Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

31

Share

Download to read offline

Teoria de Grafos. Conceptos básicos.

Download to read offline

Conceptos básicos de la Teoría de Grafos

Teoria de Grafos. Conceptos básicos.

  1. 1. 1Ing. Nabor Chirinos
  2. 2. 2Prof. Nabor Chirinos LAS APLICACIONES MÁS IMPORTANTES DE LOS GRAFOS SON LAS SIGUIENTES: · RUTAS ENTRE CIUDADES. · DETERMINAR TIEMPOS MÁXIMOS Y MÍNIMOS EN UN PROCESO. · FLUJO Y CONTROL EN UN PROGRAMA.
  3. 3. Prof. Nabor Chirinos 3 Grafo: Para las matemáticas y las ciencias de la computación, un grafo es el principal objeto de estudio de la teoría de grafos. De esta forma, un grafo se representa gráficamente como un conjunto de puntos (llamados vértices o nodos), unidos por líneas (aristas). Los grafos permiten estudiar las interrelaciones entre unidades que se encuentran en interacción. Son diagramas que si se interpretan en forma adecuada proporcionan información, como por ejemplo los mapas, diagramas de circuitos o de flujos, entre otros
  4. 4. Prof. Nabor Chirinos 4 Un grafo está compuesto por dos conjuntos finitos. Un conjunto de |A| aristas, Un conjunto de |V| vértices J es la relación de incidencia, que asocia a cada elemento de |A| un par de elementos de |V| Se denota G= { A, V, j}
  5. 5. Prof. Nabor Chirinos 5 Vértices: Son los objetos representados por punto dentro del grafo Aristas: son las líneas que unen dos vértices Aristas Adyacentes: dos aristas son adyacentes si convergen sobre el mismo vértice Aristas Múltiples o Paralelas: dos aristas son múltiples o paralelas si tienen los mismos vértices en común o incidente sobre los mismos vértices Lazo: es una arista cuyos extremos inciden sobre el mismo vértice
  6. 6. Prof. Nabor Chirinos 6 UNA ARISTA ES INCIDENTE A UN VÉRTICE SI ÉSTA LO UNE A OTRO VÉRTICE. La arista a, es Incidente en los Vértices A Y B.
  7. 7. Prof. Nabor Chirinos 7 Vértice Aislado: Es un vértice de grado cero 4 1 2 3 b a c Vértice Pendiente: Es aquel grafo que contiene sólo una arista, es decir tiene grado 1
  8. 8. Prof. Nabor Chirinos 8 Cruce: Son intersecciones de las aristas en puntos diferentes a los vértices Grafo Sencillo o Simple: Se dice que un Grafo G es simple si no tiene aristas cíclicas y existe una sola arista entre dos vértices. También puede ser aquel que no contiene lazos, ni aristas paralelas o dirigidas. 41 2 3 b a c d e f 41 2 3 b a d c
  9. 9. Prof. Nabor Chirinos 9 Grafo Completo: Un grafo es completo si cada vértice tiene un grado igual a n-1, donde n es el número de vértice que componen el grafo. Para saber el número máximo de aristas que posee un grafo completo se aplica la formula. A=(n*(n-1))/2
  10. 10. Prof. Nabor Chirinos 10 Existen dos tipos de grafos los no dirigidos y los dirigidos. No dirigidos: son aquellos en los cuales los lados no están orientados (no son flechas). Cada lado se representa entre paréntesis, separando sus vértices por comas, y teniendo en cuenta (vi,vj)=(vj,vi). Figuras 1 y 2. Dirigidos: son aquellos en los cuales los lados están orientados (flechas). Cada lado se representa entre ángulos, separando sus vértices por comas y teniendo en cuenta <vi ,vj>=<Vj ,vi>. En grafos dirigidos, para cada lado <a,b>, a, el cual es el vértice origen, se conoce como la cola del lado y b, el cual es el vértice destino, se conoce como cabeza del lado. Figura 3
  11. 11. Prof. Nabor Chirinos 11 Grafo no Simple: Grafo no dirigido que tiene lados paralelos y lazos. v1 v2 v3 e1 e2 e3 e4 e5 e1 y e2 : aristas paralelas e3 y e4 : aristas paralelas e5 : lazo
  12. 12. Prof. Nabor Chirinos 12
  13. 13. Prof. Nabor Chirinos 13 Grado o Valencia de un Vértice: Es el número de aristas que inciden sobre un vértice 1 2 3 4 5 a b e d c f g h i j G(1)=6 g(2)=3 g(3)=3 g(4)=3 g(5)=3
  14. 14. Prof. Nabor Chirinos 14 Grado Regular: Un grafo G simple, se dice que es K-regular, si todo vértice de G incide exactamente K-aristas, donde K es una constante. Es decir, tiene igual número de arista en todos sus vértices. 4 1 2 3 b a c d e f
  15. 15. Prof. Nabor Chirinos 15 CICLO DE EULER Recorrer todas las aristas del grafo sin repetirlas. a b c d e f a, b, c, d, e, d, f, e, c, a Ciclo de Euler Encuentre el ciclo de Euler en el siguiente Grafo: a b c d e f g h i j
  16. 16. Prof. Nabor Chirinos 16 CICLO DE HAMILTON Recorrer todos los vértices del grafo sin repetirlos, excepto el V0 y Vn que son el mismo. a, e, b, g, c, h, j, f, i, d, a Ciclo de Hamilton Encuentre el ciclo de Hamilton en el siguiente Grafo: a b c d e f g h i j a b c d e f g
  17. 17. Prof. Nabor Chirinos 17 Una matriz de adyacencia es aquella que muestra de la forma mas rustica cómo está compuesto un grafo, esto es que dónde se coloque un uno se representa como una arista que una los dos nodos y con cero donde no hay unión. Nota: Se puede obtener el Grafo a partir de la matriz de Adyacencia.
  18. 18. Prof. Nabor Chirinos 18 •ES CUADRADA Y SIMÉTRICA •LA SUMA DE CADA FILA (O COLUMNA) ES EL GRADO DEL VÉRTICE CORRESPONDIENTE •LA DIAGONAL ES NULA
  19. 19. Prof. Nabor Chirinos 19 Una matriz que está compuesta por unos y ceros, en la que se representan los nodos unidos por las aristas. Cada arista une dos y nada más que dos nodos. En general, las matrices de incidencia no son usadas computacionalmente, pero sirven como ayuda conceptual. PROPIEDADES: •No tiene por qué ser ni cuadrada ni simétrica
  20. 20. Prof. Nabor Chirinos 20
  21. 21. Prof. Nabor Chirinos 21 Obtenga la Matriz de Adyacencia partiendo del siguiente Grafo: Obtenga la Matriz de Incidencia partiendo del siguiente Grafo: a b c d e .a b c d e f g e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 Ejercicios:
  • jhonhurtado14

