construction of the whole project and allows the user to link duration and cost in-
formation directly to the model. Accordingly the user can instantly see the impact of changes in scope and schedule on the
entire project. It links the building model to estimating and scheduling information going from 3D to 5D and allows the user
Decrease	
  in	
  project	
  risk	
  	
  
with	
  increase	
  in	
  BIM	
  details	
  
6D
Cradle-­‐to-­‐Cradle	
  Facility	
  Lifespan	
  Integra3on	
  	
  
7D
Neil	
  Calvert,	
  “Why	
  We	
  Care	
  About	
  BIM…,”	
  Direc:ons	
  Magazine,	
  Dec.	
  11,	
  2013,	
  
h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436	
  	
  
John	
  Boecker,	
  Integra:ve	
  Energy,	
  Water,	
  and	
  Waste	
  Community	
  Design…from	
  vision	
  and	
  concept	
  to	
  prac:cal	
  Implementa:on,	
  Army	
  Net-­‐Zero	
  Installa:ons	
  Conference:	
  
19	
  January	
  2012	
  
Integrative Design Mantra
Everyone
Engaging
Everything
!!!!group
Everything
Early
www.sevengroup.com
Benchmarking of Infosys buildings
Design%target% Units% Exis:ng%(US)% BeXer% Best%prac:ce% Infosys%
Delivered(energy(intensity( kBtu/sfYy( 90( 40Y60( <30( <25(
LPD:(Design( W/sf( 1.5( 0.8( 0.4Y0.6( 0.4Y0.6(
LPD:(Opera3onal( W/sf( 1.5( 0.6( 0.1Y0.3( <0.15(
Installed(computers/appliances..( W/sf( 4Y6( 1Y2( <0.5( <0.7(
Glazing(RYvalue((center(of(glass)( sfYF0Yh/Btu( 1Y2( 6Y10( ≥20( >5(
Window(RYvalue((including(frame)( sfYF0Yh/Btu( 1( 3( 7Y8( >5(
Glazing(spectral(selec3vity( Ke(=(Tvis/SF( 1( 1.2( >2.0( >2.0(
Roof(solar(absorptance(and(emilance( α,(ε# 0.8,(0.2( 0.4,(0.4( 0.08,(0.97( 0.18,(0.99(
Installed(mechanical(cooling( sf/ton( 250Y350( 500Y600( 1200Y1400+( 750(Y(1000(
Cooling(designYhour(efficiency( kW/ton( 1.9( 1.2Y1.5( <0.6( <0.59(
US India
11
Punit	
  Desai,	
  Environmental	
  Sustainability	
  at	
  Infosys	
  Driven	
  by	
  values,	
  Powered	
  by	
  innova:on,	
  InfoSys,	
  presenta:on	
  to	
  RMI,	
  09-­‐15-­‐2014	
  
Integrated and goal oriented design approach
HVAC(Goal( Ligh3ng(Goal( Water(Goal(
!  Max envelope heat gain 1.0 W/sqft
!  Total building @ 750-1000 sqft/TR
!  25 deg C, 55% RH
!  LPD of 0.45 W/sqft
!  90% of building to be day lit > 110 lux
!  No Glare throughout the year
!  Architects
!  Facade Specialists
!  IT Specialists
!  HVAC Engineers
!  Lighting Specialists
!  Architects
!  Facade Specialists
!  Lighting Specialists
!  Electrical Designers
!  PHE Engineers
!  Architects
!  Landscape Architects
!  Less than 25 LPD for
office building
!  Zero discharge
!  100% self sufficient
T
E
A
M
G
O
A
L(
13
Punit	
  Desai,	
  Environmental	
  Sustainability	
  at	
  Infosys	
  Driven	
  by	
  values,	
  Powered	
  by	
  innova:on,	
  InfoSys,	
  presenta:on	
  to	
  RMI,	
  Sept	
  15,	
  2014	
  
und partnerund partner
Arena	
  Amazônia	
  
Leed	
  Silver	
  World	
  Soccer	
  Stadium	
  2014	
  	
  
Manaus,	
  Brazil	
  
•  Brazil	
  ranks	
  among	
  the	
  world’s	
  top	
  5	
  countries	
  with	
  LEED-­‐cerZfied	
  projects.	
  	
  
•  30	
  million	
  •2	
  of	
  LEED-­‐cerZfied	
  space.	
  	
  	
  
•  Six	
  were	
  cerZfied	
  for	
  use	
  in	
  the	
  2014	
  World	
  Cup	
  Soccer	
  Championships.	
  	
  	
  
•  Arena	
  Amazônia	
  used	
  a	
  fracZon	
  of	
  the	
  steel	
  (5,700	
  tons)	
  compared	
  to	
  
convenZonal	
  sports	
  and	
  entertainment	
  venues.	
  
Arena	
  Amazônia	
  
State-­‐of-­‐the-­‐art	
  lightweight	
  roof	
  based	
  on	
  the	
  principle	
  of	
  a	
  horizontally	
  oriented	
  spoked	
  wheel.	
  The	
  circular	
  roof	
  structure	
  is	
  
comprised	
  of	
  high-­‐strength	
  cables	
  connecZng	
  inner	
  “tension	
  rings”	
  at	
  the	
  center	
  of	
  the	
  circle	
  to	
  an	
  outer	
  rim,	
  or	
  “compression	
  ring.”	
  
The	
  cable	
  “spokes,”	
  which	
  are	
  allocated	
  at	
  the	
  inner	
  edge	
  of	
  the	
  roof,	
  are	
  Zghtened	
  between	
  the	
  outer	
  compression	
  ring	
  and	
  the	
  
tension	
  rings.	
  This	
  creates	
  a	
  lightweight,	
  almost	
  floaZng	
  roof.	
  	
  A	
  secondary	
  steel	
  structure	
  serves	
  as	
  a	
  frame	
  to	
  support	
  the	
  
polytetrafluoroethylene	
  (PTFE)-­‐coated	
  high-­‐strength	
  resilient	
  fiberglass	
  membrane	
  cladding.	
  The	
  roof	
  elements	
  also	
  serve	
  as	
  guaers	
  to	
  
collect	
  the	
  large	
  amounts	
  of	
  water	
  expected	
  during	
  the	
  rainy	
  seasons.	
  The	
  design	
  of	
  the	
  guaers	
  facilitates	
  rainwater	
  collecZon	
  to	
  be	
  
used	
  in	
  the	
  arena’s	
  plumbing	
  systems.	
  
by Arup Associates [7], and the Saint-Etienne Métropole's
Zénith Rhône-Alpes (fig. 18), by Foster and Partner
architectural firme [8] represents a new contemporary
interpretation for the Islamic-Arab windcatcher. Both applied
the same design concept of capturing the prevailing wind and
disperse it around the building.
Fig. 17. Kensington cricket ground, ARP Associates [7]
Fig. 19. Burj al
2008 by Eckhar
The Showe
projects in the
into the futur
behind the he
and extensive
ventilate the r
drawn in from
level) and ind
shower tower
Kensington	
  Oval	
  cricket	
  Stadium,	
  Barbados	
  
Designed	
  with	
  tradi:onal	
  Wind	
  Catcher	
  
Natural	
  cooling	
  &	
  ven:la:on	
  design	
  by	
  capturing	
  the	
  prevailing	
  wind	
  	
  
and	
  dispersing	
  it	
  around	
  the	
  building	
  
Design	
  with	
  Nature:	
  Windcatcher	
  as	
  a	
  Paradigm	
  of	
  Natural	
  Ven:la:on	
  Device	
  in	
  Buildings,	
  Dr.	
  Abdel-­‐moniem	
  El-­‐Shorbagy,	
  Interna:onal	
  Journal	
  of	
  Civil	
  
&	
  Environmental	
  Engineering	
  IJCEE-­‐IJENS	
  Vol:10	
  No:03,	
  2010	
  
Commercial building energy efficiency supply curve
by end use, 2050
The	
  Federal	
  Energy	
  
Regulatory	
  Commission	
  
has	
  es:mated	
  that	
  the	
  
U.S.	
  could	
  avoid	
  building	
  
188	
  GWs	
  of	
  power	
  
plants,	
  or	
  approximately	
  
$400	
  billion	
  in	
  capital	
  
investment,	
  through	
  
dynamic	
  peak	
  power	
  
controls.	
  
Amit	
  Narayan,	
  U:lity	
  and	
  Consumer	
  Data:	
  A	
  New	
  Source	
  of	
  Power	
  in	
  the	
  Energy	
  Internet	
  of	
  Things,	
  GreenTechMedia,	
  Oct	
  9,	
  2014,	
  
h,p://www.greentechmedia.com/ar:cles/read/U:lity-­‐and-­‐Consumer-­‐Data-­‐is-­‐a-­‐New-­‐Source-­‐of-­‐Power-­‐in-­‐the-­‐Energy-­‐Internet-­‐o?
utm_source=Daily&utm_medium=Headline&utm_campaign=GTMDaily	
  	
  
Demand	
  Response	
  (DR)	
  
Figure 2: U.S Demand Response Potential by Program Type (2019)
0
50
100
150
200
PeakReduction(GW)
0%
5%
10%
15%
20%
25%
%ofPeakDemand
Other DR
Interruptible Tariffs
DLC
Pricing w/o Tech
Pricing w/Tech
38 GW,
4% of peak
82 GW,
9% of peak
138 GW,
14% of peak
188 GW,
20% of peak
Business-as- Expanded Achievable Full
Usual BAU Participation Participation
 
effect of dynamic pricing over time is dependent on  AMI market penetration, which increases throughout  
the  forecast  horizon.    The  more  aggressive  AMI  deployment  assumption  in  the  AP  and  FP  scenarios  
explains why demand response increases more significantly in the later years of those scenarios.  
It is interesting to compare the relative impacts of the four scenarios.  Moving from the BAU  scenario to  
the EBAU scenario, the peak demand reduction in 2019 is more than twice as large.  This difference is  
attributable to the incremental potential for aggressively pursuing non­pricing programs in states that have  
U.S	
  Demand	
  Response	
  (DR)	
  PotenZal	
  by	
  Program	
  Type	
  
	
  (10	
  year	
  Zmeframe)	
  	
  
2500	
  Peaking	
  
Plants	
  (75MW	
  
each)	
  
=	
  
The	
  New	
  Smart	
  Power	
  Plants	
  
Example	
  of	
  a	
  networking	
  kits	
  capable	
  of	
  running	
  the	
  industrial	
  Internet-­‐of-­‐Things	
  
(IoT),	
  or	
  Internet-­‐of-­‐Everything	
  (IoE),	
  and	
  IT-­‐based	
  Energy	
  Services	
  
INTERNET-­‐OF-­‐EVERYTHING	
  
IP	
  Cloud	
  	
  Controlled	
  
Wireless	
  Smart	
  Sensor	
  Networks	
  
Key	
  advantage	
  of	
  IPv6	
  over	
  IPv4	
  is	
  large	
  address	
  space.	
  IPv6	
  address	
  length	
  is	
  
128	
  bits	
  vs.	
  32	
  bits	
  in	
  IPv4.	
  The	
  address	
  space	
  therefore	
  has	
  3.4×1038	
  
addresses,	
  or	
  314	
  trillion	
  trillion	
  trillion	
  addresses	
  (sex:llion).	
  This	
  would	
  be	
  
about	
  100	
  addresses	
  for	
  every	
  atom	
  on	
  the	
  surface	
  of	
  the	
  earth.	
  
IPv6	
  
Internet	
  Protocol	
  version	
  6	
  	
  
Dr.	
  Janusz	
  Bryzek,	
  Chair,	
  TSensors	
  Summit,	
  VP,	
  MEMS	
  and	
  Sensing	
  Solu:ons,	
  Fairchild	
  Semiconductor,	
  Roadmap	
  for	
  the	
  Trillion	
  Sensor	
  Universe,	
  Nov.	
  26,	
  2013	
  
e Suite
gy
rs,
nd
e
r
ess
Cisco EnergyWise Discovery Service and
Optimization Service
Cisco EnergyWise Management Software
for Distributed Offices and Data Center
Core Switches
Storage
UPSs
CPUs
PDUsMainframes
Blade
Servers
Virtualized
Servers
Servers
Data Center
Gateways
Lighting
Access
Control
Systems
Video
Cameras
CRAC
HVAC
Facilities
(BMS partners)
VoIP Phones
Laptops
Macs
Thin Clients
Access Points
Servers
Desktops
Printers
Campus
Routers Switches Network Based
No Agents!
Policy Based
and Automated
Announcing the new and improved Cisco EnergyWise Suite
See, Measure and Manage
CISCO	
  EnergyWise	
  Management	
  OpZmizaZon	
  So•ware	
  
h,p://www.cisco.com/c/en/us/products/switches/energywise-­‐op:miza:on-­‐service/index.html	
  	
  
9
12 3 6 9 12 3 6 9
Hourly Prices for 7/1/0915¢
10¢
5¢
¢perkWh¢perkWh
am pm
Prevents PHEVs
from charging
during peak hours
Adjusts space temp.
and chilled water
temp. set points
Dispatches thermal
storage or gen-sets in
response to loss
in solar PV output
Throttles servers
for non-critical
applications
Ensures fans do not
overcompensate for
new CHW set points
Provides real-time
visibility to building
managers
Automatically
dims lighting
Marginal cost of power
increases, T&D systems
become congested
Curtailment signal or real-time
price provided by ISO/utility
1
2
3
5
7
8
6
9
10
4
High summer temps
drive up cooling loads
Example of an Automated Demand Response Event
9
Control – A  “Spectrum”  of  Demand  Response  Options
Direct Load
Control
(AC Cycling)
Logic, decision making and control can sit with the load-serving entity, the customer, or
anywhere between (e.g. a curtailment service provider):
Pure Real -Time PriceInterruptible Rate
Wholesale Capacity
Programs
Traditional  “Aggregator”  
Model
Critical Peak Pricing
Wholesale Energy
Programs
Voluntary Demand
Bidding
Central Control Autonomous Control
7
Historical DR has been centrally controlled, but there is a push to the right of the
spectrum. Buildings benefit.
Case Study – Automated Demand Response:
Georgia Institute of Technology
• Georgia Institute of Technology is on a
dynamic hourly tariff from Georgia Power.
• Each hour, the building management system
reads prices for the next 48 hours from the
utility’s  web-service feed.
• The facilities director sets the price threshold
for automated load shedding mode.
Observing a 1MW peak load reduction, ~7% of load for participating buildings
Savings during initial summer 2006 pilot
10
SMART	
  SYSTEM	
  INTELLIGENCE	
  ATTRIBUTES	
  
REMOTE	
  SUPPLY	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  END-­‐USE/ONSITE	
  	
  
Centralized	
   Distributed	
  
Buildings	
  &	
  	
  
Vehicle	
  as	
  
Nanogrids	
  
Jim	
  Lazar,	
  The	
  Regulatory	
  Assistance	
  Project,	
  Status	
  of	
  Distributed	
  Genera:on	
  Installa:on	
  and	
  Rate	
  Making	
  In	
  the	
  US,	
  American	
  Public	
  Power	
  Associa:on	
  Workshop,	
  Jan.	
  13,	
  2014	
  
Typical DG Advocate View
Marginal Cost Perspective:
• Value of distributed resource is greater than the than retail
rate;
• Net-metering results in subsidy to the grid from innovators.
12
Distributed	
  GeneraZon	
  (DG)	
  MulZple	
  System	
  Values	
  
Wind	
  Power	
  	
  
&	
  	
  
Solar	
  PV	
  
Source: International Energy Agency, Energy Technology Perspectives, 2008, p. 366. The figure is based on National
Petroleum Council, 2007 after Craig, Cunningham and Saigo.
Oil
Gas
Uranium
Coal
ANNUAL Wind
Hydro
Photosynthesis
ANNUAL Solar Energy
Annual global energy consumption by humans
SOLAR PHOTONS
ACCRUED IN A MONTH
EXCEED    THE  EARTH’S  
FOSSIL FUEL RESERVES
1	
  
:me	
  
use	
  
In the USA, cities and residences cover 56 million hectares.
Every kWh of current U.S. energy requirements can be met simply by
applying photovoltaics (PV) to 7% of existing urban area—
on roofs, parking lots, along highway walls, on sides of buildings, and
in dual-uses. Requires 93% less water than fossil fuels.
Experts  say  we  wouldn’t  have  to  appropriate  a  single  acre  of  new  
land to make PV our primary energy source!
15%	
  
Energy Efficiency & Renewable Energy eere.energy.gov
1
Program Name or Ancillary Text eere.energy.gov
WIND AND WATER POWER PROGRAM
1
2013 Wind Technologies
Market Report
Ryan Wiser and Mark Bolinger
Lawrence Berkeley
National Laboratory
Report Summary
August 2014
10
U.S. Lagging Other Countries in Wind As a
Percentage of Electricity Consumption
Note: Figure only includes the countries with the most installed wind
power capacity at the end of 2012
Wind	
  as	
  Percentage	
  of	
  a	
  Country’s	
  Electricity	
  ConsumpZon	
  	
  
WIND AND WATER POWER PROGRAM
Wind PPA Prices Have Reached All-Time
Lows
50
$0
$20
$40
$60
$80
$100
$120
Jan-96
Jan-97
Jan-98
Jan-99
Jan-00
Jan-01
Jan-02
Jan-03
Jan-04
Jan-05
Jan-06
Jan-07
Jan-08
Jan-09
Jan-10
Jan-11
Jan-12
Jan-13
Jan-14
PPA Execution Date
Interior (18,178 MW, 192 contracts)
West (7,124 MW, 72 contracts)
Great Lakes (3,044 MW, 42 contracts)
Northeast (1,018 MW, 25 contracts)
Southeast (268 MW, 6 contracts)
LevelizedPPAPrice(2013$/MWh)
75 MW
150 MW 50 MW
that the turbine scaling and other improvements to turbine efficiency described in Chapter 4 have
more than overcome these headwinds to help drive PPA prices lower.
Source: Berkeley Lab
Figure 46. Generation-weighted average levelized wind PPA prices by PPA execution date and region
Figure 46 also shows trends in the generation-weighted average levelized PPA price over time
among four of the five regions broken out in Figure 30 (the Southeast region is omitted from
Figure 46 owing to its small sample size). Figures 45 and 46 both demonstrate that, based on our
data sample, PPA prices are generally low in the U.S. Interior, high in the West, and in the
middle in the Great Lakes and Northeast regions. The large Interior region, where much of U.S.
wind project development occurs, saw average levelized PPA prices of just $22/MWh in 2013.
USA	
  Wind	
  Power	
  LCOE	
  PPA	
  in	
  2013	
  2.5¢/kWH	
  
GLOBAL	
  Wind	
  Power	
  LCOE	
  in	
  2013	
  6.5¢/kWh	
  
Ryan	
  Wiser	
  &	
  Mark	
  Bollinger,	
  2013	
  Wind	
  Technologies	
  Market	
  Report,	
  Lawrence	
  
Berkeley,	
  August	
  2014	
  
6¢/kWh	
  
2¢/kWh	
  
4¢/kWh	
  
WIND AND WATER POWER PROGRAM
Recent Wind Prices Are Hard to Beat:
Competitive with Expected Future Cost of
Burning Fuel in Natural Gas Plants
54
0
10
20
30
40
50
60
70
80
90
100
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
Range of AEO14 gas price projections
AEO14 reference case gas price projection
Wind 2011 PPA execution (3,980 MW, 38 contracts)
Wind 2012 PPA execution (970 MW, 13 contracts)
Wind 2013 PPA execution (2,761 MW, 18 contracts)
2013$/MWh
Price comparison shown here is far from perfect – see full report for caveats
WIND AND WATER POWER PROGRAM
Turbine Nameplate Capacity, Hub Height,
and Rotor Diameter Have All Increased
Significantly Over the Long Term
29
energy.gov/sunshot
energy.gov/sunshot
Photovoltaic System
Pricing Trends
Historical, Recent, and Near-Term
Projections
2014 Edition
David Feldman1, Galen Barbose2, Robert
Margolis1, Ted James1, Samantha Weaver2, Naïm
Darghouth2, Ran Fu1, Carolyn Davidson1, Sam
Booth1, and Ryan Wiser2
September 22, 2014
1National Renewable Energy Laboratory
2Lawrence Berkeley National Laboratory
NREL/PR-6A20-62558
Tracking the Sun VII
An Historical Summary of the Installed Price of
Photovoltaics in the United States from 1998 to 2013
Galen Barbose, Samantha Weaver and Naïm Darghouth
Lawrence Berkeley National Laboratory
— Report Summary —
September 2014
This analysis was funded by the Solar Energy Technologies Office, Office of Energy
Efficiency and Renewable Energy of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
$0
$2
$4
$6
$8
$10
$12
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Installation Year
10-100 kW
>100 kW
Residential & Commercial PV
(Median Values)
InstalledPrice(2013$/WDC)
Installed prices continued their precipitous
decline in 2013
12
Median installed prices fell by $0.7/W (12-15%) from 2012-2013,
across the three size ranges shown, and have fallen by an average of
$0.5/W (6-8%) annually over the full historical period
Note: Median installed prices are shown only if 15 or more observations are available for the individual size range
Median prices for systems installed in 2013 (n=50,614):
$4.7/W $4.3/W (10-100 kW), $3.9/W (>100kW)
PARAMETERS SUMMARIES
In reality, conditions vary substantially among countries and, as
discussed above, the LCOE for a technology is driven every bit
as much by the cost of capital and the availability of equipment
locally as it is by natural resource availability. This is particularly
cost capital can at times be extremely challenging to source and tariffs
or other barriers can make the importation of goods challenging.
-
Industrial power prices vs onshore wind and solar photovoltaic LCOE, 2013 ($/MWh)
Source: Bloomberg New Energy Finance
Botswana
Haiti
Guatemala
Nigeria
Myanmar
SierraLeone
ElSalvador
Coted’Ivoire
Bolivia
Argentina
Jamaica
CostaRica
India
Kenya
Venezuela
Senegal
Pakistan
Bangladesh
Paraguay
Ethiopia
Honduras
Belize
Nepal
Trinidad&Tobago
Zambia
Nicaragua
China
Peru
SouthAfrica
Uganda
Mexico
Indonesia
Suriname
Rwanda
Chile
Zimbabwe
Malawi
Tajikistan
Barbados
Ghana
Colombia
Panama
Bahamas
Dom.Republic
Brazil
Tanzania
Guyana
Uruguay
SriLanka
Ecuador
Mozambique
450
400
350
300
250
200
Solar PV LCOE
Onshore wind LCOE
150
100
50
0
tial customers in the 55 nations and found they averaged 14.7
cents per kilowatt-hour in 20133
. However, prices were above
15 cents per kilowatt-hour in 20 Climatescope countries and 22
cents in 16 countries. Bloomberg New Energy Finance estimates
the levelized cost of residential electricity for solar power at ap-
proximately 15 cents per kWh with the LCOE potentially much
lower in the sunniest parts of the world. That is, when power
sense for a homeowner to install a solar system rather than
La:n	
  American	
  &	
  Caribbean	
  na:ons	
  