    Mar. 22, 2019
  • jabarja

    Mar. 12, 2018
  • llBrayanllxP

    Oct. 29, 2017
  • EulerSheridanDezaFig

    May. 24, 2017
  • dafnemcflurry

    Nov. 17, 2016
  • paolapattz

    Feb. 22, 2016
  • jozehernandez58

    Dec. 7, 2015
  • arqcompu

    Nov. 7, 2015
  • oselima

    Oct. 21, 2015
  • JessSamuelSnchezVerd

    Sep. 23, 2015
  • NoeliaBontempi1

    Sep. 22, 2015
  • Jukumari

    Jul. 15, 2015
  • LizetteJanetheKillerRodrguez

    Jun. 14, 2015
  • JorgeAlejandro9

    May. 23, 2015
  • noeramosgutierrez

    Apr. 27, 2015
  • lisethnathalia

    Apr. 7, 2015
  • Tavo2694

    Nov. 20, 2014
  • slid99

    Nov. 13, 2014
  • victormaniel

    Oct. 9, 2014
  • asudelabarra

    Oct. 5, 2014

Conceptos básicos de la Teoría de Grafos

Views

Total views

100,149

On Slideshare

0

From embeds

0

Number of embeds

7,713

Actions

Downloads

2,527

Shares

0

Comments

0

Likes

31

×