Industrial	
  power	
  prices	
  vs	
  onshore	
  wind	
  &	
  solar	
  PV	
  	
  
LCOE	
  2013	
  ($MWh)	
  
PARAMETERS SUMMARY
Progress on policy
Climatescope surveyed 55 developing nations to get a better un-
derstanding of what policy frameworks have been established to
date and which may be most effective. Data collection included
the creation of policy records now accessible at
www.global-climatescope.org.
In all, the survey found at least 359 clean energy-supportive poli-
cies on the books in these countries today dating back to 2006.
Residential power prices vs residential solar photovoltaic LCOE, 2013 ($/MWh)
Source: Bloomberg New Energy Finance
Barbados
Haiti
Peru
Botswana
Guyana
Guatemala
Nigeria
China
Argentina
Rwanda
Colombia
Mexico
Mozambique
SriLanka
Kenya
SierraLeone
Zimbabwe
India
Suriname
ElSalvador
Chile
SouthAfrica
Indonesia
Myanmar
Nicaragua
Ghana
Ecuador
Zambia
Venezuela
Senegal
Pakistan
Tanzania
Trinidad&Tobago
Tajikistan
Dom.Republic
CostaRica
Malawi
Cameroon
Ethiopia
Jamaica
Panama
Honduras
Bolivia
Bahamas
Belize
Coted’Ivoire
Nepal
Uruguay
Uganda
Brazil
Paraguay
Bangladesh
450
400
350
300
250
200
Residential solar PV LCOE
150
100
50
0
Policies in force by type and year of establishment
64
71
75
Carbon Market
Mechanism
Debt Finance
Mechanism
Number of policies
La:n	
  American	
  &	
  Caribbean	
  na:ons	
  
ResidenZal	
  power	
  prices	
  vs	
  residenZal	
  solar	
  PV	
  	
  
LCOE,	
  2013	
  ($MWh)	
  
FIRST	
  SOLAR	
  UZlity-­‐Scale	
  Solar	
  PV	
  	
  
2013	
  LCOE	
  $0.07-­‐0.15/kWh*	
  
*2013	
  data,	
  costs	
  depending	
  on	
  irradiance	
  levels,	
  interest	
  rates,	
  and	
  other	
  factors,	
  e.g.	
  
development	
  costs,	
  h,p://www.firstsolar.com/en/solu:ons/u:lity-­‐scale-­‐genera:on	
  	
  
Cents/kWh	
  
*Permi^ng,	
  inspec:on,	
  and	
  interconnec:on	
  costs	
  
**	
  Includes	
  installer	
  and	
  integrator	
  margin,	
  legal	
  fees,	
  
professional	
  fees,	
  financing	
  transac:onal	
  costs,	
  O+M	
  costs,	
  
produc:on	
  guarantees,	
  reserves,	
  and	
  warranty	
  costs.	
  
Jesse	
  Morris	
  et	
  al,	
  REDUCING	
  SOLAR	
  PV	
  SOFT	
  COST,	
  
A	
  FOCUS	
  ON	
  INSTALLATION	
  LABOR,	
  Rocky	
  Mountain	
  
Ins:itute,	
  2013,	
  www.rmi.org/	
  	
  
Solar	
  PV	
  roo•op	
  
system	
  installed	
  
costs	
  vary	
  several-­‐
fold	
  from	
  country	
  
to	
  country,	
  state	
  
to	
  state,	
  
depending	
  on	
  
pracZces	
  and	
  
policies.	
  
Bloomberg	
  New	
  Energy	
  Finance,	
  2030	
  Market	
  Outlook:	
  Solar,	
  June	
  27,	
  2014	
  
Global	
  ResidenZal-­‐Scale	
  Solar	
  PV	
  	
  
System	
  Economics	
  	
  
some parts of the Americas have already begun to see uptake of unsubsidised PV systems such
as utility-scale PV in Chile. As solar technology gets cheaper we expect households and
businesses to increasing opt for solar systems. There will however be opposition from utilities and
changing rate structures for consumers. The first signs of this trend can already be observed: in
Spain, for example, the government has threatened to impose a tax on electricity generated for
auto-consumption, although the final bill is still pending. Ultimately however we don't believe
developments such as this will have a material effect on the size of the market in the long term,
particularly as the small-scale power storage solutions become increasingly viable.
Figure 9: Global residential-scale PV system economics
2014 2025
500 ]
500
450 450
. any
50GW
400
. any
400 Hawaii
.Hawaii Denmark
8 8..1350
tit 350
Slovakia
Australia
INeth.
stralia
Neth. •
"' Slovakia 100GW
"' - 100GW
Q) Q)
0
Switz.Po 9 0
§. 250 '§. 250
ChileQ)
200 • Chile
•a. 8. 200 -
"(ij
150
'(ij
150
100 100
50 50
Arabia
0 0
750 1,250 1,750 2,250 750 1,250 1,750 2,250
Irradiation (kWhlkW/year) Irradiation (kWh/kW/year)
Source: Bloomberg New Energy Finance. Note: NJ, New Jersey; CA, California.
-
c:.
-
!:..
;
<-
"'
-;:
2014	
   2025	
  
RISKS	
  
IN	
  RANKING	
  
LEAST-­‐COST-­‐RISK	
  (LCR)	
  
DELIVERED	
  ENERGY	
  SERVICES	
  (DES)	
  
Very&few&Years&Away&from&Reaching&&
2°C&Carbon&Budget&
113!
UNCERTAINTY&
115!Source:!UK!Met!Office,!Hadley!Centre,!
h-p://www.metoffice.gov.uk/climateZguide!!
Lost!opportuniAes!from!
inacAon!in!reducing!CO2!
emissions!are!esAmated!to!
incur!hundreds!of!trillions!of!
dollars!in!future!economic!
value!foreclosed;!
in!addiAon!to!hundreds!of!
trillions!of!dollars!in!economic!
losses!caused!by!increased!
destrucAon!from!extreme!
weather!catastrophes.!
CO2e!budget!for!2°C!Limit!
111!
Listed Fossil Fuel
Reserves & Resources
Global Non-Listed
Fossil Fuel Reserves
Remaining Available
2°C Carbon Budget
Through 2100
2500
2000
1500
1000
500
0
Unburnable
Carbon
Reserves
GtCO2Estimate
A significant portion of the world’s fossil fuel reserves
will need to remain in the ground in 2050
if we are to avoid catastrophic levels of climate change.
Fossil fuel companies, however, continue to develop reserves
that may never be used.
1541
987
2098
Fossil Fuel Assets at Risk
Unburnable Carbon Reserves
If!humanity!is!to!prevent!global!average!
temperature!rise!from!exceeding!2°C!,!then!
80%!of!fossil!fuel!assets!(now!owned!by!
corporaAons!or!governments)!must!not!be!
burned.!
!
This!means!leaving!the!majority!in!the!
ground!as!stranded!assets,!or!those!that!are!
consumed!must!be!done!with!zero!emission!
releases,!such!as!carbon!capture!and!
storage!(CCS).!
!
With!CCS,!both!coal!and!most!gasZfired!
power!plants!are!technically!and!
economically!unnecessary,!given!robust!
compeAAon!that!can!deliver!electricity!
services!at!the!leastZcostZandZrisk!LCOE!
(levelized!cost!of!electricity).!
Chart!source:!CERES!&!CarbonTracker,!Investors!ask!fossil!fuel!companies!to!assess!how!business!plans!fare!in!lowZcarbon!future!ZZ!coaliAon!of!70!investors!worth!
$3!trillion!call!on!world’s!largest!oil!&!gas,!coal!and!electric!power!companies!to!assess!risks!under!climate!acAon!and!‘business!as!usual’!scenarios,!Nov!2013!!
CO2	
  budget	
  for	
  2°C	
  Limit	
  
$28	
  trillion	
  in	
  Stranded	
  Carbon	
  Assets	
  
2.2	
  
5.5	
  
27.3	
  
0.0	
  
5.0	
  
10.0	
  
15.0	
  
20.0	
  
25.0	
  
30.0	
  
$40/tCO2	
   $100	
  /tCO2	
  $500/tCO2	
  
cents	
  per	
  kWh	
  
¢	
  
¢	
  
¢	
  
AddiZonal	
  Cost	
  per	
  kWh	
  of	
  natural	
  gas-­‐generated	
  electricity	
  
(at	
  $40,	
  $100	
  and	
  $500	
  per	
  metric	
  ton	
  of	
  CO2	
  fee)	
  
Steam	
  Turbine	
  
1.4	
  
3.5	
  
17.7	
  
0.0	
  
2.0	
  
4.0	
  
6.0	
  
8.0	
  
10.0	
  
12.0	
  
14.0	
  
16.0	
  
18.0	
  
20.0	
  
$40/tCO2	
   $100	
  /tCO2	
   $500/tCO2	
  
cents	
  per	
  kWh	
  
Advanced	
  Gas	
  Turbine	
  
¢	
  
¢	
  
¢	
  
Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org
nuclear coal CC gas wind farm CC ind
cogen
bldg scale
cogen
recycled
ind cogen
end-use
efficiency
CCS
Cost of new delivered electricity (US¢/kWh)
US current
average
1¢/kWh
2¢ 47
93 kg
Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org
Coal-fired CO2
emissions displaced
per dollar spent on
electrical services
Carbon	
  displacement	
  at	
  
various	
  efficiency	
  costs/kWh	
  
Keystone	
  high	
  nuclear	
  cost	
  scenario	
  
3¢	
  	
  
4¢	
  	
  
kg	
  CO2,	
  displaced	
  per	
  2007	
  dollar	
  
ies was expected to decline, at the same time Mexico could see the highest growth rate jump,
t from 1.8 percent in the current decade.
Figure 31:  Electricity  in  Latin  America’s  Generation  Mix
: Based on Ariel Yepes et al., Meeting the Balance of Electricity Supply and Demand in Latin America an
ean. World Bank 2010
coal fuel oil
natural
gas
hydro nuclear
oil
products
others
2008 4.6% 8.4% 22.0% 58.6% 2.8% 2.3% 1.3%
2030 7.9% 3.3% 29.4% 50.0% 4.2% 1.2% 4.1%
-10%
0%
10%
20%
30%
40%
50%
60%
2008
2030
Based	
  on	
  Ariel	
  Yepes	
  et	
  al.,	
  Mee:ng	
  the	
  Balance	
  of	
  Electricity	
  Supply	
  and	
  Demand	
  in	
  La:n	
  America	
  and	
  the	
  Caribbean.	
  World	
  Bank	
  2010,	
  cited	
  in	
  “La:n	
  
America’s	
  Energy	
  Future”	
  by	
  Roger	
  Tissot	
  for	
  the	
  Inter-­‐American	
  Development	
  Bank	
  and	
  the	
  Inter-­‐American	
  Dialogue	
  Energy	
  Working	
  Paper	
  Series,	
  No.	
  
IDB-­‐DP-­‐252,	
  December	
  2012.	
  	
  
Electricity	
  in	
  LaZn	
  America’s	
  GeneraZon	
  Mix	
  –	
  2008	
  and	
  2030	
  
America and the Caribbean are rich in natural resources, not only of a renewable
n. Since natural resources have historically been primarily harnessed through the
blishment of hydro plants, this region can nowadays boost one of the cleanest
ricity mixes in the world in terms of GHG emissions.
e 1 below shows total installed capacity and hydroelectric share in the region.
Figure 1. Installed capacity and hydroelectric share in Latin America (source: IDB, 2013)
e the availability and quality of data on the real potential of each of these resources
s considerably, the potential for exploiting new renewable energy sources, such as
Installed capacity GW (Hydroelectric share %)
Installed	
  capacity	
  &	
  hydroelectric	
  share	
  in	
  LaZn	
  America	
  	
  
(Le€	
  Map	
  2010,	
  Right	
  Map	
  Amazon	
  Dams	
  Opera:ng	
  &	
  Planned)	
  
Le€	
  Map:	
  Carlos	
  Batlle	
  and	
  Juan	
  Roberto	
  Paredes,	
  Analysis	
  of	
  the	
  impact	
  of	
  increased	
  Non-­‐	
  Conven:onal	
  Renewable	
  Energy	
  genera:on	
  on	
  La:n	
  American	
  
Electric	
  Power	
  Systems,	
  Tools	
  and	
  Methodologies	
  for	
  assessing	
  future	
  Opera:on,	
  Planning	
  and	
  Expansion,	
  Discussion	
  paper	
  No.	
  IDB-­‐DP-­‐341,	
  January	
  2014	
  
Right	
  Map:	
  Dams	
  in	
  Amazonia,	
  h,p://dams-­‐info.org/en	
  	
  
Updated data, Synapse
Leakage rates uncertainty
Wind, Solar, Efficiency
Wind
power
Solar
power
End-use
Efficiency
Assembled	
  and	
  adapted	
  from	
  mul:ple	
  sources	
  
GHG	
  Emissions	
  Comparison	
  from	
  different	
  Sources	
  
Net Emissions from Brazilian Reservoirs compared with
Combined Cycle Natural Gas
Source: Patrick McCully, Tropical Hydropower is a Significant Source of Greenhouse Gas Emissions: Interim response to the International
Hydropower Association, International Rivers Network, June 2004
DAM
Reservoir
Area
(km2)
Generating
Capacity
(MW)
km2/
MW
Emissions:
Hydro
(MtCO2-
eq/yr)
Emissions:
CC Gas
(MtCO2-
eq/yr)
Emissions
Ratio
Hydro/Gas
Tucuruí 24330 4240 6 8.60 2.22 4
Curuá-
Una
72 40 2 0.15 0.02 7.5
Balbina 3150 250 13 6.91 0.12 58
concentrations of methane at different reservoir depths, the depth of turbine and spillway intakes, and
the type of spillway design.
■ Surface emissions vary widely among different parts of the same reservoir (largely due to changes in
depth, exposure to wind and sun, and growth of aquatic plants), and from year to year, season to season,
and between night and day. This greatly complicates efforts to develop reliable whole-reservoir estimates
from a limited set of samples measured at specific points in the reservoir during specific time periods.
Confidence in the measurements themselves is also hampered by the different results obtained through
different measuring equipment and techniques, and disagreements over which measuring methods are
most appropriate.22
Factors affecting degassing emission volumes include variations in the volume of
water discharged, and the proportion of turbined water versus that which is spilled.
Length of
Annual Ice Cover
CO2
Diffusion
CH4
Bubbles
Decomposition
of Flooded
Biomass & Soils
Wind Forcing
Growth & Decay
of Aquatic Plants
Degassing
Water Level
Fluctuation
Plankton
Growth
& Decay
Carbon Inputs
from Watershed
Drawdown
Vegetation
FIGURE 3. SOME KEY FACTORS INFLUENCING RESERVOIR GHG EMISSIONS
Hydropower	
  Dam	
  GHG	
  Emissions	
  Can	
  be	
  Significant	
  
Some	
  Key	
  Factors	
  Influencing	
  Reservoir	
  GHG	
  Emissions	
  	
  
4
TABLE 1. GREENHOUSE GAS EMISSIONS FROM HYDROPOWER PLANTS
Hydro plant Power Installed Flooded CO2 CH4 CH4 Total Electricity Reservoir Emissions
density capacity area reservoir reservoir degassing emissions generation age per kWh
(W/m2
) (MW) (km2
) surface surface (Mt gas/yr) (Mt CO2eq/yr) (GWh/yr) (years)§ (gCO2eq/kWh)
(Mt gas/yr) (Mt gas/yr)
Boreal Sainte-Marguerite 10.38 882 85 0.02 0.000 0.02 2,770 N/A 8
gross Churchill/Nelson 2.80 3,925 1,400 0.22 0.003 0.28 14,000 N/A 20
(Canada) Manic Complex 1.91 5,044 2,645 0.64 0.008 0.80 20,000 N/A 40
La Grande Complex 1.20 15,552 13,000 3.28 0.039 4.10 82,000 N/A 50
Churchill Falls 0.81 5,428 6,705 1.67 0.020 2.09 35,000 N/A 60
Average 3.42 6,166 4,767 1.17 0.014 1.46 30,754 N/A 36
Tropical Tucuruí 1.74 4,240 2,430 9.34#
0.094 0.970 31.56 18,030 6 (1990) 1,751
“reservoir Curuá-Una .56 40 72 0.04#
0.001 0.022 0.51 190 13 (1990) 2,704
net”* (Brazil) Samuel 0.40 216 540 0.22#
0.010 0.030 1.06 530 12 (2000) 2,008
Average 0.90 1,499 1,014 3.20#
0.035 0.341 11.05 6,250 2,154
Balbina 0.08 250 3,150 23.60 0.036 0.034 28.44 970 3 (1990) 29,322
Tropical Petit Saut 0.32 115 365 0.24 0.012 0.023 1.21 470 20 year avg 2,577
gross (French Guyana)
including
degassing
Tropical Xingó 50.00 3,000 60 0.13 0.001 0.15 13,140 4-5 12
gross Segredo 15.37 1,260 82 0.08 0.0003 0.09 5,519 6-7 16
excluding Itaipú 8.13 12,600 1,549 0.10 0.012 0.34 55,188 16-17 6
degassing Miranda 7.65 390 51 0.08 0.003 0.14 1,708 2-3 83
(Brazil) Tucuruí 1.74 4,240 2,430 7.52 0.097 9.55 18,571 14-15 514
Serra da Mesa 0.71 1,275 1,784 2.59 0.033 3.28 5,585 3-4 588
Barra Bonita 0.45 141 312 0.45 0.002 0.50 618 36-37 816
Samuel 0.39 216 559 1.52 0.021 1.97 946 10-11 2,077
Três Marias 0.38 396 1,040 0.42 0.075 1.99 1,734 35-36 1,147
Average 9.43 2,613 874 1.43 0.027 2.00 11,445 14-15 584
Table	
  1.:	
  Patrick	
  McCully,	
  Fizzy	
  Science,	
  Interna:onal	
  Rivers	
  Network,	
  November	
  2006	
  
160	
  to	
  
250	
  g	
  
CO2eq/
kWh	
  
*update	
  
*update:	
  William	
  Steinhurst,	
  Patrick	
  Knight,	
  and	
  Melissa	
  Schultz,	
  Hydropower	
  Greenhouse	
  Gas	
  Emissions,	
  State	
  of	
  the	
  Research,	
  Synapse,	
  February	
  14,	
  2012,	
  
www.synapse-­‐energy.com	
  	
  
Table	
  1.	
  	
  GHG	
  Emissions	
  from	
  Hydropower	
  Plants	
  
2014	
  
2010	
  
2010	
  
2005	
  
COST	
  OF	
  DROUGHT	
  
2000-­‐2009	
   2060-­‐2069	
  
2030-­‐2039	
   2090-­‐2099	
  
Worsening	
  Drought	
  All	
  Century	
  Long	
  
“We	
  don’t	
  have	
  a	
  robust	
  energy	
  system,	
  and	
  the	
  costs	
  are	
  significant.	
  The	
  cost	
  
today	
  is	
  measured	
  in	
  the	
  billions.	
  Over	
  the	
  coming	
  decades,	
  it	
  will	
  be	
  in	
  the	
  
trillions.	
  You	
  can’t	
  just	
  put	
  your	
  head	
  in	
  the	
  sand	
  anymore.”	
  	
  U.S.	
  Dept.	
  of	
  
Energy	
  Official	
  Jonathan	
  Pershing,	
  2013	
  
Hurricane	
  Sandy,	
  2012	
  
SECURING THE U.S.
ELECTRICAL GRID
THE HONORABLE THOMAS F. McLARTY III
&
THE HONORABLE THOMAS J. RIDGE
PROJECT CO-CHAIRS
Energy	
  Surety	
  Microgrid	
  
U.S.	
  Military	
  bases	
  mandated	
  to	
  be	
  “islandable”	
  
–	
  capable	
  of	
  operaZng	
  even	
  if	
  grid	
  collapses	
  
Power	
  Grid	
  DisrupZon	
  Risks	
  &	
  Threats	
  
Human	
  or	
  Technical	
  Error,	
  Cybera,acks,	
  Military	
  A,acts	
  or	
  Terrorism,	
  	
  
Climate	
  Disrup:on	
  &	
  Natural	
  Disasters	
  
A:f	
  Ansar,	
  Bent	
  Flyvbjerg,	
  Alexander	
  Budzier,	
  Daniel	
  Lun	
  	
  Should	
  we	
  
build	
  more	
  large	
  dams?	
  The	
  actual	
  costs	
  of	
  hydropower	
  megaproject	
  
development.	
  Energy	
  Policy	
  (2014),	
  h,p://dx.doi.org/10.1016/j.enpol.
2013.10.069	
   6. U.S. Bureau of Reclamation, also see Hufschmidt and Gerin
(1970),3
and Merewitz (1973) on the U.S. water-resource con-
struction agencies.
acquisition and resettlement; design engineerin
management services; construction of all civil w
ities; equipment purchases. Actual outturn costs
real, accounted construction costs determined a
Fig. 1. Sample distribution of 245 large dams (1934–2007), across five continents, worth USD 353B (2010 prices).
A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
•  ex	
  post	
  outcomes	
  of	
  schedule	
  
&	
  cost	
  es:mates	
  of	
  
hydropower	
  dams.	
  	
  
•  Es:mates	
  are	
  systema:cally	
  
&	
  severely	
  biased	
  below	
  
actual	
  values.	
  
•  Projects	
  that	
  take	
  longer	
  have	
  
greater	
  cost	
  overruns;	
  bigger	
  
projects	
  take	
  longer.	
  
•  	
  Upli€	
  required	
  to	
  de-­‐bias	
  
systema:c	
  cost	
  under-­‐
es:ma:on	
  for	
  large	
  dams	
  is	
  
+99%.	
  
6. U.S. Bureau of Reclamation, also see Hufschmidt and Gerin
(1970),3
and Merewitz (1973) on the U.S. water-resource con-
struction agencies.
The procedures applied to the cost and schedule data here are
acquisition and resettlement; design engineering an
management services; construction of all civil works
ities; equipment purchases. Actual outturn costs are d
real, accounted construction costs determined at the
project completion. Estimated costs are defined as bud
Fig. 1. Sample distribution of 245 large dams (1934–2007), across five continents, worth USD 353B (2010 prices).
A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
Hydropower	
  Dam	
  
	
  Cost	
  Overruns	
  
A:f	
  Ansar,	
  Bent	
  Flyvbjerg,	
  Alexander	
  Budzier,	
  Daniel	
  Lun	
  	
  Should	
  
we	
  build	
  more	
  large	
  dams?	
  The	
  actual	
  costs	
  of	
  hydropower	
  
megaproject	
  development.	
  Energy	
  Policy	
  (2014),	
  h,p://
dx.doi.org/10.1016/j.enpol.2013.10.069	
  
Fig. 3. Location of large dams in the sample and cost overruns by geography.
A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
“Using	
  the	
  largest	
  and	
  most	
  reliable	
  reference	
  data	
  
of	
  its	
  kind	
  and	
  mul:level	
  sta:s:cal	
  techniques	
  
applied	
  to	
  large	
  dams	
  for	
  the	
  first	
  :me,	
  we	
  were	
  
successful	
  in	
  fi^ng	
  parsimonious	
  models	
  to	
  predict	
  
cost	
  and	
  schedule	
  overruns.	
  	
  
	
  
…in	
  most	
  countries	
  large	
  hydropower	
  dams	
  will	
  be	
  
too	
  costly	
  in	
  absolute	
  terms	
  and	
  take	
  too	
  long	
  to	
  
build	
  to	
  deliver	
  a	
  posi:ve	
  risk-­‐adjusted	
  return	
  unless	
  
suitable	
  risk	
  management	
  can	
  be	
  affordably	
  
provided.”	
  
“Policymakers,	
  par3cularly	
  in	
  developing	
  countries,	
  
are	
  advised	
  to	
  prefer	
  agile	
  energy	
  alterna3ves	
  that	
  
can	
  be	
  built	
  over	
  shorter	
  3me	
  horizons	
  to	
  energy	
  
megaprojects.”	
  
Hydropower	
  Dam	
  Cost	
  Overruns	
  
Corn ethanol
Cellulosic ethanol
Wind-battery
turbine spacing
Wind turbines
ground footprint
Solar-battery
Mark Z. Jacobson, Wind Versus Biofuels for Addressing Climate, Health, and Energy, Atmosphere/Energy Program, Dept. of Civil & Environmental Engineering, Stanford University, March 5,
2007, http://www.stanford.edu/group/efmh/jacobson/E85vWindSol
Area to Power 100% of U.S. Onroad Vehicles
COMPARISON OF LAND NEEDED TO POWER VEHICLES
Solar-battery and Wind-battery refer to battery storage of these intermittent renewable
resources in plug-in electric driven vehicles
Map	
  of	
  basins	
  with	
  assessed	
  shale	
  oil	
  &	
  shale	
  gas	
  formaZons,	
  2013	
  	
  
	
  
Argen:na	
  2nd	
  
largest	
  deposits	
  
in	
  world	
  
Natural	
  Gas,	
  Coal	
  &	
  Oil	
  	
  Fueled	
  Power	
  Plants	
  in	
  LaZn	
  America	
  
(30%,	
  8%,	
  and	
  4.5%,	
  respecZvely,	
  in	
  2030)	
  
Based	
  on	
  Ariel	
  Yepes	
  et	
  al.,	
  Mee:ng	
  the	
  Balance	
  of	
  Electricity	
  Supply	
  and	
  Demand	
  in	
  La:n	
  America	
  and	
  the	
  Caribbean.	
  World	
  Bank	
  2010,	
  cited	
  in	
  “La:n	
  America’s	
  Energy	
  
Future”	
  by	
  Roger	
  Tissot	
  for	
  the	
  Inter-­‐American	
  Development	
  Bank	
  and	
  the	
  Inter-­‐American	
  Dialogue	
  Energy	
  Working	
  Paper	
  Series,	
  No.	
  IDB-­‐DP-­‐252,	
  December	
  2012.	
  	
  
Natural!Gas!vs.!Coal!
A!Climate!PerspecAve!
101!
Source:!adapted!from!IEA,!“Golden!Age!of!Gas”!special!report!(Figure!1.5)!!
Leakage&rate&(%&of&total&producKon)&
RaKo&of&GHG&emissions&of&gas&over&coal&
8%&
7%&
6%&
5%&
4%&
3%&
2%&
1%&
0& 25& 50& 75& 105&
0&
0.5&
1&
1.5&
2&
Global&Warming&PotenKal&(GWP)&for&methane&
Risk!factor:!Fuel!cost!comparisons!
130!
Graph 1
(http://blogs-images.forbes.com/jamesconca/files/2012/07/Fuel-Costs.jpg)
Efficiency	
  
Vulnerability!of!Natural!Gas!to!!
Higher!Prices!and!VolaAlity!
131!
UCS,!Gas!Ceiling,!Assessing!the!Climate!Risks!of!an!Overreliance!on!Natural!Gas!for!Electricity,!Sept.!2013,!Union!of!Concerned!ScienAsts.!!
UCS,	
  Gas	
  Ceiling,	
  Assessing	
  the	
  Climate	
  Risks	
  of	
  an	
  Overreliance	
  on	
  Natural	
  Gas	
  for	
  Electricity,	
  Sept.	
  2013,	
  Union	
  of	
  Concerned	
  Scientsts	
  
AccounAng!for!VolaAlity!
132!
commodity! options.! ! In! fact,! implied! volatility! levels! can! be! derived! from! listed!
option!premiums!to!determine!the!magnitude!of!natural!gas!movements!“pricedbin”!
by!the!options!market!at!a!given!future!date!(Figure!3).!!For!example,!options!are!
currently! pricing! in! a! potential! range! of! $1.18! to! $13.80! per! mmBtu! at! the! 99%!
confidence!interval!by!June!2015.!!
!
!
!
Figure! 3:! Using! implied! volatility! levels! and! option! premiums! to! determine! future! natural! gas! price!
ranges!at!68%,!95%,!and!99%!confidence!intervals!
RISK+DISTRIBUTION+
!
Assets!generally!face!two!types!of!risk:!risk!associated!strictly!with!the!underlying!
asset!(alpha),!and!risk!correlated!with!the!broader!market!(beta).!!A!positive!beta!
value!represents!a!positive!correlation!with!the!broader!market,!whereas!a!negative!
$13.80+
+
+
+
+
June+2015+
+
+
+
+
$1.18+
Potential NYMEX Henry Hub Prices
RMI,!UKlity^Scale&Wind&and&Natural&Gas&VolaKlity:&Uncovering&the&Hedge&Value&of&Wind&for&UKliKes&and&Their&
Customers,&2012!!
Using&implied&volaKlity&levels&and&opKon&premiums&to&determine&future&
natural&gas&prices&ranges&at&68%,&95%&and&99%&confidence&intervals.&
NYMEX&Henry&Hub&Futures& 68%CI& 99%CI&95%CI&
AccounAng!for!VolaAlity!
133!
CCGT&New&Build&(No&VolaKlity&Premium&included)&
CCGT&New&Build&(AccounKng&for&VolaKlity)&
Wind&PPA&(No&PTC)&
AccounKng&for&volaKlity&
shows&wind&out^compeKng&
gas&in&the&long^term& CCGT&curve&
shics&up&with&
volaKlity&
premium&added&
AccounKng&for&volaKlity&shows&
wind&out^compeKng&gas&
&in&the&long^term&
Low&gas&prices&
seemed&to&out^
compete&wind&
RMI,!UKlity^Scale&Wind&and&Natural&Gas&VolaKlity:&Uncovering&the&Hedge&Value&of&Wind&for&UKliKes&and&Their&
Customers,&2012!!
Policies!&!Subsidies!promote!highZ
Emission!investments!over!ZeroZE!OpAons!
128!
Total Global
Investments in
Renewables
Billions of Dollars Invested
2012 Investments in
Fossil Fuel Reserves Versus Clean Energy
0 100 200 300 400 500 600 700
$674
$281
Corporate Investments
in Developing
Fossil Fuel Reserves
www.ceres.org www.carbontracker.org
Legacy!policies,!subsidies,!
and!regulaAons!(or!lack!
thereof)!conAnue!to!steer!
investments!into!energy!
opAons!with!highZemission!
output.!!The!IMF!esAmates!
$2!trillion!per!year!
worldwide!in!subsidies!to!
the!fossil!fuel!industry.!!
Another!$4!trillion!per!year!in!economic!losses!are!due!to!fossil!fuel!
externaliAes!that!go!unpriced!or!unregulated,!according!to!esAmates!by!UN!
Finance!IniAaAve.!!This!skewing!of!decisionmaking!creates!uncertainty!as!to!
whether!emissions!will!steeply!rise!(BAU)!or!major!policy!changes!will!occur.!!
Chart!source:!CERES!&!CarbonTracker,!Investors!ask!fossil!fuel!companies!to!assess!how!business!plans!fare!in!lowZcarbon!future!ZZ!coaliAon!of!70!investors!worth!
$3!trillion!call!on!world’s!largest!oil!&!gas,!coal!and!electric!power!companies!to!assess!risks!under!climate!acAon!and!‘business!as!usual’!scenarios,!Nov!2013!!
Water!&!CCS!impact!by!power!plant!
150!
Water and Carbon Capture Impact
Source: Gerdes, K.; Nichols, C. Water Requirements for Existing and Emerging Thermoelectric Plant Technologies; DOE/NETL Report
402/080108; U.S. Department of Energy National Energy Technology Laboratory: Morgantown, WV, 2009.
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Subcritical
pc
Supercritical
pc
IGCC – Dry
Feed
IGCC –
Slurry Feed
NGCC
No Capture 0.52 0.45 0.30 0.31 0.19
With Capture 0.99 0.84 0.48 0.45 0.34
Estimated Water Consumption Increase with
CO2 Capture and Compression
gal/
kWh
% Increase 91 87 61 46 76
pc=!pulverized!coal;!IGCC=!integrated!gasificaAon!combined!cycle!coal!plant;!!
NGCCZ!natural!gas!combined!cycle!
Gerdes,!K.;!Nichols,!C.!Water!Requirements!for!ExisAng!and!Emerging!Thermoelectric!Plant!Technologies;!DOE/NETL!
Report!402/080108;!U.S.!Department!of!Energy!NaAonal!Energy!Technology!Laboratory:!Morgantown,!WV,!2009.!
RelaAve!Risk!Exposure!New!
GeneraAon!Sources!!
125!
Source:!Ron!Binz,!PracAcing!RiskZAware!Electricity!RegulaAon:!What!Every!State!Regulator!Needs!to!Know,!April!2012,!CERES!
RelaAve!Cost!&!Risk!Rankings!!
126!
Source:!Ron!Binz,!PracAcing!RiskZ
Aware!Electricity!RegulaAon:!
What!Every!State!Regulator!Needs!
to!Know,!April!2012,!CERES!
Cost&is&an&
essenKal&but&not&
sufficient&
decision^making&
criterion&
Risk&is&an&
essenKal&and&
imperaKve&
decision^making&
criterion&as&well&
Projected&UKlity&GeneraKon&Resources&
RelaKve&Cost&&&RelaKve&Risk&^&2015&
!
127!Source:!Ron!Binz,!PracAcing!RiskZAware!Electricity!RegulaAon:!What!Every!State!Regulator!Needs!to!Know,!April!2012,!CERES!
Offshore Wind

More Related Content

What's hot

Digital Infrastructure in a Carbon Constrained World
Digital Infrastructure in a Carbon Constrained WorldDigital Infrastructure in a Carbon Constrained World
Digital Infrastructure in a Carbon Constrained WorldLarry Smarr
 
Ottawa U - Deploying 5G networks
Ottawa U - Deploying 5G networksOttawa U - Deploying 5G networks
Ottawa U - Deploying 5G networksBill St. Arnaud
 
Sustainable Computing and Telecom Can Contribute to Limiting Global Climatic ...
Sustainable Computing and Telecom Can Contribute to Limiting Global Climatic ...Sustainable Computing and Telecom Can Contribute to Limiting Global Climatic ...
Sustainable Computing and Telecom Can Contribute to Limiting Global Climatic ...Larry Smarr
 
The Role of University Energy Efficient Cyberinfrastructure in Slowing Climat...
The Role of University Energy Efficient Cyberinfrastructure in Slowing Climat...The Role of University Energy Efficient Cyberinfrastructure in Slowing Climat...
The Role of University Energy Efficient Cyberinfrastructure in Slowing Climat...Larry Smarr
 
Lattice Energy LLC - US Secretary of Energy Rick Perry-DOE suggestions to FER...
Lattice Energy LLC - US Secretary of Energy Rick Perry-DOE suggestions to FER...Lattice Energy LLC - US Secretary of Energy Rick Perry-DOE suggestions to FER...
Lattice Energy LLC - US Secretary of Energy Rick Perry-DOE suggestions to FER...Lewis Larsen
 
Seia Nrelrampingpaper2008
Seia Nrelrampingpaper2008Seia Nrelrampingpaper2008
Seia Nrelrampingpaper2008Carolyn Elefant
 
“Integrated Solutions in Sustainable Green Energy and Transportation”
“Integrated Solutions in Sustainable Green Energy and Transportation”“Integrated Solutions in Sustainable Green Energy and Transportation”
“Integrated Solutions in Sustainable Green Energy and Transportation”Green Parking Council
 
Green Energy Choices, full slide pack
Green Energy Choices, full slide packGreen Energy Choices, full slide pack
Green Energy Choices, full slide packEdgar Hertwich
 
Sam Baldwin | CSP, PV and a Renewable Future
Sam Baldwin | CSP, PV and a Renewable FutureSam Baldwin | CSP, PV and a Renewable Future
Sam Baldwin | CSP, PV and a Renewable FutureGW Solar Institute
 
Digital Infrastructure in a Carbon-Constrained World
Digital Infrastructure in a Carbon-Constrained WorldDigital Infrastructure in a Carbon-Constrained World
Digital Infrastructure in a Carbon-Constrained WorldLarry Smarr
 
Cyberinfrastructure in a Carbon-Constrained World
Cyberinfrastructure in a Carbon-Constrained WorldCyberinfrastructure in a Carbon-Constrained World
Cyberinfrastructure in a Carbon-Constrained WorldLarry Smarr
 
Wind Power Overview Treasury Feb 2009
Wind Power Overview Treasury Feb 2009Wind Power Overview Treasury Feb 2009
Wind Power Overview Treasury Feb 2009Cohocton Wind Watch
 
Green Cyberinfrastructure on a Carbon-Constrained Planet
Green Cyberinfrastructure on a Carbon-Constrained PlanetGreen Cyberinfrastructure on a Carbon-Constrained Planet
Green Cyberinfrastructure on a Carbon-Constrained PlanetLarry Smarr
 

What's hot (19)

GLIF geneva
GLIF genevaGLIF geneva
GLIF geneva
 
Digital Infrastructure in a Carbon Constrained World
Digital Infrastructure in a Carbon Constrained WorldDigital Infrastructure in a Carbon Constrained World
Digital Infrastructure in a Carbon Constrained World
 
Ottawa U - Deploying 5G networks
Ottawa U - Deploying 5G networksOttawa U - Deploying 5G networks
Ottawa U - Deploying 5G networks
 
Sustainable Computing and Telecom Can Contribute to Limiting Global Climatic ...
Sustainable Computing and Telecom Can Contribute to Limiting Global Climatic ...Sustainable Computing and Telecom Can Contribute to Limiting Global Climatic ...
Sustainable Computing and Telecom Can Contribute to Limiting Global Climatic ...
 
Educause09 Smarr Arnaud
Educause09 Smarr ArnaudEducause09 Smarr Arnaud
Educause09 Smarr Arnaud
 
The Role of University Energy Efficient Cyberinfrastructure in Slowing Climat...
The Role of University Energy Efficient Cyberinfrastructure in Slowing Climat...The Role of University Energy Efficient Cyberinfrastructure in Slowing Climat...
The Role of University Energy Efficient Cyberinfrastructure in Slowing Climat...
 
Lattice Energy LLC - US Secretary of Energy Rick Perry-DOE suggestions to FER...
Lattice Energy LLC - US Secretary of Energy Rick Perry-DOE suggestions to FER...Lattice Energy LLC - US Secretary of Energy Rick Perry-DOE suggestions to FER...
Lattice Energy LLC - US Secretary of Energy Rick Perry-DOE suggestions to FER...
 
Seia Nrelrampingpaper2008
Seia Nrelrampingpaper2008Seia Nrelrampingpaper2008
Seia Nrelrampingpaper2008
 
“Integrated Solutions in Sustainable Green Energy and Transportation”
“Integrated Solutions in Sustainable Green Energy and Transportation”“Integrated Solutions in Sustainable Green Energy and Transportation”
“Integrated Solutions in Sustainable Green Energy and Transportation”
 
Green Energy Choices, full slide pack
Green Energy Choices, full slide packGreen Energy Choices, full slide pack
Green Energy Choices, full slide pack
 
NRC july 6
NRC july 6NRC july 6
NRC july 6
 
Sam Baldwin | CSP, PV and a Renewable Future
Sam Baldwin | CSP, PV and a Renewable FutureSam Baldwin | CSP, PV and a Renewable Future
Sam Baldwin | CSP, PV and a Renewable Future
 
STEMinars
STEMinarsSTEMinars
STEMinars
 
Digital Infrastructure in a Carbon-Constrained World
Digital Infrastructure in a Carbon-Constrained WorldDigital Infrastructure in a Carbon-Constrained World
Digital Infrastructure in a Carbon-Constrained World
 
Cyberinfrastructure in a Carbon-Constrained World
Cyberinfrastructure in a Carbon-Constrained WorldCyberinfrastructure in a Carbon-Constrained World
Cyberinfrastructure in a Carbon-Constrained World
 
Wind Power Overview Treasury Feb 2009
Wind Power Overview Treasury Feb 2009Wind Power Overview Treasury Feb 2009
Wind Power Overview Treasury Feb 2009
 
Green Cyberinfrastructure on a Carbon-Constrained Planet
Green Cyberinfrastructure on a Carbon-Constrained PlanetGreen Cyberinfrastructure on a Carbon-Constrained Planet
Green Cyberinfrastructure on a Carbon-Constrained Planet
 
Thorium
ThoriumThorium
Thorium
 
Jose Zayas - Wind Vision: A New Era for Wind Power in the US
Jose Zayas - Wind Vision: A New Era for Wind Power in the USJose Zayas - Wind Vision: A New Era for Wind Power in the US
Jose Zayas - Wind Vision: A New Era for Wind Power in the US
 

Similar to LEAST-COST-&-RISK LIFECYCLE DELIVERED ENERGY SERVICES

Green power for crisis management
Green power for crisis managementGreen power for crisis management
Green power for crisis managementDavid Owain Clubb
 
Value of CSP with TES november 2014
Value of CSP with TES november 2014Value of CSP with TES november 2014
Value of CSP with TES november 2014Daniel Schwab
 
Scott Sklar | The Stella Group
Scott Sklar | The Stella GroupScott Sklar | The Stella Group
Scott Sklar | The Stella GroupGW Solar Institute
 
National Clean Energy Summit PPt
National Clean Energy Summit PPtNational Clean Energy Summit PPt
National Clean Energy Summit PPtguest3fd329
 
Overview of Energy Efficiency in the U.S.
Overview of Energy Efficiency in the U.S.Overview of Energy Efficiency in the U.S.
Overview of Energy Efficiency in the U.S.Alliance To Save Energy
 
WYATT MSI-COPC Gaithersburg Presentation Final
WYATT MSI-COPC Gaithersburg Presentation FinalWYATT MSI-COPC Gaithersburg Presentation Final
WYATT MSI-COPC Gaithersburg Presentation FinalDoug Wyatt
 
Re technologies cost_analysis-wind_power
Re technologies cost_analysis-wind_powerRe technologies cost_analysis-wind_power
Re technologies cost_analysis-wind_powerDr Lendy Spires
 
Building Energy Efficiency Into Energy Equation
Building Energy Efficiency Into Energy EquationBuilding Energy Efficiency Into Energy Equation
Building Energy Efficiency Into Energy EquationIJERDJOURNAL
 
Pct Solution For Emerging Energy Markets
Pct Solution For Emerging Energy MarketsPct Solution For Emerging Energy Markets
Pct Solution For Emerging Energy Marketspacificcresttrans
 
Connecting Renewable Generation To A Transmission Grid
Connecting Renewable Generation To A Transmission GridConnecting Renewable Generation To A Transmission Grid
Connecting Renewable Generation To A Transmission GridStephen Lee
 
Energy Storage Opportunities and Challenges ECOFYS
Energy Storage Opportunities and Challenges ECOFYS Energy Storage Opportunities and Challenges ECOFYS
Energy Storage Opportunities and Challenges ECOFYS Andrew Gelston
 
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...Bruce LaCour
 
Hydrogen fuel cells as a commercial energy option
Hydrogen fuel cells as a commercial energy optionHydrogen fuel cells as a commercial energy option
Hydrogen fuel cells as a commercial energy optionLogan Energy Ltd
 
Critical Power: Integrating Renewable Power into Buildings
Critical Power: Integrating Renewable Power into BuildingsCritical Power: Integrating Renewable Power into Buildings
Critical Power: Integrating Renewable Power into BuildingsConsultingSpecifyingEngineer
 

Similar to LEAST-COST-&-RISK LIFECYCLE DELIVERED ENERGY SERVICES (20)

Green power for crisis management
Green power for crisis managementGreen power for crisis management
Green power for crisis management
 
Hawaii Clean Energy Initiative and NREL: Implementing Energy Efficiency and R...
Hawaii Clean Energy Initiative and NREL: Implementing Energy Efficiency and R...Hawaii Clean Energy Initiative and NREL: Implementing Energy Efficiency and R...
Hawaii Clean Energy Initiative and NREL: Implementing Energy Efficiency and R...
 
Value of CSP with TES november 2014
Value of CSP with TES november 2014Value of CSP with TES november 2014
Value of CSP with TES november 2014
 
Scott Sklar | The Stella Group
Scott Sklar | The Stella GroupScott Sklar | The Stella Group
Scott Sklar | The Stella Group
 
Sandia 2014 Wind Turbine Blade Workshop- Zayas
Sandia 2014 Wind Turbine Blade Workshop- ZayasSandia 2014 Wind Turbine Blade Workshop- Zayas
Sandia 2014 Wind Turbine Blade Workshop- Zayas
 
National Clean Energy Summit PPt
National Clean Energy Summit PPtNational Clean Energy Summit PPt
National Clean Energy Summit PPt
 
Overview of Energy Efficiency in the U.S.
Overview of Energy Efficiency in the U.S.Overview of Energy Efficiency in the U.S.
Overview of Energy Efficiency in the U.S.
 
oceanocean
oceanoceanoceanocean
oceanocean
 
Stm case study_7_group e
Stm case study_7_group eStm case study_7_group e
Stm case study_7_group e
 
WYATT MSI-COPC Gaithersburg Presentation Final
WYATT MSI-COPC Gaithersburg Presentation FinalWYATT MSI-COPC Gaithersburg Presentation Final
WYATT MSI-COPC Gaithersburg Presentation Final
 
Re technologies cost_analysis-wind_power
Re technologies cost_analysis-wind_powerRe technologies cost_analysis-wind_power
Re technologies cost_analysis-wind_power
 
Fundamentals on Renewable Energy Sources - Juan Manuel Gers
Fundamentals on Renewable Energy Sources - Juan Manuel GersFundamentals on Renewable Energy Sources - Juan Manuel Gers
Fundamentals on Renewable Energy Sources - Juan Manuel Gers
 
Building Energy Efficiency Into Energy Equation
Building Energy Efficiency Into Energy EquationBuilding Energy Efficiency Into Energy Equation
Building Energy Efficiency Into Energy Equation
 
Pct Solution For Emerging Energy Markets
Pct Solution For Emerging Energy MarketsPct Solution For Emerging Energy Markets
Pct Solution For Emerging Energy Markets
 
Connecting Renewable Generation To A Transmission Grid
Connecting Renewable Generation To A Transmission GridConnecting Renewable Generation To A Transmission Grid
Connecting Renewable Generation To A Transmission Grid
 
Energy Storage Opportunities and Challenges ECOFYS
Energy Storage Opportunities and Challenges ECOFYS Energy Storage Opportunities and Challenges ECOFYS
Energy Storage Opportunities and Challenges ECOFYS
 
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
Future Trends - Air Conditioning with Thermal Energy Storage - Commercial and...
 
Hydrogen fuel cells as a commercial energy option
Hydrogen fuel cells as a commercial energy optionHydrogen fuel cells as a commercial energy option
Hydrogen fuel cells as a commercial energy option
 
USGBC2016 SJv1.0
USGBC2016 SJv1.0USGBC2016 SJv1.0
USGBC2016 SJv1.0
 
Critical Power: Integrating Renewable Power into Buildings
Critical Power: Integrating Renewable Power into BuildingsCritical Power: Integrating Renewable Power into Buildings
Critical Power: Integrating Renewable Power into Buildings
 

More from Michael P Totten

The New Photonomy - offering an exponentially fruitful abundance worldwide, P...
The New Photonomy - offering an exponentially fruitful abundance worldwide, P...The New Photonomy - offering an exponentially fruitful abundance worldwide, P...
The New Photonomy - offering an exponentially fruitful abundance worldwide, P...Michael P Totten
 
Totten 189 slides on Catalyzing Zero Emission Cities - presentation to Colora...
Totten 189 slides on Catalyzing Zero Emission Cities - presentation to Colora...Totten 189 slides on Catalyzing Zero Emission Cities - presentation to Colora...
Totten 189 slides on Catalyzing Zero Emission Cities - presentation to Colora...Michael P Totten
 
Michael P Totten Half-Century review Professional Highlights
Michael P Totten Half-Century review Professional HighlightsMichael P Totten Half-Century review Professional Highlights
Michael P Totten Half-Century review Professional HighlightsMichael P Totten
 
RUPTURES - Eruptions, Disruptions & Corruptions
RUPTURES - Eruptions, Disruptions & CorruptionsRUPTURES - Eruptions, Disruptions & Corruptions
RUPTURES - Eruptions, Disruptions & CorruptionsMichael P Totten
 
Pearl Jam Voluntarily Offsets Latin American Tour Dates with 54000 USD Invest...
Pearl Jam Voluntarily Offsets Latin American Tour Dates with 54000 USD Invest...Pearl Jam Voluntarily Offsets Latin American Tour Dates with 54000 USD Invest...
Pearl Jam Voluntarily Offsets Latin American Tour Dates with 54000 USD Invest...Michael P Totten
 
Michael P Totten prosperously phasing out fossil fuels & bio Jan 2016 pdf
Michael P Totten prosperously phasing out fossil fuels & bio Jan 2016 pdfMichael P Totten prosperously phasing out fossil fuels & bio Jan 2016 pdf
Michael P Totten prosperously phasing out fossil fuels & bio Jan 2016 pdfMichael P Totten
 
IoN - Human-Centric Internet of Networks - Michael P Totten presentation at H...
IoN - Human-Centric Internet of Networks - Michael P Totten presentation at H...IoN - Human-Centric Internet of Networks - Michael P Totten presentation at H...
IoN - Human-Centric Internet of Networks - Michael P Totten presentation at H...Michael P Totten
 
Totten presidio presentation feb 20 2015 pdf
Totten presidio presentation feb 20 2015 pdfTotten presidio presentation feb 20 2015 pdf
Totten presidio presentation feb 20 2015 pdfMichael P Totten
 
pursuing sustainable planetary prosperity chapter 18 US-China 2022
pursuing sustainable planetary prosperity chapter 18 US-China 2022pursuing sustainable planetary prosperity chapter 18 US-China 2022
pursuing sustainable planetary prosperity chapter 18 US-China 2022Michael P Totten
 
Great plains win-win-wind strategy 100% renewable US power michael p totten a...
Great plains win-win-wind strategy 100% renewable US power michael p totten a...Great plains win-win-wind strategy 100% renewable US power michael p totten a...
Great plains win-win-wind strategy 100% renewable US power michael p totten a...Michael P Totten
 
Michael P Totten GreenATP: APPortunities to catalyze local to global positive...
Michael P Totten GreenATP: APPortunities to catalyze local to global positive...Michael P Totten GreenATP: APPortunities to catalyze local to global positive...
Michael P Totten GreenATP: APPortunities to catalyze local to global positive...Michael P Totten
 
Riding perfect storm - TRIPLE STRENGTH PORTFOLIO Healthy, Sustainable Economi...
Riding perfect storm - TRIPLE STRENGTH PORTFOLIO Healthy, Sustainable Economi...Riding perfect storm - TRIPLE STRENGTH PORTFOLIO Healthy, Sustainable Economi...
Riding perfect storm - TRIPLE STRENGTH PORTFOLIO Healthy, Sustainable Economi...Michael P Totten
 
MP Totten TEDx Singapore talk april 3 2012
MP Totten TEDx Singapore talk april 3 2012MP Totten TEDx Singapore talk april 3 2012
MP Totten TEDx Singapore talk april 3 2012Michael P Totten
 
GreenATP ucla anderson business school mp totten 06 11
GreenATP ucla anderson business school mp totten 06 11GreenATP ucla anderson business school mp totten 06 11
GreenATP ucla anderson business school mp totten 06 11Michael P Totten
 
Michael P Totten DENIN talk "Water in an Uncertain Climate Future" focusing o...
Michael P Totten DENIN talk "Water in an Uncertain Climate Future" focusing o...Michael P Totten DENIN talk "Water in an Uncertain Climate Future" focusing o...
Michael P Totten DENIN talk "Water in an Uncertain Climate Future" focusing o...Michael P Totten
 
Howard University Sigma Xi talk Biocomplexity Decisionmaking MP Totten 11-10
Howard University Sigma Xi talk Biocomplexity Decisionmaking MP Totten 11-10Howard University Sigma Xi talk Biocomplexity Decisionmaking MP Totten 11-10
Howard University Sigma Xi talk Biocomplexity Decisionmaking MP Totten 11-10Michael P Totten
 
Michael P Totten A Climate For Life Mesh Talk Bioneer Los Angeles 12 09 09
Michael P Totten A Climate For Life Mesh Talk Bioneer Los Angeles 12 09 09Michael P Totten A Climate For Life Mesh Talk Bioneer Los Angeles 12 09 09
Michael P Totten A Climate For Life Mesh Talk Bioneer Los Angeles 12 09 09Michael P Totten
 
Michael P Totten presentation Sustainability Opportunities Summit, Denver, Ma...
Michael P Totten presentation Sustainability Opportunities Summit, Denver, Ma...Michael P Totten presentation Sustainability Opportunities Summit, Denver, Ma...
Michael P Totten presentation Sustainability Opportunities Summit, Denver, Ma...Michael P Totten
 
Biocomplexity Decisionmaking 03 07 09
Biocomplexity Decisionmaking 03 07 09Biocomplexity Decisionmaking 03 07 09
Biocomplexity Decisionmaking 03 07 09Michael P Totten
 
Totten Climate For Life Presentation 02 13 09 Duke Symposium Final Update
Totten Climate For Life Presentation 02 13 09 Duke Symposium   Final UpdateTotten Climate For Life Presentation 02 13 09 Duke Symposium   Final Update
Totten Climate For Life Presentation 02 13 09 Duke Symposium Final UpdateMichael P Totten
 

More from Michael P Totten (20)

The New Photonomy - offering an exponentially fruitful abundance worldwide, P...
The New Photonomy - offering an exponentially fruitful abundance worldwide, P...The New Photonomy - offering an exponentially fruitful abundance worldwide, P...
The New Photonomy - offering an exponentially fruitful abundance worldwide, P...
 
Totten 189 slides on Catalyzing Zero Emission Cities - presentation to Colora...
Totten 189 slides on Catalyzing Zero Emission Cities - presentation to Colora...Totten 189 slides on Catalyzing Zero Emission Cities - presentation to Colora...
Totten 189 slides on Catalyzing Zero Emission Cities - presentation to Colora...
 
Michael P Totten Half-Century review Professional Highlights
Michael P Totten Half-Century review Professional HighlightsMichael P Totten Half-Century review Professional Highlights
Michael P Totten Half-Century review Professional Highlights
 
RUPTURES - Eruptions, Disruptions & Corruptions
RUPTURES - Eruptions, Disruptions & CorruptionsRUPTURES - Eruptions, Disruptions & Corruptions
RUPTURES - Eruptions, Disruptions & Corruptions
 
Pearl Jam Voluntarily Offsets Latin American Tour Dates with 54000 USD Invest...
Pearl Jam Voluntarily Offsets Latin American Tour Dates with 54000 USD Invest...Pearl Jam Voluntarily Offsets Latin American Tour Dates with 54000 USD Invest...
Pearl Jam Voluntarily Offsets Latin American Tour Dates with 54000 USD Invest...
 
Michael P Totten prosperously phasing out fossil fuels & bio Jan 2016 pdf
Michael P Totten prosperously phasing out fossil fuels & bio Jan 2016 pdfMichael P Totten prosperously phasing out fossil fuels & bio Jan 2016 pdf
Michael P Totten prosperously phasing out fossil fuels & bio Jan 2016 pdf
 
IoN - Human-Centric Internet of Networks - Michael P Totten presentation at H...
IoN - Human-Centric Internet of Networks - Michael P Totten presentation at H...IoN - Human-Centric Internet of Networks - Michael P Totten presentation at H...
IoN - Human-Centric Internet of Networks - Michael P Totten presentation at H...
 
Totten presidio presentation feb 20 2015 pdf
Totten presidio presentation feb 20 2015 pdfTotten presidio presentation feb 20 2015 pdf
Totten presidio presentation feb 20 2015 pdf
 
pursuing sustainable planetary prosperity chapter 18 US-China 2022
pursuing sustainable planetary prosperity chapter 18 US-China 2022pursuing sustainable planetary prosperity chapter 18 US-China 2022
pursuing sustainable planetary prosperity chapter 18 US-China 2022
 
Great plains win-win-wind strategy 100% renewable US power michael p totten a...
Great plains win-win-wind strategy 100% renewable US power michael p totten a...Great plains win-win-wind strategy 100% renewable US power michael p totten a...
Great plains win-win-wind strategy 100% renewable US power michael p totten a...
 
Michael P Totten GreenATP: APPortunities to catalyze local to global positive...
Michael P Totten GreenATP: APPortunities to catalyze local to global positive...Michael P Totten GreenATP: APPortunities to catalyze local to global positive...
Michael P Totten GreenATP: APPortunities to catalyze local to global positive...
 
Riding perfect storm - TRIPLE STRENGTH PORTFOLIO Healthy, Sustainable Economi...
Riding perfect storm - TRIPLE STRENGTH PORTFOLIO Healthy, Sustainable Economi...Riding perfect storm - TRIPLE STRENGTH PORTFOLIO Healthy, Sustainable Economi...
Riding perfect storm - TRIPLE STRENGTH PORTFOLIO Healthy, Sustainable Economi...
 
MP Totten TEDx Singapore talk april 3 2012
MP Totten TEDx Singapore talk april 3 2012MP Totten TEDx Singapore talk april 3 2012
MP Totten TEDx Singapore talk april 3 2012
 
GreenATP ucla anderson business school mp totten 06 11
GreenATP ucla anderson business school mp totten 06 11GreenATP ucla anderson business school mp totten 06 11
GreenATP ucla anderson business school mp totten 06 11
 
Michael P Totten DENIN talk "Water in an Uncertain Climate Future" focusing o...
Michael P Totten DENIN talk "Water in an Uncertain Climate Future" focusing o...Michael P Totten DENIN talk "Water in an Uncertain Climate Future" focusing o...
Michael P Totten DENIN talk "Water in an Uncertain Climate Future" focusing o...
 
Howard University Sigma Xi talk Biocomplexity Decisionmaking MP Totten 11-10
Howard University Sigma Xi talk Biocomplexity Decisionmaking MP Totten 11-10Howard University Sigma Xi talk Biocomplexity Decisionmaking MP Totten 11-10
Howard University Sigma Xi talk Biocomplexity Decisionmaking MP Totten 11-10
 
Michael P Totten A Climate For Life Mesh Talk Bioneer Los Angeles 12 09 09
Michael P Totten A Climate For Life Mesh Talk Bioneer Los Angeles 12 09 09Michael P Totten A Climate For Life Mesh Talk Bioneer Los Angeles 12 09 09
Michael P Totten A Climate For Life Mesh Talk Bioneer Los Angeles 12 09 09
 
Michael P Totten presentation Sustainability Opportunities Summit, Denver, Ma...
Michael P Totten presentation Sustainability Opportunities Summit, Denver, Ma...Michael P Totten presentation Sustainability Opportunities Summit, Denver, Ma...
Michael P Totten presentation Sustainability Opportunities Summit, Denver, Ma...
 
Biocomplexity Decisionmaking 03 07 09
Biocomplexity Decisionmaking 03 07 09Biocomplexity Decisionmaking 03 07 09
Biocomplexity Decisionmaking 03 07 09
 
Totten Climate For Life Presentation 02 13 09 Duke Symposium Final Update
Totten Climate For Life Presentation 02 13 09 Duke Symposium   Final UpdateTotten Climate For Life Presentation 02 13 09 Duke Symposium   Final Update
Totten Climate For Life Presentation 02 13 09 Duke Symposium Final Update
 

Recently uploaded

CCXG global forum, April 2024, Geert Fremout
CCXG global forum, April 2024,  Geert FremoutCCXG global forum, April 2024,  Geert Fremout
CCXG global forum, April 2024, Geert FremoutOECD Environment
 
LCCXG global forum, April 2024, Lydie-Line Paroz
LCCXG global forum, April 2024,  Lydie-Line ParozLCCXG global forum, April 2024,  Lydie-Line Paroz
LCCXG global forum, April 2024, Lydie-Line ParozOECD Environment
 
CCXG global forum, April 2024, Jolien Noels
CCXG global forum, April 2024,  Jolien NoelsCCXG global forum, April 2024,  Jolien Noels
CCXG global forum, April 2024, Jolien NoelsOECD Environment
 
Slide deck for the IPCC Briefing to Latvian Parliamentarians
Slide deck for the IPCC Briefing to Latvian ParliamentariansSlide deck for the IPCC Briefing to Latvian Parliamentarians
Slide deck for the IPCC Briefing to Latvian Parliamentariansipcc-media
 
CCXG global forum, April 2024, Amar Bhattacharya
CCXG global forum, April 2024,  Amar BhattacharyaCCXG global forum, April 2024,  Amar Bhattacharya
CCXG global forum, April 2024, Amar BhattacharyaOECD Environment
 
CCXG global forum, April 2024, Brian Motherway and Paolo Frankl
CCXG global forum, April 2024,  Brian Motherway and Paolo FranklCCXG global forum, April 2024,  Brian Motherway and Paolo Frankl
CCXG global forum, April 2024, Brian Motherway and Paolo FranklOECD Environment
 
CCXG global forum, April 2024, Alban Kitous
CCXG global forum, April 2024,  Alban KitousCCXG global forum, April 2024,  Alban Kitous
CCXG global forum, April 2024, Alban KitousOECD Environment
 
CCXG global forum, April 2024, Jo Tyndall
CCXG global forum, April 2024,  Jo TyndallCCXG global forum, April 2024,  Jo Tyndall
CCXG global forum, April 2024, Jo TyndallOECD Environment
 
CCXG global forum, April 2024, Marcia Rocha
CCXG global forum, April 2024,  Marcia RochaCCXG global forum, April 2024,  Marcia Rocha
CCXG global forum, April 2024, Marcia RochaOECD Environment
 
human computer interaction of movie booking system project
human computer interaction of movie booking system projecthuman computer interaction of movie booking system project
human computer interaction of movie booking system project201roopikha
 
Planning and Designing Green buildings-.issues, options and strategies
Planning and Designing Green buildings-.issues, options and strategiesPlanning and Designing Green buildings-.issues, options and strategies
Planning and Designing Green buildings-.issues, options and strategiesJIT KUMAR GUPTA
 
CCXG global forum, April 2024, Mia Ryan
CCXG global forum, April 2024,  Mia RyanCCXG global forum, April 2024,  Mia Ryan
CCXG global forum, April 2024, Mia RyanOECD Environment
 
CCXG global forum, April 2024, Sirini Jeudy-Hugo
CCXG global forum, April 2024,  Sirini Jeudy-HugoCCXG global forum, April 2024,  Sirini Jeudy-Hugo
CCXG global forum, April 2024, Sirini Jeudy-HugoOECD Environment
 
XO2 high quality carbon offsets and Bamboo as a Climate Solution
XO2 high quality carbon offsets and Bamboo as a Climate SolutionXO2 high quality carbon offsets and Bamboo as a Climate Solution
XO2 high quality carbon offsets and Bamboo as a Climate SolutionAlexanderPlace
 
CCXG global forum, April 2024, Nino Tkhilava
CCXG global forum, April 2024,  Nino TkhilavaCCXG global forum, April 2024,  Nino Tkhilava
CCXG global forum, April 2024, Nino TkhilavaOECD Environment
 
CCXG global forum, April 2024, MJ Mace
CCXG global forum, April 2024,   MJ MaceCCXG global forum, April 2024,   MJ Mace
CCXG global forum, April 2024, MJ MaceOECD Environment
 
Science, Technology and Nation Building.pptx
Science, Technology and Nation Building.pptxScience, Technology and Nation Building.pptx
Science, Technology and Nation Building.pptxgrandmarshall132
 
CCXG global forum, April 2024, XU Huaqing
CCXG global forum, April 2024,  XU HuaqingCCXG global forum, April 2024,  XU Huaqing
CCXG global forum, April 2024, XU HuaqingOECD Environment
 
CCXG global forum, April 2024, Manjeet Dhakal
CCXG global forum, April 2024,  Manjeet DhakalCCXG global forum, April 2024,  Manjeet Dhakal
CCXG global forum, April 2024, Manjeet DhakalOECD Environment
 

Recently uploaded (20)

CCXG global forum, April 2024, Geert Fremout
CCXG global forum, April 2024,  Geert FremoutCCXG global forum, April 2024,  Geert Fremout
CCXG global forum, April 2024, Geert Fremout
 
LCCXG global forum, April 2024, Lydie-Line Paroz
LCCXG global forum, April 2024,  Lydie-Line ParozLCCXG global forum, April 2024,  Lydie-Line Paroz
LCCXG global forum, April 2024, Lydie-Line Paroz
 
CCXG global forum, April 2024, Jolien Noels
CCXG global forum, April 2024,  Jolien NoelsCCXG global forum, April 2024,  Jolien Noels
CCXG global forum, April 2024, Jolien Noels
 
Slide deck for the IPCC Briefing to Latvian Parliamentarians
Slide deck for the IPCC Briefing to Latvian ParliamentariansSlide deck for the IPCC Briefing to Latvian Parliamentarians
Slide deck for the IPCC Briefing to Latvian Parliamentarians
 
CCXG global forum, April 2024, Amar Bhattacharya
CCXG global forum, April 2024,  Amar BhattacharyaCCXG global forum, April 2024,  Amar Bhattacharya
CCXG global forum, April 2024, Amar Bhattacharya
 
CCXG global forum, April 2024, Brian Motherway and Paolo Frankl
CCXG global forum, April 2024,  Brian Motherway and Paolo FranklCCXG global forum, April 2024,  Brian Motherway and Paolo Frankl
CCXG global forum, April 2024, Brian Motherway and Paolo Frankl
 
CCXG global forum, April 2024, Alban Kitous
CCXG global forum, April 2024,  Alban KitousCCXG global forum, April 2024,  Alban Kitous
CCXG global forum, April 2024, Alban Kitous
 
CCXG global forum, April 2024, Jo Tyndall
CCXG global forum, April 2024,  Jo TyndallCCXG global forum, April 2024,  Jo Tyndall
CCXG global forum, April 2024, Jo Tyndall
 
Health Facility Electrification: State of Play
Health Facility Electrification: State of PlayHealth Facility Electrification: State of Play
Health Facility Electrification: State of Play
 
CCXG global forum, April 2024, Marcia Rocha
CCXG global forum, April 2024,  Marcia RochaCCXG global forum, April 2024,  Marcia Rocha
CCXG global forum, April 2024, Marcia Rocha
 
human computer interaction of movie booking system project
human computer interaction of movie booking system projecthuman computer interaction of movie booking system project
human computer interaction of movie booking system project
 
Planning and Designing Green buildings-.issues, options and strategies
Planning and Designing Green buildings-.issues, options and strategiesPlanning and Designing Green buildings-.issues, options and strategies
Planning and Designing Green buildings-.issues, options and strategies
 
CCXG global forum, April 2024, Mia Ryan
CCXG global forum, April 2024,  Mia RyanCCXG global forum, April 2024,  Mia Ryan
CCXG global forum, April 2024, Mia Ryan
 
CCXG global forum, April 2024, Sirini Jeudy-Hugo
CCXG global forum, April 2024,  Sirini Jeudy-HugoCCXG global forum, April 2024,  Sirini Jeudy-Hugo
CCXG global forum, April 2024, Sirini Jeudy-Hugo
 
XO2 high quality carbon offsets and Bamboo as a Climate Solution
XO2 high quality carbon offsets and Bamboo as a Climate SolutionXO2 high quality carbon offsets and Bamboo as a Climate Solution
XO2 high quality carbon offsets and Bamboo as a Climate Solution
 
CCXG global forum, April 2024, Nino Tkhilava
CCXG global forum, April 2024,  Nino TkhilavaCCXG global forum, April 2024,  Nino Tkhilava
CCXG global forum, April 2024, Nino Tkhilava
 
CCXG global forum, April 2024, MJ Mace
CCXG global forum, April 2024,   MJ MaceCCXG global forum, April 2024,   MJ Mace
CCXG global forum, April 2024, MJ Mace
 
Science, Technology and Nation Building.pptx
Science, Technology and Nation Building.pptxScience, Technology and Nation Building.pptx
Science, Technology and Nation Building.pptx
 
CCXG global forum, April 2024, XU Huaqing
CCXG global forum, April 2024,  XU HuaqingCCXG global forum, April 2024,  XU Huaqing
CCXG global forum, April 2024, XU Huaqing
 
CCXG global forum, April 2024, Manjeet Dhakal
CCXG global forum, April 2024,  Manjeet DhakalCCXG global forum, April 2024,  Manjeet Dhakal
CCXG global forum, April 2024, Manjeet Dhakal
 

LEAST-COST-&-RISK LIFECYCLE DELIVERED ENERGY SERVICES

  • 1. SOLAR  RESOURCE  OF  LATIN  AMERICA   LEAST-­‐COST-­‐&-­‐RISK  LIFECYCLE     DELIVERED  ENERGY  SERVICES   Michael  P  To,en,  Senior  Fellow,  Rocky  Mountain  Ins:tute,  Nov.  12,  2014   Presenta:on  to  the  IDB  ENE  CSF  Energy  Training  Workshop     EPPs  +   +   Efficiency   Power   Plants  
  • 2. Summary  of  Key  Points   1.  Least-­‐Cost-­‐and-­‐Risk  Lifecycle  PorLolio  of  Delivered  Energy  Services  top  priority       2.  Risks  include  intrinsic  uncertain:es  and  surprises  –  climate  disrup:on  costs,  price   vola:li:es  of  fuel,  water,  pollu:on  and  emissions,  catastrophic  accident  fat-­‐tail   probabili:es,  destruc:on  of  ecosystem  services,  cultural  disrup:on   3.  End-­‐use  efficiency  gains  (Eta,  η)  vast  pool  capable  of  delivering  50  to  75%  of  new   energy  services  for  decades,  far  cheaper  than  any  supply  op:on  –  integrated   design  intelligence/knowledge  displacing  energy  resources  &  materials.   4.  Wind  power  now  cheapest  supply  op:on  in  countries  and  regions  with  wind   resources.   5.  Solar  Photovoltaics  (PV)  systems  now  equal  to  or  less  than  the  grid  electricity   from  other  sources  in  79  countries.    Within  60  months  (by  2020)  –  as  the  scale  of   deployments  grows  and  the  costs  con:nue  to  decline  –  more  than  80%  humanity   will  live  in  regions  where  solar  will  be  compe::ve  with  electricity  from  other   sources.   6.  Efficiency,  Wind  &  Solar,  once  installed,  are  risk-­‐free  from  price  vola:lity  over   lifecycle  given  no  fuel  demand,  virtually  no  water,  no  pollu:on,  waste  or   emissions  in  genera:ng  and  delivering  electricity  services.  
  • 3. Natural Gas provides fuel for transportation, electricity, and heat Telecom provides SCADA and communications technologies Transportation provides fuel transport and shipping Electric Power provides energy to support facility operations Water provides water for production, cooling, and emissions reductions Oil provides fuel and lubricants Figure 3. Examples of Critical Infrastructure Interdependencies Adapted from: Rinaldi, Peerenboom, and Kelly (2001)”Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies” IEEE Control Systems Magazine, December. Available at: http://www.ce.cmu.edu/~hsm/im2004/readings/CII-Rinaldi.pdf. CriZcal  Infrastructure  Interdependencies     Cybersecurity  and  the  North  American  Electric  Grid:  New  Policy  Approaches  to  Address  an  Evolving  Threat,  Bipar:san  Policy  Center,  Feb.  2014  
  • 4. Threats  Landscape:  ELECTRIC  POWER  SECTOR   Spectrum of Threats do today. The Chertoff Group was biological, or radiological attacks). As F I G U R E 1 THREAT LANDSCAPE: ELECTRIC POWER SECTOR Source: The Chertoff Group, December 2013 Cyber Attack Physical Attack / Theft Coordinated Physical and Cyber Attack Insider Threat Electromagnetic Interference / EMP Natural Disasters Pandemic Supply Chain Compromise Chemical, Biological or Radiological Attack Nuclear Attack LIKELIHOOD CONSEQUENCE
  • 5. UglyGorilla  (Chinese)  Hack  of  U.S.  UZlity     Exposes  Cyberwar  Threat   “This  is  as  big  a  naZonal  security  threat  as  I  have  ever  seen  in  the   history  of  this  country  that  we  are  not  prepared  for,”  said  U.S.   Congressman  Mike  Rogers  (R-­‐MI)  ,  chairman,  USHR  intelligence   commiaee.   “Your  palms  get  a  liale  sweaty  thinking  about  what  the   outcome  of  those  aaacks  might  have  been  and  how  close  they   actually  came.”    
  • 6. National Security and the Accelerating Risks of Climate Change Military Advisory Board General Paul Kern, USA (Ret.) Brigadier General Gerald E. Galloway Jr., USA (Ret.) Vice Admiral Lee Gunn, USN (Ret.) Admiral Frank “Skip” Bowman, USN (Ret.) General James Conway, USMC (Ret.) Lieutenant General Ken Eickmann, USAF (Ret.) Lieutenant General Larry Farrell, USAF (Ret.) General Don Hoffman, USAF (Ret.) General Ron Keys, USAF (Ret.) Rear Admiral Neil Morisetti, British Royal Navy (Ret.) Vice Admiral Ann Rondeau, USN (Ret.) Lieutenant General Keith Stalder, USMC (Ret.) General Gordon Sullivan, USA (Ret.) Rear Admiral David Titley, USN (Ret.) General Charles “Chuck” Wald, USAF (Ret.) Lieutenant General Richard Zilmer, USMC (Ret.) Pentagon  Report:  U.S.  Military   Considers  Climate  Change  a   'Threat  MulZplier'  That  Could   Exacerbate  Terrorism  
  • 7. BUILDING A RESILIENT POWER GRID Industry and government are working together to ensure necessary investments—not only to anticipate and prevent possible harm to critical energy supply—but also to ensure a constant focus on building a more resilient grid.
  • 8. ENERGY  STRATEGIES  FOR  NATIONAL  SECURITY    (and  profits,  jobs,  nature  and  climate)   Funded  by  Dept  Defense  Civil   Defense  Preparedness  Agency   Funded  by  Department  of   Defense   1980   2005  
  • 9. Main Utility Grid PCC Household appliances and electronics DC Coupled Subsystem Modes of Operation: ISLANDED US  Dept  of  Defense  Mandated  Islandable  Microgrids  at     Military  Bases  to  operate  even  if    Grid  Collapses  
  • 10. RANKING   LEAST-­‐COST-­‐RISK  (LCR)   DELIVERED  ENERGY  SERVICES  (DES)  
  • 11.
  • 12. CORE:  Efficiency,  ProducZvity,  IntegraZve  Design  
  • 13. Energy  ConsumpZon  in  the  U.S.  economy,  2010-­‐2050  
  • 15. η   Eta   Efficiency   Power  Plants  (EPPs)  
  • 16. You’re  Telling  Me  An  EE  Power  Plant   Is Just Like A Fossil Power Plant? . 7 • Yes,  and  it’s  less  expensive,   removes more pollutants, and saves water • Answer these questions to build an EE power plant: – How many MW and MWh? – When and where? – Quantity of tons needed to be removed? Building  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  or  Why  EE  Advocates  Should  Engage  Air  Regulators,  Christopher   James,  Principal,  Regulatory  Assistance  Project  (RAP),  ACEEE  Summer  Study,  August  2014  
  • 17. Efficiency  Power  Plant  (EPP)  calculator,  Regulatory  Assistance  Project,  h,p://www.raponline.org/featured-­‐work/cu^ng-­‐ through-­‐the-­‐fog-­‐to-­‐build-­‐energy-­‐efficiency   Efficiency  Power  Plant  (EPP)  Calculator    
  • 18. Building  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  or  Why  EE  Advocates  Should  Engage  Air  Regulators,  Christopher   James,  Principal,  Regulatory  Assistance  Project  (RAP),  ACEEE  Summer  Study,  August  2014   same principles as our demonstration tool, that could potentially be used by states as part of their future plans. Indeed, many existing tools used by efficiency program administrators would require only modest modifications (and perhaps no modifications in some cases) to provide such functionality. Figure 2. Efficiency power plant planning tool inputs. 17 "End Use" (what the electricity is being used for) Representative installed equipment (also called "Measure") Unit of installed equipment (what are you counting?) Quantity of installed equipment (how many will be installed?) Savings per Unit (kWh/yr) Total Savings (MWh/yr) RESIDENTIAL Residential Cooling ENERGY STAR Central A/C Air Conditioner 756 150 113 Cooking & Laundry CEE Tier 3 Washer Washing Machine 6,830 237 1,619 Lighting CFL Light Bulb 981,130 35 34,340 Refrigeration Recycled Refrigerator Refrigerator 2,127 720 1,531 Space Heating Weatherization One Home 542 1,500 813 Water Heating Low Flow Showerhead Showerhead 3,530 260 918 Other Custom Projects One Home 3,257 1,000 3,257 Total Residential 42,591 COMMERCIAL & INDUSTRIAL A/C Project One C&I Project 623 5,505 3,429 Hot Water Project One C&I Project 139 1,000 139 Industrial Process Project One C&I Project 73 140,000 10,220 Interior Lighting Project One C&I Project 2,621 16,000 41,936 Motors VFD<= 10 HP One C&I Project 1,509 5,400 8,149 Refrigeration Project One C&I Project 147 17,500 2,573 Space Heating Project One C&I Project 112 4,250 476 Ventilation Project One C&I Project 73 13,400 978 Compressed Air Project One C&I Project 62 29,187 1,810 Other Project One C&I Project 540 2,000 1,080 Total Commercial & Industrial 70,789 Enter the quantity for each row in the bright yellow cell in Column E Only change the savings per unit in the light yellow cells in Column F if you have savings estimates that are specific to the service territory you are analyzing What  Might  an  Efficiency  Power  Plant  Look  Like?  
  • 19. EE Power Plant Output by Month 12 Building  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  or  Why  EE  Advocates  Should  Engage  Air  Regulators,  Christopher   James,  Principal,  Regulatory  Assistance  Project  (RAP),  ACEEE  Summer  Study,  August  2014   MWh  savings   12,000   10,000  
  • 20. EE Power Plant for a July Day 13 MWhSavings Building  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  or  Why  EE  Advocates  Should  Engage  Air  Regulators,  Christopher   James,  Principal,  Regulatory  Assistance  Project  (RAP),  ACEEE  Summer  Study,  August  2014   MWh  savings  
  • 21. Reducing  Greenhouse  Gases  and  Improving  Air  Quality  Through  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  to  Help  Air  Regulators  “Build"  EPPs,   Chris  James  and  Ken  Colburn,  Regulatory  Assistance  Project  Chris  Neme  and  Jim  Greva,,  Energy  Futures  Group,  ACEEE  Summer  Study,  August  2014   Figure 1. Ozone design values 2009-11. Source: EPA 2014b Opportunities to Include Energy Efficiency in Clean Air Act Requirements The EE community can help spur the inclusion of EE in new and revised air quality rules, and promote EE’s role in helping states and air pollution sources comply with such rules, in two principal areas. First, the EE community should assure that EPA rules explicitly include EE as a compliance option. Because many states are expressly prohibited by their state constitutions LocaZons  with  Air  PolluZon  Exceeding  Clean  Air  Standards   OpportuniZes  to  include  Energy  Efficiency  in  Clean  Air  Requirements  
  • 22. New York California USA minus CA & NY Per Capital Electricity Consumption 165 GW Coal Power Plants Californian’s have net savings of $1,000 per family [EPPs] For delivering least-cost & risk electricity, natural gas & water services Integrated Resource Planning (IRP) & Decoupling sales from revenues are key to harnessing Efficiency Power Plants California 30 year proof of IRP value in promoting lower cost efficiency over new power plants or hydro dams, and lower GHG emissions. California signed MOUs with Provinces in China to share IRP expertise (now underway in Jiangsu). Net  Savings   $165  per   capita  
  • 23. 14 Annual Energy Savings from Efficiency Programs and Standards 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 GWh/year Appliance Standards Building Standards Utility Efficiency Programs at a cost of ~1% of electric bill ~15% of Annual Electricity Use in California in 2003 Arthur  H.  Rosenfeld,  Commissioner  California  Energy  Commission,  Successes  of  Energy  Efficiency:  The  United  States  and  California,  Na:onal   Environmental  Trust,  May  2,  2007  
  • 24. COOL  CITIES   BENIGN  GEOENGINEERING   Over 4000 Walmart stores with white roofs, and standard practice since 1990 Reflects away 80% of solar heat SOLAR REFLECTORS
  • 25. A  Real-­‐World     Example  of  Cooling   25   The whitewashed greenhouses of Almeria, Spain have cooled the region by 0.8 degrees Celsius each decade compared to surrounding regions, according to 20 years of weather station data. Source:    Google  Earth    
  • 26. Hashem Akbari Arthur Rosenfeld and Surabi Menon, Global Cooling: Increasing World-wide Urban Albedos to Offset CO2, 5th Annual California Climate Change Conference, Sacramento, CA, September 9, 2008, http://www.climatechange.ca.gov/events/2008_conference/presentations/index.html World of Solar Reflecting Cities $2+ Trillion Global Savings Potential, 59 Gt CO2 Reduction 100 m2
  • 27. 27   White  roofs,  cool-­‐colored  roofs  save   money  and  can  even  avoid  the  need  to   air  condi:on   flat,  white   pitched,  white   pitched,  cool  &  colored   OLD   NEW   AC  savings  ≈  15%   AC  savings  ≈  10%   AC  savings  ≈  5%   AC  savings  ≈  15%   AC  savings  ≈  10%  
  • 28. Temperature  and  Smog  Forma:on   28   Source:  Maryland  Commission  on  Climate  Change   EPA  Compliance  Std  =  75   TransiZon  Zone  
  • 29. Calif  Title  24  “Cool  Roof”  standards   •  In  2005,  California’s  “Title  24”  energy  efficiency   standards  prescribed  white  surfaces  for  low-­‐sloped  roofs   on  commercial  and  large  residen:al  buildings   (apartments,  hotels,  etc.).  Several  hot  states  are   following.   •  In  2008,  California  prescribed  “cool  colored”  surfaces  for   steep  residen:al  roofs  in  its  5  ho,est  climate  zones,  but   not  yet  Los  Angeles.   •  Other  U.S.  states  &  all  countries  with  hot  summers   ought  to  follow.     29  
  • 30. Resources  on  the  web   LBNL  –  Heat  Island  Group   HeatIsland.LBL.gov     Global  Cool  Ci:es  Alliance   www.GlobalCoolCi:es.org     Cool  Roofs  and  Cool  Pavements   Toolkit   www.CoolRoofToolkit.org       Art  Rosenfeld’s  website   www.ArtRosenfeld.org   30   Figure 6: Two Cool Roof Installations A cool coating is applied to a dark roof (top), and a cool single-ply membrane roof is unrolled (bottom). Image Source: DIY Advice or coated to make them reflective. Built-Up Roofs consist of a base sheet, fabric reinforcement layers, and a protective surface layer that is traditionally dark. The surface layer can be made in a few different ways, and each has cool options. One way involves embedding mineral aggregate (gravel) in a flood coat of asphalt. By substituting reflective marble chips or gray slag for dark gravel you can make the roof cool. A second way built-up roofs are finished is with a mineral surfaced sheet. These can be made cool with reflective mineral granules or with a factory-applied coating. Another surface option involves coating the roof with a dark asphaltic emulsion. This type can be made cool by applying a cool coating directly on top of the dark emulsion. Modified Bitumen Sheet Membranes are composed of one or more layers of plastic or rubber material with reinforcing fabrics, and are surfaced with mineral granules or with a smooth finish. A modified bitumen sheet can also be used to surface a built-up roof, and this is called a “hybrid”  roof.  Modified  bitumen  surfaces  can  be  pre- coated at the factory to make them cool. Spray Polyurethane Foam roofs are constructed by mixing two liquid chemicals together that react and expand to form one solid piece that adheres to the roof. Since foams are highly susceptible to mechanical, moisture, and UV damage, they rely on a protective coating. These coatings are traditionally reflective and offer cool roof performance. Steep Sloped Roofs Shingled Roofs consist of overlapping panels made from any of numerous materials. Fiberglass asphalt shingles, commonly used on homes, are coated with granules for protection. Cool asphalt shingles are use specially coated granules that provide better solar reflectance. While it is possible to coat existing asphalt shingles to make them cool, this is not normally recommended or approved by shingle manufacturers. Other shingles are made from wood, polymers, or metals and these can be coated at the factory or in the field to make them more reflective. Metal shingles are described in the Metal Roofs section that follows. x EPDM stands for ethylene propylene diene M-class, a kind of synthetic rubber. Cool Policies for Cool Cities: Best Practices for Mitigating Urban Heat Islands in North American Cities Virginia Hewitt and Eric Mackres, American Council for an Energy-Efficient Economy Kurt Shickman, Global Cool Cities Alliance June 2014 Report Number U1405 © American Council for an Energy-Efficient Economy and Global Cool Cities Alliance 529 14th Street NW, Suite 600, Washington, DC 20045 Phone: (202) 507-4000 Twitter: @ACEEEDC Facebook.com/myACEEE www.aceee.org www.globalcoolcities.org Best Practices for Mitigating Urban Heat Islands in North American Cities Virginia Hewitt and Eric Mackres, American Council for an Energy-Efficient Economy Kurt Shickman, Global Cool Cities Alliance June 2014 Report Number U1405 © American Council for an Energy-Efficient Economy and Global Cool Cities Alliance 529 14th Street NW, Suite 600, Washington, DC 20045 Phone: (202) 507-4000 Twitter: @ACEEEDC Facebook.com/myACEEE www.aceee.org www.globalcoolcities.org
  • 31. HVAC  &  Electric  Motors   TUNNELING  THROUGH  TO  LOW-­‐E  
  • 32. Now use 1/2 global power 30-50% efficiency savings achievable w/ high ROI ELECTRIC MOTOR SYSTEMS
  • 33. Improvement Over Time 10 0 10 20 30 40 50 60 70 80 90 100 110 1970 1980 1990 2000 2010 2020 2030 NormalizedEUI(1975Use=100) Year Improvement in ASHRAE Standard 90.1 (Year 1975-2013) 90-1975 90A -1980 90.1-1989 90.1- 1999 90.1- 2007 90.1- 2010 90.1-2004 14% 4.5% 0.5% 12.3% 4.5% 18.5% 90.1-2001 90.1- 2013 18.5% 6~8% Improvement  in  ASHRAE  Standard  90.1  (1975-­‐2013)   PNNL,  Building  Codes  Commercial  Landscape,  PNNL-­‐SA-­‐103479,  June  2014  
  • 34. 10 Source: David Goldstein New United States Refrigerator Use v. Time and Retail Prices 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 AverageEnergyUseorPrice 0 5 10 15 20 25 Refrigeratorvolume(cubicfeet) Energy Use per Unit (kWh/Year) Refrigerator Size (cubic ft) Refrigerator Price in 1983 $ $ 1,270 $ 462 Arthur  H.  Rosenfeld,  Commissioner  California  Energy  Commission,  Successes  of  Energy  Efficiency:  The  United  States  and  California,  Na:onal   Environmental  Trust,  May  2,  2007  
  • 35. ASHRAE Standard 90.1 Projections 11 Heating and cooling use index based on weighted equipment efficiency requirement changes; Envelope based on typical medium office steel frame wall and window areas with U-factor changes; Lighting power based on building area allowances weighted for U.S. building floor area; Overall Standard 90.1 progress based on PNNL’s analysis. ASHRAE  Standard  90.1  ProjecZons  to  2030   PNNL,  Building  Codes  Commercial  Landscape,  PNNL-­‐SA-­‐103479,  June  2014  
  • 36. Interrelationships IECC  adopts  90.1  by  reference  –  designer  choice  which  to  use  but  cannot  ‘pick  and  choose’,  must  use  one  or  the  other  only   IgCC  adopts  the  IECC  by  reference  but  adds  criteria  to  address  addiZonal  items  not  covered  in  the  IECC  or  increases   stringency  of  the  IECC   IgCC  adopts  189.1  by  reference  –  designer  choice  which  to  use  but  cannot  ‘pick  and  choose’,  must  use  one  or  the  other  only   ASHRAE  189.1  adopts  90.1  by  reference  but  adds  criteria  to  address  addiZonal  items  not  covered  by  90.1  or  increases   stringency  of  90.1   InterrelaZonships  Building  Energy  Commercial  Codes   ASHRAE  189.1     ASHRAE  90.1    
  • 37. ASHRAE--Chiller Plant Efficiency 0.5 (7.0) 0.6 (5.9) 0.7 (5.0) 0.8 (4.4) 0.9 (3.9) 1.0 (3.5) 1.1 (3.2) 1.2 (2.9) NEEDS IMPROVEMENTFAIRGOODEXCELLENT AVERAGE ANNUAL CHILLER PLANT EFFICIENCY IN KW/TON (C.O.P.) (Input energy includes chillers, condenser pumps, tower fans and chilled water pumping) New Technology All-Variable Speed Chiller Plants High-efficiency Optimized Chiller Plants Conventional Code Based Chiller Plants Older Chiller Plants Chiller Plants with Correctable Design or Operational Problems Based on electrically driven centrifugal chiller plants in comfort conditioning applications with 42F (5.6C) nominal chilled water supply temperature and open cooling towers sized for 85F (29.4C) maximum entering condenser water temperature and 20% excess capacity. Local Climate adjustment for North American climates is +/- 0.05 kW/ton kW/ton C.O.P. 0.59 typical Trane Guaranty Source: LEE Eng Lock, Singapore 0.49  Infosys,  Bangalore,  India   0.59  Trane,  Singapore   Sources:  LEE  Eng  Lock,  Trane,  Singapore;  Punit  Desai,  Infosys,  Bangalore,  India;  Tom  Hartman,  TX,  h,p://www.hartmanco.com/    
  • 38. Source: LEE Eng Lock, Singapore Typical Chiller Plant -- Needs Improvement (1.2 kW per ton)
  • 39. Source: LEE Eng Lock, Singapore High Performance Chiller Plant (0.56 kW/t)
  • 40. Source: LEE Eng Lock, Singapore HOW? Bigger pipes, 45° angles, Smaller chillers
  • 41. Financial Benefits Before After Cooling TonHr/Week 80,000 80,000 System kWH/Week 152,000 47,200 kWh/TonH 1.90 0.59 Energy Savings in % Energy Savings in kWH / Year Energy Savings in $/Year @ $0.20/KWH Water usage per year (M3) 0 34,682 Water Charge per year (New Water @ $1.0/M3) Estimated Total $ Savings per Year Annual Reduction in Carbon Emission per year (Tones) $34,682 $1,055,238 2,724,800 68.95% 5,449,600 $1,089,920 ROI = 29%. Energy Savings over 15 years = S$15M
  • 42. !  Making pipes just 50% fatter reduces friction by 86% Pipe%Dia%in% inch% Flow%in% GPM% Velocity% Ft%/sec% Head%loss% S/100S% 6% 800% 8.8% 3.5% 10% 800% 3.2% 0.3% Big Pipe, small pumps Punit  Desai,  Environmental  Sustainability  at  Infosys  Driven  by  values,  Powered  by   innova:on,  InfoSys,  presenta:on  to  RMI,  Sept  15,  2014  
  • 43. 1. Ask for 0.60 kW/RT or better for chiller plant. 2. Ask for performance guarantee backed by clear financial penalties in event of performance shortfall. 3. Ask for accurate Measurement & Verification system of at least +-5% accuracy in accordance to international standards of ARI-550 & ASHRAE guides 14P & 22. 4. Ask for online internet access to monitor the plant performance. 5. Ask for track record. Source: LEE Eng Lock, Singapore Simple Guide to retrofit success 0.50  
  • 44. design temperature, thus reducing pump system opportunities. Figure 4: US Pumping System Efficiency Supply Curve Cost effective energy saving potential 0 50 100 150 200 250 300 350 400 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 CostofConservedElectricity(US$/MWh-saved) Annual Electricity Saving Potential (GWh/yr) Pump System Efficiency Supply Curve for U.S. Industry Average Unit Price of Electricity for U.S Industr in 2008:70.1 US$/MWh* 5 6 8 7 9 10 Cost effective electricity savingpotential: 36,148 GWh/yr Technicalelectricity savingpotential: 54,023 GWh/yr 4 2 1 3 * The dotted lines represent the range of price from the sensitivity analysis- see Section 4.5. NOTE: this supply curve is intended to provide an indicator of the relative cost-effectiveness of system energy efficiency measures at the national level. The cost-effectiveness of individual measures will vary based on site-specific conditions. US  Pumping  System  Efficiency  Supply  Curve   Annual  Electricity  Saving  PotenZal  (GWh/yr)   Cost  of  Conserved  Electricity  ($US/MWh-­‐saved)   *  The  do,ed  lines  represent  the  range  of  price  from  the  sensi:vity  analysis-­‐  see  Sec:on  4.5.   NOTE:  this  supply  curve  is  intended  to  provide  an  indicator  of  the  rela:ve  cost-­‐effec:veness  of  system  energy  efficiency  measures  at  the   na:onal  level.  The  cost-­‐effec:veness  of  individual  measures  will  vary  based  on  site-­‐specific  condi:ons.   Motor  Systems  Efficiency  Supply  Curves,  UNIDO,  UN  Industrial  Development  Organiza:on,  December  2010   Equal  to  14  natural  gas   power  plants  (500MW  each)  
  • 45. RESULTS AND DISCUSSION No. Energy Efficiency Measure Cumulative Annual Electricity Saving Potential in Industry (GWh/yr) Final CCE (US$/MWh- Saved) Cumulative Annual Primary Energy Saving Potential in Industry (TJ/yr) Cumulative Annual CO2 Emission Reduction Potential from Industry (kton CO2 /yr) 1 Isolate flow paths to non-essential or non-operating equipment 10,589 0.0 116,265 6,382 2 Install variable speed drive 23,295 44.5 255,784 14,040 3 Trim or change impeller to match output to requirements 33,279 57.0 365,405 20,057 4 Use pressure switches to shut down unnecessary pumps 36,148 65.7 396,905 21,786 5 Fix leaks, damaged seals, and packing 37,510 84.1 411,855 22,607 6 Replace motor with more energy efficient type 39,084 116.9 429,138 23,555 7 Remove sediment/scale buildup from piping 42,523 126.3 466,906 25,628 8 Replace pump with more energy efficient type 48,954 132.2 537,516 29,504 9 Initiate predictive maintenance program 52,302 189.0 574,280 31,522 10 Remove scale from components such as heat exchangers and strainers 54,023 330.9 593,171 32,559 Table 14: Cumulative Annual Electricity Saving and CO2 Emission Reduction for Pumping System Efficiency Measures in the US Ranked by their Final CCE Table 15: Total Annual Cost-effective and Technical Energy Saving and CO2 Emission Reduction Potential for US Industrial Pumping Systems  CumulaZve  Annual  Electricity  Saving  and  CO2  Emission  ReducZon  for   Pumping  System  Efficiency  Measures  in  the  US  Ranked  by  their  Final  CCE   Motor  Systems  Efficiency  Supply  Curves,  UNIDO,  UN  Industrial  Development  Organiza:on,  December  2010  
  • 46. Hidden treasure: Why energy efficiency deserves a second look Germany introduced an energy tax (the “eco-tax”) in 1999 to encourage energy savings in the private, public Switzerland’s Energy Strategy 2050 framework propo- ses similar measures with compulsory efficiency targets Note: * Estimation for industrial companies, where direct energy costs account for ~5% of total costs Sources: US Department of Energy; Energy Tax Advisory Case Studies; Lawrence Berkeley National Laboratory; Bain analysis Energy consumption Taxes and incentives Operational non-energy costs Input material costs Own generation/load balancing EE invest/ spend Improved profit margin Sales leverage 2.5 2.0 1.5 1.0 0.5 0 ~ 1% ~ 0.5% ~ 0.5% ? ~ 0.5% ~ 0.5% 2% SALESCOST REDUCTION Percentage of net income (averaged over three years) 10%-30% savings in energy costs for typical IG&S companies In most OECD countries, tax measures typically add 30%-50% on top of the expected energy gains Non-energy costs savings typically amount to an additional 50% of energy savings Not quantified 10-30% reduction in suppliers’ energy costs, 50% pass- through Energy efficiency measures with average investment payback of ~1.5 years, when measured against direct energy savings Figure 2: Typical manufacturing companies* can improve their profit margins by 2% within three years Typical  manufacturing  companies*  can  improve    their  profit  margins  by  2%  within  36  months  
  • 47. LighZng   TUNNELING  THROUGH  TO  LOW-­‐E  
  • 48. •  1/4th  Total  USA  Electricity  Consumed  For  LighZng  (and   associated  Cooling  to  remove  heat  from  lights)   •  Equivalent  to  Nearly  Half  of  U.S.  Coal  Plants   •  High-­‐efficiency  LED  Luminaires  Can  Deliver  Beaer   Quality  Light  While  EliminaZng  Need  for  Half  of  Coal   Plants  at  a  LCOE  [Levelized  Cost  Of  Electricity]  Lower   than  current  coal  plant  operaZng  costs   IlluminaZon  Services   1  LED  lamp  provides  life3me  light  output  of  more  than  1  million  candles  at  frac3on  of  cost    
  • 49. Candle  consumes  about  80  waas  (W)  of  chemical  energy  to  emit  12   lumens  of  light  for  about  seven  and  a  half  hours.   Carbon-­‐filament  bulb  used  ¼  less  energy  (60  W),  emiaed  15  Zmes   as  much  light  (180  lumens),  and  lasted  133  Zmes  as  long  as  the   candle.   Tungsten  filament  replaced  the  carbon  one,  efficiency  soared  4-­‐ fold  .  Tungsten  bulb  now  matched  lifeZme  output  of  8,100   candles,  yet  the  lamp  and  electricity  cost  only  as  much  as  14   candles.   CFL  same  lumen  output  as  incandescent,  but  consumes  75%  less   electricity  &  lasts  10  Zmes  longer.  One  CFL  now  displaces  the   need  for  500,000  candles.   LED  (Light-­‐Emi{ng  Diode)  lamp  provides  same  lumen  output  as   CFL,  but  consumes  1/3rd    less  electricity  &  lasts  10  Zmes  longer.   One  LED  now  displaces  need  for  more  than  1  million  candles.  
  • 50. 4 Assuming constant lumen demand per square Residential Commercial Industrial Outdoor General Service Incandescent Sectors Decorative Directional Linear Low / High Bay Street / Roadway Parking Building Exterior Submarkets Technologies Incandescent Reflector Halogen CFL Reflector CFL Pin T5 Metal Halide High Pressure Sodium Mercury Vapor LED Lamp LED Luminaire Halogen Reflector CFL T8 T12 Energy  Savings  Forecast  of  Solid-­‐State  Ligh:ng  in  General  Illumina:on  Applica:ons,  U.S.  Department  of  Energy  August  2014   LighZng  Landscape    
  • 51. Energy  Savings  Forecast  of  Solid-­‐State  Ligh:ng  in  General  Illumina:on  Applica:ons,  U.S.  Department  of  Energy  August  2014   BR=Bulged  Reflector        MR=Mul:faceted  Reflector      PAR=Parabolic  Aluminized  Reflector  
  • 52. © 2012 Strategies Unlimited 27 LED Lighting Market Segmentation LED Lighting Market Luminaires Replacement Lamps A19 /Standard PARS MR16 Candelabras /Globes/ Decorative L F T June13, 2012 The lamp technologies have been categorized as displayed below in Figure 2-1. The categories are based on those used in the 2001 LMC, the categories used in the various data sources, as well as input from members of the technical review committee. Descriptions of each lamp technology can be found in Appendix A. Figure 2-1 Lamp Classification6 Incandescent General Service - A-type General Service - Decorative Reflector Miscellaneous Halogen General Service Reflector LowVoltage Display Miscellaneous Compact Fluorescent General Service – Screw General Service – Pin Reflector Miscellaneous Fluorescent T5 T8 less than 4 foot T8 4 foot T8 greater than 4 foot T8 less than 4 foot T8 4 foot T8 greater than 4 foot T8 U-shaped T12 U-shaped Miscellaneous High Intensity Discharge LED Lamp Miscellaneous Mercury Vapor Metal Halide High Pressure Sodium LowPressure Sodium Other SMART LED DIVERSITY OF LIGHTING APPLICATIONS A-type - Incandescent lamps PARS - parabolic aluminized reflector lamps MR16 - multifaceted reflector halogen bulbs LFT- Linear Fluorescent tubes LED Replacement of: Luminaire  
  • 53. http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/hwcfl/HWCFL-efficacy.asp Hi-Wattage CFL (55-200 watts) CFL (27-40 watts) Compact Fluorescent Lamp (CFL) (5-26 watts) Mercury Vapor Halogen Infrared Reflecting Tungsten Halogen Incandescent Fluorescent (full-size & U-tube) Electrodeless fluorescent Metal halide High-Pressure Sodium (HPS/HID) White Sodium Smart LEDs (tunable color spectrum) Efficacy of Various Light Sources 1 1 1 1 1 1 1 1 1 2 Low-Pressure Sodium (yellow-orange color) Lumens per Watt ! (lamp plus ballast)
  • 54. = Smart! LED 1! 80 watt! LED Smart LED Advantages! Higher Lumens & lower Watts from Fewer lamps Smart LED other benefits - longer lifespan, no mercury, fully dimmable, instant start/restart, less heat, tunable colour spectrum 100k hrs 20k hrs 2k hrs 10k to 20k hrs Luminaire  
  • 55. Energy  Savings  Forecast  of  Solid-­‐State  Ligh:ng  in  General  Illumina:on  Applica:ons,  U.S.  Department  of  Energy  August  2014   U.S.  LighZng  Service  Forecast  2013  to  2030   (Trillions  of  Lumen-­‐hours)   Fluorescent   High-­‐Intensity     Discharge  (HID)   LED  Luminaires   LED  lamps   CFLs  
  • 56. SEM  oF  ROD  (blue)  and  CONE  (green)  cells  of  the  re:na.  ROD  cells  are  sensi:ve  to  low   light  levels  and  produce  low-­‐clarity  black  and  white  vision.  CONE  cells  are  sensi:ve  to   higher  levels  of  light  and  produce  sharp,  high-­‐clarity  trichroma:c  color   Cone   Rod   LIGHT  FACTORY  -­‐-­‐  ReZnal  Rods  and  Cones   Cone   Rod   top-­‐down  view  
  • 57. 3  types  of  light-­‐sensi:ve  CONE  cells  create  TRI-­‐CHROMATIC  (or   TRI-­‐STIMULUS)  color  –  blue,  green  &  red  –  or  short-­‐wavelength,   medium-­‐wavelength  and  long  wavelength  sensi:vity,   respec:vely.    ROD  cells  mediate  no  color  vision.   Mesopic Vision RODs   CONEs   RODs  &  CONEs   ReZnal  SensiZvity   ReZnal  SensiZvity  
  • 58. Our  visual  system  consists   of  a  2-­‐receptor  system:     CONE  cells  providing  vision   in  bright  light     (PHOTOPIC  vision)     ROD  cells  providing  vision   in  very  low  levels  of  light     (SCOTOPIC  vision)     RODS  &  CONES  func:on   together  at  :mes  like  dusk   (MESOPIC  vision).       3  types  of  CONE  cells,  red,   green  &  blue  (TRI-­‐ STIMULUS),  provide  wide   range    color  percep:on  in   bright  light.  
  • 59. MESOPIC  region  is   where  both  the  rods   and  cones  are     func:oning.       The  lower  light  level   allows  the  ROD  to   replenish  the  light   sensi:ve  rhodopsin   and  begin  func:oning.     The  TRI-­‐STIMULUS   CONE  receptors  s:ll   have  enough  light  to   provide  some   amounts  of  color   vision.  
  • 60. SCOTOPIC  region     occurs  in  very  dim   light  like  viewing   grass  in  a  moonless   night.       Here  only  the  RODS   are  func:oning.       The  chemicals  in  the   CONES  no  longer   have  enough  light  to   respond,  thus  we  no   longer  see  color.  
  • 61. PHOTOPIC,  MESOPIC   &  SCOTOPIC  together   allow  us  to  see  over  a   wide  range  of  ligh:ng   levels  with  about  1  or   2  billion  :mes  (109,   nine  orders  of   magnitude)  range   from  the  dimmest  to   the  brightest  image   we  can  see.   Luminous  Intensity   (Candela  per  sq  meter)  1  Candela  =    
  • 62.   Reliance  on  the  lumen  (lm)  as  the  sole   measure  of  ligh3ng  benefits  (lm/m2  and   lm/W)  can  unnecessarily  waste  energy,   increase  costs,  and  reduce  safety,  security   and  visibility.       U3liza3on  of  analogous  benefit  metrics  in   ligh3ng  standards  that  characterize   human  visual  responses  would  increase   the  value  of  ligh3ng  for  many  applica3ons.   BETTER  LIGHTING  METRICS   OpportuniZes  with  LEDs  for  Increasing  the  Visual  Benefits  of  LighZng  Mark  S.  Rea,   LighZng  Research  Center,  Rensselaer  Polytechnic  InsZtute,  Troy  NY  
  • 63. Smart LEDs are Tunable ! Along Color Spectrum
  • 64. We thus see the future of public lighting as a transition from analog to digital, from fluorescent lightbulbs to solid-state lighting—all connected to an energy grid throug variety of last-mile access technologies (see Figure 1). Figure 1. Moving from “Traditional” to “Intelligent” Lighting Networks. Additional savings can be achieved by incorporating connected controls to the Intern Source: Philips and Cisco, 2012 Moving from “Traditional” to “Intelligent” Lighting Networks source: The Time Is Right for Connected Public Lighting Within Smart Cities, CISCO & Philips, October 2012
  • 65. Smart LED RFPs Should Include ! Key Technical Specifications LED photometric testing standards: ! • IES LM-79-08 Light output, efficacy, color for LED products! • IES LM-80-08 Light output over time, temperature for LED packages
 IES TM-21-11 Extrapolating LM-80 test data to predict life! • IES LM-82-12 Light output, efficacy, color over temperature for light engines! • ANSI/UL 153:2002 (Secs. 124-128A) Methods for in-situ temperature ANSI/UL 1574:2004 (Sec. 54) method (ISTM) testing for EnergyStar! • IP6 Addressable Approved method describing procedures and precautions in performing reproducible measurements of LEDs:! ! – total flux,
 – electrical power,
 – efficacy (lm/watt), and – chromaticity! N A N C Y C L A N T O N , P E , F I E S , I A L D L E E D F E L L O W C L A N T O N & A S S O C I A T E S , I N C . B O U L D E R , C O L O R A D O W W W . C L A N T O N A S S O C I A T E S . C O M Streetlighting Guidel and Design Decisio www.clantonassociates.com Questions? www.clantonassociates.com
  • 66. BIM  EvoluZon  BIM Evolution Hand Drawing 2D CAD evolution 3D CAD BIM 3D/4D/5D..XD BIM;  Building  Informa:on  Modeling,  but  also  encompasses  Building  Intelligence  Management  
  • 67. Neil  Calvert,  “Why  We  Care  About  BIM…,”  Direc:ons  Magazine,  Dec.  11,  2013,  h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436    
  • 68. •  20%  reducZon  in  build   costs  (buy  4,  get  one   free!)   •  33%  reducZon  is  costs   over  the  lifeZme  of  the   building   •  47%  to  65%  reducZon  in   conflicts  and  re-­‐work   during  construcZon   •  44%  to  59%  increase  in   the  overall  project   quality   •  35%  to  43%  reducZon  in   risk,  beaer  predictability   of  outcomes   •  34%  to  40%  beaer   performing  completed   infrastructure   •  32%  to  38%   improvement  in  review   and  approval  cycles   BIM  SIMs  
  • 69. Neil  Calvert,  “Why  We  Care  About  BIM…,”  Direc:ons  Magazine,  Dec.  11,  2013,   h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436    
  • 70. Issa, Suermann and Olbina (A) Solar radiation Analysis (B) Daylighting analysis (C) Shading analysis (D) Ventilation and Airflow Analysis Figure 1: Different kinds of analysis performed by Autodesk Ecotect (Source: <www.autodesk.com/revit>) Increase  in  project  Value     with  increase  in  BIM  details   Solar  RadiaZon  Analysis   DaylighZng  Analysis   Shading  Analysis   VenZlaZon  &  Airflow  Analysis  
  • 71. h,ps://www.youtube.com/watch?v=g04-­‐G53mbmc   3D,  4D,  5D,  6D,  7D  BIM   Con:nuous,  smarter  performance  
  • 72. Planned vs. Actual Planned  vs.  Actual  
  • 73. Building Analytics in action At one client facility running Building Analytics, the preheating coil and cooling coil were operating simultaneously and wasting more than $900 and 80,000 kBTUs on a daily basis. The problem was pinpointed at a leaking chilled water valve that once repaired produced $60,000 in annual savings with ROI in the first month. Mixed air temperature sensor Outdoor air temp “Occupancy” is at set point Return fan status Preheating discharge temperature Heating valve position Cooling valve position Supply air temperature set point Supply fan status Simultaneous heating and cooling Building name: Equipment name: Analysis name: Estimated daily cost savings: Problem: Excess or simultaneous heating and cooling either providing excess heating or cooling or operating simultaneously. Possible causes: and is leaking. > Temperature sensor error or sensor installation error is causing improper control of the valves.
  • 74. Issa, Suermann and Olbina 2D 3D 4D 5D Risk Figure 3: Decrease in project risk with the increase in model details VICO Control is a location based virtual construction system that allows the creation of compressed schedules which al- low the user to determine progress by comparing actual productivity to the project schedule. Many BIM models are not able to store information beyond what the building looks like and as such do not allow the user to store info on the construction process. VICO Control allows integrated construction of the whole project and allows the user to link duration and cost in- formation directly to the model. Accordingly the user can instantly see the impact of changes in scope and schedule on the entire project. It links the building model to estimating and scheduling information going from 3D to 5D and allows the user Decrease  in  project  risk     with  increase  in  BIM  details   6D Cradle-­‐to-­‐Cradle  Facility  Lifespan  Integra3on     7D Neil  Calvert,  “Why  We  Care  About  BIM…,”  Direc:ons  Magazine,  Dec.  11,  2013,   h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436    
  • 75. John  Boecker,  Integra:ve  Energy,  Water,  and  Waste  Community  Design…from  vision  and  concept  to  prac:cal  Implementa:on,  Army  Net-­‐Zero  Installa:ons  Conference:   19  January  2012   Integrative Design Mantra Everyone Engaging Everything !!!!group Everything Early www.sevengroup.com
  • 76. Benchmarking of Infosys buildings Design%target% Units% Exis:ng%(US)% BeXer% Best%prac:ce% Infosys% Delivered(energy(intensity( kBtu/sfYy( 90( 40Y60( <30( <25( LPD:(Design( W/sf( 1.5( 0.8( 0.4Y0.6( 0.4Y0.6( LPD:(Opera3onal( W/sf( 1.5( 0.6( 0.1Y0.3( <0.15( Installed(computers/appliances..( W/sf( 4Y6( 1Y2( <0.5( <0.7( Glazing(RYvalue((center(of(glass)( sfYF0Yh/Btu( 1Y2( 6Y10( ≥20( >5( Window(RYvalue((including(frame)( sfYF0Yh/Btu( 1( 3( 7Y8( >5( Glazing(spectral(selec3vity( Ke(=(Tvis/SF( 1( 1.2( >2.0( >2.0( Roof(solar(absorptance(and(emilance( α,(ε# 0.8,(0.2( 0.4,(0.4( 0.08,(0.97( 0.18,(0.99( Installed(mechanical(cooling( sf/ton( 250Y350( 500Y600( 1200Y1400+( 750(Y(1000( Cooling(designYhour(efficiency( kW/ton( 1.9( 1.2Y1.5( <0.6( <0.59( US India 11 Punit  Desai,  Environmental  Sustainability  at  Infosys  Driven  by  values,  Powered  by  innova:on,  InfoSys,  presenta:on  to  RMI,  09-­‐15-­‐2014  
  • 77. Integrated and goal oriented design approach HVAC(Goal( Ligh3ng(Goal( Water(Goal( !  Max envelope heat gain 1.0 W/sqft !  Total building @ 750-1000 sqft/TR !  25 deg C, 55% RH !  LPD of 0.45 W/sqft !  90% of building to be day lit > 110 lux !  No Glare throughout the year !  Architects !  Facade Specialists !  IT Specialists !  HVAC Engineers !  Lighting Specialists !  Architects !  Facade Specialists !  Lighting Specialists !  Electrical Designers !  PHE Engineers !  Architects !  Landscape Architects !  Less than 25 LPD for office building !  Zero discharge !  100% self sufficient T E A M G O A L( 13 Punit  Desai,  Environmental  Sustainability  at  Infosys  Driven  by  values,  Powered  by  innova:on,  InfoSys,  presenta:on  to  RMI,  Sept  15,  2014  
  • 78. und partnerund partner Arena  Amazônia   Leed  Silver  World  Soccer  Stadium  2014     Manaus,  Brazil   •  Brazil  ranks  among  the  world’s  top  5  countries  with  LEED-­‐cerZfied  projects.     •  30  million  •2  of  LEED-­‐cerZfied  space.       •  Six  were  cerZfied  for  use  in  the  2014  World  Cup  Soccer  Championships.       •  Arena  Amazônia  used  a  fracZon  of  the  steel  (5,700  tons)  compared  to   convenZonal  sports  and  entertainment  venues.  
  • 79. Arena  Amazônia   State-­‐of-­‐the-­‐art  lightweight  roof  based  on  the  principle  of  a  horizontally  oriented  spoked  wheel.  The  circular  roof  structure  is   comprised  of  high-­‐strength  cables  connecZng  inner  “tension  rings”  at  the  center  of  the  circle  to  an  outer  rim,  or  “compression  ring.”   The  cable  “spokes,”  which  are  allocated  at  the  inner  edge  of  the  roof,  are  Zghtened  between  the  outer  compression  ring  and  the   tension  rings.  This  creates  a  lightweight,  almost  floaZng  roof.    A  secondary  steel  structure  serves  as  a  frame  to  support  the   polytetrafluoroethylene  (PTFE)-­‐coated  high-­‐strength  resilient  fiberglass  membrane  cladding.  The  roof  elements  also  serve  as  guaers  to   collect  the  large  amounts  of  water  expected  during  the  rainy  seasons.  The  design  of  the  guaers  facilitates  rainwater  collecZon  to  be   used  in  the  arena’s  plumbing  systems.  
  • 80. by Arup Associates [7], and the Saint-Etienne Métropole's Zénith Rhône-Alpes (fig. 18), by Foster and Partner architectural firme [8] represents a new contemporary interpretation for the Islamic-Arab windcatcher. Both applied the same design concept of capturing the prevailing wind and disperse it around the building. Fig. 17. Kensington cricket ground, ARP Associates [7] Fig. 19. Burj al 2008 by Eckhar The Showe projects in the into the futur behind the he and extensive ventilate the r drawn in from level) and ind shower tower Kensington  Oval  cricket  Stadium,  Barbados   Designed  with  tradi:onal  Wind  Catcher   Natural  cooling  &  ven:la:on  design  by  capturing  the  prevailing  wind     and  dispersing  it  around  the  building   Design  with  Nature:  Windcatcher  as  a  Paradigm  of  Natural  Ven:la:on  Device  in  Buildings,  Dr.  Abdel-­‐moniem  El-­‐Shorbagy,  Interna:onal  Journal  of  Civil   &  Environmental  Engineering  IJCEE-­‐IJENS  Vol:10  No:03,  2010  
  • 81.
  • 82. Commercial building energy efficiency supply curve by end use, 2050
  • 83. The  Federal  Energy   Regulatory  Commission   has  es:mated  that  the   U.S.  could  avoid  building   188  GWs  of  power   plants,  or  approximately   $400  billion  in  capital   investment,  through   dynamic  peak  power   controls.   Amit  Narayan,  U:lity  and  Consumer  Data:  A  New  Source  of  Power  in  the  Energy  Internet  of  Things,  GreenTechMedia,  Oct  9,  2014,   h,p://www.greentechmedia.com/ar:cles/read/U:lity-­‐and-­‐Consumer-­‐Data-­‐is-­‐a-­‐New-­‐Source-­‐of-­‐Power-­‐in-­‐the-­‐Energy-­‐Internet-­‐o? utm_source=Daily&utm_medium=Headline&utm_campaign=GTMDaily     Demand  Response  (DR)  
  • 84. Figure 2: U.S Demand Response Potential by Program Type (2019) 0 50 100 150 200 PeakReduction(GW) 0% 5% 10% 15% 20% 25% %ofPeakDemand Other DR Interruptible Tariffs DLC Pricing w/o Tech Pricing w/Tech 38 GW, 4% of peak 82 GW, 9% of peak 138 GW, 14% of peak 188 GW, 20% of peak Business-as- Expanded Achievable Full Usual BAU Participation Participation   effect of dynamic pricing over time is dependent on  AMI market penetration, which increases throughout   the  forecast  horizon.    The  more  aggressive  AMI  deployment  assumption  in  the  AP  and  FP  scenarios   explains why demand response increases more significantly in the later years of those scenarios.   It is interesting to compare the relative impacts of the four scenarios.  Moving from the BAU  scenario to   the EBAU scenario, the peak demand reduction in 2019 is more than twice as large.  This difference is   attributable to the incremental potential for aggressively pursuing non­pricing programs in states that have   U.S  Demand  Response  (DR)  PotenZal  by  Program  Type    (10  year  Zmeframe)     2500  Peaking   Plants  (75MW   each)   =  
  • 85. The  New  Smart  Power  Plants   Example  of  a  networking  kits  capable  of  running  the  industrial  Internet-­‐of-­‐Things   (IoT),  or  Internet-­‐of-­‐Everything  (IoE),  and  IT-­‐based  Energy  Services  
  • 86. INTERNET-­‐OF-­‐EVERYTHING   IP  Cloud    Controlled   Wireless  Smart  Sensor  Networks  
  • 87. Key  advantage  of  IPv6  over  IPv4  is  large  address  space.  IPv6  address  length  is   128  bits  vs.  32  bits  in  IPv4.  The  address  space  therefore  has  3.4×1038   addresses,  or  314  trillion  trillion  trillion  addresses  (sex:llion).  This  would  be   about  100  addresses  for  every  atom  on  the  surface  of  the  earth.   IPv6   Internet  Protocol  version  6    
  • 88. Dr.  Janusz  Bryzek,  Chair,  TSensors  Summit,  VP,  MEMS  and  Sensing  Solu:ons,  Fairchild  Semiconductor,  Roadmap  for  the  Trillion  Sensor  Universe,  Nov.  26,  2013  
  • 89. e Suite gy rs, nd e r ess Cisco EnergyWise Discovery Service and Optimization Service Cisco EnergyWise Management Software for Distributed Offices and Data Center Core Switches Storage UPSs CPUs PDUsMainframes Blade Servers Virtualized Servers Servers Data Center Gateways Lighting Access Control Systems Video Cameras CRAC HVAC Facilities (BMS partners) VoIP Phones Laptops Macs Thin Clients Access Points Servers Desktops Printers Campus Routers Switches Network Based No Agents! Policy Based and Automated Announcing the new and improved Cisco EnergyWise Suite See, Measure and Manage CISCO  EnergyWise  Management  OpZmizaZon  So•ware   h,p://www.cisco.com/c/en/us/products/switches/energywise-­‐op:miza:on-­‐service/index.html    
  • 90.
  • 91. 9 12 3 6 9 12 3 6 9 Hourly Prices for 7/1/0915¢ 10¢ 5¢ ¢perkWh¢perkWh am pm Prevents PHEVs from charging during peak hours Adjusts space temp. and chilled water temp. set points Dispatches thermal storage or gen-sets in response to loss in solar PV output Throttles servers for non-critical applications Ensures fans do not overcompensate for new CHW set points Provides real-time visibility to building managers Automatically dims lighting Marginal cost of power increases, T&D systems become congested Curtailment signal or real-time price provided by ISO/utility 1 2 3 5 7 8 6 9 10 4 High summer temps drive up cooling loads Example of an Automated Demand Response Event 9
  • 92. Control – A  “Spectrum”  of  Demand  Response  Options Direct Load Control (AC Cycling) Logic, decision making and control can sit with the load-serving entity, the customer, or anywhere between (e.g. a curtailment service provider): Pure Real -Time PriceInterruptible Rate Wholesale Capacity Programs Traditional  “Aggregator”   Model Critical Peak Pricing Wholesale Energy Programs Voluntary Demand Bidding Central Control Autonomous Control 7 Historical DR has been centrally controlled, but there is a push to the right of the spectrum. Buildings benefit.
  • 93. Case Study – Automated Demand Response: Georgia Institute of Technology • Georgia Institute of Technology is on a dynamic hourly tariff from Georgia Power. • Each hour, the building management system reads prices for the next 48 hours from the utility’s  web-service feed. • The facilities director sets the price threshold for automated load shedding mode. Observing a 1MW peak load reduction, ~7% of load for participating buildings Savings during initial summer 2006 pilot 10
  • 94. SMART  SYSTEM  INTELLIGENCE  ATTRIBUTES  
  • 95. REMOTE  SUPPLY                      END-­‐USE/ONSITE     Centralized   Distributed   Buildings  &     Vehicle  as   Nanogrids  
  • 96. Jim  Lazar,  The  Regulatory  Assistance  Project,  Status  of  Distributed  Genera:on  Installa:on  and  Rate  Making  In  the  US,  American  Public  Power  Associa:on  Workshop,  Jan.  13,  2014   Typical DG Advocate View Marginal Cost Perspective: • Value of distributed resource is greater than the than retail rate; • Net-metering results in subsidy to the grid from innovators. 12 Distributed  GeneraZon  (DG)  MulZple  System  Values  
  • 97. Wind  Power     &     Solar  PV  
  • 98. Source: International Energy Agency, Energy Technology Perspectives, 2008, p. 366. The figure is based on National Petroleum Council, 2007 after Craig, Cunningham and Saigo. Oil Gas Uranium Coal ANNUAL Wind Hydro Photosynthesis ANNUAL Solar Energy Annual global energy consumption by humans SOLAR PHOTONS ACCRUED IN A MONTH EXCEED    THE  EARTH’S   FOSSIL FUEL RESERVES 1   :me   use  
  • 99. In the USA, cities and residences cover 56 million hectares. Every kWh of current U.S. energy requirements can be met simply by applying photovoltaics (PV) to 7% of existing urban area— on roofs, parking lots, along highway walls, on sides of buildings, and in dual-uses. Requires 93% less water than fossil fuels. Experts  say  we  wouldn’t  have  to  appropriate  a  single  acre  of  new   land to make PV our primary energy source! 15%  
  • 100. Energy Efficiency & Renewable Energy eere.energy.gov 1 Program Name or Ancillary Text eere.energy.gov WIND AND WATER POWER PROGRAM 1 2013 Wind Technologies Market Report Ryan Wiser and Mark Bolinger Lawrence Berkeley National Laboratory Report Summary August 2014
  • 101. 10 U.S. Lagging Other Countries in Wind As a Percentage of Electricity Consumption Note: Figure only includes the countries with the most installed wind power capacity at the end of 2012 Wind  as  Percentage  of  a  Country’s  Electricity  ConsumpZon    
  • 102. WIND AND WATER POWER PROGRAM Wind PPA Prices Have Reached All-Time Lows 50 $0 $20 $40 $60 $80 $100 $120 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 PPA Execution Date Interior (18,178 MW, 192 contracts) West (7,124 MW, 72 contracts) Great Lakes (3,044 MW, 42 contracts) Northeast (1,018 MW, 25 contracts) Southeast (268 MW, 6 contracts) LevelizedPPAPrice(2013$/MWh) 75 MW 150 MW 50 MW
  • 103. that the turbine scaling and other improvements to turbine efficiency described in Chapter 4 have more than overcome these headwinds to help drive PPA prices lower. Source: Berkeley Lab Figure 46. Generation-weighted average levelized wind PPA prices by PPA execution date and region Figure 46 also shows trends in the generation-weighted average levelized PPA price over time among four of the five regions broken out in Figure 30 (the Southeast region is omitted from Figure 46 owing to its small sample size). Figures 45 and 46 both demonstrate that, based on our data sample, PPA prices are generally low in the U.S. Interior, high in the West, and in the middle in the Great Lakes and Northeast regions. The large Interior region, where much of U.S. wind project development occurs, saw average levelized PPA prices of just $22/MWh in 2013. USA  Wind  Power  LCOE  PPA  in  2013  2.5¢/kWH   GLOBAL  Wind  Power  LCOE  in  2013  6.5¢/kWh   Ryan  Wiser  &  Mark  Bollinger,  2013  Wind  Technologies  Market  Report,  Lawrence   Berkeley,  August  2014   6¢/kWh   2¢/kWh   4¢/kWh  
  • 104. WIND AND WATER POWER PROGRAM Recent Wind Prices Are Hard to Beat: Competitive with Expected Future Cost of Burning Fuel in Natural Gas Plants 54 0 10 20 30 40 50 60 70 80 90 100 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 Range of AEO14 gas price projections AEO14 reference case gas price projection Wind 2011 PPA execution (3,980 MW, 38 contracts) Wind 2012 PPA execution (970 MW, 13 contracts) Wind 2013 PPA execution (2,761 MW, 18 contracts) 2013$/MWh Price comparison shown here is far from perfect – see full report for caveats
  • 105. WIND AND WATER POWER PROGRAM Turbine Nameplate Capacity, Hub Height, and Rotor Diameter Have All Increased Significantly Over the Long Term 29
  • 106.
  • 107. energy.gov/sunshot energy.gov/sunshot Photovoltaic System Pricing Trends Historical, Recent, and Near-Term Projections 2014 Edition David Feldman1, Galen Barbose2, Robert Margolis1, Ted James1, Samantha Weaver2, Naïm Darghouth2, Ran Fu1, Carolyn Davidson1, Sam Booth1, and Ryan Wiser2 September 22, 2014 1National Renewable Energy Laboratory 2Lawrence Berkeley National Laboratory NREL/PR-6A20-62558
  • 108. Tracking the Sun VII An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2013 Galen Barbose, Samantha Weaver and Naïm Darghouth Lawrence Berkeley National Laboratory — Report Summary — September 2014 This analysis was funded by the Solar Energy Technologies Office, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
  • 109.
  • 110. $0 $2 $4 $6 $8 $10 $12 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Installation Year 10-100 kW >100 kW Residential & Commercial PV (Median Values) InstalledPrice(2013$/WDC) Installed prices continued their precipitous decline in 2013 12 Median installed prices fell by $0.7/W (12-15%) from 2012-2013, across the three size ranges shown, and have fallen by an average of $0.5/W (6-8%) annually over the full historical period Note: Median installed prices are shown only if 15 or more observations are available for the individual size range Median prices for systems installed in 2013 (n=50,614): $4.7/W $4.3/W (10-100 kW), $3.9/W (>100kW)
  • 111. PARAMETERS SUMMARIES In reality, conditions vary substantially among countries and, as discussed above, the LCOE for a technology is driven every bit as much by the cost of capital and the availability of equipment locally as it is by natural resource availability. This is particularly cost capital can at times be extremely challenging to source and tariffs or other barriers can make the importation of goods challenging. - Industrial power prices vs onshore wind and solar photovoltaic LCOE, 2013 ($/MWh) Source: Bloomberg New Energy Finance Botswana Haiti Guatemala Nigeria Myanmar SierraLeone ElSalvador Coted’Ivoire Bolivia Argentina Jamaica CostaRica India Kenya Venezuela Senegal Pakistan Bangladesh Paraguay Ethiopia Honduras Belize Nepal Trinidad&Tobago Zambia Nicaragua China Peru SouthAfrica Uganda Mexico Indonesia Suriname Rwanda Chile Zimbabwe Malawi Tajikistan Barbados Ghana Colombia Panama Bahamas Dom.Republic Brazil Tanzania Guyana Uruguay SriLanka Ecuador Mozambique 450 400 350 300 250 200 Solar PV LCOE Onshore wind LCOE 150 100 50 0 tial customers in the 55 nations and found they averaged 14.7 cents per kilowatt-hour in 20133 . However, prices were above 15 cents per kilowatt-hour in 20 Climatescope countries and 22 cents in 16 countries. Bloomberg New Energy Finance estimates the levelized cost of residential electricity for solar power at ap- proximately 15 cents per kWh with the LCOE potentially much lower in the sunniest parts of the world. That is, when power sense for a homeowner to install a solar system rather than La:n  American  &  Caribbean  na:ons   Industrial  power  prices  vs  onshore  wind  &  solar  PV     LCOE  2013  ($MWh)  
  • 112. PARAMETERS SUMMARY Progress on policy Climatescope surveyed 55 developing nations to get a better un- derstanding of what policy frameworks have been established to date and which may be most effective. Data collection included the creation of policy records now accessible at www.global-climatescope.org. In all, the survey found at least 359 clean energy-supportive poli- cies on the books in these countries today dating back to 2006. Residential power prices vs residential solar photovoltaic LCOE, 2013 ($/MWh) Source: Bloomberg New Energy Finance Barbados Haiti Peru Botswana Guyana Guatemala Nigeria China Argentina Rwanda Colombia Mexico Mozambique SriLanka Kenya SierraLeone Zimbabwe India Suriname ElSalvador Chile SouthAfrica Indonesia Myanmar Nicaragua Ghana Ecuador Zambia Venezuela Senegal Pakistan Tanzania Trinidad&Tobago Tajikistan Dom.Republic CostaRica Malawi Cameroon Ethiopia Jamaica Panama Honduras Bolivia Bahamas Belize Coted’Ivoire Nepal Uruguay Uganda Brazil Paraguay Bangladesh 450 400 350 300 250 200 Residential solar PV LCOE 150 100 50 0 Policies in force by type and year of establishment 64 71 75 Carbon Market Mechanism Debt Finance Mechanism Number of policies La:n  American  &  Caribbean  na:ons   ResidenZal  power  prices  vs  residenZal  solar  PV     LCOE,  2013  ($MWh)  
  • 113. FIRST  SOLAR  UZlity-­‐Scale  Solar  PV     2013  LCOE  $0.07-­‐0.15/kWh*   *2013  data,  costs  depending  on  irradiance  levels,  interest  rates,  and  other  factors,  e.g.   development  costs,  h,p://www.firstsolar.com/en/solu:ons/u:lity-­‐scale-­‐genera:on     Cents/kWh  
  • 114. *Permi^ng,  inspec:on,  and  interconnec:on  costs   **  Includes  installer  and  integrator  margin,  legal  fees,   professional  fees,  financing  transac:onal  costs,  O+M  costs,   produc:on  guarantees,  reserves,  and  warranty  costs.   Jesse  Morris  et  al,  REDUCING  SOLAR  PV  SOFT  COST,   A  FOCUS  ON  INSTALLATION  LABOR,  Rocky  Mountain   Ins:itute,  2013,  www.rmi.org/     Solar  PV  roo•op   system  installed   costs  vary  several-­‐ fold  from  country   to  country,  state   to  state,   depending  on   pracZces  and   policies.  
  • 115. Bloomberg  New  Energy  Finance,  2030  Market  Outlook:  Solar,  June  27,  2014   Global  ResidenZal-­‐Scale  Solar  PV     System  Economics     some parts of the Americas have already begun to see uptake of unsubsidised PV systems such as utility-scale PV in Chile. As solar technology gets cheaper we expect households and businesses to increasing opt for solar systems. There will however be opposition from utilities and changing rate structures for consumers. The first signs of this trend can already be observed: in Spain, for example, the government has threatened to impose a tax on electricity generated for auto-consumption, although the final bill is still pending. Ultimately however we don't believe developments such as this will have a material effect on the size of the market in the long term, particularly as the small-scale power storage solutions become increasingly viable. Figure 9: Global residential-scale PV system economics 2014 2025 500 ] 500 450 450 . any 50GW 400 . any 400 Hawaii .Hawaii Denmark 8 8..1350 tit 350 Slovakia Australia INeth. stralia Neth. • "' Slovakia 100GW "' - 100GW Q) Q) 0 Switz.Po 9 0 §. 250 '§. 250 ChileQ) 200 • Chile •a. 8. 200 - "(ij 150 '(ij 150 100 100 50 50 Arabia 0 0 750 1,250 1,750 2,250 750 1,250 1,750 2,250 Irradiation (kWhlkW/year) Irradiation (kWh/kW/year) Source: Bloomberg New Energy Finance. Note: NJ, New Jersey; CA, California. - c:. - !:.. ; <- "' -;: 2014   2025  
  • 116. RISKS   IN  RANKING   LEAST-­‐COST-­‐RISK  (LCR)   DELIVERED  ENERGY  SERVICES  (DES)  
  • 119. CO2e!budget!for!2°C!Limit! 111! Listed Fossil Fuel Reserves & Resources Global Non-Listed Fossil Fuel Reserves Remaining Available 2°C Carbon Budget Through 2100 2500 2000 1500 1000 500 0 Unburnable Carbon Reserves GtCO2Estimate A significant portion of the world’s fossil fuel reserves will need to remain in the ground in 2050 if we are to avoid catastrophic levels of climate change. Fossil fuel companies, however, continue to develop reserves that may never be used. 1541 987 2098 Fossil Fuel Assets at Risk Unburnable Carbon Reserves If!humanity!is!to!prevent!global!average! temperature!rise!from!exceeding!2°C!,!then! 80%!of!fossil!fuel!assets!(now!owned!by! corporaAons!or!governments)!must!not!be! burned.! ! This!means!leaving!the!majority!in!the! ground!as!stranded!assets,!or!those!that!are! consumed!must!be!done!with!zero!emission! releases,!such!as!carbon!capture!and! storage!(CCS).! ! With!CCS,!both!coal!and!most!gasZfired! power!plants!are!technically!and! economically!unnecessary,!given!robust! compeAAon!that!can!deliver!electricity! services!at!the!leastZcostZandZrisk!LCOE! (levelized!cost!of!electricity).! Chart!source:!CERES!&!CarbonTracker,!Investors!ask!fossil!fuel!companies!to!assess!how!business!plans!fare!in!lowZcarbon!future!ZZ!coaliAon!of!70!investors!worth! $3!trillion!call!on!world’s!largest!oil!&!gas,!coal!and!electric!power!companies!to!assess!risks!under!climate!acAon!and!‘business!as!usual’!scenarios,!Nov!2013!! CO2  budget  for  2°C  Limit   $28  trillion  in  Stranded  Carbon  Assets  
  • 120. 2.2   5.5   27.3   0.0   5.0   10.0   15.0   20.0   25.0   30.0   $40/tCO2   $100  /tCO2  $500/tCO2   cents  per  kWh   ¢   ¢   ¢   AddiZonal  Cost  per  kWh  of  natural  gas-­‐generated  electricity   (at  $40,  $100  and  $500  per  metric  ton  of  CO2  fee)   Steam  Turbine   1.4   3.5   17.7   0.0   2.0   4.0   6.0   8.0   10.0   12.0   14.0   16.0   18.0   20.0   $40/tCO2   $100  /tCO2   $500/tCO2   cents  per  kWh   Advanced  Gas  Turbine   ¢   ¢   ¢  
  • 121. Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org nuclear coal CC gas wind farm CC ind cogen bldg scale cogen recycled ind cogen end-use efficiency CCS Cost of new delivered electricity (US¢/kWh) US current average
  • 122. 1¢/kWh 2¢ 47 93 kg Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org Coal-fired CO2 emissions displaced per dollar spent on electrical services Carbon  displacement  at   various  efficiency  costs/kWh   Keystone  high  nuclear  cost  scenario   3¢     4¢     kg  CO2,  displaced  per  2007  dollar  
  • 123. ies was expected to decline, at the same time Mexico could see the highest growth rate jump, t from 1.8 percent in the current decade. Figure 31:  Electricity  in  Latin  America’s  Generation  Mix : Based on Ariel Yepes et al., Meeting the Balance of Electricity Supply and Demand in Latin America an ean. World Bank 2010 coal fuel oil natural gas hydro nuclear oil products others 2008 4.6% 8.4% 22.0% 58.6% 2.8% 2.3% 1.3% 2030 7.9% 3.3% 29.4% 50.0% 4.2% 1.2% 4.1% -10% 0% 10% 20% 30% 40% 50% 60% 2008 2030 Based  on  Ariel  Yepes  et  al.,  Mee:ng  the  Balance  of  Electricity  Supply  and  Demand  in  La:n  America  and  the  Caribbean.  World  Bank  2010,  cited  in  “La:n   America’s  Energy  Future”  by  Roger  Tissot  for  the  Inter-­‐American  Development  Bank  and  the  Inter-­‐American  Dialogue  Energy  Working  Paper  Series,  No.   IDB-­‐DP-­‐252,  December  2012.     Electricity  in  LaZn  America’s  GeneraZon  Mix  –  2008  and  2030  
  • 124. America and the Caribbean are rich in natural resources, not only of a renewable n. Since natural resources have historically been primarily harnessed through the blishment of hydro plants, this region can nowadays boost one of the cleanest ricity mixes in the world in terms of GHG emissions. e 1 below shows total installed capacity and hydroelectric share in the region. Figure 1. Installed capacity and hydroelectric share in Latin America (source: IDB, 2013) e the availability and quality of data on the real potential of each of these resources s considerably, the potential for exploiting new renewable energy sources, such as Installed capacity GW (Hydroelectric share %) Installed  capacity  &  hydroelectric  share  in  LaZn  America     (Le€  Map  2010,  Right  Map  Amazon  Dams  Opera:ng  &  Planned)   Le€  Map:  Carlos  Batlle  and  Juan  Roberto  Paredes,  Analysis  of  the  impact  of  increased  Non-­‐  Conven:onal  Renewable  Energy  genera:on  on  La:n  American   Electric  Power  Systems,  Tools  and  Methodologies  for  assessing  future  Opera:on,  Planning  and  Expansion,  Discussion  paper  No.  IDB-­‐DP-­‐341,  January  2014   Right  Map:  Dams  in  Amazonia,  h,p://dams-­‐info.org/en    
  • 125. Updated data, Synapse Leakage rates uncertainty Wind, Solar, Efficiency Wind power Solar power End-use Efficiency Assembled  and  adapted  from  mul:ple  sources   GHG  Emissions  Comparison  from  different  Sources  
  • 126. Net Emissions from Brazilian Reservoirs compared with Combined Cycle Natural Gas Source: Patrick McCully, Tropical Hydropower is a Significant Source of Greenhouse Gas Emissions: Interim response to the International Hydropower Association, International Rivers Network, June 2004 DAM Reservoir Area (km2) Generating Capacity (MW) km2/ MW Emissions: Hydro (MtCO2- eq/yr) Emissions: CC Gas (MtCO2- eq/yr) Emissions Ratio Hydro/Gas Tucuruí 24330 4240 6 8.60 2.22 4 Curuá- Una 72 40 2 0.15 0.02 7.5 Balbina 3150 250 13 6.91 0.12 58
  • 127. concentrations of methane at different reservoir depths, the depth of turbine and spillway intakes, and the type of spillway design. ■ Surface emissions vary widely among different parts of the same reservoir (largely due to changes in depth, exposure to wind and sun, and growth of aquatic plants), and from year to year, season to season, and between night and day. This greatly complicates efforts to develop reliable whole-reservoir estimates from a limited set of samples measured at specific points in the reservoir during specific time periods. Confidence in the measurements themselves is also hampered by the different results obtained through different measuring equipment and techniques, and disagreements over which measuring methods are most appropriate.22 Factors affecting degassing emission volumes include variations in the volume of water discharged, and the proportion of turbined water versus that which is spilled. Length of Annual Ice Cover CO2 Diffusion CH4 Bubbles Decomposition of Flooded Biomass & Soils Wind Forcing Growth & Decay of Aquatic Plants Degassing Water Level Fluctuation Plankton Growth & Decay Carbon Inputs from Watershed Drawdown Vegetation FIGURE 3. SOME KEY FACTORS INFLUENCING RESERVOIR GHG EMISSIONS Hydropower  Dam  GHG  Emissions  Can  be  Significant   Some  Key  Factors  Influencing  Reservoir  GHG  Emissions    
  • 128. 4 TABLE 1. GREENHOUSE GAS EMISSIONS FROM HYDROPOWER PLANTS Hydro plant Power Installed Flooded CO2 CH4 CH4 Total Electricity Reservoir Emissions density capacity area reservoir reservoir degassing emissions generation age per kWh (W/m2 ) (MW) (km2 ) surface surface (Mt gas/yr) (Mt CO2eq/yr) (GWh/yr) (years)§ (gCO2eq/kWh) (Mt gas/yr) (Mt gas/yr) Boreal Sainte-Marguerite 10.38 882 85 0.02 0.000 0.02 2,770 N/A 8 gross Churchill/Nelson 2.80 3,925 1,400 0.22 0.003 0.28 14,000 N/A 20 (Canada) Manic Complex 1.91 5,044 2,645 0.64 0.008 0.80 20,000 N/A 40 La Grande Complex 1.20 15,552 13,000 3.28 0.039 4.10 82,000 N/A 50 Churchill Falls 0.81 5,428 6,705 1.67 0.020 2.09 35,000 N/A 60 Average 3.42 6,166 4,767 1.17 0.014 1.46 30,754 N/A 36 Tropical Tucuruí 1.74 4,240 2,430 9.34# 0.094 0.970 31.56 18,030 6 (1990) 1,751 “reservoir Curuá-Una .56 40 72 0.04# 0.001 0.022 0.51 190 13 (1990) 2,704 net”* (Brazil) Samuel 0.40 216 540 0.22# 0.010 0.030 1.06 530 12 (2000) 2,008 Average 0.90 1,499 1,014 3.20# 0.035 0.341 11.05 6,250 2,154 Balbina 0.08 250 3,150 23.60 0.036 0.034 28.44 970 3 (1990) 29,322 Tropical Petit Saut 0.32 115 365 0.24 0.012 0.023 1.21 470 20 year avg 2,577 gross (French Guyana) including degassing Tropical Xingó 50.00 3,000 60 0.13 0.001 0.15 13,140 4-5 12 gross Segredo 15.37 1,260 82 0.08 0.0003 0.09 5,519 6-7 16 excluding Itaipú 8.13 12,600 1,549 0.10 0.012 0.34 55,188 16-17 6 degassing Miranda 7.65 390 51 0.08 0.003 0.14 1,708 2-3 83 (Brazil) Tucuruí 1.74 4,240 2,430 7.52 0.097 9.55 18,571 14-15 514 Serra da Mesa 0.71 1,275 1,784 2.59 0.033 3.28 5,585 3-4 588 Barra Bonita 0.45 141 312 0.45 0.002 0.50 618 36-37 816 Samuel 0.39 216 559 1.52 0.021 1.97 946 10-11 2,077 Três Marias 0.38 396 1,040 0.42 0.075 1.99 1,734 35-36 1,147 Average 9.43 2,613 874 1.43 0.027 2.00 11,445 14-15 584 Table  1.:  Patrick  McCully,  Fizzy  Science,  Interna:onal  Rivers  Network,  November  2006   160  to   250  g   CO2eq/ kWh   *update   *update:  William  Steinhurst,  Patrick  Knight,  and  Melissa  Schultz,  Hydropower  Greenhouse  Gas  Emissions,  State  of  the  Research,  Synapse,  February  14,  2012,   www.synapse-­‐energy.com     Table  1.    GHG  Emissions  from  Hydropower  Plants  
  • 129. 2014   2010   2010   2005   COST  OF  DROUGHT  
  • 130. 2000-­‐2009   2060-­‐2069   2030-­‐2039   2090-­‐2099   Worsening  Drought  All  Century  Long  
  • 131. “We  don’t  have  a  robust  energy  system,  and  the  costs  are  significant.  The  cost   today  is  measured  in  the  billions.  Over  the  coming  decades,  it  will  be  in  the   trillions.  You  can’t  just  put  your  head  in  the  sand  anymore.”    U.S.  Dept.  of   Energy  Official  Jonathan  Pershing,  2013   Hurricane  Sandy,  2012  
  • 132. SECURING THE U.S. ELECTRICAL GRID THE HONORABLE THOMAS F. McLARTY III & THE HONORABLE THOMAS J. RIDGE PROJECT CO-CHAIRS Energy  Surety  Microgrid   U.S.  Military  bases  mandated  to  be  “islandable”   –  capable  of  operaZng  even  if  grid  collapses   Power  Grid  DisrupZon  Risks  &  Threats   Human  or  Technical  Error,  Cybera,acks,  Military  A,acts  or  Terrorism,     Climate  Disrup:on  &  Natural  Disasters  
  • 133. A:f  Ansar,  Bent  Flyvbjerg,  Alexander  Budzier,  Daniel  Lun    Should  we   build  more  large  dams?  The  actual  costs  of  hydropower  megaproject   development.  Energy  Policy  (2014),  h,p://dx.doi.org/10.1016/j.enpol. 2013.10.069   6. U.S. Bureau of Reclamation, also see Hufschmidt and Gerin (1970),3 and Merewitz (1973) on the U.S. water-resource con- struction agencies. acquisition and resettlement; design engineerin management services; construction of all civil w ities; equipment purchases. Actual outturn costs real, accounted construction costs determined a Fig. 1. Sample distribution of 245 large dams (1934–2007), across five continents, worth USD 353B (2010 prices). A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎4 •  ex  post  outcomes  of  schedule   &  cost  es:mates  of   hydropower  dams.     •  Es:mates  are  systema:cally   &  severely  biased  below   actual  values.   •  Projects  that  take  longer  have   greater  cost  overruns;  bigger   projects  take  longer.   •   Upli€  required  to  de-­‐bias   systema:c  cost  under-­‐ es:ma:on  for  large  dams  is   +99%.   6. U.S. Bureau of Reclamation, also see Hufschmidt and Gerin (1970),3 and Merewitz (1973) on the U.S. water-resource con- struction agencies. The procedures applied to the cost and schedule data here are acquisition and resettlement; design engineering an management services; construction of all civil works ities; equipment purchases. Actual outturn costs are d real, accounted construction costs determined at the project completion. Estimated costs are defined as bud Fig. 1. Sample distribution of 245 large dams (1934–2007), across five continents, worth USD 353B (2010 prices). A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎4 Hydropower  Dam    Cost  Overruns  
  • 134. A:f  Ansar,  Bent  Flyvbjerg,  Alexander  Budzier,  Daniel  Lun    Should   we  build  more  large  dams?  The  actual  costs  of  hydropower   megaproject  development.  Energy  Policy  (2014),  h,p:// dx.doi.org/10.1016/j.enpol.2013.10.069   Fig. 3. Location of large dams in the sample and cost overruns by geography. A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎6 “Using  the  largest  and  most  reliable  reference  data   of  its  kind  and  mul:level  sta:s:cal  techniques   applied  to  large  dams  for  the  first  :me,  we  were   successful  in  fi^ng  parsimonious  models  to  predict   cost  and  schedule  overruns.       …in  most  countries  large  hydropower  dams  will  be   too  costly  in  absolute  terms  and  take  too  long  to   build  to  deliver  a  posi:ve  risk-­‐adjusted  return  unless   suitable  risk  management  can  be  affordably   provided.”   “Policymakers,  par3cularly  in  developing  countries,   are  advised  to  prefer  agile  energy  alterna3ves  that   can  be  built  over  shorter  3me  horizons  to  energy   megaprojects.”   Hydropower  Dam  Cost  Overruns  
  • 135. Corn ethanol Cellulosic ethanol Wind-battery turbine spacing Wind turbines ground footprint Solar-battery Mark Z. Jacobson, Wind Versus Biofuels for Addressing Climate, Health, and Energy, Atmosphere/Energy Program, Dept. of Civil & Environmental Engineering, Stanford University, March 5, 2007, http://www.stanford.edu/group/efmh/jacobson/E85vWindSol Area to Power 100% of U.S. Onroad Vehicles COMPARISON OF LAND NEEDED TO POWER VEHICLES Solar-battery and Wind-battery refer to battery storage of these intermittent renewable resources in plug-in electric driven vehicles
  • 136. Map  of  basins  with  assessed  shale  oil  &  shale  gas  formaZons,  2013       Argen:na  2nd   largest  deposits   in  world  
  • 137. Natural  Gas,  Coal  &  Oil    Fueled  Power  Plants  in  LaZn  America   (30%,  8%,  and  4.5%,  respecZvely,  in  2030)   Based  on  Ariel  Yepes  et  al.,  Mee:ng  the  Balance  of  Electricity  Supply  and  Demand  in  La:n  America  and  the  Caribbean.  World  Bank  2010,  cited  in  “La:n  America’s  Energy   Future”  by  Roger  Tissot  for  the  Inter-­‐American  Development  Bank  and  the  Inter-­‐American  Dialogue  Energy  Working  Paper  Series,  No.  IDB-­‐DP-­‐252,  December  2012.    
  • 140. Vulnerability!of!Natural!Gas!to!! Higher!Prices!and!VolaAlity! 131! UCS,!Gas!Ceiling,!Assessing!the!Climate!Risks!of!an!Overreliance!on!Natural!Gas!for!Electricity,!Sept.!2013,!Union!of!Concerned!ScienAsts.!! UCS,  Gas  Ceiling,  Assessing  the  Climate  Risks  of  an  Overreliance  on  Natural  Gas  for  Electricity,  Sept.  2013,  Union  of  Concerned  Scientsts  
  • 141. AccounAng!for!VolaAlity! 132! commodity! options.! ! In! fact,! implied! volatility! levels! can! be! derived! from! listed! option!premiums!to!determine!the!magnitude!of!natural!gas!movements!“pricedbin”! by!the!options!market!at!a!given!future!date!(Figure!3).!!For!example,!options!are! currently! pricing! in! a! potential! range! of! $1.18! to! $13.80! per! mmBtu! at! the! 99%! confidence!interval!by!June!2015.!! ! ! ! Figure! 3:! Using! implied! volatility! levels! and! option! premiums! to! determine! future! natural! gas! price! ranges!at!68%,!95%,!and!99%!confidence!intervals! RISK+DISTRIBUTION+ ! Assets!generally!face!two!types!of!risk:!risk!associated!strictly!with!the!underlying! asset!(alpha),!and!risk!correlated!with!the!broader!market!(beta).!!A!positive!beta! value!represents!a!positive!correlation!with!the!broader!market,!whereas!a!negative! $13.80+ + + + + June+2015+ + + + + $1.18+ Potential NYMEX Henry Hub Prices RMI,!UKlity^Scale&Wind&and&Natural&Gas&VolaKlity:&Uncovering&the&Hedge&Value&of&Wind&for&UKliKes&and&Their& Customers,&2012!! Using&implied&volaKlity&levels&and&opKon&premiums&to&determine&future& natural&gas&prices&ranges&at&68%,&95%&and&99%&confidence&intervals.& NYMEX&Henry&Hub&Futures& 68%CI& 99%CI&95%CI&
  • 143. Policies!&!Subsidies!promote!highZ Emission!investments!over!ZeroZE!OpAons! 128! Total Global Investments in Renewables Billions of Dollars Invested 2012 Investments in Fossil Fuel Reserves Versus Clean Energy 0 100 200 300 400 500 600 700 $674 $281 Corporate Investments in Developing Fossil Fuel Reserves www.ceres.org www.carbontracker.org Legacy!policies,!subsidies,! and!regulaAons!(or!lack! thereof)!conAnue!to!steer! investments!into!energy! opAons!with!highZemission! output.!!The!IMF!esAmates! $2!trillion!per!year! worldwide!in!subsidies!to! the!fossil!fuel!industry.!! Another!$4!trillion!per!year!in!economic!losses!are!due!to!fossil!fuel! externaliAes!that!go!unpriced!or!unregulated,!according!to!esAmates!by!UN! Finance!IniAaAve.!!This!skewing!of!decisionmaking!creates!uncertainty!as!to! whether!emissions!will!steeply!rise!(BAU)!or!major!policy!changes!will!occur.!! Chart!source:!CERES!&!CarbonTracker,!Investors!ask!fossil!fuel!companies!to!assess!how!business!plans!fare!in!lowZcarbon!future!ZZ!coaliAon!of!70!investors!worth! $3!trillion!call!on!world’s!largest!oil!&!gas,!coal!and!electric!power!companies!to!assess!risks!under!climate!acAon!and!‘business!as!usual’!scenarios,!Nov!2013!!
  • 144. Water!&!CCS!impact!by!power!plant! 150! Water and Carbon Capture Impact Source: Gerdes, K.; Nichols, C. Water Requirements for Existing and Emerging Thermoelectric Plant Technologies; DOE/NETL Report 402/080108; U.S. Department of Energy National Energy Technology Laboratory: Morgantown, WV, 2009. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Subcritical pc Supercritical pc IGCC – Dry Feed IGCC – Slurry Feed NGCC No Capture 0.52 0.45 0.30 0.31 0.19 With Capture 0.99 0.84 0.48 0.45 0.34 Estimated Water Consumption Increase with CO2 Capture and Compression gal/ kWh % Increase 91 87 61 46 76 pc=!pulverized!coal;!IGCC=!integrated!gasificaAon!combined!cycle!coal!plant;!! NGCCZ!natural!gas!combined!cycle! Gerdes,!K.;!Nichols,!C.!Water!Requirements!for!ExisAng!and!Emerging!Thermoelectric!Plant!Technologies;!DOE/NETL! Report!402/080108;!U.S.!Department!of!Energy!NaAonal!Energy!Technology!Laboratory:!Morgantown,!WV,!2009.!